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INTRODUCTION

Shape matching is a task that occurs in countless applications in computer graphics, including shape interpolation [START_REF] Kilian | Geometric modeling in shape space[END_REF] and statistical shape analysis [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF], to name a few.

An elegant approach to non-rigid shape correspondence is provided by spectral techniques, which are broadly founded on the observation that near-isometric shape matching can be formulated as an alignment problem in certain higher-dimensional embedding Fig. 1. Given a small functional map, here of size 2 × 2 which corresponds to a very noisy point-to-point correspondence (middle right) our method can efficiently recover both a high resolution functional and an accurate dense point-to-point map (right), both visualized via texture transfer from the source shape (left).

spaces [START_REF] Biasotti | Recent trends, applications, and perspectives in 3D shape similarity assessment[END_REF][START_REF] Jain | Robust 3D shape correspondence in the spectral domain[END_REF][START_REF] Haggai Maron | Point registration via efficient convex relaxation[END_REF][START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF]. Despite significant recent advances and their wide practical applicability, however, spectral methods can both be computationally expensive and unstable with increased dimensionality of the spectral embedding. On the other hand, a reduced dimensionality results in very approximate maps, losing medium and high-frequency details and leading to significant artifacts in applications.

In this paper, we show that a higher resolution map can be recovered from a lower resolution one through a remarkably simple and efficient iterative spectral up-sampling technique, which consists of the following two basic steps:

(1) Convert a k × k-size functional map to a pointwise map.

(2) Convert the pointwise map to a k + 1 × k + 1 functional map.

Our main observation is that by iterating the two steps above, starting with an approximate initial map, encoded using a small number of spectral coefficients (as few as 2-15), we can obtain an accurate correspondence at very little computational cost.

We further show that our refinement technique can be combined with standard map initialization methods to obtain state-of-the-art results on a wide range of problems, including intrinsic symmetry detection, isometric shape matching, non-rigid partial correspondence and function transfer among others. Our method is robust to significant changes in shape sampling density, is easily scalable to meshes containing tens or even hundreds of thousands of vertices and is significantly (up to 100-500 times in certain cases) faster than existing state-of-the-art map refinement approaches, while producing comparable or even superior results. For example, Figure 1 shows a result obtained with our method, where starting from an initial 2 × 2 functional map, we recover a high resolution functional and an accurate pointwise correspondence.

Contributions. To summarize:

(1) We introduce a very simple map refinement method capable of improving upon the state of the art in a diverse set of shape correspondence problems; for each problem we can achieve the same or better quality at a fraction of the cost compared to the current top performing methods. (2) We demonstrate how higher-frequency information can be extracted from low-frequency spectral map representations. (3) We introduce a novel variational optimization problem and develop a theoretical justification of our method, shedding light on structural properties of functional maps.

RELATED WORK

Shape matching is a very well-studied area of computer graphics.

Below we review the methods most closely related to ours, concentrating on spectral techniques for finding correspondences between non-rigid shapes. We refer the interested readers to recent surveys including [START_REF] Biasotti | Recent trends, applications, and perspectives in 3D shape similarity assessment[END_REF][START_REF] Gary Kl Tam | Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[END_REF][START_REF] Van Kaick | A survey on shape correspondence[END_REF] for a more in-depth treatment of the area.

Point-based Spectral Methods. Early spectral methods for shape correspondence were based on directly optimizing pointwise maps between spectral shape embeddings based on either adjacency or Laplacian matrices of graphs and triangle meshes [START_REF] Jain | Robust 3D shape correspondence in the spectral domain[END_REF][START_REF] Jain | Non-rigid spectral correspondence of triangle meshes[END_REF][START_REF] Mateus | Articulated Shape Matching Using Laplacian Eigenfunctions and Unsupervised Point Registration[END_REF][START_REF] Ovsjanikov | One Point Isometric Matching with the Heat Kernel[END_REF][START_REF] Guy | An algorithm for associating the features of two images[END_REF][START_REF] Umeyama | An eigendecomposition approach to weighted graph matching problems[END_REF]]. Such approaches suffer from the requirement of a good initialization, and rely on restricting assumptions about the type of transformation relating the shapes. An initialization algorithm with optimality guarantees, although limited to few tens of points, was introduced in [Maron et al. 2016] and later extended to deal with intrinsic symmetries in [START_REF] Dym | Exact recovery with symmetries for Procrustes matching[END_REF]. Spectral quantities (namely, sequences of Laplacian eigenfunctions) have also been used to define pointwise descriptors, and employed within variants of the quadratic assignment problem in [Dubrovina and[START_REF] Dubrovina | Approximately isometric shape correspondence by matching pointwise spectral features and global geodesic structures[END_REF]]. These approaches have been recently generalized by spectral generalized multidimensional scaling [START_REF] Aflalo | Spectral generalized multi-dimensional scaling[END_REF], which explicitly formulates minimumdistortion shape correspondence in the spectral domain.

Functional Maps. Our approach fits within the functional map framework, which was originally introduced in [START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF] for solving non-rigid shape matching problems, and extended significantly in follow-up works, including [START_REF] Aflalo | Spectral multidimensional scaling[END_REF][START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF][START_REF] Kovnatsky | Coupled quasi-harmonic bases[END_REF][START_REF] Rodolà | Partial functional correspondence[END_REF] among others (see [START_REF] Ovsjanikov | Computing and Processing Correspondences with Functional Maps[END_REF]] for an overview). These methods assume as input a set of corresponding functions, which can be derived from pointwise landmarks, dense descriptor fields, or from region correspondences. They then estimate a functional map matrix that allows to transfer real-valued functions across the two shapes, which is then converted to a pointwise map.

Although the first step reduces to the solution of a linear system of equations, this last step can be difficult and error prone [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF][START_REF] Rodolà | Point-wise Map Recovery and Refinement from Functional Correspondence[END_REF]]. As a result, several strong regularizers have been proposed to promote certain desirable properties: see [START_REF] Burghard | Embedding shapes with Green's functions for global shape matching[END_REF][START_REF] Huang | Adjoint Map Representation for Shape Analysis and Matching[END_REF][START_REF] Litany | Fully spectral partial shape matching[END_REF][START_REF] Nogneng | Informative Descriptor Preservation via Commutativity for Shape Matching[END_REF][START_REF] Rodolà | Partial functional correspondence[END_REF]Wang et al. 2018b]. More recently, several other constraints on functional maps have been proposed to promote continuity of the pointwise correspondence [START_REF] Poulenard | Topological Function Optimization for Continuous Shape Matching[END_REF], map curves defined on shapes [START_REF] Gehre | Interactive curve constrained functional maps[END_REF], extract more information from given descriptor constraints [Wang et al. 2018a], and for incorporating orientation information into the map inference pipeline [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]].

In a concurrent work, [START_REF] Shoham | Hierarchical Functional Maps between Subdivision Surfaces[END_REF]] also compute hierarchical functional maps by building explicit hierarchies in the spatial domain using subdivision surfaces. Unlike this work, our method operates purely in the spectral domain, and does not require computing additional shape hierarchies.

High-frequency Recovery. Several approaches have also observed that high-frequency information can be recovered even if the input functional map is small or noisy. This includes both optimizing an input map using vector field flow [START_REF] Corman | Continuous matching via vector field flow[END_REF], recovering precise (vertex-to-point) maps [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF] from low frequency functional ones, and using pointwise products to extend the space of functions that can be transferred [START_REF] Nogneng | Improved Functional Mappings via Product Preservation[END_REF].

Iterative Map Refinement. We also note other commonly-used relaxations for matching problems based on optimal transport, e.g. [START_REF] Mandad | Variance-Minimizing Transport Plans for Inter-surface Mapping[END_REF][START_REF] Solomon | Entropic metric alignment for correspondence problems[END_REF], which are often solved through iterative refinement. Other techniques that exploit a similar formalism for solving optimal assignment include the Product Manifold Filter and its variants [Vestner et al. 2017a,b]. Map refinement has also been considered in the original functional maps approach [START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF] where Iterative Closest Point in the spectral embedding has been used to improve input functional maps. Finally, in the context of shape collections [START_REF] Huang | Functional map networks for analyzing and exploring large shape collections[END_REF]Wang et al. 2013;[START_REF] Wang | Exact and stable recovery of rotations for robust synchronization[END_REF], cycle-consistency constraints have been used to iteratively improve input map quality. We further discuss methods most closely-related to ours in Section 4.3 below.

Although these techniques can be very effective for obtaining high-quality correspondences, methods based purely on optimization in the spatial domain can quickly become prohibitively expensive even for moderate sampling density. On the other hand, spectral techniques can provide accurate solutions for low-frequency matching, but require significant effort to recover a high-quality dense pointwise correspondence; further, such approaches are often formulated as difficult optimization problems and suffer from instabilities for large embedding dimensions.

BACKGROUND & NOTATION

In this section we introduce the main background notions and notation used throughout the rest of the paper.

Given a pair of shapes M and N , typically represented as triangle meshes, we associate to them the positive semi-definite Laplacian matrices L M , L N , discretized via the standard cotangent weight scheme [START_REF] Pinkall | Computing Discrete Minimal Surfaces and their Conjugates[END_REF], so that L M = A -1 M W M , where A M is the diagonal matrix of lumped area elements and W M is the cotangent weight matrix, with the appropriate choice of sign to ensure positive semi-definiteness. We make use of the basis consisting of the first k M eigenfunctions of the Laplacian matrix, and encode it in a matrix Φ

k M M = [φ M 1 , φ M 2 , . . . , φ M k M
] having the eigenfunctions as its columns. We define the spectral embedding of M as the k

M -dimensional point set φ M 1 (x), . . . , φ M k M (x) | x ∈ M .
Given a point-to-point map T : M → N , we denote by Π its matrix representation, s.t. Π(i, j) = 1 if T (i) = j and 0 otherwise, where i and j are vertex indices on shape M and N , respectively. Note that the matrix Π is an equivalent matrix representation of any pointwise map T without extra assumptions, such as bijectivity. The corresponding functional map C is a linear transformation taking functions on N to functions on M; in matrix notation, it is given by the projection of Π onto the corresponding functional basis:

C = Φ + M ΠΦ N , (1) 
where + denotes the Moore-Penrose pseudo-inverse. When the eigenfunctions are orthonormal with respect to the area-weighted inner product, so that Φ ⊤ M A M Φ M = Id, then Eq. ( 1) can be written as:

C = Φ ⊤ M A M ΠΦ N .
Note that C is a matrix of size k M × k N , independent of the number of vertices on the two shapes.

A typical pipeline for computing a correspondence using the functional map representation proceeds as follows [START_REF] Ovsjanikov | Computing and Processing Correspondences with Functional Maps[END_REF]]: 1) Compute a moderately-sized basis (60-200 basis functions) on each shape; 2) Optimize for a functional map C opt by minimizing an energy, based on preservation of descriptor functions or landmark correspondences and regularization, such as commutativity with the Laplacian operators; 3) Convert C opt to a point-to-point map. The complexity of this pipeline directly depends on the size of the chosen basis, and thus the dimensionality of the spectral embedding. Smaller bases allow more stable and efficient functional map recovery but result in approximate pointwise correspondences, while larger functional maps can be more accurate but are also more difficult to optimize for and require stronger priors.

Our main goal, therefore, is to show that accurate pointwise correspondences can be obtained even in the presence of only small, or approximate functional maps.

ZOOMOUT: ITERATIVE SPECTRAL UPSAMPLING

As input we assume to be given either a small functional map C 0 or a point-to-point correspondence T : M → N ; both may be affected by noise. We will discuss the role and influence of the input map in detail in the following sections. If it is a point-to-point map, we first convert it to a functional one via Eq. (1). For simplicity, we first state our method and then provide its theoretical derivation from a variational optimization problem in Section 4.4.

Given an input k M × k N functional map C 0 our goal is to extend it to a new map C 1 of size (k M +1)×(k N +1) without any additional information. We do so by a simple two-step procedure: (1) Compute a point-to-point map T via Eq. ( 2), and encode it as a matrix Π.

(2) Set C 1 = (Φ k M +1 M ) ⊤ A M Π Φ k N +1 N .
We then iterate this procedure to obtain progressively larger functional maps C 0 , C 1 , C 2 , ..., C n until some sufficiently large n. As we demonstrate below, this remarkably simple procedure, which can be implemented in only a few lines of code (see Appendix B), can result in very accurate functional and pointwise maps even given very small and possibly noisy input. To compute a pointwise map from a given C in step (1), we solve the following problem:

T (p) = arg min q ∥C(Φ N (q)) ⊤ -(Φ M (p)) ⊤ ∥ 2 , ∀ p ∈ M (2) 
where Φ M (p) denotes the p th row of the matrix of eigenvectors Φ M . This procedure gives a point-to-point map T : M → N , and can be implemented via a nearest-neighbor query in k M -dimensional space. It is also nearly identical, up to change in direction, to the pointwise map recovery described in the original functional maps article [Ovsjanikov et al. 2012, Section 6.2] but differs from other recovery steps, introduced, e.g., in [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF] as we discuss below. Figure 2 shows an example of ZoomOut on a pair of animal shapes from the TOSCA dataset [START_REF] Bronstein | Numerical Geometry of Non-Rigid Shapes[END_REF]. Starting with a 4 × 4 functional map, we show both the functional and point-to-point (visualized via color transfer) maps throughout our upsampling iterations. Note how the pointwise map becomes both more smooth and accurate as the functional map grows.

We use the term "upsampling" in the description of our method to highlight the fact that at every iteration ZoomOut introduces additional frequencies and thus intuitively adds samples in the spectral domain for representing a map. Alternatively, we compute a functional map of size 10 × 10 using the same approach and upsample it to k × k using our method. Differently from the ICP baseline, our method leads to improvement as k grows. On the right we show a qualitative illustration for k = 200.

Map Initialization

We initialize our pipeline by optimizing for a k M × k N functional map C 0 using an existing approach; we tested recent techniques, including [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF][START_REF] Rodolà | Partial functional correspondence[END_REF]] among others, across different settings described in detail in Section 5.

The key parameter for the initialization is the size of the functional map, and in most settings, we set k M = k N = k for some small k. This value ranges between 4 and 20 in all of our experiments, and allows us to obtain high quality maps by upsampling C 0 to sizes up to 200 × 200 depending on the scenario. We have observed that the key requirement for the input map C 0 is that although it can be noisy and approximate, it should generally disambiguate between the possible symmetries exhibited by the shape. Thus, for example, if 4 basis functions are sufficient to distinguish left and right on the animal models shown in Figure 2, then with a functional map of this size our method can produce an accurate final correspondence. Perhaps the most difficult case we have encountered is in disambiguating front and back in human shapes which requires approximately 15 basis functions. This is still significantly smaller than typical values in existing functional map estimation pipelines, which are based on at least 60 to 100 basis functions to compute accurate maps.

Acceleration Strategies

We propose three ways to accelerate ZoomOut.

Larger step size.

The basic method increases the size of the functional map by one row and one column at each iteration. This choice is supported by our theoretical analysis below, which suggests that increasing by one at each iteration helps to promote isometric maps, when they are present. In practice our method also achieves good accuracy with larger increments ranging between 2 and 5 (see supplementary materials for an illustration). We also note that in some settings (e.g., in the context of partial correspondence or in challenging non-isometric pairs), it is more reasonable to have rectangular functional maps with more rows than columns. There, Source Initialization Ours (0.17sec) RHM (355sec/570sec) Fig. 5. Comparison with RHM [START_REF] Ezuz | Reversible Harmonic Maps Between Discrete Surfaces[END_REF]]. Both methods are initialized with a 17 × 10 functional map provided by the authors of [START_REF] Ezuz | Reversible Harmonic Maps Between Discrete Surfaces[END_REF]]. The reported runtimes (excluding pre-computation) are for a CPU implementation of our method with acceleration, and a (GPU/CPU) implementation of RHM. The runtime of pre-computation for our method is 7s (and 70s for RHM). Our solution has comparable quality and is more than 2 orders of magnitude faster.

we increase the number of rows with higher increments than that of columns. We point out these explicitly in Section 5.

Approximate nearest neighbors.

We can also use approximate nearest neighbor instead of exact nearest neighbors during upsampling. This is particularly useful in higher dimensions where such queries can become expensive. In practice, we have observed that using the FLANN library [START_REF] Muja | Scalable Nearest Neighbor Algorithms for High Dimensional Data[END_REF]] can lead to a 30x time improvement with negligible impact on final quality (∼0.001% decrease of average accuracy).

Sub-sampling.

In the presence of perfect information, a functional map C of size k × k is fully determined by k point correspondences. Thus, it is possible to sample a small number (typically a few hundred) points on each shape, perform our refinement using the spectral embedding of only those points, and then convert the final functional map to a dense pointwise correspondence only once. In practice we simply use Euclidean farthest point sampling starting from a random seed point.

Relation to Other Techniques

While closely related to multiple existing techniques, our method is fundamentally different in several ways that we highlight below.

Iterative Closest Point. ICP refinement of functional maps [START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF] differs in that our method progressively increases the dimension of the spectral embedding during refinement. This crucial difference allows us to process smaller initial functional maps, which are easier to compute, and avoids getting trapped in local minima at higher dimensions, significantly improving the final accuracy. Figure 3 shows the accuracy of our method compared to ICP with different dimensions. All methods in this figure refine the same initial pointwise map at #iter = 1, which is computed using [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF] with the orientation-preserving term. Moreover, differently from ICP our approach does not force the singular values of functional maps to be 1, and inverts the direction of the pointwise and functional maps in a way that is consistent with the directions of a map and its pull-back. As we show in Section 4.4, rather than promoting area-preserving pointwise maps as done in ICP, our method implicitly optimizes an energy that promotes full isometries. In Figure 4 we further illustrate that our method produces significantly more accurate maps in higher dimensions. We Given the initialization computed from WKS descriptors, we compare our method with existing refinement techniques, by visualizing the maps via color transfer (first row) and texture transfer (second row). We also report the average error and the runtime for each method. Note that our method is 120x faster than RMH and 640x faster than BCICP, while resulting in lower error.

initialize the maps with the approach of [START_REF] Nogneng | Informative Descriptor Preservation via Commutativity for Shape Matching[END_REF] using the WKS descriptors and 2 landmarks.

BCICP. [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]] is a recent powerful technique for improving noisy correspondences, based on refining maps in both the spectral and spatial domains, while incorporating bijectivity, smoothness and coverage through a series of sophisticated update steps. While often accurate, this method requires the computation of geodesic distances, is inefficient, and suffers from poor scalability. As an extension of the original ICP, this method also uses spectral embeddings of fixed size. As we show in our tests, our very simple approach can achieve similar and even superior accuracy at a fraction of the time cost.

Reversible Harmonic Maps (RHM). [START_REF] Ezuz | Reversible Harmonic Maps Between Discrete Surfaces[END_REF]] is another recent approach for map refinement, based on minimizing the bidirectional geodesic Dirichlet energy. In a similar spirit to ours, this technique is based on splitting the alignment in a higher-dimensional embedding space from the computation of pointwise maps. However, it requires the computation of all pairs of geodesic distances, and results in least squares problems with size proportional to the number of points on the shapes. Furthermore, similarly to ICP and BCICP, the embedding dimension is fixed throughout the approach. As a result, our approach is significantly more efficient (see Figure 5), scalable, and, as we show below, more accurate in many cases. Spatial refinement methods. Spatial refinement methods such as PMF [Vestner et al. 2017a,b] operate via an alternating diffusion process based on solving a sequence of linear assignment problems; this approach demonstrates high accuracy in challenging cases, but is severely limited by mesh resolution. Other approaches formulate shape correspondence by seeking for optimal transport plans iteratively via Sinkhorn projections, but they either scale poorly [START_REF] Solomon | Entropic metric alignment for correspondence problems[END_REF] or can have issues with non-isotropic meshes [START_REF] Mandad | Variance-Minimizing Transport Plans for Inter-surface Mapping[END_REF]. Interestingly, although fundamentally different, a link exists between ZoomOut and PMF that we describe in the supplementary materials. We then upsample (2) the smaller map to also have size 50x50 using our technique, and convert both to pointwise maps (3). Our approach leads to better results as can be seen, e.g., on the arms and legs.

In Figure 6 we show qualitative comparisons with the methods above on pairs of remeshed shapes from the FAUST [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF] dataset. We provide a more complete evaluation with stateof-the-art refinement methods in Section 5.

Derivation and Analysis

In this section we provide a theoretical justification for our method by first formulating a variational optimization problem and then arguing that ZoomOut provides an efficient way of solving it. 4.4.1 Optimization Problem. We consider the following problem:

min C∈ P E(C), where E(C) = k 1 k C T k C k -I k 2 F . (3) 
Here P is the set of functional maps arising from pointwise correspondences, C k is the principal k × k submatrix of C (i.e., the submatrix of C consisting of the first k rows and columns), and I k is an identity matrix of size k. In other words, Eq. ( 3) aims to compute a pointwise map associated with a functional map in which every principal submatrix is orthonormal. The energy in Eq. ( 3) is different from the commonly used penalty promoting orthonormal functional maps [START_REF] Kovnatsky | Coupled quasi-harmonic bases[END_REF][START_REF] Kovnatsky | MADMM: a generic algorithm for non-smooth optimization on manifolds[END_REF][START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF] in two ways: first we explicitly constrain C to arise from a point-to-point map, and second we enforce orthonormality of every principal submatrix rather than the full functional map of a given fixed size. Indeed, an orthonormal functional map corresponds to only a locally area-preserving point-topoint correspondence [START_REF] Raif M Rustamov | Map-based exploration of intrinsic shape differences and variability[END_REF]. Instead, the energy in Eq. ( 3) is much stronger and promotes complete isometries as guaranteed by the following theorem (proved in Appendix A): Theorem 4.1. Given a pair of shapes whose Laplacian matrices have the same eigenvalues, none of which are repeating, a functional map C ∈ P satisfies E(C) = 0 if and only if the corresponding pointwise map is an isometry.

To derive ZoomOut as a method to solve the optimization problem in Eq. ( 3) we first consider a single term inside the sum, and write the problem explicitly in terms of the binary matrix Π representing the pointwise map:

min Π ∥C T k C k -I k ∥ 2 F = min Π ∥C k C T k -I k ∥ 2 F , (4) 
where

C k = (Φ k M ) + ΠΦ k N . ( 5 
)
This problem is challenging due to the constraints on Π. To address this, we use half-quadratic splitting, by decoupling Π and C k . This leads to the following two separate sub-problems:

min Π ∥(Φ k M ) + ΠΦ k N C T k -I k ∥ 2 F , (6) 
min

C k ∥C k -(Φ k M ) + ΠΦ k N ∥ 2 F . ( 7 
)
Now we remark that Eq. ( 6) does not fully constrain Π since it only penalizes the image of Π within the vector space of Φ k M . Instead, inspired by a related construction in [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF] we add a regularizer

R(Π) = ∥(I -Φ k M (Φ k M ) + )ΠΦ k N C T K ∥ 2 A M
, where we use the weighted matrix norm ∥X ∥ 2

A M = tr (X T A M X
) and A M is the area matrix of shape M. This regularizer penalizes the image of ΠΦ k N C T k that lies outside of the span of Φ k M , which intuitively means that no spurious high frequencies should be created. Finally, it can be shown (see proof in the appendix) that solving Eq. ( 6) with the additional term R(Π) is equivalent to solving:

min Π ∥ΠΦ k N C T k -Φ k M ∥ 2 F . (8) 
The problem in Eq. ( 8) has a closed-form solution, which reduces to the nearest-neighbor search described in Eq. ( 2) above. Moreover, the problem in Eq. ( 7) is solved simply via

C k = (Φ k M ) + ΠΦ k N since the minimization is unconstrained.
Finally, in this derivation we assumed a specific value of k. In practice we start with a particular value k 0 and progressively increase it. This is motivated by the fact that if a principal k × k submatrix is orthonormal, it provides a very strong initialization for the larger problem on a (k + 1) × (k + 1) matrix since only a single new constraint on the additional row and column must be enforced. This leads to our method ZoomOut:

(1) Given k = k 0 and an initial C 0 of size k 0 × k 0 .

(2) Compute arg min

Π ∥ΠΦ k N C T k -Φ k M ∥ 2 F . (3) Set k = k + 1 and compute C k = (Φ k M ) + ΠΦ k N . (4) Repeat the previous two steps until k = k max .
4.4.2 Empirical Accuracy. We demonstrate that this simple procedure is remarkably efficient in minimizing the energy in Eq. ( 3). For this in Figure 8 we plot the value of the energy during the iterations of ZoomOut from k = 20 to k = 120 with step 5 on 100 pairs of shapes from the FAUST dataset, and compare it to the ICP refinement using k = 120. We also evaluate a method in which we perform the same iterative spectral upsampling as in ZoomOut but use the pointwise map recovery from [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF]] instead of Eq. (2). For all methods, at every iteration we convert the computed pointwise map to a functional map C of fixed size 120 × 120 and report E(C). Our approach results in maps with energy very close to the ground truth, while Deblur with upsampling performs poorly, highlighting the importance of the adapted pointwise recovery method.

Source: n = 5K n = 1K t = 1.2 n = 5K t = 5.7 n = 10K t = 11 n = 50K t = 55 n = 100K t = 110 n = 150K t = 169
In the supplementary materials we further detail the differences between the two methods and their relation to PMF. Finally, in Figure 7 we also show the result of an existing functional map estimation pipeline with orientation preservation [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]] for a map of size 50 × 50 with careful parameter tuning for optimality, which nevertheless leads to noise in the final point-to-point map. Initializing the map to size 20 × 20 using exactly the same descriptors and up-sampling it to a larger size with our approach leads to a significant improvement.

RESULTS

We conducted an extensive evaluation of our method, both in terms of its empirical properties (Section 5.1) and in relation to existing methods, as we showcase across several applications (Section 5.2).

Performance of ZoomOut

We start by showing an evaluation of scalability, as well as of the stability and smoothness of our method.

5.1.1 Scalability. In Figure 9 we assess the scalability of our method using shapes of humerus bones of wild boars acquired using a 3D sensor. Each bone was scanned independently, and the ground truth was provided by domain experts as 24 consistent landmarks [START_REF] Gunz | Semilandmarks: a method for quantifying curves and surfaces[END_REF] on each shape. We show the average runtime and accuracy over 6 maps w.r.t. different target mesh resolution; the input descriptors (one landmark point and WKS descriptors [START_REF] Mathieu | The wave kernel signature: A quantum mechanical approach to shape analysis[END_REF]) for the initialization are fixed. While BCICP, the current state-of-the-art method, quickly becomes prohibitively expensive at high resolution, both ICP and ZoomOut without acceleration have approximately linear complexity. On the other hand, the accuracy for BCICP and our method are stable w.r.t. different resolutions, while ICP is less accurate and more unstable. Figure 10 also shows an example with meshes having ∼150K vertices.

Figure 11 shows the results of our sub-sampling strategy for acceleration on one pair of bones, where the source has 20K vertices, and the target has 5K vertices. The corresponding runtime (blue curve) and average error (red curve) w.r.t. different sampling size for the source shape are reported. We can see that around 100 samples on a 20K mesh are enough to produce a refined map with similar quality to that of our method without sampling (whose average is shown as dashed black).

Stability.

We also evaluate the stability of our method w.r.t. noise in the initial functional map. Here we test on a single shape pair from FAUST initialized using the approach of [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF] while fixing the size of the computed functional map to 4. Given this 4 × 4 initial functional map, we add white noise to it and use our method to refine the map. Figure 12 shows the average error over iterations for 100 independent random tests. This plot shows that our method is robust to noise in the input, even if the input maps can have errors up to approximately 40% of the shape radius. At the same time, our algorithm can efficiently filter out the noise within a small number of iterations. Note that in 94 cases out of 100 the refined maps converged to a nearly identical final result, while in the remaining 6, the refinement led to maps that are mixed with symmetric ambiguity since there is too much noise introduced into their initialization. 5.1.3 Smoothness. The maps refined with our method are typically very smooth, although this constraint is not enforced explicitly.

Figure 13 shows a quantitative measurement of the smoothness compared to ICP with different dimensions on 20 pairs of shapes from the TOSCA dataset [START_REF] Bronstein | Numerical Geometry of Non-Rigid Shapes[END_REF], starting with a 20 × 20 functional map computed via [START_REF] Nogneng | Informative Descriptor Preservation via Commutativity for Shape Matching[END_REF]. Map smoothness is measured as the mean Dirichlet energy of the normalized coordinates of the target shape mapped on the source through the given point-to-point map. Our method clearly provides smoother maps, and approaches the ground truth after a few iterations.

Practical Applications

We applied our method across a range of application scenarios, including symmetry detection, map refinement among complete shapes, partial matching and function transfer. In each application we demonstrate a quantitative improvement as well as a significant speedup compared to the best competing method. Note that in all experiments, we use the same initialization for all competing methods to guarantee a fair comparison.

Unless otherwise stated, ICP uses the same dimension as the output dimension of ZoomOut. "Ours" refers to applying ZoomOut on the complete meshes, while "Ours * " refers to ZoomOut with sub-sampling for acceleration. In both cases, we always output dense correspondences between complete meshes. To measure the accuracy, we only accept direct ground-truth maps (except for the symmetry detection application, where the symmetric ground-truth maps are considered). For texture transfer, we first convert the pointwise map to a functional map with size 300×300, then we use this functional map to transfer the uv-coordinates from source to target.

Symmetry Detection.

We first apply our approach for computing pose-invariant symmetries. This problem has received a lot of attention in the past and here we compare to the most recent and widely used techniques. In this application we are only given a single shape and our goal is to compute a high-quality intrinsic symmetry, such as the left-right symmetry present in humans. This problem is slightly different from the pairwise matching scenario, since the identity solution must be ruled out. We do so by leveraging a recent approach for encoding map orientation in functional Table 1. Symmetry Detection. Given approximate symmetric maps (Ori-entRev [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]), we refine them using our method or BCICP, and compare the results to several state-of-the-art methods, including BIM, IntSymm, and GroupRep. Here we report the average error and runtime over 100 FAUST shapes and 71 SCAPE shapes. We also include the results of our method with sub-sampling for acceleration (called Ours*).

Measurement

Average Error (×10 -3 ) Average Runtime (s) Method \ Dataset FAUST SCAPE FAUST SCAPE BIM [START_REF] Vladimir | Blended intrinsic maps[END_REF] 65.4 133 34.6 41.7 GroupRep [START_REF] Wang | Group representation of global intrinsic symmetries[END_REF] 224 347 8.48 16.7 IntSymm [START_REF] Nagar | Fast and Accurate Intrinsic Symmetry Detection[END_REF] 33.9 60.3 1.35 1.81 OrientRev (Ini) [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF] 68.0 110 0.59 1.07 Ini + BCICP [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF] 29 and SCAPE (second row) and visualize the symmetric maps from different methods via texture transfer. Note that our method with acceleration is over 100× faster than BCICP, while achieving comparable or better quality.

map computations [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]]. Namely, we compute an initial 10 × 10 functional map by solving an optimization problem with exactly the same parameters as in [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]] and WKS descriptors as input, but instead of orientation-preserving, we promote orientation-reversing maps. This gives us an initial functional map which we then upsample to size 100 × 100. Figure 14 shows the error curves on the SCAPE [START_REF] Anguelov | SCAPE: Shape Completion and Animation of People[END_REF]] and FAUST benchmarks (for which we have the ground truth symmetry map), while Table 1 reports the average error and runtime. Note that the shapes in both datasets are not meshed in a symmetric way, so a successful method must be able to handle, often significant, changes in mesh structure.

Our approach achieves a significant quality improvement compared to all state-of-the-art methods, and is also significantly faster. With acceleration, we achieve a speedup of more than 100x on a workstation with a 3.10GHz CPU and 64GB RAM. 5.2.2 Refinement for shape matching. We applied our technique to refine maps between pairs of shapes and compared our method with recent state-of-the-art refinement techniques, including RHM [START_REF] Ezuz | Reversible Harmonic Maps Between Discrete Surfaces[END_REF], PMF [Vestner et al. 2017b], BCICP [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF],

Deblur [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF], as well as the standard refinement ICP [START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF]].

For each dataset (FAUST and SCAPE), we consider three different versions. (1) Original: where all the meshes have the same triangulation. (2) Remeshed: we randomly flipped 12.5% of the edges (using gptoolbox [START_REF] Jacobson | gptoolbox: Geometry Processing Toolbox[END_REF]) keeping the vertex positions unchanged to maintain a perfect ground-truth. (3) Remeshed + Resampled (called "Resampled" in Table 2): we use the datasets provided in [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF], where each shape is remeshed and resampled independently, having different number of vertices (around 5k) and often significantly different triangulation. As such, these are more challenging than the original datasets on which near-perfect results have been reported in the past. Figure 16 shows a FAUST shape in the three versions.

To demonstrate that our algorithm works with different initializations, we use three different types of descriptors to compute the initial functional maps (with size 20 × 20) for the three datasets: (1) WKS; (2) descriptors derived from two landmarks (see the two spheres highlighted in the middle of Figure 17); (3) Learned SHOT descriptors [START_REF] Roufosse | Unsupervised Deep Learning for Structured Shape Matching[END_REF]]: the descriptors computed by a non-linear transformation of SHOT, using an unsupervised deep learning method trained on a mixed subset of the remeshed and resampled SCAPE and FAUST dataset. For the experiments with WKS descriptors, we also use the orientation-preserving operators [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF] to disambiguate the symmetry of the WKS descriptors.

Table 2 reports the average error and runtime, while the corresponding summary curves are in the supplementary materials. Figure 6 shows a qualitative example. Our method without acceleration achieves 26.9%, 31.8%, and 16.5% improvement in accuracy over the state-of-the-art while being 10 to 50 times faster. With acceleration, our method is more than 100-500× faster than the top existing method while still producing accuracy improvement. Our method is also much simpler than BCICP (see Appendix B for an overview of the source code of BCICP and our method). Interestingly, we also note that the method in [START_REF] Roufosse | Unsupervised Deep Learning for Structured Shape Matching[END_REF]] overfits severely when trained directly on functional maps of size 120 and results in an average error of 97.5. In contrast, training on smaller functional maps and using our upsampling leads to average error of 21.7. Please see the supplementary for an illustration. We provide evaluation of other quantitative measurements such as bijectivity, coverage, and edge distortion in Appendix C. We also provide additional qualitative examples and comparison to the Deblur method on non-isometric shapes in Appendix D.

5.2.3

Matching different high-resolution meshes. SHREC19 [START_REF] Melzi | SHREC 2019: Matching Humans with Different Connectivity[END_REF]] is a recent benchmark composed of 430 human pairs with different connectivity and mesh resolution, gathered using 44 different shapes from 11 datasets. Each shape is aligned to the SMPL model [START_REF] Loper | SMPL: A Skinned Multi-person Linear Model[END_REF]] using the registration pipeline of [START_REF] Marin | FARM: Functional Automatic Registration Method for 3D Human Bodies[END_REF], thus providing a dense ground truth for quantitative evaluation. This benchmark is challenging due to high shape variance and due to the presence of high-resolution meshes (5K to 200K vertices, see supplementary materials for examples). In Table 3 we report full comparisons in terms of average error and runtime.

Since BCICP and PMF require a full geodesic distance matrix as input, we apply them on simplified shapes (we used MATLAB's reducepatch for the remeshing). The refined maps are then propagated back to the original meshes via nearest neighbors; please see the supplementary materials for more details.

We initialize ZoomOut with the 20 × 20 functional map provided as baseline in [START_REF] Melzi | SHREC 2019: Matching Humans with Different Connectivity[END_REF], and upsample this map to size 120 × 120 with a step of size 5. Our method achieves the best results while being over 290× faster. We also highlight that although we have a similar accuracy as BCICP, we better preserve the local details as shown in Figure 18, since we avoid the mesh simplification and map transfer steps.

In the supplementary materials, we further compare to methods that are applicable on full-resolution meshes directly. The experiment is conducted on a subset of SHREC19 and our method achieves a significant improvement in accuracy.

Point cloud surfaces.

Several standard methods for meshes typically fail when applied to point clouds. We tested our approach on point clouds generated from the FAUST and TOSCA datasets, by sampling points within mesh triangles uniformly at random. We estimate the Laplace operator on point clouds as proposed in [START_REF] Belkin | Constructing Laplace Operator from Point Clouds in Rd[END_REF]]. The initial 20 × 20 functional map is estimated with the approach of [Nogneng and Ovsjanikov 2017], using WKS and 2 landmarks (Ini). We then upsample from 20 to 120 with steps of size 5, and compare with ICP, ICP 20 and ICP 120 . Quantitative and qualitative results are shown in Table 4 andFigure 19.

Partial Matching.

A particularly challenging setting of shape correspondence occurs whenever one of the two shapes has missing geometry. In [START_REF] Rodolà | Partial functional correspondence[END_REF]] it was shown that, in case of partial isometries, the functional map matrix C has a "slanted diagonal" with slope proportional to the area ratio A(N) A(M) (here, M is a partial Table 3. SHREC19 summary. We compare with the refinement techniques RHM, PMF, BCICP and the baseline ICP on 430 shape pairs. We report an accuracy improvement over BCICP (the top performing method on this benchmark), and a significant gap in runtime performance over all methods. Source (n = 53K ) PMF ( 500) PMF ( 1000) PMF (5000)

Initialization BCICP ( 500) BCICP ( 1000) BCICP ( 5000)

Reference (n = 16K ) Ours ( 500) Ours ( 1000) Ours ( 5000) Fig. 18. Different sampling density. Here we show an example from the SHREC19 benchmark on a pair of shape with 53K and 16K vertices respectively. We compare with PMF and BCICP under different sampling density (500, 1000, and 5000 samples). The computed maps are visualized via texture transfer. Our method achieves the best global accuracy while preserving the local details at the same time. Further, our method is much less dependent on the sampling density than BCICP or PMF. shape and N is a complete shape). Our spectral upsampling method can still be applied in this setting. To do so, we weakly enforce the expectation of a slanted diagonal by allowing rectangular C. Namely, where r is an estimate for rank(C) obtained via the formula r = max [Rodolà et al. 2017, Eq. 9] for details). In the classical case where both M and N are full and nearly isometric, the estimate boils down to r = min{k M , k N } = 100 and Eq. ( 10) reduces to k N → k N + 1; see Figure 20 for an illustration.

k M i=1 {i | λ M i < max k N j=1 λ N j } after setting k M = k N = 100 (see
For these tests we adopt the SHREC'16 Partial Correspondence benchmark [Cosmo et al. 2016a], consisting of 8 shape classes (humans and animals) undergoing partiality transformations of two kinds: regular 'cuts' and irregular 'holes'. All shapes are additionally resampled independently to ∼ 10K vertices. Evaluation is performed over 200 shape pairs in total, where each partial shape is matched to a full template of the corresponding class. Quantitative and qualitative results are reported in Figure 21. 5.2.6 Topological Noise. We further explored the case of topological changes in the areas of self-contact (e.g., touching hands generating a geodesic shortcut). For this task, we compare with the state of the art on the SHREC'16 Topology benchmark [START_REF] Lähner | Matching of Deformable Shapes with Topological Noise[END_REF]] (low-res challenge), consisting of 25 shape pairs (∼ 12K vertices) undergoing nearly isometric deformations with severe topological artifacts. We initialize our method with a 30 × 30 matrix C estimated via standard least squares with SHOT descriptors [START_REF] Tombari | Unique signatures of histograms for local surface description[END_REF]]. Since self-contact often leads to partiality, we use the rectangular update rules ( 9)-( 10). Results are reported in Figure 22. Figure 23 shows some example maps computed using our method. 5.2.7 Different Basis. In [START_REF] Melzi | Localized Manifold Harmonics for Spectral Shape Analysis[END_REF]] it was proposed to address the partial setting by considering a Hamiltonian H M = We performed experiments showing that spectral upsampling can still be applied as-is to improve the quality of maps, when these are represented in this alternative basis. In these tests we initialized as in [START_REF] Melzi | Localized Manifold Harmonics for Spectral Shape Analysis[END_REF], and evaluated on the entire dataset of [Cosmo et al. 2016b], consisting of 150 cluttered scenes and 3 query models (animals). The results are reported in the supplementary materials.

Transfer of functions.

Functional maps can be used to transfer functions without necessarily converting to pointwise correspondences. This application, however, can be hindered by the fact that small functional maps can only transfer low-frequency information. A recent approach [START_REF] Nogneng | Improved Functional Mappings via Product Preservation[END_REF]] has tried to lift this restriction by noting that higher frequency functions can be transferred using "extended" bases consisting of pointwise products of basis functions. Our approach is similar in spirit since it also allows to extend the expressive power of a given functional map by increasing its size and thus enabling transfer of higher-frequency information. We evaluated our method by directly comparing with the state of the art [START_REF] Nogneng | Improved Functional Mappings via Product Preservation[END_REF]. For 9 different classes of functions we compute the error as the norm of the difference between the transferred function and the ground truth д (obtained by transferring using the ground truth pointwise map), normalized by the norm of д. The functions considered are: Heat Kernel computed with 30 and with 200 eigenfunctions, descriptors HKS [START_REF] Sun | A concise and provably informative multi-scale signature based on heat diffusion[END_REF], WKS [Aubry et al. 2011], SHOT [START_REF] Tombari | Unique signatures of histograms for local surface description[END_REF], AWFT [START_REF] Melzi | Shape Analysis with Anisotropic Windowed Fourier Transform[END_REF], the coordinates of the 3D embedding, binary indicator of region, and the heat kernel with a very small time parameter approximating a delta function defined around a point. The results are reported in Table 5. We use the same parameters adopted in [START_REF] Nogneng | Improved Functional Mappings via Product Preservation[END_REF], and average over 20 random FAUST pairs. Here we show a challenging case where the initial map has left-to-right, back-to-front, and arm-to-leg ambiguity. When refining such a low-quality initial map, our method sometimes fails to produce a good refined map. However, our refinement still outperforms the regular ICP method with respect to the quality of the computed correspondences.

We refine the initial map (Ini) of size 40 × 30, computed using the approach of [START_REF] Nogneng | Informative Descriptor Preservation via Commutativity for Shape Matching[END_REF], to 210 × 200 with a step size of 1. We also compare to ICP: ICP refinement applied to Ini; p2p: function transfer using the point-to-point map obtained by ICP; ICP 200 : ICP applied to a functional map of dimension 210 × 200 estimated through the same pipeline adopted for Ini; Prod: the method proposed in [START_REF] Nogneng | Improved Functional Mappings via Product Preservation[END_REF]. We outperform all the competitors for all the classes. We also compare the results obtained by our method initializing the functional map after applying ICP, and the two are almost the same everywhere. A transfer example of a high-frequency function between a dog and a cat shapes from TOSCA is visualized in Fig- ure 24. Our refinement achieves the best results with respect to all the competitors even in this non-isometric pair. In the supplementary materials we report other qualitative comparisons.

CONCLUSION, LIMITATIONS & FUTURE WORK

We introduced a simple but efficient map refinement method based on iterative spectral upsampling. We presented a large variety of quantitative and qualitative results demonstrating that our method can produce similar or better quality on a wide range of shape matching problems while typically improving the speed of the matching by an order of magnitude or more. We find it remarkable that our method has such strong performance, even though it is conceptually simple and only requires a few lines of code to implement. In many cases, our method outperforms very complex frameworks that consist of multiple non-trivial algorithmic components.

Our method still comes with multiple limitations. First, while being robust to noise, its success still depends on a reasonable initialization. Starting with a bad initialization, such as random functional maps, our method would produce poor results. Second, the method still relies on some parameters that have to be tuned for each application. Specifically, we need to identify the number of basis functions in the initialization and the final number of basis functions. Additionally, the step size during upsampling has to be chosen for optimal speed, but using a step size of one is always a safe choice. Finally, our method is very robust to deviations from perfect isometries, but still will fail for significantly non-isometric shape pairs. See examples in Figure 25 and in Appendix D. In future work, we would like to investigate how to automatically compute the minimal size of the input functional map and plan to extend our work to other settings such as general graphs and images. 

C ADDITIONAL MEASUREMENTS

Given 10 random shape pairs from the FAUST original dataset, Table 6 shows the performance summary of different refinement methods w.r.t. the following measurements as used in [START_REF] Ren | Continuous and Orientation-preserving Correspondences via Functional Maps[END_REF]. Specifically, we evaluate the maps T 12 and T 21 between a pair of shapes S 1 and S 2 :

• Accuracy. We measure the geodesic distance between T 12 (and T 21 ) and the given ground-truth correspondences.

• Un-Coverage. The percentage of vertices/areas that are NOT covered by the map T 12 (or T 21 ) on shape S 2 (or S 1 )

• Bijectivity. The composite map T 21 •T 12 (or T 12 •T 21 ) gives a map from the shape to itself. Thus, we measure the geodesic distance between this composite map and the identity.

• Edge distortion. We measure how each edge in S 1 (or S 2 ) is distorted by the map T 12 (or T 21 ) as follows:

e v i ∼v j = d S 2 T 12 (v i )),T 12 (v j ) d S 1 (v i , v j ) -1 2
We then average the distortion error over all the edges as a measure for the map smoothness. Note that the PMF method optimizes for a permutation matrix directly, that is why the computed maps covered all the vertices and give almost zero bijectivity error in Table 6 (the bijiectivity error is not strictly zero because the maps T 12 and T 21 are computed independently). The method BCICP includes heuristics to explicitly improve the coverage, bijectivity, and smoothness. Even though our method is not designed to optimize these measurements, it still achieves reasonable performance. Note that our method gives the smallest edge distortion, which suggests that our method not only gives the most accurate map but also the smoothest map w.r.t. all the competing methods. The work of [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF]] also provides an approach for recovering a point-wise map from a functional map, based on a different energy. Specifically, our energy defined in Eq. ( 3) and the resulting point-wise map conversion step defined in Eq. ( 6) are different from the deblurring energy defined in Eq. ( 4) in [START_REF] Ezuz | Deblurring and Denoising of Maps between Shapes[END_REF]. Figure 26 shows a qualitative comparison between our method and this method, which we call "Deblur." We use 5 landmarks to compute the initial maps (first row), and we then apply ICP, Deblur, and ours to refine the initial maps. Note that in these examples, we rescale the target shapes to the same surface

D COMPARISON TO DEBLUR

Fig. 2 .

 2 Fig.2. ZoomOut example. Starting with a noisy functional map of size 4 × 4 between the two shapes we progressively upsample it using our twostep procedure and visualize the corresponding point-to-point map at each iteration via color transfer. Note that as the size of the functional map grows, the map becomes both more smooth and more semantically accurate. We denote the number of vertices by n.

Fig. 3 .

 3 Fig. 3. Comparison of map quality during ICP iterations in different (fixed) dimensions vs. ZoomOut from 20 to 100 with step 5. Top row: average error of pointwise maps during refinement and the error summary of the refined maps after 15 iterations. Note that regardless of dimension, ICP gets trapped in a local minimum. Bottom row: visualization of the refined maps at iteration 1, 2, 3, 5, and 10 of ICP with dimension 100 vs. our method.

Fig. 4 .

 4 Fig.4. Impact of the input functional map size. Given a pair of shapes, we use a fixed set of descriptors and the approach of[START_REF] Nogneng | Informative Descriptor Preservation via Commutativity for Shape Matching[END_REF] to compute a functional map of size k × k and refine it with ICP. Alternatively, we compute a functional map of size 10 × 10 using the same approach and upsample it to k × k using our method. Differently from the ICP baseline, our method leads to improvement as k grows. On the right we show a qualitative illustration for k = 200.

  Fig.6. Refinement example. Given the initialization computed from WKS descriptors, we compare our method with existing refinement techniques, by visualizing the maps via color transfer (first row) and texture transfer (second row). We also report the average error and the runtime for each method. Note that our method is 120x faster than RMH and 640x faster than BCICP, while resulting in lower error.

Fig. 7 .

 7 Fig.7. We use an existing functional map pipeline (1) to compute either a 50 × 50 (top row) or 20 × 20 (bottom row) functional map using the same input descriptors. We then upsample (2) the smaller map to also have size 50x50 using our technique, and convert both to pointwise maps (3). Our approach leads to better results as can be seen, e.g., on the arms and legs.

Fig. 8 .

 8 Fig. 8. Value of E(C) across iterations

Fig. 9 .

 9 Fig. 9. Scalability and accuracy test on 6 pairs of scanned bones. The source shape has 5K vertices. We compare to ICP and BCICP on the same target shape with different resolution (ranging from 1K to 20K vertices).

Fig. 10 .

 10 Fig.10. Scalability. The vertices of the bone shapes are colored black to show the resolution (zoom in for better view), while RGB colors encode the computed map, via pull-back from the source. The corresponding runtime for our upsampling, from 5 × 5 to 50 × 50 without any acceleration, is reported below each shape (in seconds).

  Fig. 11. Acceleration by sampling

Fig. 14 .

 14 Fig. 14. Error summary of symmetry detection. We compare with the recent state-of-the-art methods IntSymm [Nagar and Raman 2018] and GroupRep [Wang and Huang 2017], as well as to the baseline Blended Intrinsic Maps (BIM) [Kim et al. 2011] and BCICP.

Fig. 15 .

 15 Fig. 15. Symmetry detection. We show two examples with FAUST (first row)and SCAPE (second row) and visualize the symmetric maps from different methods via texture transfer. Note that our method with acceleration is over 100× faster than BCICP, while achieving comparable or better quality.

  Fig. 16. Different triangulation

Fig. 22 .

 22 Fig. 22. Comparisons on the SHREC'16 Topology benchmark. Competing methods include PFM, RF, Green's Embedding (GE) [Burghard et al. 2017], Expectation Maximization (EM) [Sahillioğlu and Yemez 2012], Convex Optimization (CO) [Chen and Koltun 2015], and Fully Spectral Partial Matching (FSPM) [Litany et al. 2017]. Dashed curves indicate sparse methods.

Fig. 24 .

 24 Fig. 24. Function transfer example on a non-isometric pair from TOSCA. We show the original function on the source shape (leftmost) and the transfer results for the different methods. The functional map is upsampled from size 40 × 30 to 310 × 300. We mark the methods initialized with ICP with †.

Fig. 25 .

 25 Fig. 25. Failure case.Here we show a challenging case where the initial map has left-to-right, back-to-front, and arm-to-leg ambiguity. When refining such a low-quality initial map, our method sometimes fails to produce a good refined map. However, our refinement still outperforms the regular ICP method with respect to the quality of the computed correspondences.

  c o m p l e t e p a i r w i s e g e o d e s i c d i s t a n c e m a t r i x o f e a n n s e a r c h ( B2 ( T12 , : ) * C2 ' , B2 ) ; 21 T12 = k n n s e a r c h ( B1 ( T21 , : ) * C1 ' , B1 ) ; c t i o n [ T21 , T12 ]= r e f i n e _ p M a p ( T21 , T12 , S1 , S2 ) 26 f o r k = 1 : 4 27 T12 = i m p r o v e _ c o v e r a g e ( T12 , S1 , S2 ) ; 28 T21 = i m p r o v e _ c o v e r a g e ( T21 , S1 , S2 ) ; 29 T12 = i m p r o v e _ s m o o t h n e s s ( T12 , S1 , S2 ) ; 30 T21 = i m p r o v e _ s m o o t h n e s s ( T21 , S1 ,

  Fig. 26. Comparison to [Ezuz and Ben-Chen 2017] on non-isometric shape pairs.

Table 2 .

 2 Quantitative evaluation of refinement for shape matching. The Original and Remeshed datasets include 300 shape pairs. The Resampled dataset includes 190 FAUST pairs and 153 SCAPE pairs.

	Average Error (×10 -3 ) Method \ Dataset Original Remeshed Resampled Original Remeshed Resampled Average Runtime (s) Ini 67.3 44.0 46.5 ---ICP 54.0 36.3 29.3 10.2 10.1 5.32 Deblur 61.9 38.6 44.4 10.9 11.7 10.4 RHM 41.9 33.3 32 41.4 42.5 47.4 PMF 26.4 25.9 86.4 736.5 780.2 311.5 BCICP 21.6 19.5 26 183.7 117.8 364.2 Ours 15.8 13.3 21.7 9.60 9.64 6.49 Ours* 17.5 14.5 24.6 1.14 1.15 0.68 Improv. Ours 26.9% 31.8% 16.5% 19× 12× 56× Ours* 19.0% 25.6% 5.4% 160× 100× 535×

Table 4 .

 4 Quantitative evaluation on point cloud surfaces. Our method is both more accurate and faster than ICP on average.

	Measurement \ Method Ini ICP ICP 20 ICP 120 Ours* Average Error (×10 -3 ) 51.0 49.7 31.4 36.9 22.3 Average Runtime (s) -29.6 8.3 305.2 4.0	Improv. Ours 29.0% 2×

Table 5 .

 5 Results in the transfer of different classes of functions, average on 20 pairs from FAUST dataset. Initial map size is 40 × 30 (Ini), final size of ours is 210 × 200. The methods marked with † are initialized with the initial functional maps refined by ICP. See text for details. function Ini ICP p2p † ICP 200 Prod † Ours Ours †

	HeatKernel HeatKernel 200 0.95 0.84 0.52 0.80 0.18 0.15 HKS 0.66 0.55 0.21 WKS 0.51 0.15 0.06 XYZ 0.67 0.13 0.09 Indicator 0.77 0.30 0.18 SHOT 0.87 0.82 0.87 AWFT 0.45 0.26 0.18 Delta 0.98 0.93 0.67	0.17 0.34 0.21 0.11 0.12 0.20 0.74 0.19 0.43	0.19 0.10 0.10 0.65 0.29 0.29 0.28 0.14 0.13 0.13 0.04 0.04 0.15 0.05 0.05 0.26 0.17 0.17 0.78 0.73 0.73 0.24 0.14 0.14 0.82 0.38 0.38
	original f	Ini	ICP	p2p †		ICP 300	Prod †	Ours

Table 6 .

 6 Additional measurements. Besides the map accuray, we also measure the coverage, bijectivity, and edge distortion as a smoothness measure on 10 random shape pairs from the original FAUST dataset.

	Measurement\ Method Ini Accuracy (×10 -3 ) 98.4 85.8 ICP PMF (gauss) RHM BCICP ours ours * Refinement methods 36.3 63.9 49.9 33.3 36.8 Un-Coverage (%) 72.3 42.4 0 44.5 15.9 23.6 30.7 Bijectivity (×10 -3 ) 104 89.6 1.90 24.6 5.48 15.6 14.8 Edge distortion 10.9 26.4 37.3 3.69 5.49 1.16 4.37
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To account for this particular structure, we iteratively increase the two dimensions of C by different amounts, see Equations ( 9)-( 10). This allows correct upsampling, as shown in this example. we define the update rules for the step size as follows: 

A THEORETICAL ANALYSIS

Proof of Theorem 4.1. We will prove this theorem with the help of the following well-known lemma, for which we give the proof in the Supplementary Material for completeness: Lemma A.1. Let us be given a pair of shapes M, N each having non-repeating Laplacian eigenvalues, which are the same. A point-topoint map T : M → N is an isometry if and only if the corresponding functional map C in the complete Laplacian basis is both diagonal and orthonormal.

Proof. To prove Theorem 4.1 first suppose that the map T is an isometry, and thus, thanks to Lemma A.1, the functional map

M ΠΦ N is diagonal and orthonormal. From this, it immediately follows that every principal submatrix of C must also be orthonormal implying E(C) = 0.

To prove the converse, suppose that C ∈ P. Then E(C) = 0 implies that every principal submatrix of C is orthonormal. By induction on k this implies that C must also be diagonal. Finally since C ∈ P, again using Lemma A.1 we obtain that the corresponding pointwise map must be an isometry. □

A.1 Map Recovery

Our goal is to prove that Eq. ( 6) with the regularizer R(Π) = ∥(I -

For this we use the following result: for any matrix X and basis B that is orthonormal with respect to a symmetric positive definite matrix A, i.e. B T AB = Id, and thus

This gives:

It remains to show that arg min Π ∥X ∥ 2

For this note simply that since Π represents a pointwise map, both problems reduce to finding the row of Φ k N C T k that is closest to each of the rows of Φ k M . Note that in supplementary material we derive both an alternative approach to ZoomOut and, as mentioned in Section 4.3. provide a link between our approach and PMF.

B IMPLEMENTATION

This Appendix lists standard Matlab code for our method and BCICP, which is the most competitive method to ours while being orders of magnitude slower. Note that a fully-working version of ZoomOut can be implemented in just 5 lines of code, while BCICP relies on the computation of all pairs of geodesics distances on both shapes, and even after pre-computation, is more than 250 lines of code relying on numerous parameters and spread across a main procedure and 4 utility functions. 

B.1 Source Code -ZoomOut