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ABSTRACT Over the past decade, Convolutional Networks (ConvNets) have renewed the perspectives of
the research and industrial communities. Although this deep learning techniquemay be composed ofmultiple
layers, its core operation is the convolution, an important linear filtering process. Easy and fast to implement,
convolutions actually play a major role, not only in ConvNets, but in digital image processing and analysis
as a whole, being effective for several tasks. However, aside from convolutions, researchers also proposed
and developed non-linear filters, such as operators provided by mathematical morphology. Even though
these are not so computationally efficient as the linear filters, in general, they are able to capture different
patterns and tackle distinct problems when compared to the convolutions. In this paper, we propose a new
paradigm for deep networks where convolutions are replaced by non-linear morphological filters. Aside from
performing the operation, the proposed Deep Morphological Network (DeepMorphNet) is also able to learn
the morphological filters (and consequently the features) based on the input data. While this process raises
challenging issues regarding training and actual implementation, the proposed DeepMorphNet proves to be
able to extract features and solve problems that traditional architectures with standard convolution filters
cannot.

INDEX TERMS Convolutional networks, deep learning, deep morphological networks, mathematical
morphology.

I. INTRODUCTION
Over the past decade, Convolutional Networks (ConvNet) [1]
have been a game changer in the computer vision community,
achieving state-of-the-art in several computer-vision appli-
cations, including image classification [2], [3], object and
scene recognition [4]–[8], and many others. Although this
deep learning technique may be composed of several dis-
tinct components (such as convolutional and pooling layers,
non-linear activation functions, etc), its core operation is the
convolution, a linear filtering process whose weights, in this
case, are to be learned based on the input data. Easy and
fast to implement, convolutions actually play a major role,
not only in ConvNets [1], but in digital image processing
and analysis [9], [10] as a whole, being effective for many
tasks (including image denoising [11], edge detection [12],
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etc) and employed by several techniques (such as the filtering
approaches [10]).

Aside from convolutions, researchers also proposed and
developed non-linear filters, such as operators provided by
mathematical morphology. Even though these are not so
computationally efficient as the linear filters, in general,
they are able to capture different patterns and tackle dis-
tinct problems when compared to the convolutions. For
instance, suppose one desires to preserve only the large
objects of an input image with 4 × 4 and 2 × 2 squares.
As presented in Figure 1, despite having a myriad of pos-
sible configurations, the convolution is not able to pro-
duce such an outcome that can be easily obtained, for
example, by a non-linear morphological opening. In fact,
supported by this capacity of extracting distinct features,
some non-linear filters, such as the morphological opera-
tions [13], are still very popular and state-of-the-art in some
scenarios [14]–[17].
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FIGURE 1. Illustration showing the lack of ability of the convolution filter
to produce certain outcomes that are easily generated by non-linear
operations. The goal here is to preserve only the larger squares of the
input image, as presented in the desired outcome. Towards such
objective, this image is processed by three distinct convolution filters
producing different outputs, none of them similar to the desired
outcome. However, a simple morphological opening with
a 3 × 3 structuring element is capable of generating such output.

In this paper, we propose a novel paradigm for deep
networks where linear convolutions are replaced by the
aforementioned non-linear morphological operations. Fur-
thermore, differently from the current literature, wherein dis-
tinct morphological filters must be evaluated in order to find
the most suitable ones for each application, the proposed
technique, called Deep Morphological Network (DeepMor-
phNet), learns the filters (and consequently the features)
based on the input data. Technically, the processing of each
layer of the proposed approach can be divided into three
steps/operations: (i) depthwise convolution [18], employed
to rearrange the input pixels according to the binary fil-
ters, (ii) depthwise pooling, used to select some pixels and
generate an eroded or dilated outcome, and (iii) pointwise
convolution [18], employed to combine the generated maps
producing one final morphological map (per neuron). This
process resembles the depthwise separable convolutions [18]
but using binary filters and one more step (the second one)
between the convolutions. Note that, to the best of our
knowledge, this is the first proof of concept work related to
networks capable of performing and optimizing exact (non-
approximate) morphological operations with flat structur-
ing elements (i.e., filters). Particularly, this is an advantage
given that the vast majority of the mathematical morphol-
ogy operators based on structuring elements employ flat
filters. While this replacement process raises challenging
issues regarding training and actual implementation, the pro-
posed DeepMorphNet proves to be able to solve problems
that traditional architectures with standard convolution filters
cannot.

In practice, we can summarize the main contributions of
this paper as follows:

• a novel paradigm for deep networks where linear con-
volutions are replaced by the non-linear morphological
operations, and

• a technique, called Deep Morphological Network
(DeepMorphNet), capable of performing and optimiza-
tion morphological operations.

The remainder of this paper is organized as follows.
Section II introduces some background concepts and presents
the related work. The proposed method is presented
in Section III. The experimental setup is introduced in
Section IV while Section V presents the obtained results.
Finally, Section VI concludes the paper.

II. BACKGROUND KNOWLEDGE AND RELATED WORK
This section introduces the basic principles underlying math-
ematical morphology, and reviews the main approaches that
exploit such operations for distinct image tasks.

A. MATHEMATICAL MORPHOLOGY
Morphological operations, commonly employed in the image
processing area, are strongly based on mathematical mor-
phology. Since its introduction to the image domain, these
morphological operations have been generalized from the
analysis of a single band image to hyperspectral images
made up of hundreds of spectral channels and has become
one of the state-of-the-art techniques for a wide range of
applications [13]. This study area includes several different
operations (such as erosion, dilation, opening, closing, top-
hats, and reconstruction), which can be applied to binary and
grayscale images in any number of dimensions [13].

Formally, consider a grayscale 2D image I (·) as a mapping
from the coordinates (Z2) to the pixel-value domain (Z).
Most morphological transformations process this input
image I using a structuring element (SE) (usually defined
prior to the operation). A flat1 SE B(·) can be defined as a
function that, based on its format (or shape), returns a set of
neighbors of a pixel (i, j). This neighborhood of pixels is taken
into account during the morphological operation, i.e., while
probing the image I . As introduced, the definition of the SE is
of vital importance for the process to extract relevant features.
However, in literature [19], [20], this definition is performed
experimentally (with common shapes being squares, disks,
diamonds, crosses, and x-shapes), an expensive process that
does not guarantee a good descriptive representation.

After its definition, the SE can be then employed in sev-
eral morphological processes. Most of these operations are
usually supported by two basic morphological transforma-
tions: erosion E(·) and dilation δ(·). Such operations receive
basically the same input: an image I and the SE B. While
erosion transformations process each pixel (i, j) using the
supremum function ∧, as denoted in Equation 1, the dilation
operations process the pixels using the infimum ∨ function,
as presented in Equation 2. Intuitively, these two operations

1A flat SE is binary and only defines which pixels of the neighborhood
should be taken into account. On the other hand, a non-flat SE contains finite
values used as additive offsets in the morphological computation.
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probe an input image using the SE, i.e., they position the
structuring element at all possible locations in the image
and analyze the neighborhood pixels. This process, somehow
similar to the convolution procedure, outputs another image
with regions compressed or expanded. Some examples of
erosion and dilation are presented in Figure 2, in which it
is possible to notice the behavior of each operation. As can
be noticed erosion affects brighter structures while dilation
influences darker ones (w.r.t. the neighborhood defined by
the SE).

E(B, I )(i,j) = {∧I ((i, j)′)|(i, j)′ ∈ B(i, j) ∪ I (i, j)} (1)

δ(B, I )(i,j) = {∨I ((i, j)′)|(i, j)′ ∈ B(i, j) ∪ I (i, j)} (2)

If we have an ordered set, then the erosion and dilation
operations can be simplified. This is because the infimum and
the supremum are respectively equivalent to the minimum
and maximum functions when dealing with ordered sets.
In this case, erosion and dilation can be defined as presented
in Equations 3 and 4, respectively.

E(B, I )(i,j) = { min
(i,j)′∈B(i,j)

(I ((i, j)′))} (3)

δ(B, I )(i,j) = { max
(i,j)′∈B(i,j)

(I ((i, j)′))} (4)

Based on these two fundamental transformations, other
more complex morphological operations may be computed.
The morphological opening, denoted as γ (·) and defined in
Equation 5, is simply an erosion operation followed by the
dilation (using the same SE). In contrast, a morphological
closing ϕ(·) of an image, defined in Equation 6, is a dilation
followed by the erosion (using the same SE). Intuitively,
an opening flattens bright objects that are smaller than the
size of the SE and, because of dilation, mostly preserves the
bright large areas. A similar conclusion can be drawn for
darker structures when closing is performed. Examples of
this behavior can be seen in Figure 2. It is important to
highlight that by using erosion and dilation transformations,
opening and closing perform geodesic reconstruction in the
image. Operations based on this paradigm belongs to the class
of filters that operate only on connected components (flat
regions) and cannot introduce any new edge to the image.
Furthermore, if a segment (or component) in the image is
larger than the SE then it will be unaffected, otherwise,
it will be merged to a brighter or darker adjacent region
depending upon whether a closing or opening is applied.
This process is crucial because it avoids the generation
of distorted structures, which is obviously an undesirable
effect.

γ (B, I ) = δ(B, E(B, I )) (5)

ϕ(B, I ) = E(B, δ(B, I )) (6)

Other important morphological operations are the top-hats.
Top-hat transform is an operation that extracts small elements
and details from given images. There are two types of top-hat
transformations: (i) the white one T w(·), defined in Equa-
tion 7, in which the difference between the input image and its

FIGURE 2. Examples of morphological images generated for the
UCMerced Land-use Dataset. For better viewing and understanding,
images (b)-(j) only present a left-bottom zoom of the original image (a).
All these images were processed using a 5 × 5 square as structuring
element.

opening is calculated, and (ii) the black one, denoted as T b(·)
and defined in Equation 8, in which the difference between
the closing and the input image is performed. White top-hat
operation preserves elements of the input image brighter than
their surroundings but smaller than the SE. On the other hand,
black top-hat maintains objects smaller than the SE with
brighter surroundings. Examples of these two operations can
be seen in Figure 2.

T w(B, I ) = I − γ (B, I ) (7)

T b(B, I ) = ϕ(B, I )− I (8)

Another important morphological operation based on ero-
sions and dilations is the geodesic reconstruction. There
are two types of geodesic reconstruction: by erosion and
by dilation. The geodesic reconstruction by erosion ρE (·),
mathematically defined in Equation 9, receives two param-
eters as input: an image I and a SE B. The image I (also
referenced in this operation as mask image) is dilated by
the SE B (δ(B, I )) creating the marker image Y (Y ∈ I ),
responsible for delimitingwhich objects will be reconstructed
during the process. A SE B′ (usually with any elementary
composition [13]) and the marker image Y are provided
for the reconstruction operation RE

I (·). This transformation,
defined in Equation 10, reconstructs the marker image Y
(with respect to the mask image I ) by recursively employing
geodesic erosion (with the elementary SE B′) until idem-

potence is reached (i.e., E (n)
I (·) = E (n+1)

I (·)). In this case,
a geodesic erosion E (1)

I (·), defined in Equation 11, consists
of a pixel-wise maximum operation between an eroded (with
elementary SE B′) marker image Y and the mask image I .
By duality, a geodesic reconstruction by dilation can be
defined, as presented in Equation 12. These two crucial
operations try to preserve all large (than the SE) objects
of the image removing bright and dark small areas, such
as noises. Some examples of these operations can be seen
in Figure 2.

ρE (B, I ) = RE
I (B
′,Y ) = RE

I (B
′, δ(B, I )) (9)
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RE
I (B
′,Y ) = E (n)

I (B′,Y )

= E (1)
I

(
B′, E (1)

I

(
B′, · · · E (1)

I

(
B′, E (1)

I (B′,Y )
)))

︸ ︷︷ ︸
n times

(10)

E (1)
I (B′,Y ) = max{E(B′,Y ), I } (11)

ρδ(B, I ) = Rδ
I (B
′,Y ) = Rδ

I (B
′, E(B, I )) (12)

Note that geodesic reconstruction operations require an
iterative process until the convergence. This procedure can
be expensive, mainly when working with a large number of
images. An approximation of such operations, presented in
Equations 13 and 14, can be achieved by performing just
one transformation over the marker image with a large (than
the SE used to create the marker image) structuring element.
In other words, suppose that B is the SE used to create the
marker image, then B′, the SE used in the reconstruction
step, should be larger than B. This process is faster since
only one iteration is required, but may lead to worse results,
given that the use of a large filter can make the reconstruction
join objects that are close in the scene (a phenomenon known
as leaking [13]).

ρ̃E (B, I ) = EI (B′, δ(B, I )) (13)

ρ̃δ(B, I ) = δI (B′, E(B, I )) (14)

B. RELATED WORK
As introduced, such non-linear morphological opera-
tions [13] have the ability to preserve some features that
may be essential for some problems. Supported by this,
several tasks and applications have exploited the benefits of
morphological operations, such as image analysis [16], [17],
[21]–[24], classification [25]–[27], segmentation [14], [15],
[20], [28], [29], and so on.

Some of these techniques [16], [21], [22], [29] are strongly
based on mathematical morphology. These approaches pro-
cess the input images using only morphological operations.
The produced outcomes are then analyzed in order to extract
high-level semantic information, such as borders, area,
geometry, volume, and more. Other works [14], [15], [17],
[19], [27] go further and use morphology to extract robust
features that are employed as input to machine learning tech-
niques (such as Support Vector Machines, and decision trees)
to perform image analysis, classification, and segmentation.
Usually, in these cases, the input images are processed using
several different morphological transformations, each one
employing a distinct structuring element, in order to improve
the diversity of the extracted features. All these features are
then concatenated and used as input for the machine learning
techniques.

More recently, ConvNets [1] started achieving outstand-
ing results, mainly in applications related to images. There-
fore, it would be more than natural for researchers to
propose works combining the benefits of ConvNets and

morphological operations. In fact, several works [20], [25],
[26], [28] tried to combine these techniques to create a more
robust model. Some works [20], [28] employed morphologi-
cal operations as a pre-processing step in order to extract the
first set of discriminative features. In these cases, pre-defined
(hand-crafted) structuring elements are employed. Those
techniques use such features as input for a ConvNet respon-
sible to perform the classification. Based on the fact that
morphology generates interesting features that are not cap-
tured by the convolutional networks, such works achieved
outstanding results on pixelwise classification.

Other works [23]–[26] introduced morphological opera-
tions into neural networks, creating a framework in which
the structuring elements are optimized. Masci et al. [25]
proposed a convolutional network that aggregates pseudo-
morphological operations. Specifically, their proposed
approach uses the counter-harmonic mean, which allows the
convolutional layer to perform its traditional linear process,
or approximations of morphological operations. They show
that the approach produces outcomes very similar to real
morphological operations. Mellouli et al. [26] performed a
more extensive validation of the previous method, proposing
different deeper networks that are used to perform image
classification. In their experiments, the proposed network
achieved promising results for two datasets of digit recog-
nition. In [23], the authors proposed a new network capable
of performing some morphological operations (including
erosion, dilation, opening, and closing) while optimizing
non-flat structuring elements. Their proposed network, eval-
uated for image de-raining and de-hazing, produced results
similar to those of a ConvNet but using much fewer parame-
ters. Finally, Franchi et al. [24] proposed a new deep learning
framework capable of performing non-approximated mathe-
matical morphology operations (including erosion, dilation)
while optimizing non-flat structuring elements. Their method
produced competitive results for edge detection and image
denoising when compared to classical techniques and stan-
dard ConvNets.

In this work, we proposed a new network capable of per-
forming and optimizing several morphological operations,
including erosion, dilation, openings, closing, top-hats, and
an approximation of geodesic reconstructions. Several dif-
ferences may be pointed out between the proposed approach
and the aforementioned works: (i) differently from [25], [26],
the proposed technique really carries out morphological oper-
ations without any approximation (except for the reconstruc-
tion), (ii) the morphological operations incorporated into the
proposed network use flat SEs (which may be used with
any input image), thus differing from other methods, such
as [23], [24], that can only optimizemorphological operations
using non-flat SEs and, consequently, can only be used with
grayscale input data, and (iii) to the best of our knowledge,
this is the first approach to implement (approximate) morpho-
logical geodesic reconstruction within deep-learning based
models.
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III. DEEP MORPHOLOGICAL NETWORKS
In this section, we present the proposed approach, called
Deep Morphological Networks (or simply DeepMorphNets),
that replaces the linear convolutional filters with optimiz-
able non-linear morphological operations. Such replacement
allows the proposed network to capture distinct information
when compared to previous existing models, an advantage
that may assist different applications. However, this process
raises several challenging issues.

One first challenge is due to the linear nature of the core
operations of the existing networks. The convolutional layers
extract features from the input data using an optimizable
filter by performing only linear operations not supporting
non-linear ones. Formally, let us assume a 3D input y(·) of
a convolutional layer as a mapping from coordinates (Z3)
to the pixel-value domain (Z or R). Analogously, the train-
able filter (or weight) W (·) of such layer can be seen as
a mapping from 3D coordinates (Z3) to the real-valued
weights (R). A standard convolutional layer performs a
convolution of the filter W (·) over the input y(·), accord-
ing to Equation 15. Note that the output of this operation
is the summation of the linear combination between input
and filter (across both space and depth). Also, observe the
difference between this operation and the morphological
ones stated in Section II-A. This shows that replacing the
convolutional filters with morphological operations is not
straightforward.

S(W , y)(i,j) =
∑
m

∑
n

∑
l

W (m, n, l)y(i+m, j+n, l) (15)

Another important challenge is due to the optimization of
non-linear operations by the network. Precisely, in ConvNets,
a loss function L is used to optimize the model. Neverthe-
less, the objective of any network is to minimize this loss
function by adjusting the trainable parameters (or filters) W .
Such optimization is traditionally based on the derivatives
of the loss function L with respect to the weights W . For
instance, suppose Stochastic Gradient Descent (SGD) [1] is
used to optimize a ConvNet. As presented in Equation 16,
the optimization of the filters depends directly on the par-
tial derivatives of the loss function L with respect to the
weights W (employed with a pre-defined learning rate α).
Those partial derivatives are usually obtained using the back-
propagation algorithm [1], which is strongly supported by
the fact that all operations of the network are easily dif-
ferentiable, including the convolution presented in Equa-
tion 15. However, this algorithm cannot be directly applied
to non-linear operations, such as the presented morpho-
logical ones, because those operations do not have easy
derivatives.

W = W − α
∂L
∂W

(16)

Overcoming such challenges, we propose a network
that employs depthwise and pointwise convolution with
depthwise pooling to recreate and optimize morphological
operations. The basic concepts of the proposed technique

is presented in Section III-A. This concept is employed
to create morphological neurons and layers, presented in
Sections III-B and III-C, respectively. Section III-D explains
the optimization processed performed to learn the structure
elements. Finally, the morphological architecture exploited in
this work are introduced in Section III-E.

A. BASIC MORPHOLOGICAL FRAMEWORK
Towards the preservation of the end-to-end learning strategy,
we propose a new framework, capable of performing mor-
phological erosion and dilation, that uses operations already
employed in other existing deep learning-based methods. The
processing of this framework can be separated into two steps.
The first one employs depthwise convolution [18] to perform
a delimitation of features, based on the neighborhood (or
filter). As defined in Equation 17, this type of convolution
differs from standard ones since it handles the input depth
independently, using the same filterW to every input channel.
In other words, suppose that a layer performing depthwise
convolution has k filters and receives an input with l chan-
nels, then the processed outcome would be an image of
k × l channels, since each k-th filter would be applied to
each l-th input channel. The use of depthwise convolution
simplifies the introduction of morphological operations into
the deep network since the linear combination performed by
this convolution does not consider the depth (as in standard
convolutions presented in Equation 15). This process is fun-
damental for the recreation of morphological operations since
such transformations can only process one single channel at
a time.

Sl(W , y)(i,j) =
∑
m

∑
n

W (m, n)y(i+ m, j+ n, l) (17)

However, just using this type of convolution does not allow
the reproduction of morphological transformations, given
that a spatial linear combination is still performed by this
convolutional operation. To overcome this, all filters W are
first converted into binary and then used in the depthwise
convolution operation. This binarization process, referenced
hereafter as max-binarize, activates only the highest value of
the filter. Formally, the max-binarize b(·) is a function that
receives as input the real-valued weights W and processes
them according to Equation 18, where 1{condition} is the
indicator function. This process outputs a binary version of
the weights,W b, in which only the highest value inW is acti-
vated inW b. By usingW b, the linear combination performed
by depthwise convolution can be seen as a simple operation
that preserves the exact value of the single pixel activated by
this binary filter.

W b
(i,j) = b(W (i, j)) = 1{maxm,n(W (m, n)) = W (i, j)} (18)

But preserving only one pixel with respect to the binary fil-
ter is not enough to reproduce the morphological operations,
since they usually operate over a neighborhood (defined by
the SE B). In order to reproduce this neighborhood concept
in the depthwise convolution operation, we decompose each
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filter W into several ones, that when superimposed retrieve
the final SE B. More specifically, suppose a filter W with
size s× s. Since only one position can be activated at a time,
this filter has a total of s2 possible activation variations. This
analysis is the same if we consider each element of a s× s SE
independently. Based on all this, a set of s2 max-binary filters
with size s × s is able to cover all possible configurations of
a SE with the same size. Thus, a set of s2 filters with size
s×s can be seen as a decomposed representation of the struc-
turing element, given that those s2 filters (with only a single
activated position) can be superimposed in order to retrieve
any possible s× s neighborhood configuration defined by the
SE. By doing this, the concept of neighborhood introduced
by the SE can be exploited by the depthwise convolution.
Technically, a s2 set of s × s filters W can be converted into
binary weights W b and then, used to process the input data.
When exploited by Equation 17, each of these s2 binary filter
W b will preserve only one pixel which is directly related
to one specific position of the neighborhood. As may be
observed, this first step recreates, in depth, the neighborhood
of a pixel delimited by a s × s SE B, which is essentially
represented by s2 binary filtersW b of size s× s.
Since the SE B was decomposed in depth, in order to

retrieve it, a depthwise operation must be performed over the
s2 binary filters W b. Analogously, a depthwise operation is
also required to retrieve the final outcome, i.e., the eroded
or dilated image. This is the second step of this proposed
framework, which is responsible to extract the relevant infor-
mation based on the depthwise neighborhood. In this step,
an operation, called depthwise pooling P(·), processes the
s2 outcomes (of the decomposed filters), producing the final
morphological outcome. This pooling operation is able to
actually output the morphological erosion and dilation by
using pixel and depthwiseminimum andmaximum functions,
as presented in Equations 19 and 20, respectively. The out-
come of this second step is the final (eroded or dilated) feature
map that will be exploited by any subsequent process.

PE (y)(i,j) = min
l
y(i, j, l) (19)

Pδ(y)(i,j) = max
l
y(i, j, l) (20)

Equations 21 and 22 compile the two steps performed
by the proposed framework for morphological erosion and
dilation, respectively. This operation, denoted here as M (·),
performs a depthwise convolution (first step), which uses
max-binary filters that decompose the representation of the
neighborhood concept introduced by SEs, followed by a pixel
and depthwise pooling operation (second step), outputting the
final morphological (eroded or dilated) feature maps. Note
the similarity between these functions and Equations 3 and 4
presented in Section II-A. The main difference between these
equations is in the neighborhood definition. While in the
standard morphology, the neighborhood of a pixel is defined
spatially (via SEB), in the proposed framework, the neighbor-
hood is defined along the channels due to the decomposition
of the SE B into several filters and, therefore, minimum and

FIGURE 3. Example of a morphological erosion based on the proposed
framework. The 4 filters W (with size 4 × 4) actually represent a unique
4 × 4 SE. Each filter W is first converted to binary W b, and then used to
process each input channel (step 1, blue dashed rectangle). The output is
then processed via a pixel and depthwise min-pooling to produce the
final eroded output (step 2, green dotted rectangle). Note that the binary
filters W b, when superimposed, retrieve the final SE B. The dotted line
shows that the processing of the input with the superimposed SE B using
the standard morphological erosion results in the same eroded output
image produced by the proposed morphological erosion.

maximum operations also operate over the channels.

ME (W , y)(i,j) = PE (Sl(W , y))(i,j) = min
l
Sl(W , y)(i,j) (21)

M δ(W , y)(i,j) = Pδ(Sl(W , y))(i,j) = max
l
Sl(W , y)(i,j) (22)

A visual example of the proposed framework being used
for morphological erosion is presented in Figure 3. In this
example, the depthwise convolution has 4 filtersW with size
4× 4 which actually represent a unique 4× 4 SE. The filters
W are first converted into binary using the max-binarize
function b(·), presented in Equation 18. Then, each binary
filter W b is used to process (step 1, blue dashed rectangle)
each input channel (which, for simplicity, is only one in this
example) using Equation 17. In this process, each binary
filter W b outputs an image in which each pixel has a direct
connection to the one position activated in that filter. The
output is then processed (step 2, green dotted rectangle)
via a pixel and depthwise min-pooling P(·)E (according to
Equation 19) to produce the final eroded output. Note that
the binary filters W b, when superimposed retrieve the final
SE B. The dotted line shows that the processing of the input
with the superimposed SE B using the standard erosion (E(·)
presented in Equation 3) results in the same eroded output
image produced by the proposed morphological erosion.

B. MORPHOLOGICAL PROCESSING UNITS
The presented framework is the foundation of all proposed
morphological processing units (or neurons). Before pre-
senting them, it is important to observe that, although the
proposed framework is able to reproduce morphological ero-
sion and dilation, it has an important drawback: since it
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employs depthwise convolution, the number of outcomes can
grow potentially, given that, each input channel is processed
independently by each processing unit. In order to overcome
this issue and make the proposed technique more scalable,
we propose to use a pointwise convolution [18] to force each
processing unit to output only one image (or feature map).
Particularly, all neurons proposed in this work have the same
design with two parts: (i) the core operation (fundamentally
based on the proposed framework), in which the processing
unit performs its morphological transformation outputting
multiple outcomes, and (ii) the pointwise convolution [18],
which performs a pixel and depthwise (linear) combination
of the outputs producing only one outcome. Observe that,
even though the pointwise convolution performs a depthwise
combination of the multiple outcomes, it does not learn any
spatial feature, since it employs a pixelwise (or pointwise)
operation, managing each pixel separately. This design allows
the morphological neuron to have the exact same input and
output of a standard existing processing unit, i.e., it receives
as input an image with any number of bands and outputs a
single new representation. It is interesting to notice that this
processing unit design employs depthwise and pointwise con-
volution [18], resembling very much the depthwise separable
convolutions [18], but with extra steps and binary decom-
posed filters. Next Sections explain the core operation of all
proposedmorphological processing units. Note that, although
not mentioned in the next Sections, the pointwise convolution
is present in all processing units as aforementioned.

1) COMPOSED PROCESSING UNITS
The first morphological neurons, called composed processing
units, have, in their core, a morphological erosion followed
by a dilation (or vice-versa), without any constraint on the
weights. The motivation behind the composed processing
unit is based on the potential of the learned representation.
While erosion and dilation can learn simple representations,
the combination of these operations is able to capture more
complex information. Equations 23 and 24 present the two
possible configurations of the morphological composed neu-
rons. It is important to notice that the weights (W1 andW2) of
each operation of this neuron are independent.

MCδ (W , y) = M δ(W2,ME (W1, y)) (23)

MCE (W , y) = ME (W2,M δ(W1, y)) (24)

2) OPENING AND CLOSING PROCESSING UNITS
The proposed framework is also able to support the imple-
mentation of more complex morphological operations. The
most intuitive and simple transformations to be implemented
are the opening and closing (presented in Section II-A).
In fact, the implementation of the opening and closing pro-
cessing units, using the proposed framework, is straightfor-
ward. The core of such neurons is very similar to that of
the composed processing units, except that in this case a
tie on the filters of the two basic morphological operations
is required in order to make them use the same weights,

i.e., the same SE B. Equations 25 and 26 define the opening
and closing morphological neurons, respectively. Note the
similarity between these functions and Equations 5 and 6.

Mγ (W , y) = M δ(W ,ME (W , y)) (25)

Mϕ(W , y) = ME (W ,M δ(W , y)) (26)

3) TOP-HAT PROCESSING UNITS
The implementation of other, more complex, morphological
operations is a little more tricky. This is the case of the top-hat
operations, which require both the input and processed data
to generate the final outcome. Therefore, for such opera-
tions, a skip connection [1] (based on the identity mapping)
is employed to support the forwarding of the input data,
allowing it to be further processed. The core of the top-hat
processing units is composed of three parts: (i) an opening
or closing morphological processing unit, depending on the
type of the top-hat, (ii) a skip connection, that allows the for-
warding of the input data, and (iii) a subtraction function that
operates over the data of both previous parts, generating the
final outcome. Such operation and its counterpart (the black
top-hat) are defined in Equations 27 and 28, respectively.

MT w
(W , y) = y−Mγ (W , y) (27)

MT b
(W , y) = Mϕ(W , y)− y (28)

4) GEODESIC RECONSTRUCTION PROCESSING UNITS
Similarly to the previous processing units, the geodesic
reconstruction also requires the input and processed data
in order to produce the final outcome. Hence, the imple-
mentation of this important operation is also based on skip
connections. Aside from this, as presented in Section II-A,
reconstruction operations require an iterative process.
Although this procedure is capable of producing better out-
comes, its introduction in a deep network is not straightfor-
ward, given that each process can take a different number of
iterations. Supported by this, the reconstruction processing
units proposed in this work are an approximation, in which
just one transformation over the marker image is performed.
Based on this, the input is processed by two basic morpho-
logical operations (without any iteration) and an elementwise
max- or min-operation (depending on the reconstruction) is
performed over the input and processed images. Such concept
is presented in Equations 29 and 30 for reconstruction by
erosion and dilation, respectively. Note that the SE used in the
reconstruction of the marker image (denoted in Section II-A
by B′) is a dilated version of the SE employed to create such
image.

M ρ̃E (W , y) = ME
y (W ,M

δ(W , y)) (29)

M ρ̃δ (W , y) = M δ
y (W ,M

E (W , y)) (30)

C. MORPHOLOGICAL LAYER
After defining the processing units, we are able to specify
the morphological layers, which provide the essential tools
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for the creation of the DeepMorphNets. Similar to the stan-
dard convolutional layer, this one is composed of several
processing units. However, the proposed morphological layer
has two main differences when conceptually compared to
the convolutional one. The first one is related to the neurons
that compose the layers. Particularly, in convolutional layers,
the neurons are able to perform the convolution operation.
Though the filter of each neuron can be different, the oper-
ation performed by each processing unit in a convolutional
layer is a simple convolution. On the other hand, there are sev-
eral types of morphological processing units, from opening
and closing to geodesic reconstruction. Therefore, a single
morphological layer can be composed of several neurons
that may be performing different operations. This process
allows the layer to produce distinct (and possibly comple-
mentary) outputs, increasing the heterogeneity of the network
and, consequently, the generalization capacity. The second
difference is the absence of activation functions. More specif-
ically, in modern architectures, convolutional layers are usu-
ally composed of a convolution operation followed by an
activation function (such as ReLU [30]), that explicitly maps
the data into a non-linear space. In morphological layers,
there are only processing units and no activation function is
employed.

D. OPTIMIZATION
Aside from defining the morphological layer, as introduced,
we want to optimize its parameters, i.e., the filters W . Since
the proposed morphological layer uses common (differen-
tiable) operations already employed in other existing deep
learning-based methods, the optimization of the filters is
straightforward. In fact, the same traditional existing tech-
niques employed in the training of any deep learning-based
approach, such feedforward, backpropagation and SGD [1],
can also be used for optimizing a network composed of
morphological layers.

The training procedure is detailed in Algorithm 1. Given
the training data (y0, y∗), the first step is the feedforward,
comprised in the loop from line 2 to 8. In the first part
of line 4, the weights of the first depthwise convolution
are converted into binary (according to Equation 18). Then,
in the second part, the first depthwise convolution (denoted
here as ∗) is performed, with the first depthwise pooling being
executed in the third part of this line. The same operations
are repeated in line 6 for the second depthwise convolution
and pooling. Finally, in line 7, the pointwise convolution is
carried out. After the forward propagation, the total error of
the network can be estimated. With this error, the gradients
of the last layer can be directly estimated (line 10). These
gradients can be used by the backpropagation algorithm to
calculate the gradients of the inner layers. In fact, this is the
process performed in the second training step, comprised in
the loop from line 11 to 15. It is important to highlight that
during the backpropagation process, the gradients are calcu-
lated normally, using real-valued numbers (and not binary).
Precisely, line 12 is responsible for the optimization of the

pointwise convolution. The first part (of line 16) propagates
the error of a specific pointwise convolution to the previous
operation, while the second part calculates the error of that
specific pointwise convolution operation. The same process
is repeated for the second and then for the first depthwise
convolutions (lines 13 and 14, respectively). Note that during
the backpropagation, the depthwise pooling is not optimized
since this operation has no parameters and only passes the
gradients to the previous layer. The last step of the training
process is the update of the weights and optimization of the
network. This process is comprised in the loop from line
17 to 21. For a specific layer, line 18 updates the weights of
the pointwise convolution while lines 19 and 20 update the
parameters of the first and second depthwise convolutions,
respectively.

Algorithm 1 Training a Deep Morphological Network With
L Layers
Require: a minibatch of inputs and targets (y0, y∗), previous

weights W , and previous learning rate α.
Ensure: updated weightsW .
1: 1. Forward propagation:
2: for k=1 to L do
3: {First Processing Unit Operation}
4: W b(1)

k ← b(W (1)
k )

5: s(1)k ← yk−1 ∗W b(1)
k

6: y(1)k ← P(s(1)k )
7: {Second Processing Unit Operation}
8: W b(2)

k ← b(W (2)
k )

9: s(2)k ← y(1)k ∗W
b(2)
k

10: y(2)k ← P(s(2)k )
11: yk ← y(2)k ∗W

(1×1)
k {Pointwise Convolution}

12: end for
13: 2. Backpropagation: {Gradients are not binary.}
14: Compute gy(1)L

=
∂L
∂yL

knowing yL and y∗

15: for k=L to 1 do
16: gyk−1 ← gy(1)k

W (1×1)
k−1 , gW (1×1)

k−1
← gᵀ

y(1)k
yk−1

17: gy(2)k−1
← gyk−1W

b(2)
k−1, gW b(2)

k−1
← gᵀyk−1y

(2)
k−1

18: gy(1)k−1
← gy(2)k−1

W b(1)
k−1, gW b(1)

k−1
← gᵀ

y(2)k−1
y(1)k−1

19: end for
20: 3. Update the weights:
21: for k=1 to L do
22: W (1×1)

k ← W (1×1)
k − αgW (1×1)

k

23: W (1)
k ← W (1)

k − αgW b(1)
k

24: W (2)
k ← W (2)

k − αgW b(2)
k

25: end for

E. DeepMorphNet ARCHITECTURES
Two networks, composed essentially of morphological and
fully connected layers, were proposed for the image and pixel
classification tasks. Although such architectures have distinct
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designs, the pointwise convolutions exploited in the morpho-
logical layers have always the same configuration: kernel
1 × 1, stride 1, and no padding. Furthermore, all networks
receive input images with 224×224 pixels, use cross-entropy
as loss function, and SGD as optimization algorithm [1].
For the pixel classification task, the proposed networks were
exploited based on the pixelwise paradigm defined by [31],
in which each pixel is classified independently through a
context window.

The first network is the simplest one, having just a unique
layer composed of one morphological opening Mγ . This
architecture was designed to be used with the proposed
synthetic datasets (presented in Section IV-A1). Because
of this, it is referenced hereafter as DeepMorphSynNet.
Note that this network was only conceived to validate the
learning process of the proposed framework as explained in
Section V-A.

To analyze the effectiveness of the technique in a more
complex scenario, we proposed a larger network inspired
by the famous AlexNet [2] architecture. It is important to
highlight that AlexNet [2] was our inspiration, and not a more
complex architecture, because if its simplicity, which allows
a clear analysis of the benefits of the proposed technique,
thus avoiding confusing them with other advantages of more
complex deep learning approaches. This proposed morpho-
logical version of the AlexNet [2], called DeepMorphNet
and presented in Figure 4, has the same number of layers
of the original architecture but fewer neurons in each layer.
Specifically, this network has 5 morphological and 3 fully
connected layers, responsible to learn high-level features
and perform the final classification. To further evaluated the
potential of the proposed technique, in some experiments,
a new version of the DeepMorphNet, using a modern com-
ponent called Selective Kernels (SK) [32], was developed
and experimented. This new network, referenced hereafter
as DeepMorphNet-SK, uses such components to weigh the
features maps, giving more attention to some maps than the
others.

IV. EXPERIMENTAL SETUP
In this section, we present the experimental setup.
Section IV-A presents the datasets. Baselines are described
in Section IV-B while the protocol is introduced
in Section IV-C.

A. DATASETS
Six datasets were employed to validate the proposed Deep-
MorphNets. Two image classification synthetic ones were
exclusively designed to check the feature learning of the
proposed technique. Other two image classification datasets
were selected to further verify the potential of DeepMor-
phNets. Finally, to assess the performance of the pro-
posed technique in distinct scenarios, two pixel classification
datasets were exploited.

1) IMAGE CLASSIFICATION DATASETS
a: SYNTHETIC DATASETS
As introduced, two simple synthetic (image classification)
datasets were designed in this work to validate the feature
learning process of the proposed DeepMorphNets. In order
to allow such validation, these datasets were created so that
it is possible to define, a priori, the optimal SE (i.e., the SE
that would produce the best results) for a classification sce-
nario. Hence, in this case, the validation would be performed
by comparing the learned SE with the optimal one, i.e., if
both SEs are similar, then the proposed technique is able to
perform well the feature learning step.

Specifically, both datasets are composed of 1,000
grayscale images with a resolution of 224 × 224 pixels
(a common image size employed in famous architecture such
as AlexNet [2]) equally divided into two classes.
The first dataset has two classes. The first one is com-

posed of images with small (5 × 5 pixels) squares whereas
the second consists of imageswith large (9×9 pixels) squares.
Each image of this dataset has only one square (of one of the
above classes) positioned randomly. In this case, an opening
with a SE larger than 5 × 5 but smaller than 9 × 9 should
erode the small squares while keeping the others, allowing
the model to perfectly classify the dataset.

More difficult, the second synthetic dataset has two
classes of rectangles. The first class has shapes of 7 × 3
pixels while the other one is composed of rectangles of 3×7.
As in the previous dataset, each image of this dataset has
only one rectangle (of one of the above classes) positioned
randomly. This case is a little more complicated because the
network should learn a SE based on the orientation of one
the rectangles. Particularly, it is possible to perfectly classify
this dataset using a single opening operation with one of the
following types of SEs: (i) a rectangle of at least 7 pixels of
width and height larger than 3 but smaller than 7 pixels, which
would erode the first class of rectangles and preserve the sec-
ond one, or (ii) a rectangle with a width larger than 3 but
smaller than 7 pixels and height larger than 7 pixels, which
would erode the second class of rectangle while keeping the
first one.

b: UCMERCED LAND-USE DATASET
This publicly available dataset [33] is composed of
2,100 aerial images, each one with 256 × 256 pixels and
0.3-meter resolution per pixel. These images, obtained from
different US locations, were classified into 21 classes: agri-
cultural, airplane, baseball diamond, beach, buildings, cha-
parral, dense residential, forest, freeway, golf course, harbor,
intersection, medium density residential, mobile home park,
overpass, parking lot, river, runway, sparse residential, stor-
age tanks, and tennis courts. As can be noticed, this dataset
has highly overlapping classes such as the dense, medium,
and sparse residential classes which mainly differs in the
density of structures. Samples of these and other classes are
shown in Figure 5.
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FIGURE 4. The proposed morphological network DeepMorphNet conceived inspired by the AlexNet [2]. Since each layer is composed of distinct types of
morphological neurons, the number of each type of neuron in each layer is presented as an integer times the symbol that represents that neuron (as
presented in Section III-B). Hence, the total number of processing units in a layer is the sum of all neurons independently of the type. Also, observe that
the two depthwise convolutions of a same layer share the kernel size, differing only in the stride and padding. These both parameters are presented as
follows: the value related to the first depthwise convolution is reported separated by a comma of the value related to the second depthwise convolution.
Although not visually represented, the pointwise convolutions explored in the morphological layers always use the same configuration: kernel 1 × 1,
stride 1, and no padding.

FIGURE 5. Examples of the UCMerced Land-Use dataset.

c: WHU-RS19 DATASET
This public dataset [34] contains 1,005 high-resolution
imageswith 600×600 pixels divided into 19 classes (approxi-
mately 50 images per class), including: airport, beach, bridge,
river, forest, meadow, pond, parking, port, viaduct, residential
area, industrial area, commercial area, desert, farmland, foot-
ball field, mountain, park and railway station. Exported from
Google Earth, that provides high-resolution satellite images
up to half a meter, this dataset has samples collected from
different regions all around the world, which increases its
diversity but creates challenges due to the changes in reso-
lution, scale, and orientation of the images. Figure 6 presents
examples of some classes.

2) PIXEL CLASSIFICATION DATASETS
a: PAVIA CENTRE
This publicly available dataset [35] is composed of one
image, acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS), covering the city of Pavia, southern
Italy. This hyperspectral image has 715×1.096 pixels, spatial
resolution of 1.3m per pixel, and 102 spectral bands. Pixels
of this image are categorized into 9 classes. The false-color
and ground-truth images, as well as the number of pixels in
each class, are presented in Figure 7.

FIGURE 6. Examples of the WHU-RS19 dataset.

b: PAVIA UNIVERSITY
This public dataset [35] was also acquired by the ROSIS sen-
sor during a flight campaign over Pavia. This hyperspectral
image has 610 × 340 pixels, spatial resolution of 1.3m per
pixel, and 103 spectral bands. Pixels of this image are also
categorized into 9 classes. The false-color and ground-truth
images, as well as the number of pixels in each class, are
presented in Figure 7.

For both datasets, in order to reduce the computational
complexity, Principal Component Analysis (PCA) [36] was
used as a pre-processing method to reduce the dimension-
ality. Specifically, following [37], [38], for both datasets,
we selected the first 3 principal components, which explain,
approximately, 99% of the total variance of the data.

B. BASELINES
Several baselines were employed in this work. The first one,
exploited in both tasks and all aforementioned datasets, is a
standard convolutional version of the corresponding Deep-
MorphNet. This baseline, referenced as ConvNet, recreates
the exact morphological architecture using the traditional
convolutional layer but preserving all remaining configura-
tions (such as filter sizes, padding, stride, etc). Moreover,
this baseline makes use of max-pooling layers between the
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FIGURE 7. In the first (top) part, false-color and ground-truth images of the explored hyperspectral datasets. In the second (bottom) part,
the classes, the number of pixels used for training the models, and the total amount of labeled pixels.

convolutions, which makes it very similar to the traditional
architectures of the literature [2]. An extension of this first
baseline, referenced as PreMorph-ConvNet and exploited
only for the (non-synthetic) image classification datasets,
uses pre-defined morphological operations as pre-processing
to extract the first set of discriminative features [20], [28].
Such data is then used as input to a ConvNet (in this case,
the previously described one), which is responsible for per-
forming the final classification. The third baseline, used
only for the (non-synthetic) image classification datasets and
referenced hereafter Depth-ConvNet, is exactly the Deep-
MorphNet architecture but without using binary weights
and depthwise pooling. This baseline reproduces the same
DeepMorphNet architecture (also using depthwise and point-
wise convolutions) and, consequently, has the same number
of parameters, except for the binary weights. Other base-
lines, used only for the (non-synthetic) image classification
datasets, are the deep morphological frameworks proposed
by [23], [24]. In these cases, the DeepMorphNet architecture
was recreated using both techniques. Finally, the last base-
line, referenced with the suffix ‘‘SK’’ and explored only for
the (non-synthetic) image classification datasets, is the con-
volutional and morphological networks, but with Selective
Kernels (SK) [32], which allows the network to give more
importance to certain feature maps than to others.

Differently from the morphological networks, all baselines
use batch normalization [1] (after each convolution) and Rec-
tified Linear Units (ReLUs) [30] as activation functions. It is
important to note that, despite the differences, all baselines

have the exact same number of layers and feature maps of
the base DeepMorphNet. We believe that this conservation
allows a fair comparison between the models given that
the potential representation of the networks is somehow the
same.

C. EXPERIMENTAL PROTOCOL
For the synthetic datasets, a train/validation/test protocol was
employed. In this case, 60% of the instances were used
as training, 20% as validation, and another 20% as test.
Results of this protocol are reported in terms of the average
accuracy of the test set. For the other image classification
datasets, five-fold cross-validation was conducted to assess
the accuracy of the proposed algorithm. The final results are
the mean of the average accuracy (for the test set) of the
five runs followed by its corresponding standard deviation.
Finally, for the pixel classification datasets, following pre-
vious works [38]–[40], we performed a random sampling to
select 1,000 training samples/pixels from all classes, as pre-
sented in (the bottom part of) Figure 7. All remaining pixels
are used to assess the tested architectures. The final results are
reported in terms of the average accuracy of those remaining
pixels.

All networks proposed in this work were implemented
using PyTorch. All experiments were performed on a 64 bit
Intel i7 5930K machine with 3.5GHz of clock, Ubuntu
18.04.1 LTS, 64GB of RAM memory, and a GeForce GTX
Titan X Pascal with 12GB of memory under a 10.0 CUDA
version.
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V. RESULTS AND DISCUSSION
In this section, we present and discuss the outcomes.
Section V-A presents the results of the synthetic datasets
while Section V-B discusses the results of the other datasets.
Finally, Section V-C presents the results of the pixel classifi-
cation datasets. Please remember that we present a proof of
concept of a new paradigm: using non-linear morphological
operations instead of standard linear convolutions for a deep
network. To demonstrate the benefits of this proposal, similar
architectures must be considered, including in terms of the
number of neurons, layers, etc. In order not to confuse the
benefits of proposal with the advantages of complex net-
works, as introduced, the proposed models were inspired by
the simple AlexNet [2] architecture.

A. SYNTHETIC IMAGE CLASSIFICATION DATASETS
As explained in Section IV-A1, two synthetic datasets were
proposed in this work to validate the feature learning of the
deep morphological networks. Furthermore, as introduced,
both datasets can be perfectly classified using one opening
with specific SEs. Supported by this, the proposed Deep-
MorphSynNet, composed of one opening neuron, can be
used to validate the feature learning process of the proposed
technique, given that this network has the capacity of per-
fectly classifying the datasets as long as it successfully learns
the SE.

Given the simplicity of these datasets, aside from the first
method describe in Section IV-B, we also employed as base-
line a basic architecture composed uniquely of a classification
layer. Specifically, this network has one layer that receives a
linearized version of the input data and outputs the classifi-
cation. The proposed morphological network and baselines
were tested for both synthetic datasets using the same con-
figuration, i.e., learning rate, weight decay, momentum, and
number of epochs of 0.01, 0.0005, 0.9, and 10, respectively.

TABLE 1. Results, in terms of average accuracy, of the proposed method
and the baselines for the synthetic datasets.

Results for the synthetic square dataset are presented
in Table 1. Among the baselines, the worst results were gen-
erated by the ConvNets while the best outcome was produced
by the network composed of a single classification layer
(86.50%). A reason for this is that the proposed dataset does
not have much visual information to be extracted by the con-
volution layer. Hence, in this case, the raw pixels themselves
are able to provide relevant information for the classification.
However, the proposed morphological network was able to

outperform all baselines. Precisely, the DeepMorphSynNet
yielded a 100% of average accuracy, perfectly classifying
the entire test set of this synthetic dataset. As introduced in
Section IV-A1, in order to achieve this perfect classification,
the opening would require a square SE larger than 5 × 5 but
smaller than 9× 9 pixels. As presented in Figure 8a, this was
the SE learned by the network. Moreover, as introduced, with
this SE, the opening would erode the small 5 × 5 squares
while keeping the larger 9× 9 ones, the exact outcome of the
morphological network, as presented in Figures 8b and 8c.

FIGURE 8. Visual results for the square synthetic dataset. (a) The learned
SE. (b)-(c) Examples of the output of the opening neuron for two classes
of the square synthetic dataset. The first column represents the input
image, the second one is the output of the erosion, and the last one is the
output of the dilation. Since erosion and dilation have tied weights
(i.e., the same SE), they implement an opening.

Results for the synthetic rectangle dataset are presented
in Table 1. In this case, the proposed DeepMorphSynNet
and the ConvNet baseline produced perfect results, with the
classification layer producing the worst result. Such results
may be justified based on properties of this dataset: the
distinct orientation of the rectangles may help both Deep-
MorphSynNet and ConvNet, while the exact same number of
pixels for both rectangle classes may hinder the classification
layer. As introduced in Section IV-A1, to perform this perfect
classification, the opening operation (of the DeepMorphSyn-
Net) would require a specific SE that should have the same
orientation of one of the rectangles. As presented in Figure 9a,
this is the SE learned by the morphological network. With
such filter, the opening operation would erode the one type
of rectangles while keeping the other, the exact outcome
presented in Figures 9b and 9c.

B. IMAGE CLASSIFICATION DATASETS
For the image classification datasets, all networks were
tested using essentially the same configuration, i.e., batch
size, learning rate, weight decay, momentum, and number
of epochs of 16, 0.01, 0.0005, 0.9, and 2,000 respectively.
Aside from those approaches, we also employed as base-
line an approach, called hereafter Static SEs, that repro-
duces the exactly morphological architecture but with static
(non-optimized) SEs. In this case, each neuron has the
configuration based on the most common SEs (mentioned
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FIGURE 9. Visual results for the rectangle synthetic dataset. (a) The
learned SE. (b)-(c) Examples of the output of the opening neuron for two
classes of the square synthetic dataset. The first column represents the
input image, the second one is the output of the erosion, and the last one
is the output of the dilation. Since erosion and dilation have tied weights
(i.e., the same SE), they implement an opening.

in Section II-A). The features extracted by these static neu-
rons are classified by a Support Vector Machine (SVM). The
idea behind this baseline is to have a lower bound for the
morphological network, given that this proposed approach
should be able to learn better SEs and produce superior
results.

TABLE 2. Results, in terms of accuracy, of the proposed method and the
baselines for the image classification datasets.

1) UCMerced LAND-USE DATASET
Results for the UCMerced Land-use dataset are reported
in Table 2. In this case, all networks outperformed the lower
bound result, generated by the Static SEs. Additionally,
the MorphoN [23] and DMNN [24] networks were outper-
formed by all other approaches. In fact, all other experi-
mented techniques, including the DeepMorphNets and the
networks with Selective Kernels [32], yielded very similar
results. This indicates that the proposed method is capable
of optimizing the morphological filters to extract salient and
relevant features, generating satisfactory outcomes. In order
to grasp the difference between the information captured by

DeepMorphNets and ConvNets, we performed a comparison,
presented in Figure 10, between the feature maps of such
networks. As can be observed, there is a clear difference
between the characteristics learned by the distinct networks.
In general, the DeepMorphNet is able to preserve different
features when compared to the ConvNets, which corroborates
with our initial analysis.

To better evaluate the proposed morphological network,
a convergence analysis of the architectures in the UCMerced
Land-use dataset is presented in Figure 11a. For simplicity,
only the networks that do not use selective kernels [32] were
reported. Note that the proposed model is slower to converge
when compared to the other networks. A reason for that is
the large number of trainable parameters of DeepMorphNets,
as presented in Table 2. However, given enough training time,
all networks converge very similarly, which confirms that
the proposed DeepMorphNets are able to effectively learn
interesting SEs and converge to a suitable solution.

2) WHU-RS19 DATASET
The second part of Table 2 presents the results related to
the WHU-RS19 dataset. Again, as expected, all architectures
outperformed the lower bound result, generated by the Static
SEs. As for the previous dataset, all experimented techniques,
including the DeepMorphNets and the networks with selec-
tive kernels [32], achieved very similar outcomes, outper-
forming the MorphoN [23] and DMNN [24] approaches.
These results reaffirm the previous conclusions related to the
ability of the morphological networks to capture interesting
features. Figure 10 presents the same comparison, as before,
between the feature maps extracted from DeepMorphNets
and ConvNets. Again, it is remarkable the difference between
the features extracted by the distinct architectures, which
corroborates with previous analysis and results.

As for the previous dataset, a convergence analysis of
the architectures in the WHU-RS19 dataset is presented
in Figure 11b. Again, only the networks that do not exploit
selective kernels [32] were reported. As before, the proposed
model is slower (due to the number of trainable parameters),
but able to converge if enough time is provided for the
training.

C. PIXEL CLASSIFICATION DATASETS
For the pixel classification datasets, all networks and base-
lines were assessed using the same configuration, i.e., batch
size, learning rate, weight decay, momentum, and number of
epochs of 10, 0.01, 0.0005, 0.9, and 1,000 respectively.

1) PAVIA CENTRE DATASET
Results for the Pavia Centre dataset are reported in (the first
part of) Table 3. As can be seen through this table, the pro-
posed DeepMorphNet outperformed the ConvNet model by
almost 5 percentage points of average accuracy (88.28% ver-
sus 83.73%, respectively). This outcome shows, once again,
that the proposed technique is capable of effectively learning
relevant characteristics of the data.
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FIGURE 10. Input images and some produced (upsampled) feature maps extracted from all layers of the networks for the
UCMerced Land-use (top example) and RS19 Datasets (bottom example). Again, for simplicity, only the feature maps of the ConvNet
(first row), Depth-ConvNet (second row), and DeepMorphNet (last row) models, without Selective Kernels [32], were reported.

FIGURE 11. Convergence (fold 1) of the architectures for both datasets.
Note that, for simplicity, only the networks without Selective Kernels [32]
were reported.

In order to allow a visual comparison, Figure 12 presents
the false-color image, the ground-truth, and the prediction
maps generated by the proposed approach and the base-
line. From this image, it is possible to observe that the

TABLE 3. Results, in terms of accuracy, of the proposed method and the
baselines for the pixel classification datasets.

DeepMorphNet produced a more consistent prediction map
than the ConvNet baseline. We argue that this is mainly due
to the fact that the proposed method can learn distinct and
relevant patterns of specific classes, such as Tiles and Bare
Soil (cyan and dark blue colors, respectively), an outcome
that can be better perceived in the normalized confusion
matrices presented in Figure 13.
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FIGURE 12. The pixel classification datasets and the prediction maps generated by the proposed algorithm and baselines. Images (a)-(d) are related to
the Pavia Centre dataset whereas images (e)-(h) are associated to the Pavia University dataset. The color encoding of the classes is presented in Figure 7.

FIGURE 13. Normalized Confusion matrices of the proposed method and baseline for both hyperspectral pixel classification datasets. Images (a) and
(b) are related to the Pavia Centre dataset whereas images (c)-(d) are associated to the Pavia University dataset.

2) PAVIA UNIVERSITY DATASET
Results for the Pavia University dataset are reported
in (the second part of) Table 3. Again, the proposed
DeepMorphNet outperformed the ConvNet model by approx-
imately 5 percentage points of average accuracy (86.52%
versus 82.44%, respectively). This gain can be also seen in the
prediction maps (Figure 12). Overall, the proposed method
was capable of producing better results for some specific
classes, such as Trees and Shadows (yellow and dark blue
colors, respectively), an outcome that can be better observed
in Figure 13.

VI. CONCLUSION
In this proof of concept work, we proposed a new paradigm
for deep networks where linear convolutions are replaced by
non-linear morphological operations. The proposed method,
called Deep Morphological Network (DeepMorphNet),
is able to perform morphological operations while opti-
mizing their structuring elements. Technically, the proposed
approach is composed of morphological layers, which consist
of morphological neurons. Such processing units are built
upon a framework that is essentially based on depthwise con-
volution and pooling layers. In fact, this framework provides
support for the creation of the basic morphological neurons
that perform erosion and dilation. These, in turn, allow the
creation of other more complex ones that perform opening,

closing, top-hats, and (an approximation of) reconstructions.
The proposed approach is trained end-to-end using standard
algorithms employed in deep networks.

Experiments were conducted using six datasets: two syn-
thetic, two image, and two pixel classification ones. The
first two were only employed to analyze the feature learning
of the proposed technique whereas the other datasets were
employed to assess the efficiency of the DeepMorphNets.
Results over the synthetic datasets have shown that the pro-
posed DeepMorphNets are able to learn relevant structuring
elements perfectly classifying them. Considering the image
classification datasets, the proposed DeepMorphNets outper-
form other similar deep morphological frameworks [23], [24]
whereas producing competitive results when compared to
ConvNets with equivalent architectures. Finally, for the pixel
classification datasets, the proposed method outperformed
(in approximately 5 percentage points of average accuracy)
standard convolutional networks. In general, a conclusion
common to all datasets is that the morphological networks
are capable of learning relevant filters and extracting salient
features.

Although the presented conclusions may open opportu-
nities towards a better use and optimization of non-linear
morphological operations, learning the optimal shapes of
the structuring elements used in each morphological neuron
raises multiple scientific and technical challenges, including

114322 VOLUME 9, 2021



K. Nogueira et al.: Introduction to DeepMorphNets

the high number of trainable parameters (which increase the
complexity of the network), and so on. Following the proof
of concept presented in this manuscript, we will continue
our work trying to tackle these computational limitations
in order to consider more complex architectures. Further-
more, we plan to analyze the combination of DeepMor-
phNets and ConvNets and to test DeepMorphNets in different
applications.
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