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An improved stationarity test based on surrogates
Douglas Baptista de Souza, Jocelyn Chanussot, Fellow, IEEE,
Anne-Catherine Favre, and Pierre Borgnat, Member, IEEE

Abstract—Over the last years, several stationarity tests have
been proposed. One of these methods uses time-frequency rep-
resentations and stationarized replicas of the signal (known as
surrogates) for testing wide-sense stationarity. In this paper, we
propose a procedure to improve the original surrogate test. The
proposed methodology can be seen as a guideline on how the
surrogate test can be improved. We show mathematically that the
modified test should exhibit improved classification performance.
Numerical simulations on synthetic and real-world signals are
carried out to evaluate the modified test against competing ones.

Index Terms—Stationarity test, nonstationary signals, time-
frequency analysis, surrogates.

I. INTRODUCTION

TESTING stationarity is important in signal processing
and other areas, such as economic and environmental

sciences [1], [2]. Stationarity is usually defined as the temporal
invariance of the statistical properties of the signal. In practice,
researchers are mostly interested in testing for stationarity up
to the second order [3]. A signal is called wide-sense stationary
(WSS) if its first and second-order statistics are invariant in
time [4]. The spectral content of a WSS signal is described by
a time-invariant power spectrum density (PSD). Nonstationary
signals, on the other hand, have time-dependent spectra that
can be characterized by time-frequency (TF) representations
[4], [5]. The advantages and disadvantages of different TF
representations are well documented in the literature [4]–[6].
The various TF methods can be classified as parametric [7],
[8] or nonparametric [9]–[13]. Since parametric methods rely
on the adherence to the chosen models, which can be hard to
assess in real-world datasets, nonparametric methods are often
preferable when testing real-world signals [13]–[16].

Among the nonparametric TF methods, approaches based
on the Wigner-Ville spectrum (WVS) and its modifications
have been commonly used for analyzing nonstationary signals
[17]–[20]. Several years ago, a test for wide-sense stationarity
using the WVS was developed [21]. The idea of the test was
to quantify the difference between local and global spectral
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features in the estimated WVS of the signal. Because of
statistical fluctuations, these local and global features are not
identical, even in case of stationarity. Hence, a hypothesis test
was designed to test if the observed fluctuations were due to
the supposed nonstationarity. To characterize the null hypoth-
esis of stationarity, the authors proposed to use stationarized
replicas of the signal known as surrogates [21]–[23].

The surrogate test works well for second-order nonstation-
ary processes and signals modulated in amplitude or frequency
[21]. On the other hand, the performances of the test decrease
when testing signals with first-order or slowly-varying nonsta-
tionarities. To alleviate this problem, the test has been changed
in [24] to improve the detection of first-order nonstationarities.
However, the obtained performance gain was small and the
applicability of the modified test was only verified empirically.

In this letter, we propose an improved surrogate test that
is not dependent on the type of nonstationary signal being
probed. This is an important point when testing real-world
signals, whose underlying nonstationary characteristics are
often unknown. The proposed technique can be seen as a
generalization of [21] and [24]. More specifically, we first
establish how the parameters of an improved version of the
test should differ from the original ones. Then, we present
a method to transform the original test parameters into the
modified (desired) ones, provided that a time-varying feature
with some special properties can be extracted from the TF
representation of the signal. These properties are determined
and we show mathematically and through simulations that the
test can indeed be improved by the proposed modification.

This paper is organized as follows. In Section II, the original
surrogate test is reviewed. Section III is devoted to the devel-
opment of the modified framework. The experimental study
and conclusions are shown in Sections IV and V, respectively.

II. BACKGROUND ELEMENTS

The WVS of a given discrete-time signal x(n) can be
estimated by means of the multitaper spectrogram

S(n, f) =
1

K

K∑
k=1

Shk
(n, f) (1)

obtained by averaging k = 1, ...,K spectrograms [5]

Shk
(n, f) =

∣∣∣∣∣∑
m

x(n+m)hk(m)e−j2πfm
∣∣∣∣∣
2

(2)

computed with K Hermite window functions given by

hk(n) = e−n
2/2Hk(n)

/√
π1/22kk! (3)

where Hk(n) are Hermite polynomials following the recursion
Hk(n) = 2nHk−1(n) − 2(k − 2)Hk−2(n) for k ≥ 2 and the
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initialization H0(n) = 1 and H1(n) = 2n [21]. The Hermite
windows are orthonormal and maximally concentrated in TF
domain [25]. In [21], a free parameter nh0 controls the length
of hk(n) and the n = 1, ...,M time points to compute S(n, f).

For the stationarity test of [21], one evaluates if the local
spectra S(n, f) computed at these 1, ...,M time points are
similar to the global average spectrum defined as

S(f) =
1

M

M∑
n=1

S(n, f). (4)

For a given n, the similarity between (1) and (4) at frequency
f can be evaluated by a measure of local spectral mismatch

d(n, f) = D[S(n, f), S(f)]. (5)

To account for the combined effect in frequency of all indi-
vidual values of d(n, f), we integrate (5) over frequency

c(n) =
∑
f

d(n, f). (6)

Different distances taking form of (6) can be chosen, such as
Kullback-Leibler, log-spectral and Itakura-Saito1 [21], [26]. If
x(n) is stationary, S(n, f) reduces to the time-invariant PSD
and the following approximation holds [4]:

S(n, f) ≈ S(f),∀n. (7)

Thus, c(n) ≈ 0 if x(n) is stationary. In practice, we always
observe fluctuations in S(n, f), which implies fluctuations
in (6). The idea is to evaluate the significance of these
fluctuations through stationarized versions of x(n) known as
surrogates. The surrogates are obtained by shuffling the phase
of x(n), which controls potential nonstationarities in the signal
[27]. The phase of a surrogate is a resample of the original
phase of x(n). The surrogates are stationary and they have
the same global average spectrum S(f) of x(n) [21]. The test
evaluates if the fluctuations observed in (6) are similar to those
in the surrogate data. The test statistics Θ1 is defined as

Θ1 = Var[c(n)] (8)

which measures the fluctuations of c(n). In (8), Var[·] is the
variance. To perform the hypothesis test, a sample with values
of Θ1 under the null hypothesis of stationarity should be ob-
tained. To do so, we first compute a collection of J surrogates
s1(n), ..., sJ(n) and their corresponding multitaper spectro-
grams S1(n, f), ..., SJ(n, f). Then, for each surrogate sj(n),
the distances between local spectra and their global average
are calculated as in (5), i.e., dj(n, f) = D[Sj(n, f), S̄j(f)],
and then integrated over frequency to obtain

cj(n) =
∑
f

dj(n, f). (9)

This gives a collection of J values of the test statistics under
the null hypothesis of stationarity

Θ0 = {Var[cj(n)]}, j = 1, ..., J. (10)

1For these distances, for instance, (3) is given by d(n, f) = [S(n, f) −
S(f)] log[S(n, f)/S(f)], d(n, f) = S(n, f)/S(f)− log[S(n, f)/S(f)]−
1, and d(n, f) = | log[S(n, f)/S(f)]|, respectively.

In practice, the variances in (8) and (10) are estimated by
using the sample variance estimator [21]. It has been shown
that the distribution of (10) can be modelled by a gamma
probability density function (PDF) [28]. By fitting a gamma
model to (10), a threshold γ for stationarity can be derived
given a prescribed false alarm rate. Taking into account these
points, a one-sided hypothesis test2 for x(n) can be built for
testing the null hypothesis of stationarity (H0) against the
alternative one of nonstationarity (H1)

H(x) =

{
H1 if Θ1 > γ, “nonstationary”,
H0 if Θ1 ≤ γ, “stationary”.

(11)

Finally, note that the test described in this section contains
many steps (e.g., distance functions, surrogates, gamma mod-
eling), leaving room for improvements in some parts. In the
following section, we discuss how to improve this test by
modifying some of its parameters.

III. MODIFYING THE STATIONARITY TEST

A. How can the original test be improved?

Let H ′(x) represent a modified version of H(x) in (11),
which is obtained by changing parameters Θ1 and Θ0 as given
in (8) and (10), respectively. Let Θ′1 and Θ′0 be the modified
versions of these parameters. Here, we aim to find Θ′1 and Θ′0
which fulfill the following goals:

i) If x(n) is stationary, Θ′1 ≈ Θ1 and Θ′0 ≈ Θ0.
ii) If x(n) is nonstationary, Θ′1 > Θ1 and Θ′0 ≈ Θ0.

Note that Θ′0 ≈ Θ0 is a requirement of both goals i) and
ii). Since the test threshold γ in (11) is derived from the
gamma PDF fitted to Θ0, such a requirement tells that γ
should remain approximately the same for H ′(x) (i.e., γ′ ≈ γ),
be x(n) stationary or nonstationary. Thus, if goal ii) holds, the
nonstationarity detection rate of H ′(x) should be higher than
the one of H(x), since Θ′1 > Θ1 and γ′ ≈ γ. Conversely,
if goal i) holds, the false positive rates of H ′(x) and H(x)
should be about the same, as Θ′1 ≈ Θ1 and γ′ ≈ γ. Based
on these criteria, if the two goals are fulfilled, H ′(x) should
have better classification performances in comparison to H(x).
Having defined how the original test can be improved, we now
present a way to obtain the modified parameters Θ′1 and Θ′0.

B. Obtaining Θ′1 and Θ′0

Let λ(n) be a hypothetical time-varying feature extracted
from S(n, f), i.e., λ(n) = f [S(n, f)]. Consider one can
choose any functional form f(·) for λ(n), provided the chosen
function (i.e., expression) exhibit the following properties:
P.1) If x(n) is nonstationary, Var[λ(n)] > 0 and E[λ(n)] ≥ 1.
P.2) If x(n) is stationary, λ(n) ≈ 1.
P.3) λ(n) and individual values of d(n, f) [see (5)] can be

considered as approximately independent.
By using λ(n), we propose to modify Θ1 and Θ0 as follows:

Θ′1 = Var[λ(n)c(n)] (12)

Θ′0 = {Var[λj(n)cj(n)]}, j = 1, ..., J (13)

2Here, stationarity is being tested for the whole signal segment [21].
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where λj(n) is the feature corresponding to the jth surrogate.
It is assumed that the properties above hold for λj(n). Thus,
to obtain Θ′1 and Θ′0, we use the values of λ(n) and λj(n) as
weights3 for c(n) and cj(n), respectively. With (12) and (13)
at hand, we show next how Θ′1 and Θ′0 fulfill goals i) and ii).

C. How Θ′1 and Θ′0 fulfill goals i) and ii)

As pointed out in Section III-A, condition Θ′0 ≈ Θ0 appears
for goals i) and ii). We start by showing that such a condition
holds. To do so, we rewrite (13) using cj(n) as given in (9)

Θ′0 = Var

[∑
f

y(n)dj(n, f)

]
. (14)

By using the variance of sum law [29], (14) is expanded to

Θ′0 =

{∑
f

Var

[
λj(n)dj(n, f)

]

+ 2
∑
fi<fl

Cov[λj(n)dj(fi, n), λj(n)dj(fl, n)]

}
, j = 1, ..., J,

(15)
where Cov[·, ·] is the covariance. As λj(n) and dj(n, f) are
independent (see P.3), the first summand in (15) is equal to

Var[λj(n)dj(n, f)] = Var[dj(n, f)]Var[λj(n)]
+Var[λj(n)]E2[dj(n, f)] + Var[dj(n, f)]E2[λj(n)]

(16)

due to the product property of the variance [29]. One can also
show that the second summand in (15) can be rewritten as4

Cov[λj(n)dj(fi, n), λj(n)dj(fl, n)] =
Cov[dj(n, fi), dj(n, fl)]{Var[λj(n)] + E2[λj(n)]}
+Var[λj(n)]E[dj(n, fi)]E[dj(n, fl)].

(17)

By substituting (16) and (17) into (15), rearranging the result-
ing expression, and making use of (9), one gets the following
expression for Θ′0:

Θ′0 = {Var[λj(n)]E2[cj(n)]
+Var[cj(n)]{Var[λj(n)] + E2[λj(n)]}}, j = 1, ..., J.

(18)
Since all j = 1, ..., J surrogates are stationary by defini-
tion, λj(n) ≈ 1 ∀ j (see property P.2), which implies that
Var[λj(n)] ≈ 0 and E2[λj(n)] ≈ 1 ∀ j. Owing to this fact, it
can be shown that (18) reduces to

Θ′0 ≈ Var[cj(n)], j = 1, ..., J. (19)

Then, by comparing (19) with (10), it can be seen that

Θ′0 ≈ Θ0. (20)

Note that (20) is valid if x(n) stationary or nonstationary,
requiring only properties P.2 and P.3, and the stationarity
property of the surrogates to hold. Now, following the steps
taken in (15)−(18) and using (6), one can rewrite (12) as

Θ′1 = Var[λ(n)]E2[c(n)] + {Var[λ(n)] +E2[λ(n)]}Θ1. (21)

3Note that setting λ(n) = 1 in (12) makes Θ′
1 reduce to the original Θ1

of [21]. In turn, if λ(n) =
∑

f S(n, f) in (12), Θ′
1 becomes the modified

test statistic of [24]. Thus, the present method generalizes [21] and [24].
4Steps to obtain (17) are shown in the supplementary material of this letter.

If x(n) is nonstationary, Var[λ(n)] > 0 and E2[λ(n)] ≥ 1 (see
property P.1). Since all terms in (21) are positive, we have

Θ′1 > Θ1. (22)

As (20) and (22) hold true if x(n) is nonstationary, we
conclude that goal ii) is fulfilled. Now, if x(n) is stationary,
λ ≈ 1, which yields Var[λ(n)] ≈ 0 and E2[λ(n)] ≈ 1 (see
property P.2). Then, (21) reduces to

Θ′1 ≈ Θ1 (23)

and since (20) and (23) are verified in case x(n) is stationary,
goal i) is also achieved. Having shown that the modified test
parameters in (12) and (13) fulfill goals i) and ii), we discuss
in the next section the choice of λ(n).

D. Choosing a candidate λ(n)

The previous discussion provides general guidelines (for
this work and possibly future ones) on how to improve the
surrogate test by searching for a time-varying function λ(n)
that fulfills properties P.1 to P.3. Although there is no unique
choice for λ(n), note that the greater Var[λ(n)] is when x(n)
is nonstationary, the farther Θ′1 is from Θ1 [see (21)], and
the more likely the test will (correctly) reject stationarity. By
considering these points, we propose below a candidate λ(n)
that can be extracted from the TF representation of x(n).

The center of gravity (or the first-order moment) of the local
spectra (1) at the nth time point can be computed as

fm(n) =
∑
f

fS(n, f)

/∑
f

S(n, f). (24)

Due to (7), fm(n) should be approximately constant if x(n)
is stationary, but a time-varying function otherwise. Note that
fm(n) can be seen as an approximation of the instantaneous
frequency (IF) for monocomponent signals [4]. However, it is
not the aim of this paper to interpret the physical meaning
of fm(n), but to take advantage of the fact that (24) behaves
differently in case of stationarity/nonstationarity, and captures
the collective behavior of the spectra at time n. With fm(n)
at hand, we propose to compute λ(n) as

λ(n) = 1 + ∆fm(n) (25)

where ∆ = ||fm(n) − f̄m|| with || · || and f̄m being the `2

norm and the median value of fm(n), respectively. It can be
shown that property P.1 holds for (25); since fm(n) > 0, one
has ∆ ≥ 0, which implies that E[λ(n)] ≥ 1. Furthermore, if
x(n) is nonstationary fm(n) should fluctuate over time [and
so λ(n)], yielding Var[λ(n)] > 0. Note that, the wider the
spread of fm(n), the larger the value of ∆, and thus the greater
Var[λ(n)]. Property P.2 is also fulfilled by (25); since fm(n)
should be approximately constant in case of stationarity one
gets ∆ ≈ 0, which yields λ(n) ≈ 1. Finally, since (24) is
computed only from the instantaneous spectrum at time n (i.e.,
independently of the local spectra at other time points), while
d(n, f) requires the knowledge of the local spectra at all time
instants [see (4) and (5)], one can consider that property P.3
should hold as well. By taking into account the procedure
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TABLE I
PERCENTAGE OF “NONSTATIONARY” OUTCOMES OBTAINED BY TESTING 1000 MC SIMULATIONS OF THE SYNTHETIC SIGNALS.

N = 250 N = 500 N = 750 N = 1000

Test signals SURnew SURori SURalt KPSS SURnew SURori SURalt KPSS SURnew SURori SURalt KPSS SURnew SURori SURalt KPSS
Gauss. mean 12% 5.8% 4% 64.3% 16.2% 6.2% 5% 95.2% 18.5% 5.2% 5.3% 98.7% 22.4% 7.3% 8.6% 100%

Gauss. var 100% 100% 45% 6.1% 100% 100% 47.2% 6.3% 100% 100% 49.4% 6.9% 100% 100% 55.7% 7%

TVAR 32.4% 9% 14% 0.2% 50.3% 11.3% 22.2% 0.5% 65.4% 12% 24.8% 0.4% 80.2% 11.1% 17% 1.1%

UMP 69.3% 91% 0.4% 0.7% 99.8% 100% 0.8% 0.6% 100% 100% 1.1% 1.3% 100% 100% 2% 1.2%

WGN 6.7% 7.5% 2% 4.1% 6.1% 6.5% 0.1% 5.8% 1.4% 6% 1.5% 6.8% 5.4% 6.1% 1.9% 6.1%

AR(1) 6.5% 6.2% 2.5% 0.2% 5.9% 5.7% 2.5% 0.1% 5.2% 6.3% 2.8% 0% 5.1% 6.9% 2.7% 0%

discussed in Section III-C and λ(n) proposed in this section,
we now evaluate the performance of the modified test.

IV. EXPERIMENTAL STUDY

Stationarity tests have been applied to uniformly modu-
lated processes (UMP), time-varying autoregressive (TVAR)
processes, and nonstationary Gaussian time series. These
processes are often employed to model nonstationarities in
practice. More details on these signals are given below. Sta-
tionary first-order autoregressive [AR(1)] and white Gaussian
noise [WGN(0,1)] processes have been probed as well. The
test signals have 250, 500, 700, and 1000 data points.

We have also tested a real-world dataset, which is the
monthly average Central England Temperature (CET) time
series [30]–[35]. The experimental study on the real-world data
is presented in the supplementary material of this paper.

A. Tested signals
1) UMP: In this paper, the following UMP has been tested:

x(n) = Cneβn/2vu(n) (26)

where vu(n)∼U[−1, 1] is uniform random noise. The UMP in
(26) has been used to model ground motion in earthquakes,
with parameters C and β being the intensity of the ground
acceleration, and the effective duration of the motion [36].
Here, we have set β = 2/ρN and C = β/2e−1, with ρ = 0.75.

2) TVAR processes: The considered process is given as

x(n+ 1) = x(n)

q∑
m=0

amfm(n) + φ(n) (27)

where φ(n)∼WGN(0, 1), {a0, ..., aq} are constants, and
{f0(n), ..., fq(n)} are pre-determined basis functions chosen
to characterize a given nonstationary behavior [37]. Here, we
have considered q = 2, a0 = 1, a1 = 2, a2 = 1/2, f0(n) = 1,
f1(n) = (n−1)/(N−2) and f2(n) = 3f21 (n)−1 [38]. These
basis functions are Legendre polynomials and have been used
to model slowly-varying nonstationary behaviors [39].

3) Nonstationary Gaussian processes: These signals follow
an AB model as in [40], [41], which means that their PDFs
have a time-varying parameter θ(n) such as

θ(n) =

{
ξ1, n = 1, ..., N/2,

ξ2, n = N/2 + 1, ..., N
(28)

where ξ1 and ξ2 are the parameter values before and after
change, respectively. Note that (28) describes a step change
at n = N/2. The following Gaussian processes have been
created using (28): a) signals with fixed mean (µ = 0) and
variance varying from ξ1 = 1 to ξ1 = 4, b) signals with fixed
variance (σ = 1) and mean varying from ξ1 = 0 to ξ1 = 4.

B. Test results
We have tested 1000 Monte Carlo (MC) simulations of the

test signals with the new method and competing ones. The
results are shown in Table I as percentage of cases each signal
has been classified as “nonstationary”. In Table I, “SURnew” is
the new surrogate test, “SURori” is the original surrogate test
of [21], “SURalt” is the alternative version of [21] proposed
in [24], and “KPSS” is the classical KPSS test [1]. All tests
have been performed with a significance level of 5%. For the
surrogate-based method, the free parameter nh0 has been set to
nh0 = 0.3, the number of surrogates used has been J = 100,
and (6) has been chosen as the log-spectral deviation [26].

As mentioned in Section I, the surrogate test works well for
second-order nonstationary and amplitude-modulated signals
(like the Gaussian processes with varying variance and the
UMPs), but not for first-order and slowly nonstationary pro-
cesses (like the Gaussian signals with varying mean and the
TVAR processes). Detecting the latter signals is problematic
for TF-based methods like the surrogate test. In addition to
the fact that quadratic TF representations are better suited to
characterize second-order evolutions [4], they often estimate
poorly the spectral content at very low frequencies [5]. This is
a problem for slowly nonstationary processes, whose spectral
content is often concentrated at low frequency bands.

Note in Table I that, despite of the aforementioned limita-
tions, the detection rates for the challenging signals (Gaussian
mean and TVAR) at least doubled for SURnew in comparison
to SURori and SURalt. Nevertheless, SURnew has kept the same
excellent performances as SURori for the best cases (Gaussian
variance and UMP). The KPSS test, on the other hand, has
performed best only for first-order nonstationary and AR(1)
signals, which is reasonable given the way the KPSS test is
designed [1]. By considering the tests as binary classifiers and
computing the Accuracy (ACC) values, we obtain

ACCnew = 0.76, ACCori = 0.66, ACCalt = 0.45, ACCKPSS = 0.48

which evaluate the overall classification performance of the
tests. Note that the ACC of the new method is highest one.

V. CONCLUDING REMARKS

This paper revisited the methodology for testing stationarity
with surrogates. We studied a general weighting method to
improve the test by transforming the original test parameters.
A new time-varying feature with some special characteristics
was designed by using the TF representation of the signal. We
showed mathematically that the proposed procedure to modify
the test can improve its classification performance. Simulations
were carried out on synthetic and real-world signals to evaluate
the performances of the modified test and competing ones.
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