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ABSTRACT

Context. Giant planets open gaps in their protoplanetary and subsequently suffer so-called type II migration. Schematically, planets
are thought to be tightly locked within their surrounding disks, and forced to follow the viscous advection of gas onto the central star.
This fundamental principle, however, has recently been questioned as migrating planets were shown to decouple from the gas’ radial
drift.
Aims. In this framework, we question whether the traditionally used linear scaling of migration rate of a giant planet with the disk’s
viscosity still holds. Additionally, we assess the role of orbit-crossing material as part of the decoupling mechanism.
Methods. We have performed 2D (r, θ) numerical simulations of point-mass planets embedded in locally isothermal α-disks in steady-
state accretion, with various values of α. Arbitrary planetary accretion rates were used as a means to diminish or nullify orbit-crossing
flows.
Results. We confirm that the migration rate of a gap-opening planet is indeed proportional to the disk’s viscosity, but is not equal to
the gas drift speed in the unperturbed disk. We show that the role of gap-crossing flows is in fact negligible.
Conclusions. From these observations, we propose a new paradigm for type II migration : a giant planet feels a torque from the disk
that promotes its migration, while the gap profile relative to the planet is restored on a viscous timescale, thus limiting the planet
migration rate to be proportional to the disk’s viscosity. Hence, in disks with low viscosity in the planet region, type II migration
should still be very slow.

Key words. protoplanetary disks – planet–disk interactions – planets and satellites: formation

1. Introduction

Planetary migration is a key ingredient to understand the archi-
tecture of planetary systems. This radial displacement of planets
is due to their gravitational interaction with the protoplanetary
disk. These disks surround most young stars, and have a lifetime
of a few million years. Planetary migration leads to significant
changes in the semi-major axis of all planets (see Baruteau et al.
2014; for a recent review) and carves the structure of planetary
systems.

Migration of planets has been extensively studied in recent
decades. Small mass planets, for which the response of the disk
can be considered linear, do not perturb the density profile of the
disk, and are in a regime called type I migration. Giant planets,
however, are massive enough to modify the disk radial density
profile. They deplete the region around their orbit and create a
gap (Lin & Papaloizou 1986a), separating the inner disk from
the outer disk. Once a gap is open, the planet is repelled inward
by the outer disk and outward by the inner disk. The position
of the planet within the gap adjusts so that the torques from the
inner and out disks cancel out. However, as the disk spreads vis-
cously and the gas accretes onto the central star, the gap, as well
as the embedded planet that carved it, is carried with it. This is
the classical scheme of the so-called type II migration (Lin &
Papaloizou 1986b), responsible for inward motion of giant plan-
ets. In this scheme, the planet does not migrate with respect to
the gas, but together with the gas, and acts as a gas-proof barrier
between the parts of the disk.

This standard scheme of type II migration, where a planet
follows exactly the viscous accretion speed of the gas has been
questioned by several works. Quillen et al. (2004) note that if the
inertia of the planet is much larger than that of the gas originally
present in the gap, the disk has a hard time moving the planet,
and the migration is slower than the viscous speed. Crida &
Morbidelli (2007) add that the corotation torque, exerted on the
planet by the gas still present in the gap, may play a role, espe-
cially in regions where the background density profile is steep
(which promotes a high corotation torque). This could slightly
decouple the planet from the gas evolution, but this process relies
on a non-empty gap, hence it could be seen as a situation where
perfect type II migration is not expected anyway.

Furthermore, Hasegawa & Ida (2013) remark that the
assumption that a planet be locked in its gap had no solid physi-
cal ground. Lubow & D’Angelo (2006) and Duffell et al. (2014)
show that, in simulations, gas is able to cross the gap during
planetary migration. Dürmann & Kley (2015; DK15 hereafter)
explicitly question the idea that the planet stays in equilib-
rium in the middle of the gap. They suggest that when the
gas reaches an equilibrium gap profile, such that the torques
from the viscosity, the pressure, and the planetary gravity bal-
ance on each side (Crida et al. 2006), the planet does not
necessarily feel a zero torque. Hence, it moves to a different
position inside the gap. The motion of the planet then forces
the gas to re-adjust the equilibrium profile, by passing through
the planet’s orbit from the inner part to the outer part of the
disk. Because this transfer of gas is due to the planet–gas
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interaction and not due to the disk’s viscous spreading, the evo-
lution of the planet becomes unlocked from the disk’s viscous
evolution.

The authors of DK15 find that the migration speed is
independent of the disk’s drift speed and mainly depends on
parameters such as the mass of the disk or that of the planet.
Furthermore, Dürmann & Kley (2017; DK17 hereafter) showed
that planetary accretion, in some cases, is able to cut the gas
flow across the planet’s orbit. In these cases the gap acts as a bar-
rier between the inner and the outer disks and classical type II
migration regime could be reestablished. However, the authors
noticed that even in these cases the migration rate can differ from
classical type II migration rate. Both studies (DK15 and DK17)
considered a classical α-viscosity disk and focused on the depen-
dence of migration speed on parameters like the disk mass and
the planetary mass for a fixed viscosity value.

These studies show that gas is crossing the gap and therefore
the migration speed seems to be independent on the disk’s
drift. Although the authors already provided evidence that
migration speeds depend on viscosity, a direct comparison of
this dependence with the fundamental assumptions of classical
type II remains to be conducted. This is precisely the aim of the
present paper.

In fact, though it is now admitted that giant planets’ migra-
tion does not follow classical type II migration, it is very
important to check whether some scaling of migration rate with
viscosity is still preserved. Precisely, the existence of giant plan-
ets at orbits larger than 1 au in semi-major axis (so-called warm
Jupiters) is difficult to explain in the usual paradigm of viscously
accreting disks unless considering low viscosity and confirm-
ing that migration speed scales with viscosity. Low viscosity is
admitted in the central part of the disks, the so-called dead zone,
where magneto-rotational instability (Balbus & Hawley 1991)
does not operate. Moreover, recent studies (Bai & Stone 2013;
Bai 2016; Suzuki et al. 2016) have shown that the disk’s struc-
ture can be very different from that of a viscously accreting disk.
Mass accretion onto the star could be ensured by magnetically
driven winds providing angular momentum removal. These disks
would have very low viscosity. It is beyond the purpose of this
paper to model this kind of disks, however these studies motivate
the investigation of the migration of giant planets in low viscos-
ity disks. We will also investigate the role of gap-crossing flows
on migration.

The paper is organized as follows. In Sect. 2, we present the
physical model and the numerical scheme, while the setup of ini-
tial conditions is reported in appendices. In Sect. 3, we study the
scaling of migration speed with viscosity by performing numer-
ical simulations of Jupiter-mass planets in disks with controlled
inflow rates and various viscosities, but same gas surface den-
sity. In Sect. 4, the accretion of gas by the planets is modeled
by removing, with various efficiencies, the gas entering the Hill
sphere ; it allows us to find the influence of planetary accretion on
migration, and to quantify how important is cutting the gas flow
across the gap. Finally, our findings are summarized in Sect. 5,
where we propose a new, consistent paradigm to explain giant
planet migration.

2. Physical setup

We consider a stationary accreting disk in which a planet is
introduced. In this section, we present our background disk
model the numerical code used and the prescription for planetary
accretion.

2.1. Units and notations

We describe our 2D disk in polar coordinates (r, θ), centered
osnto the host star. A subscript “0” denotes values defined at a
reference radius r0 = 1 . Our time unit, hereafter called an orbit,

is t0 = 2π
√

r3
0

Gm∗
= 2π

Ω0
, where m∗ is the mass of the central star.

The planet mass is defined as mp = qm∗ = 10−3m∗ , and its initial
semi-major axis as rp(t = 0) = r0 = 1 .

2.2. Accretion disk model

Because we are interested in comparing the radial drift of the
embedded planet to that of the unperturbed disk, the easiest
scheme is to set up a steady-state accreting disk. The local
accretion rate is defined as

Ṁ(r) = −2πrvrΣ , (1)

hence, an accreting disk displays vr < 0 and Ṁ > 0, where r is
the distance to the central star, Σ is the gas surface density, and vr
is the gas radial velocity. We use a non-flared disk scale-height
H(r) = hr, h = 0.05 being the uniform aspect ratio, as well as
an α-viscosity model (Shakura & Sunyaev 1973), ν = αH2Ω ,
and a power law density profile, Σ(r) = Σ0(r/r0)−s . Within those
prescriptions, we obtain the radial velocity for a uniform (hence
steady) accretion rate as1

vr = −3(1 − s)
ν(r)

r
. (2)

Combining Eqs. (1) and (2) gives Ṁ = Ṁref(1 − s)α(r/r0)1/2−s,
where Ṁref = 6πh2r2

0Ω0Σ0 . Therefore, the disk model is com-
pletely defined by fixing α and Ṁ. This leads to

s =
1
2

Σ0 =
Ṁ

3παh2r2
0Ω0

. (3)

Unless specifically stated, all our simulations share this set-
up, following Eqs. (2) and (3). A summary of different values
used in this study may be found in Table 1. In Sect. 2.7, we
exhibit boundary conditions compatible with this physically sta-
ble initial state, and in Appendix B, we explain how they affect
the disk in the presence of a planet.

2.3. Hydro-thermodynamics

The disk evolves along the Navier–Stokes equations :(
∂.

∂t
+ v.∇

)
v = ν∆v + ∇ΦG −

∇P
Σ

, (4)(
∂.

∂t
+ v.∇

)
Σ + Σ(∇.v) = 0 , (5)

where v is the gas velocity, ν is the α-viscosity, ΦG is the total
gravitational potential yielded by the central star and the planet,
and P is the pressure. Assuming a cooling time much shorter
than the orbital period 2πΩ−1 = 2π(r/r0)−3/2Ω−1

0 , the equation
system is closed with a locally isothermal equation of state :

P = cs
2(r) Σ = (HΩ)2Σ , (6)

where cs is the sound speed and H(r) = hr is the disk scale
height.
1 In all generality, for a β , 0 flared disk H(r) = hr(r/r0)β, the result is
changed by replacing (1 − s) by (1 − s + 2β) .
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Table 1. Models parameters.

Simulation name α Ṁ/(m∗t−1
0 )

A1 3 × 10−3 3.78 × 10−8

A2 1 × 10−3 1.25 × 10−8

A3 7 × 10−4 8.80 × 10−9

A4 5 × 10−4 6.29 × 10−9

A5 3 × 10−4 3.78 × 10−9

B1 3 × 10−3 0

Notes. In all the cases, the disk mass, or equivalently its surface density
Σ0 is held constant to 5.3 × 10−4.

2.4. Numerical code

Our experiments were conducted using the 2D hydrodynamic
grid code Fargo 2D (Masset 2000). This code solves Eqs. (4)
and (5) using a finite difference multistep procedure. The fluid
advection step is solved using a Van Leer method (Van Leer
1977). The Fargo algorithm (Masset 2000) is specifically suited
for Keplerian rotation where the traditional Courant–Friedrichs–
Lewy (CFL) condition (Courant et al. 1928) provides very small
time-steps due to fast orbital motion at the inner boundary of
the numerical domain. In the Fargo algorithm, the time-step
is limited by the perturbed density arising from differential
rotation.

Our solver was set with a Courant parameter (Courant
et al. 1928) of 0.4. The contribution Φp of the planet to the
gravitational potential is smoothed as

Φp =
Gmp√

d2 +
(

3
5 RH

)2
, (7)

where d is the local distance to the planet, and RH = rp(q/3)1/3

is the planet’s Hill radius. As our model does not include the
disk’s self-gravity, we exclude the material contained in the Hill
region of a planet in the computation of the torque acting on it.
To this end, we use the tapering function described by (Crida
et al. 2008; Eq. (5)), with p = 0.6. This is done to avoid artifi-
cial “braking” in the planet’s migration due to the fact that this
circum-planetary material does not feel any gravitational torque
from the rest of the disk (see Crida et al. 2009).

2.5. Planetary accretion recipe

Accretion onto the planet is handled following the recipe of Kley
(1999). At each time step, in every cell located within the Hill
radius RH of the planet, a fraction of the gas is removed. This
fraction is given by Kp f (d) δt, where d is the distance to the
planet, δt is the time step, and Kp is an arbitrary accretion effi-
ciency parameter. Kp is typically ∼1, and constrained such that
0 6 Kp δt < 1. In our simulations δt ' 10−3. We use the smooth
function f (d) proposed by Crida et al. (2016) :

f (d) =


1, if d 6 0.3 RH ,

cos2
(
π
(

d
RH
− 0.3

))
, if 0.3 RH < d < 0.8 RH ,

0, if 0.8 RH 6 d.
(8)

For a uniform density around the planet, this function conserves
the planetary accretion rate with respect to the original step func-
tion proposed by Kley (1999). It furthermore provides better

accuracy when the gas is growing scarce in the planet’s vicinity,
without the need for a higher resolution.

This mass taken away from the disk should fall onto
the planet, with corresponding momentum. However, here we
remove this gas (and its momentum) from the simulation, in
order to compare the migration rates of planets of equal, fixed
masses. By doing so, we highlight the influence of the gas flow
on the migration of the planet. This is reasonable as we are inter-
ested in the migration rate of a planet given its mass and not in
the planet’s mass accretion rate nor in the final position of an
evolving planet.

2.6. Initial conditions for migration

We obtain our initial conditions after two stages, respectively
coined introduction and relaxation, lasting Tintro = 1000 and
Trelax = 4000 orbits, respectively. During introduction and relax-
ation, the planet is held at a constant semi-major axis rp = 1.

During introduction, the planet mass is slowly increased
from 0 to qm∗ over Tintro, along a smooth function of time

mp(t) = qm∗ sin2
(
π

2
t

Tintro

)
. (9)

Classically, a gap-opening planet quickly expels the gas from
its horseshoe region. This gas tends to accumulate at the gap’s
edges then to slowly spread at a viscous rate. To avoid this slow
phase, we allow the planet to remove gas instead of scattering it,
using the planetary accretion recipe described above. We use a
smoothly decreasing planetary accretion efficiency

Kp(t) = K0
p cos2

(
π

2
t

Tintro

)
, (10)

with K0
p = 1 in our simulations. As illustrated by Crida & Bitsch

(2017), this helps with the gap opening process, and overall saves
computational time.

During relaxation, we let the system evolve to a near-to-
steady state. Convergence is considered achieved when both
the mass flow Ṁ(r) and the gravitational torque Γtot exerted
on the planet reach constant values with respect to time. See
Appendix A. Hereafter, we call the time origin t = 0, the release
date, from which the planet is allowed to migrate.

2.7. Boundary conditions

The choice of boundary conditions is a priori of non-negligible
importance, and can significantly affect the numerical steady-
state the disk relaxes into. Our main concern in choosing appro-
priate boundaries is that the disk should be left unperturbed far
from the planet’s orbital radius. In order to achieve this, we make
the further distinction between the domain of interest, in other
words, the radial vicinity of the planet, and the broad edges of the
simulation domain. A smooth transition is used from the planet’s
region of influence to the unperturbed initial state at edges of
the simulation domain. This is done through a wave-killing-like
algorithm (de Val-Borro et al. 2006) where at each time step and
in dedicated regions2, perturbations in Σ, vr, vθ with respect to
the initial state are damped out. This design choice is justified in
more extensive details in Appendix B.

2 Extending over r ∈ [rmin, 1.25rmin], and r ∈ [0.8rmax, rmax] respec-
tively, rmin and rmax being the limits of the grid.
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Fig. 1. Azimuthally averaged density profiles at t = 0, when the planet
is being released. Black thin solid curve corresponds to the power law
profile used at initialization.

2.8. Models parameters

The simulation domain spans over r ∈ [0.1, 3.0]. We have cho-
sen an inner boundary at r = 0.1, although this choice is very
expensive in computational time. The advantage is the possibil-
ity to study migration of a planet initially located at r = 1 on
a large orbital domain, going down in some cases to r = 0.4
with no impact of the inner boundary on migration. An arith-
metic radial-spacing of grid cells is used with a resolution of
(nr, nθ) = (248, 628).

In this paper we aim at testing the scaling of the migra-
tion rate with the viscosity and therefore we consider different
values of α in the interval [3 × 10−3 : 3 × 10−4]. Table 1
describes in code units our models parametrization. Values are
chosen so that Σ0 = 5.3 × 10−4 code units in all simulations.
This value is low enough that the co-orbital mass deficit can
not exceed mp, to avoid the runaway type III migration regime
(Masset & Papaloizou 2003), but large enough that the disk is
still able to push the planet efficiently3. For m∗ = m� (hence
mp = mJ), and r0 = 5 au , model A1 physically translates into
and Ṁ = 2 × 10−8 m� yr−1.

Figure 1 shows the initial density profiles at the end of the
relaxation phase at t = 0 for simulations A1, A2, A5. As expected,
gaps are deeper and wider at lower viscosities.

3. Influence of viscosity on the migration rate

DK15 and DK17 demonstrated that the torque acting on a gap-
opening planet is primarily dependent on the disk’s mass rather
than its accretion rate Ṁ(r) ∝ ν(r). Although they showed that
viscosity still affected the torque, it remained to be clarify how
viscosity’s role compares to the initial assumption of classical
type II. A direct comparison with type II is the topic of this
section.

“Classical” type II migration rate is given by ṙp = vr, where
vr is the viscous speed of the unperturbed disk (Eq. (2)); i.e. the
planet is assumed to migrate with the drift rate of the gas. We
show in Fig. 2 the migration speed measured in simulations A1
to A5 plotted as a function of the semi-major axis of the planet.
In all these runs, no planetary accretion is used. The migration
speed was normalized in all simulations to vr = − 3

2
ν
r so that scal-

ing of the migration with vr and/or with viscosity is apparent.

3 We notice that, for Σ0r2
p/mp = 0.53 , DK15 obtained a migration

speed larger than the disk radial velocity vr (see Fig. 15 in their paper).

0.4 0.5 0.6 0.7 0.8 0.9 1.0
rp

1

10

ṙ p
/v

r
(r
p
)

A1

A2

A3

A4

A5

0.1 0.2 0.3 0.4 0.5

Σ(rp)r
2
p/mp

Fig. 2. Normalized migration speed as a function of the semi-major
axis for sets A1 to A5 with Kp = 0. The normalized local disk mass
Σ(rp)r2

p/mp is indicated as a secondary graduation for the x-axis.

Because planets do not migrate at identical speeds in different
runs, note that a given semi-major axis corresponds to different
dates; for instance, A1’s planet reaches rp = 0.8 at t ' 1150, to
be compared with t ' 8000 in case A5. Some observations can
be drawn from Fig. 2 :

– As pointed out by Duffell et al. (2014), because the planet
was first artificially maintained on a circular orbit, the
corresponding gas distribution at release date is de facto
inconsistent with a migrating perturber. Indeed, within this
method, we obtain torques inducing migration timescales
much shorter than the viscous spreading timescale of gap
edges ; this is a known effect in type II studies. It follows that
the transitional stage immediately following release (rp ≈ 1)
ought to be discarded from our analysis.

– Following this transition, normalized migration tracks con-
verge, demonstrating that steady migration rates scale lin-
early with the viscosity.

– Because migration speeds scale with viscosity, convergence
is reached on timescales ∝ τν = r2

p/ν. Therefore, very long
integration times are required at the lower viscosities. In
fact, properly comparing situations at different values of α
requires snapshots with similar rp, i.e. similar t/τν (and sim-
ilar local disk mass, see below). In particular, the previously
mentioned transitional stage corresponds to 0.9 . rp < 1 for
every viscosity.

– At odds with the classical speed expected for type II migra-
tion, the migration rate decreases with the semi-major axis
and migration becomes slower than classical type II for
rp . 0.54.

This last result is in agreement with DK15 who showed that
migration rate decreases with decreasing local disk’s mass Σpr2

p,
Σp being the unperturbed surface density at planet position rp.
The top horizontal axis of Fig. 2 shows the local disk mass
divided by the mass of the planet. The migration speed is equal
to vr when this mass ratio is '0.2, in remarkable agreement with
DK15 (Fig. 15 therein).

Besides these observations, Fig. 2 reveals a puzzling fact
for the question we are interested in the migration speed of a
gap opening planet is proportional to the viscosity of the disk,
but not equal to the radial drift of the gas. The fact that the
planet migrates slower than the gas when the disk mass is low
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Fig. 3. Migration speed as a function of the semi-major axis in two
simulations with α = 0.003 and same surface density. Orange curve :
case A1 (s = 1/2) ; same curve as Figure 2 (not normalized here). Black
curve : case B1.

Fig. 3. Migration speed as a function of the semi-major axis in two
simulations with α = 0.003 and same surface density. Orange curve :
case A1 (s = 1/2) ; same curve as Fig. 2 (not normalized here). Black
curve : case B1.

is not a surprise, but the reason for a faster migration remains
unclear still (although already found by previous studies). To
further inquire this possibility, we ran an additional simulation,
B1, in a static unperturbed disk, i.e. where Eq. (3) is changed
to s = 1 so that vr = Ṁ = 0, Eq. (2), and Σ0 is arbitrary, hence
kept to A1’s value. The migration speed found is displayed in
Fig. 3 as the black curve, where it can be compared to the case
s = 1/2 (orange curve, same data as Fig. 2). Very clearly (and
surprisingly), the unperturbed radial velocity of the gas has little
influence on the migration speed of the planet.

What pushes the planet is not the radial drift of the gas onto
the star. This supports DK15’s claim that the planet inside its gap
is not necessarily at equilibrium with the gas, when the gas pro-
file is itself at equilibrium with the planet. Hence, the planet can
feel a torque, which drives its migration, even if the unperturbed
disk has no radial drift. This is already a change of paradigm for
type II migration. Why this torque should be proportional to the
viscosity, however, is unclear at this point. This suggests that the
picture may be more complicated than the one just described, as
we will see later.

For the planet to migrate faster than the radial velocity of the
unperturbed gas, one would naturally expect that it migrates with
respect to the gas. In this picture, gas should cross the planet’s
orbit from the inner to the outer disk to sustain migration. The
following section is dedicated to studying the influence of plan-
etary accretion on such mass exchanges and its resulting effects
on migration.

4. Effect(s) of planetary accretion

Here we test how introducing planetary accretion into our model
affects the gas flow through the planet’s orbit, and how the
migration rate is changed in turn. Accretion’s efficiency is
parameterized by the dimensionless number Kp, which we vary
as Kp ∈ {0, 0.2, 1.0, 5.0}, using run A2 as the reference case
Kp = 0. The initial state in all runs is identical to that of
A2. Unlike the time-dependent accretion efficiency previously
described, here we do not follow Eq. (10), and Kp is instantly
switched to a non-zero value at t = 0, when the planet is released.

In order to preserve comparability, we emphasize the impor-
tance of keeping the global structure of the disk as unperturbed
as can be, despite the fact we are adding a sink point to the

hydrodynamical model. Our boundary conditions ensure that the
disk’s profile stays unchanged far away from the planet. Hence,
we except all changes due to Kp to stay local to the planet’s
vicinity.

4.1. Material exchange between reservoirs

The inner and the outer disks constitute our two gas reservoirs
of interest. In order to keep track of the planet’s relative radial
displacement with respect to those reservoirs, we use passive,
dimensionless, scalar tracers ηi/o. Let us give a non-ambiguous
and partly arbitrary definition of their respective initial distribu-
tions. We should be concerned about avoiding confusion with
material originated from the HorseShoe Region (HSR), whose
width is given by Masset et al. (2006) as wHSR ≈ 2.5 RH. Hence,
a precautionary choice is to consider only material initially dis-
tant of at least 3RH from the planet’s orbit. Within this definition,
we define ηi,o(r, θ, t = 0) = r/r0, for r ≷ rp ± 2.5RH, and ηi/o = 0
elsewhere. Let us acknowledge that, as a tracer is advected
along with the gas, its value in a given cell becomes the mass
weighted average of the tracers that are found in the consid-
ered cell at the considered time. Therefore, at t > 0, we expect
to find mixed material, displaying values of the tracer that do
not correspond to the initial value but rather a weighted average
of it.

Figures 4 and 5 display, for simulation sets A1 and A2
respectively, the evolution of those tracers, sampling over our
parameter Kp from 0.0 to 5.0. Once more, following Duffell et al.
(2014) and DK15, we find that, in the non-accreting case, some
gas is effectively transported from the inner disk to the outer
disk as migration proceeds. Not only does the planet migrate
with respect to the medium, it also actively ejects some mate-
rial to larger orbits. This still holds in the weakly accreting
case Kp = 0.2, although the transport efficiency is being slightly
decreased. However, it is not so in the “standard” and “strong”
accretion cases (Kp = 1, Kp = 5), where the outward flow from
the inner disk is so efficiently blocked that the outer disk rushes
into the planet’s vicinity.

Let us observe that while we successfully introduced accre-
tion as a means to prevent gap-crossing flows, the procedure also
profoundly modified the nature of the flow and added complexity
to the picture. Indeed, not only did we prevent inner disk mate-
rial to transfer into the outer disk, we also allowed the outer
disk material to reach the planet’s feeding zone, hence caus-
ing depletion to happen in both halves of the disk. Additionally,
we note that despite the origin of gas at a given radius being
widely different depending on the accretion rate (see Fig. 5),
at lower viscosity values (A2) the disk’s structure stays almost
self-similar whatever the planetary accretion efficiency Kp, see
Fig. 7. The net effect on migration is unclear at this point and
will be discussed in Sect. 4.2. Furthermore, the transition from
a naturally occurring gap-crossing flow to a two-way accretion
flow with increasing Kp appears to be smooth. Indeed, we see in
the weakly accreting case that, as less material flows from the
inner disk to the outer disk, the latter immediately reacts and fol-
lows the planet more closely than in the non-accreting scenario.
From a quick comparison between Figs. 4 and 5’s respective
“weak rate” panels, one can see that the stronger the viscos-
ity, the quicker this compensation mechanism (normalizing time
to the viscous timescale). This is confirmed in stronger accre-
tion cases Kp = 1.0, 5.0 . Hence, at least for high values of α,
planetary accretion cannot cut the otherwise existing outward4

4 Relative to the planet.
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Fig. 4. Evolution of passive tracers ηi/o for simulation set A1, following material originated in the outer (top panels)/inner (bottom panels) disk, in
polar coordinates. Left panel: initial state (white is 0). All but leftmost column: 1000 orbits after release, for varying values of Kp. We emphasize
that color scales are different across rows. For the sake of readability, the disk is here displayed with angular coordinates such that θp = π in every
frame. Filled lines show the planet’s feeding zone, 0.8RH in radius ; dashed lines are 3RH large in radius, encompassing a somewhat broader region
than the typical HSR.

Fig. 5. Same as Fig. 4 for simulation set A2. Snapshots are taken after a α1/α2 longer period.

gap-crossing flow without causing a more rapid inward flow of
the outer disk.

In short, we find that an accreting planet does not prevent gas
from entering its HSR, even though it can nullify gap-crossing
flows. Let us now discuss the implications of accretion on the
migration speed.

4.2. Impact of accretion on migration

It is clear from our previous observations that the density of
the outer disk, hence the negative torque it yields on the planet,

should be reduced by planetary accretion. DK17 already noted
that planetary accretion can reduce migration speeds. Nonethe-
less, we stress that the positive contribution from the inner disk
can also diminish as the disk is being forcedly depleted. Here we
measure the effective migration rates against accretion efficiency
and give further interpretation.

Because planetary accretion stops the gap-crossing gas flow,
one may expect it to consolidate the classical type II migra-
tion scheme. We recall that in this scheme, the migration rate is
given by ṙp(rp) = vr(r = rp), where vr is the viscous speed of the
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Fig. 6. Radial position of the planet rp VS time, for varying accretion rates. Panels correspond to simulation sets A1 (left panel) and A2 (right
panel). The plot includes analytical migration tracks Eq. (11) with varying time offsets as guidelines.
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Fig. 7. Density profiles snapshots at fixed time with varying accretion efficiency for simulation sets A1 and A2. Black thin lines indicate the initial
states (same as Fig. 1).

unperturbed disk Eq. (2); i.e. the planet is assumed to migrate
with the drift rate of the gas. Integrating Eq. (2), we get the
analytical evolution of rp(t) for a planet migrating in a classical
type II fashion:

rp,II(t) =

[
r3/2

p (t = 0) −
9
4
αh2

√
Gm∗t

]2/3

. (11)

Time evolution of rp is shown in Fig. 6 for various accretion
efficiencies (Kp), against this theoretical track, for simulation
sets A1 and A2 (1 panel per value of α). We observe that planetary
accretion has significant impact only in the highest viscosity case
α = 0.003, where the migration rate can be reduced below the
theoretical rate (cases Kp ≥ 1) after a few 1000 orbits in agree-
ment with findings from DK17. However, changes in migration
are barely noticeable in the second case where α = 0.001. We
have checked that for lower viscosities (simulations A3, A4, and
A5), the migration speed is hardly impacted by planetary accre-
tion as well. Increasing the accretion efficiency of the planet
(thus effectively cutting the flow of gas across the gap) does not
allow the planet to decrease its migration speed down to vr if
α 6 0.001.

The role of accretion in the viscous case can be understood
with corresponding density profiles Fig. 7. For the A1 runs, the
local disk’s structure is being efficiently affected by the accre-
tion, decreasing both inner and outer disk’s densities, hence their
respective torques densities (as shown in Fig. 8). In contrast,

the planet can hardly make a dent in the density profile in the
lower viscosity cases. This is consistent with that a lower vis-
cosity implies both a wider and deeper gap: as far less material
is available in the vicinity of the separatrices of the HSR, the
influence of planetary accretion on the dynamical evolution of
the disk is hindered.

Except for high values of α, we can conclude from our study
that planetary accretion is not of significant importance for the
migration of giant planets. Actually, the fact that the curves in
Fig. 2 overlap while there is no planetary accretion suggests that
the latter is not important in setting the proportionality between
the migration rate and the disk’s viscosity. The reason why plan-
etary accretion plays a role in the migration speed in the viscous
A1 case is not because it cuts the flow, but because it perturbs
strongly the density profile and broadens the gap.

5. Conclusion

To summarize, we have found in Sect. 3 that although type II
migration speed is proportional to the gas’ viscosity, it is not
driven by the radial inward drift of the gas. In particular, we con-
firmed that the giant planet can actually migrate faster than the
gas drifts, and even in a stationary disk. We concluded that what
drives type II migration is the imbalance between the torques
felt by the planet from the inner and outer disks, as pointed
out by DK15. However, the width and shape of the gap is not
directly linked to the viscosity, especially at low ν where the
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Fig. 8. Radial torque densities for simulation sets A1 and A2.

pressure effects are dominant (Crida et al. 2006) ; hence, we
do not expect this torque imbalance to be proportional to ν, in
contrast with the observed migration speed. In Sect. 4, we have
seen that gap-crossing flows are actually negligible at low viscos-
ity, and that cutting this small gas flow with planetary accretion
hardly impacts the migration speed. Thus, the planet migrates
faster than the disk drift, even when no gas is exchanged between
the inner and outer disks. Gap-crossing flows cannot be respon-
sible for the observed fast migration, in contrast with the of case
type III migration (Masset & Papaloizou 2003).

These two results allow us to draw a new, consistent pic-
ture of type II migration. As a giant planet forms, it opens a
gap by perturbing the gas profile with the gravitational torque
it exerts. The gas reaches a new equilibrium profile on each side
of the gap. Nonetheless, the planet inside its gap feels a non-zero
torque, because the inner and the outer torques have no reason to
balance out (as recently studied by Kanagawa et al. 2018). Thus,
the planet has to migrate inward. As it does so, some gas may
cross the gap from the separatrix of the HSR, although this is
not enough to restore the initial gap profile in the frame of the
planet if the viscosity is low ad the gap is wide (regardless of
whether the planet accretes or not). Therefore, the density distri-
bution has to adapt to the new position of the planet5, and this
is done over a viscous time. Once the gas is again at equilibrium
with the planet, the planet is not in an equilibrium inside the gap
anymore, and we are back to the initial situation.

In this scheme, the planet may well migrate faster than the
gas drifts, because it is pushed by a torque that has no con-
nection with the drift of an unperturbed disk. But because the
gap-crossing flow is negligible, the planet must migrate at a rate
proportional to viscosity, otherwise it would pile gas up in the
inner disk and leave a depleted outer disk behind, eventually
halting its migration.

Although the final result (migration speed of gap-opening
planets is proportional to the viscosity) is in line with the
standard picture of type II migration, this new scheme is concep-
tually revolutionary in our understanding of this phenomenon,
and allows us to reconcile all the puzzling observations that
have been made recently, questioning the standard picture. Addi-
tionally, it confirms that even if some gas may cross the gap,
a giant planet in a low-viscosity disk should migrate slowly. In

5 That is, the bump in the surface density produced at the inner edge of
the gap has to be redistributed over the inner disk while the outer disk
has to spread down to the new gap’s outer edge.

this frame, the abundance of warm Jupiters, who did not migrate
all the way toward their star, may suggest that most protoplan-
etary disks have a low effective viscosity in the planet-forming
region.
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Appendix A: Disk relaxation: equilibrium of
torques on a fixed-orbit planet
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Fig. A.1. Evolution of the gravitational torque Γtot acting on the planet
during introduction and relaxation (t̃ here denotes time during those
stages). Γi is the contribution of the inner disk (up to r = rp = 1), Γo of
the outer disk, and Γtot = Γi + Γo. A vertical line indicates the end of the
planet’s introduction and starting date of the disk’s relaxation.

Here we give details on the relaxation of the disk toward
initial conditions for planetary migration. In Fig. A.1, the total
gravitational torque Γtot that the disk exerts on the planet is
plotted alongside with its inner and outer components.

While the one-sided torques decrease in absolute value as
the gap opens, the total torque remains nearly constant. We mea-
sure its final value as only a fraction (∼0.12) of the differential
Lindblad torque:

Γ0 = −Σpr4
pΩ2

p(q/h)2 , (A.1)

where Σp is the unperturbed surface density at planetary semi-
major axis, rp. This is expected for a gap-opening planet. For
lack of an existing normalization factor for type II migration, let
us derive one here. The viscous torque exerted by inner material
r < R onto its complementary part r > R in an unperturbed disk
may be expressed as

Γν(R) = 3πνΣR2Ω(R) = 3παH2Ω2ΣR2 . (A.2)

Hence, the expected value the total torque in classical type II can
be estimated as the differential viscous torque that a gas annulus
occupying the gap would feel as

ΓII = 3πΣ0αh2Gm∗
[
(rp − wHSR)1−s − (rp + wHSR)1−s

]
, (A.3)

where wHSR is the width of the horse-shoe region, estimated
as 2.5 RH . We observe that Γtot converges toward ∼4 ΓII. This
discrepancy has been tackled by Dürmann & Kley (2015) who
showed that in fact, the final value of this torque is primar-
ily determined by the disk mass has little to do with the disk
accretion rate Ṁ, or equivalently its viscous torque Tν ∝ ν ∝ Ṁ.
Furthermore, they showed that even-though the inner and outer
disks reach stationary density profiles, the planet is not in an
equilibrium position between them. Indeed, a stationary-state

disk embedding a fixed-orbit planet does not yield the expected
type II torque but rather a significantly stronger one.

Appendix B: Design of boundary conditions

Here we provide more insight on how the boundary conditions
were selected and acknowledge the consequences of this choice.
An obvious choice for boundaries would consist in simply fixing
the values of velocities and surface density to their initial state.
In principle, this design would allow for conservation of both
the total mass in the simulation domain and the initial flow Ṁ
throughout the relaxation. However, this does not hold within the
staggered grid scheme used in Fargo. Indeed, radial velocities
are defined at lower edge of cells while density is center-defined.
While this is a convenient design for numerical integration of
hydrodynamics equations, it makes it impossible to keep the
density, velocities and the net mass flux entering the simulation
domain constant all at once. This is because the net mass enter-
ing the simulation at the outer edge is effectively defined as a
combination of fixed and free numbers. Figure B.1 illustrates this
point, and define the two equally problematic possible designs.
A solution to this issue would be to correct the imposed value
for Σn (case 1) or vr,n+1 (case 2) at each time step to achieve the
desired value in Ṁ. In practice this proved less than efficient,
as Ṁ(r) is very sensitive to even the most subtle spatial or time
variation, convergence was not achieved in practical times.

Although a steady-state is characterized by uniformity in
accretion rate Ṁ(r), there is in fact no strong argument in favor
of enforcing its initial value at the grid’s edges. Indeed, DK15
already clarified that the migration rate is not bound to the
unperturbed Ṁ. Furthermore, as previously observed, enforc-
ing a constant mass flow through both radial edges would cause
the total mass, dictated solely by s and the radial limits of
the grid, (rmin , rmax), to be constant. In this case, one would
obtain qualitatively different results only by enlarging the simu-
lation domain, corresponding to different physical scenarios. For
instance, strong pressure bumps may be found at the edges of the
gap for a narrow enough grid, corresponding to a fast planet-
formation scenario where a jovian mass would agglomerate over
the course of a few 100 orbits.

For these reasons, we chose to relax the assumption that the
final uniform value in Ṁ should be exactly equal to that of the
initial, analytical state described in Sect. 2.2, and instead favor
the fact that the disk should stay close to unperturbed far from
the planet. As explained in Sect. 2.7, we extend the notion of
“boundaries” to broad radial domains where perturbations with
respect to the initial state are consistently damped out. This arti-
ficial process is applied to velocities (both radial and azimuthal)
as well as to surface density. A direct consequence of this is that
mass is no longer being conserved in wave-killing regions, so
that desired uniformity in Ṁ(r) is only relevant outside those
regions. Additionally, this damping process prevents reflections
of sound waves, such as spiral wakes, as is its original purpose
(de Val-Borro et al. 2006).

Figure B.2 shows the evolution of the radial flow profile
obtained in the case A1. Although not perfectly converged, at
t̃ = 5000, we settled for what we considered an acceptable level
of uniformity to save computational time.
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1

2

Fig. B.1. Two possible designs for fixed boundary conditions in a 1D
grid where radial velocities are defined at inner cell edge (red arrows)
and density is center-defined (blue circles). Boldface is used to indicate
fixed quantities. The net mass inflow is determined as a combination of
quantities inside of a green dashed ellipse, which always contain both
fixed and free values. The last cell harbouring free quantities is indexed
by n.
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Fig. B.2. Relaxation of the azimuthaly averaged radial flow, case A1.
t̃ denotes time during introduction and relaxation stages (t̃ = t + 5000).
Limits of the domain of interest (excluding wave-killing zones) are
shown as dashed lines. Ṁinit denotes the uniform value in the ana-
lytic state of the unperturbed disk described in Sect. 2. 628 snapshots
covering one orbit were averaged to obtain each line in this figure.
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