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Abstract. pygeodyn is a sequential geomagnetic data assimilation package written in Python. It gives access to the core

surface dynamics, controlled by geomagnetic observations, by means of a stochastic model anchored to geodynamo simulation

statistics. pygeodyn aims at giving access to a user-friendly and flexible data assimilation algorithm. It is designed to be

tunable by the community by different means: possibility to use embedded data and priors, or to supply custom ones; tunable

parameters through configuration files; adapted documentation for several user profiles. In addition, output files are directly5

supported by the package webgeodyn that provides a set of visualisation tools to explore the results of computations.

Copyright statement. TEXT

1 Introduction

The magnetic field of the Earth is generated by motion of liquid metal in the outer core, a process called the "geodynamo".

To tackle this complex problem, direct numerical simulations (DNS) have been developed to model the coupling between the10

primitive equations for heat, momentum and induction in a rotating spherical shell. With the development of computing power,

DNS capture more and more of the physics thought to be at work in the Earth core (degree of dipolarity, ratio of magnetic

to kinetic energy, occurrence of torsional Alfvén waves, etc. see for instance Schaeffer et al., 2017). However, despite such

advances, the geodynamo problem is so challenging that DNS are not capable of reproducing changes observed at interannual

periods with modern data (e.g. Finlay et al., 2016). Simulating numerically dynamo action at Earth-like rotation rates indeed15

requires resolving time-scales 108 orders of magnitude apart (from a fraction of day to 10 kyrs) for N ≈ (106)3 degrees of

freedom. This requirement is unlikely to be satisfied in a nearby future with DNS, making the prediction of the geomagnetic

field evolution an extremely challenging task. For these reasons, promising strategies involving large-eddy simulations (LES,

see Aubert et al., 2017) are emerging, but these are currently unable to ingest recent geophysical records.

Many efforts were devoted to the improvement of observable geodynamo quantities: the magnetic field above the surface of20

the Earth and its rate of change with respect to time, the so-called secular variation (SV). The launch of low orbiting satellite

missions (Ørsted, CHAMP, Swarm) dedicated to magnetic field measurements indeed presented a huge leap on the quality and

coverage of measured data (see for instance Finlay et al., 2017).
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In this context, the development of geomagnetic data assimilation (DA) algorithms is timely. DA consists in the estimation

of a model state trajectory using (i) a numerical model that advects the state in time and (ii) measurements used to correct its25

trajectory. DA algorithms can be split in two main families:

– variational methods that imply to minimize a cost function (based on a least-squares approach); in a time-dependent

problem, one ends up tuning the initial condition by means of adjoint equations.

– statistical methods, which are applications of Bayes rule to obtain the most probable state model given observations and

their uncertainties; it comes down to estimating a "Best Linear Unbiased Estimate" (BLUE) under Gaussian assumptions30

for the prior uncertainties and model distributions.

There are numerous variations around those methods (for reviews, see Kalnay, 2003; Evensen, 2009). Both types of algorithms

are already commonplace in meteorology and oceanography, but have only been recently introduced in geomagnetism (for

details, see Fournier et al., 2010; Gillet, 2019).

In this article, we present a Python package called pygeodyn devoted to geomagnetic DA based on a statistical method,35

namely an augmented state Kalman Filter (see Evensen, 2003). It uses a reduced numerical model of the core surface dynam-

ics to alleviate the computation time inherent to DA algorithms. The reduced model is based on stochastic Auto-Regressive

processes of order 1 (AR-1 processes). These are anchored to cross-covariances derived from three-dimensional numerical

geodynamo simulations. We provide examples involving the coupled-earth (Aubert et al., 2013) and midpath (Aubert et al.,

2017) dynamos.40

The aim of pygeodyn is to provide the community with a tool that can easily be used or built upon. It is made to ease the

updating of data and the integration of new numerical models, for instance to test them against geophysical data. This way, it

can be compared with other existing DA algorithms (e.g. Bärenzung et al., 2018; Sanchez et al., 2019).

The manuscript is organized as follows: Section §2 presents the principles under which the pygeodyn package was devel-

oped. Section §3 is a technical description of the version 1.1.0 of the package (Huder et al., 2019a) that also gives the basic45

necessary scientific background (for details, see Barrois et al., 2017, 2018; Gillet et al., 2019). In §4 we give examples of the

visualization interface webgeodyn to which is coupled the core surface DA tool pygeodyn. We discuss in §5 possible future

developments and applications of this tool.

2 pygeodyn outlook

2.1 Principles50

In order to support the use of DA in geomagnetism, the package is designed with the following characteristics in mind:

Easy-to-use:

– It is written in Python 3, now a widespread language in the scientific community thanks to the NumPy/Scipy suites.
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– The installation procedure only requires Python with NumPy and a Fortran compiler (other dependencies are in-

stalled during the setup).55

– An online documentation describes how to install, use and build upon the package.

Flexible:

– Algorithm parameters can be tuned through configuration files and command line arguments.

– Algorithms are designed to be modular, in order to allow the independent use of their composing steps.

– Extension of the features is eased by readable open-source code (following PEP8) that is documented inline and60

online with Sphinx.

Reproducible/stable:

– The source code is versioned on a Git repository, with tracking of bugs and development versions with clear release

notes.

– Unitary and functional tests are routinely launched by continuous integration pipelines. Most of the tests use the65

Hypothesis library1 to cover a wide range of test cases.

– Logging of algorithm operations is done by default with the logging library.

Efficient:

– Direct integration of parallelisation is possible using Message Passing Interface (MPI)

– Lengthy computations (such as Legendre polynomial evaluations) are performed by Fortran routines wrapped in70

Python.

Easy to post-process:

– Output files are generated in HDF5 binary file format that is highly versatile (close to NumPy syntax) and more

time- and size-efficient.

– The output format is directly supported by the visualization package webgeodyn for efficient exploration of the75

computed data (see Section §4).

2.2 User profiles

The package was designed for several user types:

Standard user: the user will use the supplied DA algorithms with the supplied data. The algorithms can be modified through

the configuration files so this requires almost no programming skill.80

1https://hypothesis.works/
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Advanced user: the user will use the supplied DA algorithms but wants to run their own data. In this case, the user needs to

follow the documentation to implement the reading methods of the data2. This requires a few Python programming skills

and a basic knowledge of object-type structures.

Developer user: the user wants to design their own algorithm using the low-level functions implemented in the package. The

how-to is also documented but it requires some experience in Python programming and object-type structures.85

The documentation (available online3) was written with these categories of users in mind. First, installation instructions and

a brief scientific overview of the algorithm are provided. Then, it explains how launch computations with a supplied script that

takes care of looping through DA steps, logging, parallelisation and saving files. For more advanced uses, the documentation

includes tutorials on how to set up new data types as input and how to use low-level DA steps on CoreState objects. The

developer documentation, gathering all the documentation of the functions/objects implemented in pygeodyn, is also available90

online.

3 pygeodyn 1.1.0 content

3.1 Model state

DA algorithms are to be supplied in the forms of subpackages for pygeodyn. The intention is to have interchangeable algorithms

and be able to easily expand the existing algorithms. In the version described in this article, we provide a subpackage augkf95

that implements algorithms based on an augmented state Kalman filter (AugKF) initiated by Barrois et al. (2017). The algorithm

is based on the radial induction equation at the core surface that we write in the spherical harmonic spectral domain as:

ḃ= A(b)u+ er . (1)

Vector b (resp. u and ḃ) stores the (Schmidt semi-normalized) spherical harmonic coefficients of the magnetic field (resp. the

core flow and the SV) up to a truncation degree Lb (resp. Lu and Lsv). The number of stored coefficients in those vectors are100

respectively Nb = Lb(Lb + 2), Nu = 2Lu(Lu + 2) and Nsv = Lsv(Lsv + 2). A(b) is the matrix of Gaunt-Elsasser integrals

(Moon, 1979) of dimensions Nsv ×Nu, depending on b. The vector er stands for errors of representativeness (of dimen-

sion Nsv). This term accounts for both subgrid induction (arising due to the truncation of the fields) and magnetic diffusion.

Quantities b(t), u(t) and er(t) describe the model stateX(t) at a given epoch t on which algorithm steps act.

The model states are stored as a subclass of NumPy array called CoreState (implemented in corestate.py). This105

subclass is dedicated to the storage of spectral Gauss coefficients for b, u, er and ḃ but can also include additional quantities

if needed. Details on the CoreState are given in a dedicated section of the documentation 4.

2https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/new_types.html
3https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/index.html
4https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/usage_corestate.html
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3.2 Algorithm steps

The sequential DA algorithm is composed of two kinds of operations:

Forecasts are performed every ∆tf . An ensemble of Ne core states is time stepped between t and t+ ∆tf .110

Analyses are performed every ∆ta with ∆ta = n∆tf (analyses are performed every n forecasts). The ensemble of core states

at ta is adjusted by performing BLUE using observations at t= ta.

These steps require spatial cross-covariances that are derived from geodynamo runs (referred to as priors, see §3.3.3). Real-

izations associated with those priors are noted b∗, u∗ and e∗r for respectively the magnetic field, the core flow and errors of

representativeness.115

From a technical point of view, algorithm steps take CoreState objects as inputs and return the CoreState resulting

from the operations. Forecasts and analyses are handled by the Forecaster and Analyser modules that are implemented

in the augkf subpackage according to the AugKF algorithm. Again, details on these steps are given in the relevant documen-

tation section 5.

3.2.1 Forecast and AR(1) processes120

The forecast step consists of time-stepping X(t) between two epochs. AR-1 processes built on geodynamo cross-covariances

are used to forecast u(t) and er(t). We write u(t) = u0 +u′(t), with u0 the background flow (temporal average from the

geodynamo run) – and similar notations for er(t). Their numerical integration is based on an Euler-Maruyama scheme, which

takes the form u′(t+ ∆tf ) = u′(t)−∆tfDuu
′(t) +

√
∆tfζu(t)

e′r(t+ ∆tf ) = e′r(t)−∆tfDee
′
r(t) +

√
∆tfζe(t)

. (2)125

Du is the drift matrix for u. ζu is a Gaussian noise, uncorrelated in time and constructed such that spatial cross-covariances

Puu = E
(
u′u′T

)
of u match those of the prior geodynamo samples u∗. E(. . .) stands for statistical expectation. Similar ex-

pressions and notations holds for er. Note that u and er are supposed independent, which is verified for numerical simulations.

Drift matrices are estimated with different manners depending on the characteristics of the considered geodynamo priors. In

the case where the geodynamo series do not allow to derive meaningful temporal statistics (e.g. too few samples, or simulations130

parameters leading to relatively too slow Alfvén waves, see Schaeffer et al., 2017), the two drift matrices are simply diagonal,

and controlled by a single free parameter (τu for u and τe for er):

Du =
1

τu
Iu and De =

1

τe
Ie , (3)

with Iu (resp. Ie) the identity matrix of rank Nu (resp. Ne). The drift matrices being diagonal, the process is hereafter referred

to as diagonal AR-1. Barrois et al. (2017, 2019) used such diagonal AR-1 processes, based on the coupled-earth dynamo135

simulation.
5https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/usage_steps.html
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In the case where geophysically meaningful temporal statistics can be extracted from geodynamo samples, time cross-

covariance matrices Puu+ = E
(
u′(t)u′(t+ ∆t∗)T

)
Pee+ = E

(
e′r(t)e

′
r(t+ ∆t∗)T

) , (4)

are derived according to a sampling time ∆t∗. Du,e are then defined as (see Gillet et al., 2019, for details and an application to140

the mid-path dynamo):
Du =

Iu− (P−1uuPuu+)T

∆t∗

De =
Ie− (P−1ee Pee+)T

∆t∗

. (5)

Du,e are now dense, hence processes using this expression are referred to as dense AR-1 processes.

The first step of the forecast is to compute u(t+∆tf ) and er(t+∆tf ) using Eqs. (2) (with matrices depending on the AR-1

process type). Then, the vector b(t+ ∆tf ) is evaluated thanks to Eq. (1) by using u(t+ ∆tf ), er(t+ ∆tf ) and b(t) with an145

explicit Euler scheme:

b(t+ ∆tf ) = b(t) + ∆tf [A(b(t))u(t+ ∆tf ) + er(t+ ∆tf )] . (6)

This yields the forecast core stateXf (t+∆tf ). As this step is performed independently for every realization, realizations can

be forecast in parallel. This is implemented in supplied algorithms with a MPI scheme.

3.2.2 Analysis150

The analysis step takes as input the ensemble of forecast core statesXf (ta), the geodynamo statistics, plus main field and SV

observations at t= ta together with their uncertainties. It is performed in two steps:

(i) First, a BLUE of an ensemble of realizations of b is performed from magnetic field observations bo(t) and the ensemble

of forecasts bf (t) using the forecast cross-covariance matrix for b.

(ii) Second, a BLUE of an ensemble of realizations of the augmented state z = [uTeTr ]T is performed from SV observations155

ḃo(t), the ensemble of analyzed main field from step (i), and the ensemble of forecasts for uf (t) and efr (t), using a

forecast cross-covariance matrix for z.

For more details on the above steps, we refer to Barrois et al. (2017, 2018, 2019); Gillet et al. (2019).

3.3 Input data

3.3.1 Command line arguments160

Computations can be launched by running run_algo.py that accepts several command line arguments. These arguments

and their default value (taken if not supplied) are given in Table 1. The first group corresponds to the computation parameters,
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Table 1. Command line arguments of pygeodyn/run_algo.py

Argument Default value Description

-conf none Path to the configuration file (see Sec. 3.3.2)

-algo augkf Name of the algorithm to use

-m 20 Ensemble size (number of realizations) to consider in the computation

-seed Random Seed used to initialize NumPy random state

-path User_directory/pygeodyn_results Path where the folder containing the output files will be created

-cname Current_computation Name of the folder that will be created to store the output files

-l none Name of the logfile

-v 2 Verbosity level of the log (1: debug, 2: info, 3: warning, 4: error, 5: critical)

the only non-optional parameter being the path to the configuration file. The second group of parameters is linked to the output

files: name of data files and logs. We stress the importance of the argument -m that fixes the ensemble size Ne, meaning the

number of realizations on which the Kalman filter will be performed. As Ne forecasts are performed at each epoch, this value165

has an important impact on the computation time (see §3.4). It is advised to set it to at least 20 to get a converged measure of

the dispersion within the ensemble of realizations.

3.3.2 Configuration file

The pygeodyn configuration file sets the values of quantities used in the algorithm (called parameters). This configuration file

is a text-file containing three columns: one for the parameter name, one for the type and one for the parameter value. We refer170

to Table 2 for the list of parameters that can be set this way. The table is separated in six groups:

1. Number of coefficients to consider for the core state quantities and the Legendre polynomials that are used to evaluate

the Gaunt-Elsasser integrals that enter A(b).

2. Time-spans: starting time tstart, final time tend, and time intervals (in months) for forecasts ∆tf and analyses ∆ta.

To avoid imprecise decimal representation, the times are handled with NumPy’s datetime64 and timedelta64175

classes (e.g. January 1980 is ’1980-01’6).

3. Parameters of the AR-1 processes used in the forecasts. ar_type can be set to diag (in this case, τu and τe will be

used as in Eq. (3)) or to dense (in this case, ∆t? will be used to sample the prior data and compute drift matrices with

Eqs. (5)).

4. Parameters for using a principal component analysis (PCA) for the core flow. By settingNpca, the algorithm will perform180

forecasts and analyses on the subset composed of the first Npca principal components describing the core flow (stored

6More precisely, January 1st 1980
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Table 2. Parameters available in a pygeodyn configuration file.

Parameter Name in the file Description

Lb Lb Maximal spherical harmonic degree of the magnetic field

Lu Lu Maximal spherical harmonic degree of the core flow

Lsv Lsv Maximal spherical harmonic degree of the secular variation

Nθ Nth_legendre Number of angles to use for the evaluation of Legendre polynomials

tstart t_start Starting time for the algorithm

tend t_end Ending time for the algorithm

∆tf dt_f Time step between forecasts

∆ta dt_a Time step between analyses

AR type ar_type Type of Auto-Regressive (AR) process to use in forecasts (see Sec. 3.2.1)

τu TauU Time constant for the core flow diagonal AR-1

τe TauE Time constant for the subgrid errors diagonal AR-1

∆t? dt_sampling Sampling timestep for computing dense AR(1) matrices

Npca N_pca Number of Principal Components (PC) for PCAnalysis of the core flow

PCA normalization pca_norm Normalization to use on the core flow on which the PCA is performed

Type of initialization core_state_init Method to use to generate the initial core state

File to use for initialization init_file Complete path of the file containing the desired initial core state

Date to use for initialization init_date Date of the desired initial core state

Prior directory prior_dir Directory containing the prior data

Prior type prior_type Type of the prior data

Obs directory obs_dir Directory containing the observation data

Obs type obs_type Type of the observation data

by decreasing explained variance), rather than on the entire core flow model. This is advised when using dense AR-1

processes (see Gillet et al., 2019). The normalization of the PCA can be modified by setting pca_norm to energy

(so that the variance of each principal component is homogeneous to a core surface kinetic energy) or to None (PCA

performed directly on the Schmidt semi-normalized core flow Gauss coefficients).185

5. Initial conditions of the algorithm. By setting core_state_init to constant, all realizations of the initial core

state will be equal to the average prior. If set to normal, realizations of the initial core state will be drawn according to a

normal distribution centered on the dynamo prior average, within the dynamo prior cross-covariances (default behavior).

It is possible to set the initial core state to the core state from a previous computation by setting core_state_init
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to from_file. In this latter case, the full path of the hdf5 file of the previous computation and the date of the core state190

to use must be given (init_file and init_date).

6. Parameters describing the types of input data (priors and observations) that are presented in more details in the next

section.

3.3.3 Priors

Priors are composed of a series of snapshot core states that are used to estimate the background states and the cross-covariance195

matrices. The mandatory priors are those for the magnetic field b, the core flow u and the subgrid errors er from which the

respective cross-covariance matrices Puu, Pee, etc., are derived.

The aforementioned snapshots currently come from geodynamo simulations, meaning that the covariance matrices for b, u,

and er will reflect the characteristics of the simulations. As a consequence, the forecasts will be done according to the statistics

of the dynamo simulations. As examples, pygeodyn comes with two prior types derived from two simulations:200

– coupled_earth from Aubert et al. (2013)

– midpath from Aubert et al. (2017)

Technically, the two types are interchangeable. However, only the midpath prior type allows the use of dense AR-1 processes

as it requires time-correlations that cannot be extracted from coupled_earth runs.

3.3.4 Observations205

Observations are measurements of the magnetic field and of the SV at a set of dates. These observations are used in the analysis

step to perform the BLUE of the core state (see §3.2.2). pygeodyn provides two types of observations:

– covobs: Gauss coefficients and associated uncertainties at a series of epochs (every 6 months from 1840 to 2015), from

the COV-OBS.x1 model derived by Gillet et al. (2015).

– go_vo: Ground-based observatory (GO) and virtual observatory (VO) data (Br, Bθ, Bφ) and their associated uncer-210

tainties. VO gather in one location at satellite altitude observations recorded by the spacecrafts around this site. GO are

provided every 4 months from March 1997 onward for ground-based series, and VO every 4 months from March 2000

onward for virtual observatories. The satellite data come from the CHAMP and Swarm missions. Both VO and GO are

cleaned as much as possible from external sources (for details, see Barrois et al., 2018; Hammer, 2018).

In the code, observation data are to be supplied with the observation operator and errors in the form of a Observation ob-215

ject. This allows to have a consistent interface between spectral data (covobs) and data recorded in the direct space (go_vo).

3.3.5 Beyond the supplied data

For advanced users, pygeodyn provides the possibility to define custom prior and observations types by supplying new data

reading methods in the dedicated pygeodyn modules. Defining a custom prior type allows to use custom geodynamo simulation
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Figure 1. Evolution of the runtime with respect to the number of MPI processes (see text for details). Dots are the observed runtimes (in

hours) and the dashed line is a fit of the form t= a ·nb + c.

data to compute covariance matrices that will be used in the forecasts and analyses steps. Similarly, a new observation type can220

be supplied with custom observation data that will be used to estimate the core state in the analysis step.

In other words, an advanced user can completely control the input data of the algorithm to test new magnetic observations

and/or new numerical models, and derive new predictions from them.

3.4 Runtime scaling

To reduce computation time, supplied algorithms use MPI to perform forecasts (§3.2.1) of different realizations in parallel.225

Analysis steps are not implemented in parallel, as they require the whole ensemble of realizations. To assert the effect of this

parallelisation, model computations were performed on a varying number of cores. The configuration for this benchmark re-

analysis is the following: the AugKF algorithm with diagonal AR-1 processes, usingm= 50 realizations over tend−tstart = 60

years, ∆tf = 6 months and ∆ta = 12 months.

The results are displayed on Fig. 1 with runtimes varying between 1 and 6 hours. The power law fit appears to be close to 1/n230

(with n the number of cores), with an offset time of around 15 minutes that is probably associated with the 60 analysis steps

whose duration do not depend upon the number of cores. Note that the computations remain tractable whatever the number of

cores. A basic sequential computation (n= 1) for a re-analysis using 50 realizations over 100 yrs is performed in less than 6

hours, while using 32 cores will reduce it to half an hour.
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Figure 2. Example of map for the magnetic field and the flow at the core surface, obtained using webgeodyn, for the model calculated by

Barrois et al. (2019). Here the radial magnetic field (colorscale) and streamlines for the core flow (black lines, which thickness indicates the

intensity) are evaluated in 2016 from VO derived from the Swarm data.

4 Visualization235

pygeodyn output files are directly supported by the web-based visualization package webgeodyn also developed in our group.

The source code of webgeodyn is hosted at its own Git repository7. Being available on the Python package index, it can also

be installed through the Python package installer pip.

webgeodyn implements a web application with several modes of representation to explore, display and diagnose the products

of the re-analyses (Barrois et al., 2018). It is deployed at http://geodyn.univ-grenoble-alpes.fr but can also be240

used locally on any pygeodyn data, once installed. We illustrate here several possibilities offered by the version 0.6.0 of this

tool (Huder et al., 2019b).

4.1 Mapping on Earth’s globe projections

Quantities at a given time can be displayed at the core surface in the Earth’s core surface tab. Two representations can be

used simultaneously: a streamdots/streamlines representation for the core flow components (orthoradial, azimuthal and norm)245

7https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/webgeodyn
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Figure 3. Time series for the SV spherical harmonic coefficient h1
2 using webgeodyn. In red (‘GHA19’) the re-analysis by Gillet et al. (2019),

obtained from the COV-OBS.x1 observations (in black) by Gillet et al. (2015). The solid lines represent the ensemble average, and the shaded

areas the ±1σ uncertainties. The dotted line gives the contribution from er .

and a color plot for all quantities (core flow horizontal divergence and components included). A timeslider allows to change

the epoch at which the quantities are evaluated. Figure 2 shows an example with magnetic field as color plot and norm of the

core flow for the stream lines, for a re-analysis of VO and GO data using a diagonal AR-1 model. The plot is interactive with

zooming, exporting (as pictures or animations) and display tuning features.

4.2 Time-series of harmonic coefficients250

In the Spherical Harmonics tab, it is possible to look at the time evolution of a single spherical harmonic coefficient for a given

quantity (core flow, magnetic field, SV), or of the length-of-day. Several models can be displayed at once for comparison.

Figure 3 shows the time evolution of one SV coefficient from a re-analysis of SV Gauss coefficient data using a dense AR-1

model. The interface gives the possibility to also represent the contribution from er. It is possible to zoom on the plot and

export it as a picture or raw CSV data.255

4.3 Comparison with ground-based and virtual observatory data

Computed data can be easily compared with the geomagnetic observations used for the analysis in the Observatory data tab.

It allows to display the spatial components (radial, azimuthal and ortho-radial) of the magnetic field and its SV recorded

by observatories. These can be either GO or VO data. Data can be displayed by clicking on a location on the globe and be

compared with spectral model data predictions evaluated at the observatory location. Figure 4 shows an example of the SV260

12



Figure 4. Time series of the three components of the SV (in spherical coordinates) at the Kourou observatory (French Guyana, location in

dark red on the globe on the left) using webgeodyn. The green line (‘Barrois_VO_2018e’) is from the core surface re-analysis by Barrois et al.

(2019), using as observations GO and VO data, and a diagonal AR-1 model. For comparison are also shown (in orange) the COV-OBS.x1

model predictions at this site. The solid lines are the ensemble mean, and the shaded areas represent the ±1σ uncertainties.

at a ground-based site in South America. One can compare how predictions from a re-analysis, together with its associated

uncertainties, follow geophysical data (black dots) – here the model by Barrois et al. (2019), which uses a diagonal AR-1 model

from GO and VO series. It can also be used to compare predictions from several magnetic field models – here COV-OBS.x1,

which is constrained by magnetic data only up to 2014.5.

On top of the three examples illustrated above, the package webgeodyn also gives the possibility to display and export265

Lowes-Mauersberger spatial spectra, or cross-sections at the core surface as a function of time and longitude (respectively

latitude) for a given latitude (respectively longitude).

5 Conclusions

We presented the Python toolkit pygeodyn that allows to:

– calculate models of the flow at the core surface from SV Gauss coefficient data270
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– calculate models of the flow and the magnetic field at the core surface from measurements of the magnetic field and its

SV above the Earth’s surface

– represent and analyse the results via the web interface webgeodyn.

The underlying algorithm relies on AR-1 stochastic processes to advect the model in time. It is anchored to statistics (in

space and optionally in time) from free runs of geodynamo models. It furthermore accounts for errors of representativeness275

due to the finite resolution of the magnetic and velocity fields.

This Python tool has been designed with several purposes in mind, among which :

– test of the Earth-likeness of geodynamo models

– comparison with alternative geomagnetic DA algorithms

– production of magnetic models under some constraints from the core dynamics280

– education of students on issues linked to core dynamics and geomagnetic inverse problem.

Code and data availability. The version 1.1.0 of pygeodyn is archived on Zenodo (Huder et al., 2019a). Other versions (with or without data)

are available on the Git repository located at https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/pygeodyn. The version 0.6.0 of web-

geodyn used for the plots is archived at https://doi.org/10.5281/zenodo.2645025. This version (and others) can be installed from the Git repos-

itory (https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/webgeodyn) or as a Python package with pip. Data sets can be downloaded285

on http://geodyn.univ-grenoble-alpes.fr or on the git repository https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/pygeodyn_data
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