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Abstract 

 

This study focuses on the model reduction of a two-phase loop thermosyphon. The aim 

is to propose a nonlinear reduced order model able to mimic the thermo-hydraulic 

behavior of the loop in order to use it for real-time state feedback control, in future 

applications. First, the one-dimensional two-phase flow model describing the liquid-gas 

mixture in both mechanical and thermal equilibrium is recalled. The numerical 

resolution of this detailed model is carried out using a finite volume approach and a 

Harten-Lax-van Leer Contact Riemann solver. Then, from this detailed model, a new 

structure of reduced model is determined via the Galerkin projection method. These 

reduced models, built by the Modal Identification Method, show a very good agreement 

between the outputs of the detailed model and those computed by the reduced model, 
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during the identification stage. Two test cases, corresponding to different thermal loads 

at the evaporator, show that the overall levels of density, velocity, mass flow rate, 

pressure, temperature and internal energy in the loop are satisfactorily reproduced by 

the reduced model with a global relative error less than 5%. The interest of using such a 

model lies in the significant gain in CPU time. 

 

Keywords: Stiffened gas equation of state; Two-phase flows model; Compressible flow; 

Galerkin projection; Low order model; Parameter estimation. 

 

Nomenclature 

𝑎 state vector function 

𝐴 duct cross-section, m2 

𝐵  coefficient involved in closure laws, Pa 

𝐶𝑝 specific heat, J.kg-1.K-1 

𝑑 internal diameter, m 

𝑒 specific internal energy, J.kg-1 

𝑔 acceleration of gravity, m.s-2 

ℎ specific enthalpy, J.kg-1 

ℎ𝑐𝑜𝑛𝑑 condenser heat exchange coefficient, W.m-2.K-1 

𝐻 output matrix 

𝒥𝑖𝑑
(𝑚)

 quadratic functional to be minimized for order 𝑚 model identification 

𝐿 length of the loop, m 

𝑚 ROM order i.e. size of vector 𝑎 
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𝑚̇ evaporation/condensation rate per volume unit, kg.m-3.s-1 

𝑁𝑥 number of cells for space discretization 

𝑁𝑡 number of time steps 

𝑝 pressure, Pa 

P heat power density source term, W.m-3 

q specific reference energy, J.kg-1 

𝑄̇𝑒𝑣𝑎𝑝 thermal load at evaporator, W 

𝑆𝑒𝑥𝑡 exchange surface at condenser, m2 

𝑡  time, s 

𝑇 temperature, K 

𝑇𝑐𝑜𝑙𝑑 cold external temperature at condenser, K 

𝑢 velocity, m.s-1 

𝓋 specific volume, m3.kg-1 

𝑣 generic notation for variables 

𝑥 position along the loop, m 

𝑦 vapor mass fraction 

 

Greek symbols 

𝛾 specific heat capacity ratio 

𝛿𝑣 deviation of variable 𝑣 with respect to initial steady state 

𝑡 time step, s 

𝜀𝑔𝑙𝑜𝑏 global relative quadratic error between DM and ROM 

𝜀𝑣 relative quadratic error between DM and ROM for variable 𝑣 
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𝜙𝑘
(𝑣)

 𝑘𝑡ℎ space function associated with variable 𝑣 

𝜇 dynamic viscosity, kg.m-1.s-1 

𝜌 density, kg.m-3 

 volume, m3 

 

Subscripts 

0 initial steady state 

𝑒𝑞 thermodynamic equilibrium 

𝑔 gas 

𝑖𝑑 identification 

𝑙 liquid 

𝑛𝑒𝑞 not in thermodynamic equilibrium 

 

Superscripts 

𝑇 transposition sign 

(𝑣) related to variable 𝑣 

 

Abbreviations 

2PLT Two-Phase Loop Thermosyphon 

DM Detailed Model 

MIM Modal Identification Method 

ROM Reduced Order Model 

SG Stiffened Gas 
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1 Introduction 

Heat dissipation due to power electronics increases continuously for years, reaching 

now 300 W.cm-2 and beyond, due to electronic components miniaturization. Highly 

efficient cooling systems are then required. As the classical cooling systems are not 

powerful enough, an interesting solution consists in using two-phase heat transfer 

devices, since the cooling capabilities are much larger with latent heat than with sensible 

heat. Among them, a two-phase loop thermosyphon (2PLT), for which the fluid 

circulation is generated by buoyancy forces, is a passive cooling system without pump. 

The working fluid boils at the evaporator due to heat input. The vapor then moves to 

the condenser where heat is extracted from the system and the vapor changes to liquid. 

These two-phase closed thermosyphons have been studied in many applications such 

as, solar water heaters [1] [2] [3] [4], telecommunication equipments [5], avionics 

systems [6], nuclear power plants [7] [8] [9], electronics industry [10]. 

Many studies have been carried out on the modeling of such a system in steady and 

transient states. For instance, Vincent and Kok use 1D control volume approach for the 

transient behavior of a two-phase co-current thermosyphon [11]. Different models are 

used for evaporator, condenser, liquid line and vapor line. This means that for computation, 

each part of loop has its own model. They are based either on hydraulic flow model or 

compressible flow model. More recently, Bieliński and Mikielewicz present a generalized 

1D two-phase separate flow model of the thermosyphon loop [12]. They use 

incompressible flow model with Boussinesq approximation and empirical correlation in 

different parts of the loop. This model considers thermal equilibrium at any point of loop. 

Qu uses two different models for evaporator and condenser [13]. An integral balance of 
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bubble flow model is used at the evaporator and the liquid film condensation of vapor-

liquid concurrent flow model at condenser. 

 

In this paper, a 1D model (Euler equations) is used to describe the transient operation 

of a simplified loop thermosyphon (constant cross-section, adiabatic liquid and vapor 

lines, single evaporator) [14]. In each part of the loop, the same model is used in the 

computation. In other words, the model describes thermodynamic equilibrium 

(saturation or mixture), but also thermodynamic non-equilibrium (pure liquid or pure 

vapor) phase and so can compute phase transitions (liquid-mixture-vapor). This 

simplified model retains the main features of a real 2PLT: gravity-driven two-phase 

compressible flow, unsteady behavior, thermodynamic equilibrium and non 

equilibrium. Despite its simplifying assumptions, this model requires large CPU time 

consumption, even in 1D, especially because of the Courant-Friedrichs-Lewy (CFL) 

condition. It is hence not usable for real-time applications. In the present paper, this 

model is used as starting point to build a Reduced Order Model (ROM) of this 2PLT. A 

ROM is a model involving a small number of degrees of freedom, which reproduces the 

behavior of an actual system or a reference Detailed Model (DM) with a large number 

of degrees of freedom, whatever the time-varying boundary conditions and/or source 

terms. 

The goal of this work is to develop a nonlinear ROM able to mimic the thermo-hydraulic 

behavior of the loop in order to use it for real-time state feedback control, in future 

applications. To the author’s knowledge, this work constitutes the first attempt to 

develop a ROM of a 2PLT. 
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Among model reduction methods for nonlinear problems, let us first cite the Proper 

Orthogonal Decomposition (POD), also known as Karhunen–Loève decomposition, 

coupled to a Galerkin projection. As a result of performing POD on discrete space-time 

data, a set of space functions and time-varying coefficients are obtained, that allow 

compact approximation of original data. After truncation or selection of modes, a 

reduced set of space functions is retained for a Galerkin projection of Partial Differential 

Equations (PDE) onto these space functions, which yields a so-called POD-Galerkin ROM. 

Although this approach has been widely used in the last decades, especially in fluid 

mechanics, either for buoyancy-driven flows [15] [16], two-phase flows [17] and 

compressible flows [18], it is known to often lead to unstable ROMs, even in the case of 

linear PDE, thus requiring a posteriori stabilization [19]. 

Another approach is the Reduced Basis (RB) method [20] which aims at building ROMs 

able to compute solutions of parametrized PDE for given value(s) of parameter(s). It is a 

two-step approach. In the offline step a reduced basis is built, formed by solutions of a 

reference Finite Element model at optimally selected points in the parameter space via 

a Greedy algorithm. The online step consists in solving the ROM which is obtained by a 

Galerkin projection of PDE onto the reduced basis. Although the RB method can be 

applied to transient flow problems, directly or by coupling it to POD as done for instance 

in [21] for natural convection in cavity, it appears to be adapted to the construction of 

parametric ROMs for parameters which are not time-dependent rather than for time-

varying external or internal loads. It should be mentioned that the RB method provides 
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errors bounds but in return requires a reference Finite Element model on which it relies 

[20]. 

The goal oriented model-constrained approach developed by Bui-Thanh et al. addresses 

some POD-related issues by computing the basis of space functions via an optimization 

problem: minimizing the output error between reference model and ROM solutions, 

subject to satisfying the ROM equations. It is assumed that each basis vector can be 

represented as a linear combination of snapshots. The approach has been applied in [22] 

to a compressible flow around a rotor blade, showing that for a small number of 

approximation functions (≤10), stable ROMs have been obtained whereas POD-Galerkin 

ROMs were unstable. 

The Proper Generalized Decomposition (PGD) does not rely on a reference model and 

does not make use of simulated or measured data. PGD uses approximations for the 

variables under separate form, which are sums of products of functions of space 

coordinates, time and possibly additional parameters. The PGD approximations are 

computed by successive enrichment. PGD appears to provide a discrete solution, not 

only in physical space but also in time and parameters space, rather than a continuous 

ROM in time and parameters. As an example, transient Rayleigh-Bénard flows have been 

studied in [23]. 

 

In the present paper, the Modal Identification Method (MIM) is going to be used for 

building ROMs for a 2PLT. MIM aims at building ROMs connecting the system inputs 

(time-varying boundary conditions or sources and/or parameters) to outputs of interest 
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(either complete fields of variables, like temperature, velocity, etc., or their value in 

chosen particular locations). Once the ROM equations are derived from PDE, the ROM’s 

constitutive parameters are identified from input-output data characteristic of the 

system behavior, through the minimization of an output error. Just as POD, MIM uses 

either experimental data recorded on the actual system or, as in the present work, 

simulated data coming from a reference DM. 

The MIM has been developed for more than twenty-five years, first for linear problems, 

and then for several different nonlinear problems. Among them, MIM has been 

compared to the POD-Galerkin approach on a 3D transient heat diffusion problem with 

thermal conductivity depending on temperature [24]. A transient inverse heat 

conduction problem with radiative and convective boundary conditions has been 

successfully solved with ROMs identified by MIM from experimental data in [25]. MIM 

has also been applied to non-isothermal flows. In [26], different ROMs have been built 

for computing a 2D incompressible steady laminar flow over a backward-facing step and 

associated unsteady forced heat convection. A 2D laminar mixed convection flow 

around a heated circular cylinder has also been studied in [27]. More recently, ROMs 

built by MIM from in-situ measurements have been used for efficient handling of real 

time state feedback control of Multi-Input-Multi-Output thermal systems. Regulation 

and tracking problems on a ventilated plate, using a mobile heat source as actuator and 

via a Linear Quadratic Gaussian controller, have been investigated in [28]. Thermal 

regulation within 0.01°C of an ultra-high precision metrology system has also been 

performed by model predictive control in [29]. 
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The paper is structured as follows. The two-phase loop thermosyphon is briefly 

described in section 2 and the associated flow model is presented in section 3. The 

development of the ROM structure and the main features of the MIM are described in 

section 4. Both identification and validation of ROMs are carried out in section 5. 

2 Description of the two-phase loop thermosyphon 

The Two-Phase Loop Thermosyphon (2PTL) is a passive thermal system, as depicted in 

Figure 1. It is composed of an evaporator, a vapor line, a condenser and a liquid line. The 

working fluid (methanol in our case) is heated (heat flux 𝑄̇𝑒𝑣𝑎𝑝) and vaporized in the 

evaporator (B-C). The vapor then flows through the vapor line (C-E) toward the 

condenser which is a low temperature heat exchanger (cold external temperature 𝑇𝑐𝑜𝑙𝑑 

and global heat transfer coefficient ℎ𝑐𝑜𝑛𝑑). The vapor is cooled in the condenser and 

turns into liquid which falls under gravity effect in the vertical line (F-A). This liquid is 

then driven toward the evaporator by the horizontal line (A-B) where it is heated again. 

Such a specific configuration, with a heat sink located higher than the heat source, 

enables a natural circulation inside the loop. The total length of the loop is equal to 

1.5 m. The tube cross-section 𝐴 is assumed constant along the loop with an internal 

diameter 𝑑 equal to 0.007 m. 
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Figure 1 - The two-phase loop thermosyphon and its boundary conditions. 

3 Flow model of the loop 

3.1 Assumptions 

As the objective of the paper is not to study accurately the behavior of the loop but to 

propose a reduced model structure able to take into account the phase change in the 

thermal systems, some assumptions have been made in order to simplify the flow 

model: 

- The fluid mixture is compressible as both heating and phase change make the 

mixture density in the loop change with space and time; 

- The two-phase flow is considered as a homogeneous mixture in both mechanical 

and thermal equilibrium: same velocity, pressure and temperature for both 

phases at a given location; 
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- Except at the evaporator and the condenser, the duct is supposed adiabatic; 

- The heat exchange coefficient ℎ𝑐𝑜𝑛𝑑  and the exchange surface 𝑆𝑒𝑥𝑡  at the 

condenser are constant; 

- Heat diffusion inside the mixture is neglected; 

- The Darcy-Weisbach law is used to model the friction effects. As the regime is 

supposed laminar, the friction factor is equal to 64/Re where Re denotes the 

Reynolds number. 

- The thermal inertia of the duct wall depth of the loop is not taken into account. 

 

3.2 Flow model 

The equations of the one-dimensional, one or two-phase compressible flow in transient 

state are given by, 𝑥 being the rectangular coordinate along the loop and 𝑡 the time: 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0 (1)  

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
= −

64𝜇

2𝑑2
𝑢 + 𝜖𝜌𝑔 (2)  

𝜕(𝜌𝑒)

𝜕𝑡
+
𝜕(𝜌𝑒𝑢)

𝜕𝑥
= −𝑝

𝜕𝑢

𝜕𝑥
+
64𝜇

2𝑑2
𝑢2 + 𝑃 (3)  

𝜕(𝜌𝑦)

𝜕𝑡
+
𝜕(𝜌𝑦𝑢)

𝜕𝑥
= 𝑚̇ (4)  

 

where 𝜌, 𝑢 , 𝑝 , 𝑒 , and y  are the mixture density, velocity, pressure, specific internal 

energy and vapor mass fraction respectively. 𝑚̇ is the evaporation/condensation rate 

per volume unit. The dynamic viscosity 𝜇 was considered in [14] as a function of mass 

fraction and temperature. However, in this first attempt to build a ROM for the 2PLT, in 
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order to simplify the ROM formulation, 𝜇 is supposed to be the same in both liquid and 

vapor phases. It is assumed to be constant and equal to the liquid’s dynamic viscosity. 

The gravity effects are modeled through the 𝜖𝜌𝑔 term where 𝜖 is as follows: 

𝜖 = {

−1 if 𝑥 ∈ [𝐵𝐷]

0 if 𝑥 ∈ [𝐴𝐵] ∪ [𝐷𝐸]
1 if 𝑥 ∈ [𝐸𝐴]

 (5)  

 

The thermal boundary conditions at the evaporator and the condenser are modeled by 

a source term 𝑃 in the internal energy equation (3) defined by: 

𝑃 = {

𝑄̇𝑒𝑣𝑎𝑝 𝑒𝑣𝑎𝑝⁄  if 𝑥 ∈ [𝐵𝐶]

0 if 𝑥 ∈ [𝐶𝐸] ∪ [𝐹𝐵]

ℎ𝑐𝑜𝑛𝑑 𝑆𝑒𝑥𝑡(𝑇𝑐𝑜𝑙𝑑 − 𝑇) 𝑐𝑜𝑛𝑑⁄  if 𝑥 ∈ [𝐸𝐹]

 (6)  

where 𝑄̇𝑒𝑣𝑎𝑝  is the thermal load at the evaporator whose volume is 𝑒𝑣𝑎𝑝 . ℎ𝑐𝑜𝑛𝑑 , 

𝑐𝑜𝑛𝑑 , 𝑆𝑒𝑥𝑡  and 𝑇𝑐𝑜𝑙𝑑  are the heat exchange coefficient, the condenser volume, the 

exchange surface and the cold external temperature at the condenser, respectively. 𝑇 is 

the fluid mixture temperature. 

This two-phase flow model requires the equation of state for each pure phase of the 

methanol and for the liquid-vapor mixture. As the finite volume method coupled with 

the approximate Riemann solver called Harten - Lax - van Leer - Contact (HLLC) 

numerical scheme is used to solve the problem, the sound speed computation is 

needed. In order to avoid imaginary values of this sound speed in the mixture zone, a 

“Stiffened Gas” (SG) equation of state is used [30]. 

 

At any location along the loop, the fluid is either in or out of thermodynamic equilibrium. 

The thermodynamic equilibrium condition corresponds to the equality between Gibbs 
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free energies: 𝐺𝑔 = 𝐺𝑙  where 𝑙 and 𝑔 denote liquid phase and vapor phase respectively. 

For each phase 𝑘 = 𝑙 or 𝑔, Gibbs free energy 𝐺𝑘 for a SG equation of state is given by: 

𝐺𝑘(𝑝, 𝑇) = (𝛾𝑘𝐶𝑣,𝑘 − 𝑞𝑘
′ )𝑇 − 𝐶𝑣,𝑘𝑇 𝑙𝑛 (

𝑇𝛾𝑘

(𝑝 + 𝑝∞,𝑘)
𝛾𝑘−1

) + 𝑞𝑘 ,    𝑘 = 𝑙 or 𝑔 (7)  

Coefficients 𝐶𝑣,𝑘 , 𝛾𝑘  and 𝑝∞,𝑘  are constant quantities determined in such a way that 

specific enthalpy ℎ𝑘 , specific volume 𝓋𝑘 = 1 𝜌𝑘⁄  and latent heat vaporization ℎ𝑙𝑣 =

ℎ𝑔
𝑠𝑎𝑡 − ℎ𝑙

𝑠𝑎𝑡  fit with the experimental values provided by Goodwin in the 280 K – 370 K 

temperature range [31]. 𝐶𝑣,𝑘 , 𝛾𝑘  and 𝑝∞,𝑘  are determined using four points 

(𝑇𝑖, 𝑝𝑠𝑎𝑡(𝑇𝑖)), 𝑖 ∈ {0, … , 3} on the saturation curve and their values are given in [14], as 

well as the SG formulae for the computation of ℎ𝑘, 𝓋𝑘 and 𝑞𝑘. 

It has been shown in [30] that the condition 𝐺𝑔 = 𝐺𝑙  leads to a relation 𝑓(𝑝, 𝑇) 

depending on the difference 𝑞𝑔
′ − 𝑞𝑙

′. 𝑞𝑙
′ is thus set equal to zero and 𝑞𝑔

′  is determined 

so that the relation 𝑓(𝑝, 𝑇)  fits with the experimental saturation curve provided by 

Goodwin in [31]. 

The thermodynamic equilibrium condition is thus replaced by the following conditions: 

0 < 𝑦 < 1   𝑎𝑛𝑑   𝑇 = 𝑇𝑠𝑎𝑡(𝑝) (8)  

It means that the thermodynamic equilibrium corresponds to a two-phase fluid in 

saturation state whereas the out of thermodynamic equilibrium situation corresponds 

to a one-phase or an unsaturated fluid. 

 

The closure laws of eqs. (1)-(4) write: 

• Out of thermodynamic equilibrium: 
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{
 
 

 
 𝑝 =

1

2
[𝐵𝑔 + 𝐵𝑙 − (𝑝∞,𝑔 + 𝑝∞,𝑙)] + (

1

4
[𝐵𝑙 − 𝐵𝑔 − (𝑝∞,𝑙 − 𝑝∞,𝑔)]

2
+ 𝐵𝑔𝐵𝑙)

1/2

1

𝜌𝑇
=
𝑦𝑔(𝛾𝑔 − 1)𝐶𝑣,𝑔

𝑝 + 𝑝∞,𝑔
+
𝑦𝑙(𝛾𝑙 − 1)𝐶𝑣,𝑙
𝑝 + 𝑝∞,𝑙

 (9)  

The vapor mass fraction is 𝑦𝑔 = 1 − 𝑦𝑙 = 𝑦 and the formula for computing 𝐵𝑘, 𝑘 = 𝑙 or 𝑔, 

is given in [14]. 

 

• In thermodynamic equilibrium: 

{

𝓋 = 𝑦𝑔
∗𝓋𝑔(𝑝

∗) + 𝑦𝑙
∗𝓋𝑙(𝑝

∗)

𝑒 = 𝑦𝑔
∗𝑒𝑔(𝑝

∗) + 𝑦𝑙
∗𝑒𝑙(𝑝

∗)

𝑇∗ = 𝑇𝑠𝑎𝑡(𝑝
∗)

 (10)  

After eliminating 𝑦𝑔
∗ = 1 − 𝑦𝑙

∗ by combining the first two equations of (10) and using the 

definition of specific enthalpy ℎ, we get: 

{
 
 

 
 

ℎ = 𝑒 +
𝑝∗

𝜌
=

ℎ𝑔(𝑝
∗) (

1
𝜌 − 𝓋𝑙

(𝑝∗)) + ℎ𝑙(𝑝
∗) (𝓋𝑔(𝑝

∗) −
1
𝜌)

𝓋𝑔(𝑝∗) − 𝓋𝑙(𝑝∗)

𝑇∗ = 𝑇𝑠𝑎𝑡(𝑝
∗)

 (11)  

In each case (in or out of thermodynamic equilibrium), the first equation is used to 

compute pressure 𝑝 and then the second one is used to obtain temperature 𝑇. 

The flow model is solved with a Godunov’s first order method and a Harten - Lax - van 

Leer - Contact (HLLC) Riemann solver [32]. The flow solver is described in detail in [14]. 

The schematic algorithm of the Detailed Model is given in Figure 2. 
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Figure 2: schematic algorithm of Detailed Model 

 

4 Reduced order model by modal identification method 

Our objective is to build a Reduced Order Model able to quickly compute fields of 

variables close to those coming from the reference model, whatever the heat power 

applied to the evaporator. 

 

4.1 Modal Identification Method Overview 

The Modal Identification Method (MIM) consists in three main steps: 

1) Definition of the ROM equations structure, starting from local equations (see 

section 4.2). This is the core of the paper; 
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2) Generation of some input-output data characteristic of the system dynamics. Those 

data may come from in-situ measurements or, like in the present paper, from 

numerical simulations (see section 4.3); 

3) Identification of the ROM fixed constitutive parameters through the minimization 

of a functional based on the quadratic residuals between the previously generated 

output data of the system on the one hand and the outputs of the ROM on the other 

hand, for the same input data, here a specific time-varying heat power applied to 

the evaporator (see section 4.4). 

 

4.2 Reduced model formulation 

Two ROMs are going to be presented in the following. The first one may be called “full” 

ROM, but features some important issues. The second one is a simpler ROM which 

requires shortcuts, but allows to overcome the drawbacks of the first ROM. 

4.2.1 A first approach: “full” ROM 

 

This first ROM formulation: 

• is derived from the whole set of equations: conservation equations (1)-(4) along 

with equations (5) and (6) and closure laws (9) and (11); 

• is based on primitive variables 𝜌, 𝑢, 𝑒, 𝑦, 𝑝, 𝑇; 

• uses approximations of the variables fields with a specific set of dynamics for 

each variable 𝑣: 
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𝑣(𝑥, 𝑡) =∑𝑎𝑖
(𝑣)
(𝑡)𝜙𝑖

(𝑣)
(𝑥)

𝑚

𝑖=1

        ∀𝑣 ∈ {𝜌, 𝑢, 𝑒, 𝑦, 𝑝, 𝑇} (12)  

where for each variable 𝑣, space functions 𝜙𝑖
(𝑣)(𝑥), 𝑖 = 1,… ,𝑚, are a truncation of a 

basis of the Hilbert space formed by the ℒ2(Ω = [0; 𝐿])  space of square integrable 

functions on Ω = [0; 𝐿] equipped with the usual inner product (. , . )Ω: 

(𝑓, 𝑔)Ω = ∫𝑓𝑔𝑑𝑥

𝐿

0

 (13)  

where functions 𝑓 and 𝑔 are defined on Ω. 

Of course, our goal is to find a ROM, thus corresponding to a small number 𝑚  of 

functions used in the decomposition of variables fields. It should be noticed that 

different numbers of functions could have been considered for the different variables. 

For the sake of simplicity, the same number of functions 𝑚 is here used for all variables. 

𝑚 is called the order of the ROM. 

Let us call: 

• 𝑅(𝑣)(𝑥, 𝑡), 𝑣 ∈ {𝜌, 𝑢, 𝑒, 𝑦}, the residuals of conservation equations (1)-(4); 

• 𝑅𝑛𝑒𝑞
(𝑣) (𝑥, 𝑡), 𝑣 ∈ {𝑝, 𝑇} the residuals of eqs.(9) in developed form; 

• 𝑅𝑒𝑞
(𝑣)(𝑥, 𝑡), 𝑣 ∈ {𝑝, 𝑇} the residuals of eqs.(11) in developed form. 

The Galerkin projection consists in forcing each residual, written with approximations of 

variables defined by equation (12), to be orthogonal to each space function of the 

corresponding set according to the inner product (13), so that the projection of the 

residual onto the subspace of ℒ2(Ω) generated by the set of space functions would be 

null. The following equations are thus written. 
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For conservation equations (1)-(4): 

(𝑅(𝑣)(𝑥, 𝑡), 𝜙𝑘
(𝑣)(𝑥))

Ω
= ∫𝑅(𝑣)(𝑥, 𝑡)𝜙𝑘

(𝑣)(𝑥)𝑑𝑥

𝐿

0

= 0           

∀𝑘 = 1,… ,𝑚,      ∀𝑣 ∈ {𝜌, 𝑢, 𝑒, 𝑦} 

(14)  

For closure laws (9) (out of thermodynamic equilibrium): 

(𝑅𝑛𝑒𝑞
(𝑣) (𝑥, 𝑡), 𝜙𝑘

(𝑣)(𝑥))
Ω
= ∫𝑅𝑛𝑒𝑞

(𝑣) (𝑥, 𝑡)𝜙𝑘
(𝑣)(𝑥)𝑑𝑥

𝐿

0

= 0           

∀𝑘 = 1,… ,𝑚,      ∀𝑣 ∈ {𝑝, 𝑇} 

(15)  

For closure laws (11) (thermodynamic equilibrium): 

(𝑅𝑒𝑞
(𝑣)(𝑥, 𝑡), 𝜙𝑘

(𝑣)(𝑥))
Ω
= ∫𝑅𝑒𝑞

(𝑣)(𝑥, 𝑡)𝜙𝑘
(𝑣)(𝑥)𝑑𝑥

𝐿

0

= 0           

∀𝑘 = 1,… ,𝑚,      ∀𝑣 ∈ {𝑝, 𝑇} 

(16)  

Since the development of Galerkin projections is too long to be detailed and the 

resulting sets of equations are too big to be written in the present paper, the general 

form is given in the following in order to highlight the most crucial points. 

Let us define the vector-valued function 𝒜(𝑡) ∈ ℝ6𝑚: 

𝒜(𝑡) = (𝑎(𝜌)(𝑡) 𝑎(𝑢)(𝑡) 𝑎(𝑒)(𝑡) 𝑎(𝑦)(𝑡) 𝑎(𝑝)(𝑡) 𝑎(𝑇)(𝑡))𝑇 

The Galerkin projections (14) of the four local PDE lead to a set of four systems, each 

being composed of 𝑚 equations. Those systems can be gathered as follows: 

𝑑

𝑑𝑡
(𝐹0(𝒜(𝑡), 𝜃)) = 𝐹1(𝒜(𝑡), 𝜃, 𝑄̇𝑒𝑣𝑎𝑝(𝑡)) (17)  

where 𝐹0 ∈ ℝ
4𝑚 and 𝐹1 ∈ ℝ

4𝑚 are vector-valued functions that are not detailed here. 
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The Galerkin projections (15) and (16) of the two sets of closure laws (for 

thermodynamic non-equilibrium and equilibrium situations respectively), yield two sets 

of two systems, each being composed of 𝑚 equations: 

𝐹𝑛𝑒𝑞(𝒜(𝑡), 𝜃) = 0 (18)  

𝐹𝑒𝑞(𝒜(𝑡), 𝜃) = 0 (19)  

𝜃 is a vector gathering the fixed constitutive parameters of the dynamical system of 

equations in the ROM. 

The ROM stemming from this first approach is thus composed of: 

• equations (17), (18) and (19) allowing the computation of the global low order 

state vector 𝒜(𝑡) ∈ ℝ6𝑚 with respect to 𝑄̇𝑒𝑣𝑎𝑝(𝑡); 

• equation (12) allowing the reconstruction of fields of variables 𝜌, 𝑢, 𝑒, 𝑦, 𝑝, 𝑇 

once 𝒜(𝑡) is computed. 

 

4.2.2 Issues connected to ROM n°1 

Four issues arise from this first ROM formulation: 

1. The first system of 𝑚 equations in (17) comes from the Galerkin projection of 

mass conservation equation (1). It writes: 

∫𝑅(𝜌)(𝑥, 𝑡)𝜙𝑘
(𝜌)(𝑥)𝑑𝑥

𝐿

0

=∑𝑀𝑘𝑖
𝑑𝑎𝑖

(𝜌)(𝑡)

𝑑𝑡

𝑚

𝑖=1

+∑∑𝑄𝑘𝑖𝑗𝑎𝑖
(𝜌)(𝑡)𝑎𝑗

(𝑢)(𝑡)

𝑚

𝑗=1

𝑚

𝑖=1

= 0 

∀𝑘 = 1,… ,𝑚 

(20)  

where 𝑀 ∈ ℝ𝑚×𝑚  and 𝑄 ∈ ℝ𝑚×𝑚×𝑚  are two tensors depending on space 

functions. 
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In steady state, equation (20) reduces to: 

∑∑𝑄𝑘𝑖𝑗𝑎𝑖
(𝜌)
𝑎𝑗
(𝑢)

𝑚

𝑗=1

𝑚

𝑖=1

= 0     ∀𝑘 = 1,… ,𝑚 

This equation has to be verified for any vectors 𝑎(𝜌) and 𝑎(𝑢) corresponding to a 

steady state associated to a constant 𝑄̇𝑒𝑣𝑎𝑝  thermal load. All components of 

tensor 𝑄 have thus to be zero. As a consequence, equation (20) would write: 

∑𝑀𝑘𝑖

𝑑𝑎𝑖
(𝜌)(𝑡)

𝑑𝑡

𝑚

𝑖=1

= 0     ∀𝑘 = 1,… ,𝑚 

Then either tensor 𝑀 is null and the Galerkin projection of mass conservation 

equation no longer exists – we would then have 5 systems of 𝑚 equations for 

6𝑚 unknowns – or the 𝑎𝑖
(𝜌)

 never vary with time and hence does density 𝜌. None 

of these situations is acceptable. 

2. In order to close the system (17), one has to use either equation (19) or equation 

(18), depending on whether the fluid is in thermodynamic equilibrium or not. 

Whereas for the DM, the choice between equations (9) and equations (11) is 

made according to the local test (8) at each instant (the fluid may thus be in 

thermodynamic equilibrium in some parts of the loop and out of equilibrium in 

other parts at a given instant), this is not possible with the ROM. Due to the 

decoupling of time and space in the approximations of variables (12), equations 

(18) and (19) are only time-dependent, meaning that at each instant, the fluid all 

along the loop is either in thermodynamic equilibrium or out of equilibrium. 
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3. Transport terms in PDE (2), (3) and (4), which are of third degree when using 

𝜌, 𝑢, 𝑒, 𝑦 as variables, lead to terms involving order 4 tensors (of size 𝑚4) in the 

right hand side of the ROM equation (17). Once written in developed form to 

avoid fractions, closure laws (9) and (11) show terms of third and fourth degree 

which respectively bring order 4 tensors (of size 𝑚4) and order 5 tensors (of size 

𝑚5) in the ROM equations (18) and (19). In the end, the number 𝑛𝜃(𝑅𝑂𝑀 𝑛°1) 

of parameters in vector 𝜃 appearing in equations (17), (18) and (19) is: 

𝑛𝜃(𝑅𝑂𝑀 𝑛°1) = 5𝑚5 + 15𝑚4 + 16𝑚3 + 13𝑚2 + 7𝑚 (21)  

The number of parameters to be identified for the ROM construction thus 

strongly increases with respect to the ROM order 𝑚. 

4. Due to the use of 𝜌, 𝑢, 𝑒, 𝑦 as variables, inertia terms in PDE (2), (3) and (4) lead 

respectively to terms of the form 
𝑑(𝑎𝑖

(𝜌)
(𝑡)𝑎𝑗

(𝑢)
(𝑡))

𝑑𝑡
, 

𝑑(𝑎𝑖
(𝜌)
(𝑡)𝑎𝑗

(𝑒)
(𝑡))

𝑑𝑡
 and 

𝑑(𝑎𝑖
(𝜌)
(𝑡)𝑎𝑗

(𝑦)
(𝑡))

𝑑𝑡
 in the left hand side of the ROM equation (17). Such time 

derivatives are not easy to handle. 

Based on the aforementioned issues, new assumptions are going to be made in the 

following in order to work on a simplified ROM formulation. 

4.2.3 Solutions proposed to address issues of ROM n°1 

The solutions proposed to overcome the aforementioned issues are given hereinafter: 

1. In order to avoid the issue n°1 of section 4.2.2, mass conservation equation (1) 

can be combined with at least another equation when performing the Galerkin 
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projection, thus corresponding to a partial or complete vector Galerkin 

projection. 

2. The handling of closure laws associated with the Stiffened Gas equation of state 

is quite a complex problem, which induces difficulties in the ROM for both the 

choice of the closure equations (issue n°2 of section 4.2.2) and the number of 

parameters in the model because of tensors of order 4 and 5 (issue n°3 of section 

4.2.2). As a consequence, we are going to ignore closure laws (9) and (11) for 

deriving the ROM formulation. Such shortcut may seem quite severe but will 

prove to be efficient. One should note that the ROM will still be built from 

numerical data composed of fields of variables computed with the DM for which 

closure laws (9) and (11) are used. The choice of not taking into account these 

closure laws for defining the ROM equations has two immediate consequences: 

• Firstly, equations for the computation of 𝑎(𝑝)(𝑡) and 𝑎(𝑇)(𝑡) respectively 

associated with pressure and temperature will be missing in the ROM. 

The reconstruction of 𝑝  and 𝑇  will hence require to replace sets of 

dynamics 𝑎(𝑝)(𝑡) and 𝑎(𝑇)(𝑡) by sets of dynamics associated with other 

variables. The corresponding space-time decompositions will be 

introduced in the Galerkin projections of equations (2) and (3); 

• Secondly, as vapor mass fraction 𝑦 only appears in PDE (4) and closure 

laws (9) and (11), the variable 𝑦 will not be considered and equation (4) 

will not be needed anymore. One should note that 𝑦  could still be 

obtained via the knowledge of density 𝜌, if desired. 
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3. Conservative variables 𝜌, 𝜌𝑢, 𝜌𝑒  will be used instead of primitive variables 

𝜌, 𝑢, 𝑒 . This will allow to decrease from third degree to second degree the 

transport terms in PDE (2) and (3) and hence to move from order 4 to order 3 

tensors. This will enable to decrease the number of parameters in the ROM (issue 

n°3 of section 4.2.2). In addition, inertia terms in PDE will move from second 

degree to first degree, thus resulting in first degree time derivatives in the ROM 

(issue n°4 of section 4.2.2). However, velocity 𝑢 will still be present in equations 

(2) and (3). Variables 𝜌, 𝜌𝑢  and 𝑢  are not independent and are linked by the 

simple relation 𝜌𝑢 = 𝜌 × 𝑢. 

Finally, equations that will be considered for deriving the new ROM formulation are 

conservation equations (1)-(3) along with eqs.(5) and (6) and equation 𝜌𝑢 = 𝜌 × 𝑢. 

 

4.2.4 Equations for deviations with respect to initial steady state 

Before advancing to ROM n°2, equations for deviations with respect to initial steady 

state are given. This initial steady state is considered to be the same for all our studied 

cases and corresponds to a thermosyphon loop with the bottom half-filled with liquid 

methanol (𝜌0 = 853 kg.m-3 and 𝑦0 = 0) and the upper half-filled with vapor methanol 

(𝜌0 = 10
−1  kg.m-3 and 𝑦0 = 1), no circulation (fluid at rest i.e. 𝑢0 = (𝜌𝑢)0 = 0), no 

heat power applied to the evaporator (𝑄̇𝑒𝑣𝑎𝑝 = 0) and fluid at the external temperature 

(𝑇0 = 𝑇𝑐𝑜𝑙𝑑). The only remaining equation is the momentum conservation equation (2) 

which writes: 
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𝜕𝑝0
𝜕𝑥

= 𝜖𝜌0𝑔 (22)  

The internal energy 𝑒0  is obtained by the Stiffened Gas model from pressure 𝑝0 , 

temperature 𝑇0 and vapor mass fraction 𝑦0. 

Let us define the deviations of the variables 𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇 with respect to the fields in 

initial steady state: 

𝛿𝑣(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑣0(𝑥),       𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} (23)  

Plugging deviations (23) in conservation equations (1)-(3) and equation 𝜌𝑢 = 𝜌 × 𝑢 and 

taking into account equation (22) leads to the following set of equations for the 

deviations, where 𝑅(𝛿𝑣) refers to the residual of the equation associated to variable 𝛿𝑣: 

𝑅(𝛿𝜌)(𝑥, 𝑡) =
𝜕(𝛿𝜌)

𝜕𝑡
+
𝜕(𝛿(𝜌𝑢))

𝜕𝑥
= 0 (24)  

𝑅(𝛿(𝜌𝑢))(𝑥, 𝑡) =
𝜕(𝛿(𝜌𝑢))

𝜕𝑡
+
𝜕(𝛿(𝜌𝑢)𝛿𝑢)

𝜕𝑥
+
𝜕(𝛿𝑝)

𝜕𝑥
+
64𝜇

2𝑑2
𝛿𝑢 − 𝜖𝛿𝜌𝑔 = 0 (25)  

𝑅(𝛿(𝜌𝑒))(𝑥, 𝑡) =
𝜕(𝛿(𝜌𝑒))

𝜕𝑡
+
𝜕(𝛿(𝜌𝑒)𝛿𝑢)

𝜕𝑥
+ 𝛿𝑝

𝜕(𝛿𝑢)

𝜕𝑥
−
64𝜇

2𝑑2
(𝛿𝑢)2 − 𝑃 

+
𝜕(𝛿𝑢(𝜌𝑒)0)

𝜕𝑥
+ 𝑝0

𝜕𝛿𝑢

𝜕𝑥
= 0 

(26)  

𝑅(𝛿𝑢)(𝑥, 𝑡) = 𝛿(𝜌𝑢) − 𝛿𝜌𝛿𝑢 − 𝜌0𝛿𝑢 = 0 (27)  

where 𝜖 is still defined by eq.(5) and heat source term 𝑃 is still given by eq.(6) where 

𝑇𝑐𝑜𝑙𝑑 = 𝑇0 and thus 𝑇𝑐𝑜𝑙𝑑 − 𝑇 = 𝑇0 − 𝑇 = −𝛿𝑇(𝑥, 𝑡) according to (23). 

 

4.2.5 A second approach: simpler ROM n°2 

 

The second ROM formulation: 
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• is derived from the set of conservation equations (24)-(26) along with eqs.(5) and 

(6) and from equation (27); According to point n°2 of section 4.2.3, closure laws 

written for the deviations of variables are not taken into account; 

• is based on deviations 𝛿𝜌, 𝛿(𝜌𝑢), 𝛿(𝜌𝑒), 𝛿𝑢, 𝛿𝑝, 𝛿𝑇  of conservative variables 

with respect to the variable fields in initial steady state; 

• uses approximations of the deviations fields with a unique set of dynamics for 

the deviation 𝛿𝑣 of each variable 𝑣: 

𝛿𝑣(𝑥, 𝑡) = ∑𝑎𝑖(𝑡)𝜙𝑖
(𝛿𝑣)

(𝑥)

𝑚

𝑖=1

        ∀𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} (28)  

It should be noted that, as equations (24) to (27) are used and because the mass 

conservation equation (24) needs to be combined with at least another equation 

according to point n°1 of section 4.2.3, we could have opted for either: 

• The combination of equation (24) with one of the three other equations, thus 

performing three Galerkin projections (one vector and two scalar projections) 

corresponding to three sets of dynamics for our six variables; 

• The combination of equation (24) with two of the three other equations, thus 

performing two Galerkin projections (one vector and one scalar projection) 

corresponding to two sets of dynamics for our six variables; 

• The combination of equation (24) with the three other equations, thus 

performing a single vector Galerkin projection corresponding to a single set of 

dynamics for our six variables; 
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The last option has been chosen in order to investigate the quality of the simplest 

possible nonlinear ROM with the lowest possible number of constitutive parameters. 

Let us define: 

• the vector 𝑅⃗ (𝑥, 𝑡) of residuals corresponding to equations (24) to (27): 

𝑅⃗ (𝑥, 𝑡) =

(

 
 

𝑅(𝛿𝜌)(𝑥, 𝑡)

𝑅(𝛿(𝜌𝑢))(𝑥, 𝑡)

𝑅(𝛿(𝜌𝑒))(𝑥, 𝑡)

𝑅(𝛿𝑢)(𝑥, 𝑡) )

 
 

 (29)  

• vectors 𝜙𝑘⃗⃗⃗⃗  ⃗(𝑥), 𝑘 = 1,… ,𝑚  of space functions associated with deviations 𝛿𝑣,

𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢}: 

𝜙𝑘⃗⃗⃗⃗  ⃗(𝑥) =

(

 
 
 

𝜙𝑘
(𝛿𝜌)

(𝑥)

𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)

𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)

𝜙𝑘
(𝛿𝑢)

(𝑥) )

 
 
 
        ∀𝑘 = 1, … ,𝑚 (30)  

The inner product considered is now: 

(𝑓 , 𝑔 )
Ω
= ∫𝑓 . 𝑔 𝑑𝑥

𝐿

0

 (31)  

Which generalizes the inner product (13) to vector functions 𝑓  and 𝑔 . 

The vector Galerkin projection consists in forcing the residual 𝑅⃗ (𝑥, 𝑡) defined by eq.(29) 

and written with approximations of deviations defined by eq.(28), to be orthogonal to 

each space vector function 𝜙𝑘⃗⃗⃗⃗  ⃗(𝑥), 𝑘 = 1,… ,𝑚  defined by eq.(30) according to the 

inner product (31), so that the projection of the residual onto the subspace of ℒ2(Ω) 

generated by the set of space functions would be null. The following equation is thus 

written: 
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(𝑅⃗ (𝑥, 𝑡), 𝜙𝑘⃗⃗⃗⃗  ⃗(𝑥))
Ω
= ∫𝑅⃗ (𝑥, 𝑡). 𝜙𝑘⃗⃗⃗⃗  ⃗(𝑥)𝑑𝑥

𝐿

0

= 0          ∀𝑘 = 1,… ,𝑚 (32)  

The four different terms of the projection (32) are given in Appendix A and the 

expressions of the involved tensors are shown in Appendix B. 

Equation (32) may be written as: 

∑(𝑀0)𝑘𝑖
𝑑𝑎𝑖(𝑡)

𝑑𝑡

𝑚

𝑖=1

+∑∑(𝑄0)𝑘𝑖𝑗𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑚

𝑗=1

𝑚

𝑖=1

+∑(𝐿0)𝑘𝑖𝑎𝑖(𝑡)

𝑚

𝑖=1

+ (𝑉0)𝑘𝑄̇𝑒𝑣𝑎𝑝(𝑡) = 0 

∀𝑘 = 1,… ,𝑚 

(33)  

The proof that matrix 𝑀0 ∈ ℝ
𝑚×𝑚 is invertible is given in Appendix C. Defining tensors 

𝑄 ∈ ℝ𝑚×𝑚×𝑚 , 𝐿 ∈ ℝ𝑚×𝑚  and 𝑉 ∈ ℝ𝑚  as 𝑄 = (𝑀0)
−1𝑄0 , 𝐿 = (𝑀0)

−1𝐿0  and 𝑉 =

(𝑀0)
−1𝑉0 respectively, we get from equation (33): 

𝑑𝑎𝑘(𝑡)

𝑑𝑡
+∑∑𝑄𝑘𝑖𝑗𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑚

𝑗=1

𝑚

𝑖=1

+∑𝐿𝑘𝑖𝑎𝑖(𝑡)

𝑚

𝑖=1

+ 𝑉𝑘𝑄̇𝑒𝑣𝑎𝑝(𝑡) = 0   ∀𝑘 = 1,… ,𝑚 (34)  

Let us call 𝜃 the vector gathering components of tensors 𝑄, 𝐿, 𝑉 in equation (34). The 

number 𝑛𝜃(𝑅𝑂𝑀 𝑛°2) of parameters in vector 𝜃 is: 

𝑛𝜃(𝑅𝑂𝑀 𝑛°2) = 𝑚
3 +𝑚2 +𝑚 (35)  

 

Equation (28) is now written for all 𝑁𝑥 points of the detailed model mesh: 

𝛿𝑣(𝑥𝑗 , 𝑡) =∑𝑎𝑖(𝑡)𝜙𝑖
(𝛿𝑣)(𝑥𝑗)

𝑚

𝑖=1

     ∀𝑗 = 1,… ,𝑁𝑥      ∀𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} (36)  

Let us define matrices 𝐻(𝛿𝑣) ∈ ℝ𝑁𝑥×𝑚 such as: 

𝐻𝑗𝑖
(𝛿𝑣) = 𝜙𝑖

(𝛿𝑣)(𝑥𝑗)    ∀𝑗 = 1,… ,𝑁𝑥   ∀𝑖 = 1, … ,𝑚   ∀𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} (37)  

Using (37), equation (36) is written as: 
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𝛿𝑣(𝑥𝑗 , 𝑡) =∑𝐻𝑗𝑖
(𝛿𝑣)𝑎𝑖(𝑡)

𝑚

𝑖=1

     ∀𝑗 = 1,… ,𝑁𝑥      ∀𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} (38)  

For easier reference to matrices 𝐻(𝛿𝑣) ∈ ℝ𝑁𝑥×𝑚, 𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇}, these can be 

gathered in macro-matrix 𝐻 ∈ ℝ6𝑁𝑥×𝑚: 

𝐻 = (𝐻(𝛿𝜌), ⋯ , 𝐻(𝛿𝑇))𝑇 (39)  

 

The simpler ROM stemming from this second approach is thus composed of: 

• equation (34) allowing the computation of the low order state vector 𝑎(𝑡) ∈ ℝ𝑚 

whose components are the 𝑎𝑖(𝑡), 𝑖 = 1,… ,𝑚, with respect to 𝑄̇𝑒𝑣𝑎𝑝(𝑡); 

• equation (38) allowing the reconstruction of discrete fields of variables 

𝛿𝜌, 𝛿(𝜌𝑢), 𝛿(𝜌𝑒), 𝛿𝑢, 𝛿𝑝, 𝛿𝑇 at each instant, once 𝑎(𝑡) is computed. 

 

4.2.6 Recapitulation of main features of ROM n°1 and n°2 

Table 1 sums up the main features of both ROM formulations. ROM formulation n°2 will 

be used in the following. 

 

Table 1: Summary of main features of ROM n°1 and ROM n°2 

ROM formulation n°1      (cf. 4.2.1) n°2      (cf. 4.2.5) 

Equations taken into 

account in formulation 

(1)-(4) and (5)-(6) 

Closure laws (9) and (11) 

(24)-(27) and (5)-(6) 

No closure laws 

Variables 
primitive variables 

𝜌, 𝑢, 𝑒, 𝑦, 𝑝, 𝑇 

deviations from initial steady 

state 𝛿𝜌, 𝛿(𝜌𝑢), 𝛿(𝜌𝑒), 𝛿𝑢, 𝛿𝑝, 𝛿𝑇  
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Sets of dynamics in 

approximations 

specific set of dynamics 

for each variable 

unique set of dynamics for all 

variables 

Number of parameters 

in the dynamical system 

5𝑚5 + 15𝑚4 + 16𝑚3 +

13𝑚2 + 7𝑚  
𝑚3 +𝑚2 +𝑚 

Issues / solutions Issues: cf. 4.2.2 Solutions: cf. 4.2.3 

 

4.3 Input-output data for ROM identification 

The identification of ROM constitutive parameters requires some input-output data, 

which are a heat power signal 𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡)  applied to the evaporator and the 

corresponding discrete fields of variables 𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖 , 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡)), 𝑖 = 1,… ,𝑁𝑥, 𝑗 =

1, … , 𝑁𝑡
𝑖𝑑 , 𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇}, computed with the Finite Volumes detailed model 

briefly described in section 3.2. 

 

4.4 Identification of ROM constitutive parameters 

4.4.1 Reduction of the number of parameters to be identified 

In order to effectively build a ROM consisting of equations (34) and (38), components of 

tensors 𝑄 ∈ ℝ𝑚×𝑚×𝑚, 𝐿 ∈ ℝ𝑚×𝑚, 𝑉 ∈ ℝ𝑚 and 𝐻 ∈ ℝ6𝑁𝑥×𝑚, need to be computed. 

In the frame of the Modal Identification Method, the analytic form of these tensors is 

usually not taken into account and their components are identified through an algorithm 

using optimization techniques. 
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In the nonlinear term ∑ ∑ 𝑄𝑘𝑖𝑗𝑎𝑖(𝑡)𝑎𝑗(𝑡)
𝑚
𝑗=1

𝑚
𝑖=1  of equation (34), products 𝑎𝑖(𝑡)𝑎𝑗(𝑡) 

are equal to 𝑎𝑗(𝑡)𝑎𝑖(𝑡). The low order dynamical system (34) can thus be written under 

the following form: 

𝑑𝑎𝑘(𝑡)

𝑑𝑡
+∑∑𝑄𝑘𝑖𝑗

′ 𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑚

𝑗=𝑖

𝑚

𝑖=1

+∑𝐿𝑘𝑖𝑎𝑖(𝑡)

𝑚

𝑖=1

+ 𝑉𝑘𝑄̇𝑒𝑣𝑎𝑝(𝑡) = 0           

∀𝑘 = 1,… ,𝑚 

(40)  

The final form of the ROM is thus given by equations (40) and (38). 

Let us call 𝜃′ the vector gathering components of tensors 𝑄′, 𝐿, 𝑉 in equation (40). The 

number of parameters to be identified for the dynamical system, which was defined up 

to now by equation (35), can thus be reduced to: 

𝑛𝜃′(𝑅𝑂𝑀 𝑛°2) = 𝑚
2(𝑚 + 1) 2⁄ + 𝑚2 +𝑚 (41)  

The 𝑛𝐻 = 6𝑁𝑥𝑚 components of matrix 𝐻 also need to be identified. 

4.4.2 Optimization problem 

The ROM construction is recast into a parameter estimation problem. For a given model 

order 𝑚 , all parameters to be identified, whose total number is 𝑁𝑝𝑎𝑟𝑎𝑚(𝑚) =

𝑛𝜃′(𝑅𝑂𝑀 𝑛°2) + 𝑛𝐻 = 𝑚(𝑚(𝑚 + 1) 2⁄ + 𝑚 + 1 + 6𝑁𝑥) , are identified through the 

minimization of a functional 𝒥𝑖𝑑
(𝑚)(𝜃′, 𝐻) based on the quadratic deviation between data 

fields 𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖 , 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡)) computed with the detailed model (see previous section 

4.3) on the one hand and corresponding fields 𝛿𝑣𝑅𝑂𝑀(𝑥𝑖, 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝
∗ , 𝜃′, 𝐻) computed 

with the ROM (eqs. (40) and (38)) on the other hand, for the same heat power signal 

𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡) applied to the evaporator. The quadratic functional 𝒥𝑖𝑑

(𝑚)(𝜃′, 𝐻) thus writes: 
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𝒥𝑖𝑑
(𝑚)
(𝜃′, 𝐻)

= ∑ (
∑ ∑ (𝛿𝑣𝑅𝑂𝑀(𝑥𝑖, 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝

∗ , 𝜃′, 𝐻) − 𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖, 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝
∗ ))

2𝑁𝑡
𝑖𝑑

𝑗=1
𝑁𝑥
𝑖=1

∑ ∑ (𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖, 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝
∗ ))

2𝑁𝑡
𝑖𝑑

𝑗=1
𝑁𝑥
𝑖=1

)

𝑣∈{
𝜌,𝜌𝑢,
𝜌𝑒,𝑢,
𝑝,𝑇

}

 
(42)  

 

In order to assess the quality of the identified ROM, the mean quadratic relative 

discrepancy 𝜀𝑣
(𝑚)

 between data from DM and corresponding values computed by ROM 

is calculated for each variable 𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇}: 

 

𝜀𝑣
(𝑚)

= √
∑ ∑ (𝛿𝑣𝑅𝑂𝑀(𝑥𝑖, 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝∗ , 𝜃′, 𝐻) − 𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖, 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝∗ ))

2𝑁𝑡
𝑖𝑑

𝑗=1
𝑁𝑥
𝑖=1

∑ ∑ (𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖 , 𝑡𝑗; 𝑄̇𝑒𝑣𝑎𝑝∗ ))
2𝑁𝑡

𝑖𝑑

𝑗=1
𝑁𝑥
𝑖=1

 (43)  

A global quantity 𝜀𝑔𝑙𝑜𝑏
(𝑚)

 is also defined: 

𝜀𝑔𝑙𝑜𝑏
(𝑚)

= √
∑ 𝜀𝑣2𝑣

6
= √

𝒥𝑖𝑑
(𝑚)(𝜃′, 𝐻)

6
 (44)  

 

Figure 3 summarizes the identification procedure for a ROM of given order 𝑚 in the 

Modal Identification Method. 
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Figure 3 - The Modal Identification Method scheme for order 𝑚 ROM construction. 

 

 

4.4.3 Solving the optimization problem 

First of all 𝒥𝑖𝑑
(1)(𝜃′, 𝐻) is minimized in order to obtain 𝜃′ and 𝐻 associated with a single 

term in equation (38) and thus defining a ROM of order 𝑚 = 1. A ROM of order 𝑚 = 2 

is then built by minimizing 𝒥𝑖𝑑
(2)(𝜃′, 𝐻) which leads to larger 𝜃′ and 𝐻 associated with 

two terms in equation (38). ROMs of higher order are then built by incrementing order 

𝑚  and minimizing corresponding functional 𝒥𝑖𝑑
(𝑚)(𝜃′, 𝐻)  until a predefined stopping 

criterion is satisfied. The global procedure is summarized as follows: 

1. 𝑚 ← 1 

2. Minimization of 𝒥𝑖𝑑
(1)(𝜃′, 𝐻) ⇒ identification of 𝜃′, 𝐻 for order 1 ROM 

3. 𝑚 ← 𝑚 + 1 
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4. Minimization of 𝒥𝑖𝑑
(𝑚+1)(𝜃′, 𝐻) ⇒  identification of new 𝜃′, 𝐻  for order 𝑚 + 1 

ROM 

5. Test of stopping criterion: 2 possibilities: 

5.1 if 𝜀𝑔𝑙𝑜𝑏
(𝑚+1)

≈  𝜀𝑔𝑙𝑜𝑏
(𝑚)

 then STOP else go to 3 

5.2 if 𝜀𝑔𝑙𝑜𝑏
(𝑚)

 reach the wished accuracy, then STOP else go to 3 

For a given order 𝑚, a stopping criterion is also used for the minimization of 𝒥𝑖𝑑
(𝑚)(𝜃′, 𝐻). 

It is usually based on the fact that 𝜀𝑔𝑙𝑜𝑏
(𝑚)

 does not decrease for a large number of 

successive iterations. 

Equations (40) and (38) show that ROM outputs 𝛿𝑣 have nonlinear dependence on 

tensors 𝑄′, 𝐿, 𝑉 and hence on 𝜃′, but depend linearly on 𝐻(𝛿𝑣). As a consequence, two 

types of optimization methods are used for the minimization of 𝒥𝑖𝑑
(𝑚)(𝜃′, 𝐻) through a 

two-steps approach: 

1- A nonlinear iterative method is employed for the estimation of 𝜃′ . An initial 

guess for 𝜃′  is thus required. When identifying the order 𝑚 + 1  ROM, the 

parameters of the order 𝑚 ROM previously identified are used as initial guesses 

for the corresponding unknown parameters in the order 𝑚 + 1 ROM. The other 

parameters arising in the order 𝑚+ 1 ROM are initially set to zero so that this 

model gives the same solutions than the order 𝑚  ROM. The functional 

𝒥𝑖𝑑
(𝑚+1)(𝜃′, 𝐻)  to be minimized hence starts from the value obtained for 

𝒥𝑖𝑑
(𝑚)(𝜃′, 𝐻) and then decreases. A Particle Swarm Optimization (PSO) algorithm 

[33] has been used in the present work. Details about the home-made PSO code 

can be found in [26]. A parallelized version has been used for the present work. 
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2- At each iteration of the PSO algorithm, parameters in 𝜃′ are fixed. The low order 

state vector 𝑎(𝑡) ∈ ℝ𝑚  is computed at all instants. Matrices 𝐻(𝛿𝑣) ∈ ℝ𝑁𝑥×𝑚,

𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} are then obtained by minimizing via linear least squares 

the difference between data 𝛿𝑣𝑑𝑎𝑡𝑎(𝑥𝑖, 𝑡𝑗) and ROM outputs 𝛿𝑣𝑅𝑂𝑀(𝑥𝑖, 𝑡𝑗) =

∑ 𝐻𝑖𝑘
(𝛿𝑣)𝑎𝑘(𝑡𝑗)

𝑚
𝑘=1 , 𝑖 = 1,… ,𝑁𝑥 , 𝑗 = 1, … ,𝑁𝑡

𝑖𝑑  according to (38). The necessary 

condition 𝑁𝑡
𝑖𝑑 ≥ 𝑚  is fulfilled in practice (𝑁𝑡

𝑖𝑑 = 500  and 1 ≤ 𝑚 ≤  10 in the 

present work). Matrices 𝐻(𝛿𝑣)  are thus computed in a single step at each 

iteration of the PSO algorithm. 

 

5 Numerical results 

A series of ROMs taking the form of equations (40) and (38) is now built using the 

method previously described. The Finite Volumes DM briefly described in section 3.2 is 

first used with a specific heat power input signal 𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡) to create numerical data fields 

for the ROMs identification process, and then employed with other inputs signals to 

generate outputs for testing the identified ROMs. 

5.1 ROMs identification 

The signal 𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡) used to generate data fields for ROMs identification is shown in 

Figure 4. It covers the [0-1000W] power range corresponding to practical applications of 

2PLTs. It is composed of successive rising steps, each one lasting 50s and hence allowing 

to reach a new steady state. Although the time step used for the detailed model 
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simulations is ∆𝑡 = 10−5 𝑠 due to the CFL condition, the time sampling of data used for 

the ROM identification is made on 𝑁𝑡
𝑖𝑑 = 500 instants with a time step ∆𝑡 = 1 𝑠. 

 

Figure 4 - Input signal 𝑄̇𝑒𝑣𝑎𝑝 for the identification of the reduced order model 

parameters. 

 

A series of 5 ROMs (order 𝑚 =1 to 5) is built. Solutions of DM and identified ROMs are 

not shown due to lack of space but values of relative errors 𝜀𝑣
(𝑚)
, 𝑣 ∈ {𝜌, 𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇} 

and 𝜀𝑔𝑙𝑜𝑏
(𝑚)

 are gathered in Table 2. The order 1 ROM corresponds to a single term in 

equation (38). According to eq.(41), its dynamical system (40) is defined by only 3 

parameters which proves to be insufficient for correctly reproducing the data from DM, 

as shown in Table 2. Incrementing the ROM order yields improvement of ROM quality. 

The order 5 ROM, which will be called ROM5 in the following, offers very good overall 

adequacy with DM solutions: 𝜀𝑔𝑙𝑜𝑏
(5)

=2.61%. The variable best reproduced is temperature 

(𝜀𝑣
(5)

=0.10%) whereas the larger error is for mass flow rate (𝜀𝑣
(5)

=5.35%). The CPU time 

consumption needed for the ROMs identification is given in the last line of Table 2. It 
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took only about 220 s to build ROM of order 1. Due to the increasing number of 

parameters with the model order 𝑚 (see eq.(41)), the CPU time required also grows 

quickly with 𝑚, reaching about 5900 s for the order 5 ROM. The total CPU time for the 

identification of ROMs of order 1 to 5 took about 10800 s. This is at least 10 times less 

than a single computation run of the DM which takes more than 105 s as stated in 

§ 5.2.3. 

 

Table 2 - ROM identification. 𝜀 function of the ROM order 

ROM order 𝑚 1 2 3 4 5 

𝜀𝜌 (%) 15,49 8,60 4,39 3,07 2,12 

𝜀𝜌𝑢 (%) 23,01 21,33 6,50 6,18 5,35 

𝜀𝜌𝑒 (%) 14,73 8,91 4,63 1,38 2,31 

𝜀𝑢 (%) 21,75 6,76 1,27 1,22 0,93 

𝜀𝑝 (%) 29,59 2,03 1,19 1,16 1,30 

𝜀𝑇  (%) 1,86 0,72 0,29 0,23 0,10 

𝜺𝒈𝒍𝒐𝒃  (%) 19,74 10,48 3,79 2,96 2,61 

CPU Time (s) for 

ROM construction 
223 602 1110 2934 5915 

 

5.2 ROMs validation tests 

Now that ROMs have been built, the next step consists in testing them with an input 

heat power signal different from the signal 𝑄̇𝑒𝑣𝑎𝑝
∗ (𝑡) used in the identification process. 

Numerous validation test cases were performed, showing similar results. The input 
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signals had different shapes and involved different magnitudes (in the [0-1000W] range) 

and frequencies. Two of these test cases are presented here. The first one corresponds 

to a rectangular-shape signal of the thermal load with respect to the time and the 

second one to sinusoidal variations. 

5.2.1 Case1: rectangular-shape signal 

For this first validation case, the heat power at the evaporator is depicted in Figure 5. 

Five different levels between 125W and 475W are applied to the evaporator. The 

duration of each step is equal to 200s, allowing to reach a steady state for each level. 

The time step for ROM5 simulation is Δ𝑡 = 1𝑠. Hence, the signal consists of 𝑁𝑡 = 1000 

time steps. The aim of this validation case is twofold: i) verify that ROM5 accurately 

computes the steady states, different from those reached during the identification 

process, ii) test ROM5 results when the heat power at evaporator suddenly decreases 

at 𝑡 = 600𝑠 although it has been built with a step by step continuously rising signal. 

 

Figure 5 - Input signal 𝑄̇𝑒𝑣𝑎𝑝 for the validation case 1. 
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Table 3 gathers mean quadratic relative errors between data from DM and 

corresponding values computed by ROMs for each variable, as well as the global relative 

error. As for the identification process, these errors decrease with ROM order 𝑚. Let us 

note that they are nevertheless slightly larger. This is due to the heat power signal form 

which shows both increasing and decreasing steps of larger magnitude than the 

identification signal. As shown in Table 3, the errors between ROM5 and DM responses 

are greater for density, mass flow rate and internal energy per unit volume than for 

velocity, pressure and temperature. 

 

Table 3 - ROM validation case 1. 𝜀 function of the ROM order 

ROM order 𝑚 1 2 3 4 5 

𝜀𝜌 (%) 17.68 10.38 5.06 4.30 3.97 

𝜀𝜌𝑢 (%) 31.11 30.12 7.83 7.64 7.49 

𝜀𝜌𝑒 (%) 17.51 11.11 5.41 4.51 4.24 

𝜀𝑢 (%) 24.3 8.08 1.51 1.50 1.23 

𝜀𝑝 (%) 61.61 2.52 1.69 1.61 1.48 

𝜀𝑇  (%) 2.09 0.69 0.24 0.24 0.11 

𝜺𝒈𝒍𝒐𝒃  (%) 31.56 14.20 4.50 4.13 3.95 

 

The space and time variations of density 𝜌, mass flow rate 𝐴𝜌𝑢 and internal energy per 

unit volume  𝜌𝑒 computed by DM and ROM5, are depicted in Figure 6 by 3D surface 

plots. For each variable, the same scale is used for DM and ROM5 in order to make the 
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comparison easier. The large variations of density and internal energy between the 

liquid phase and the vapor phase are satisfactorily reproduced by ROM5. 

Observing now Figure 6b, we notice that the 2PLT’s start-up is faithfully computed by 

ROM5: the mass flow rate being zero at 𝑡 = 0𝑠 stabilizes at different levels with respect 

to heat power. Furthermore, space and time peaks are smoothed by ROM5. 

 

 

Figure 6 – Case 1: space and time map of variables 𝜌, 𝐴𝜌𝑢, 𝜌𝑒 by DM and ROM5. 

 

The space and time evolutions of velocity, pressure and temperature computed by DM 

and ROM5 are shown in Figure 7. The 2PLT’s start-up is accurately calculated by ROM5 

although the time variation of the velocity is very sudden, in particular at the evaporator 
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outlet: 𝑢 = 0 𝑚. 𝑠−1  at 𝑡 = 0 𝑠  to 𝑢 ≈ 10 𝑚. 𝑠−1  at 𝑡 = 5 𝑠 . Moreover, the velocity 

discrepancies between the liquid (𝑢 ≈ 0.01 𝑚. 𝑠−1) and vapor ( 𝑢 ≈ 10 𝑚. 𝑠−1) phases 

are very precisely reproduced. The variations of the pressure are also very accurately 

described by ROM5, with a relative error 𝜀𝑝  less than 1.5%. Regarding now the 

temperature variations, the relative error is equal to 0.11%. Temperature is the variable 

that ROM5 best reproduces. 

 

 

Figure 7 - Case 1: space and time map of variables 𝑢, 𝑝, 𝑇 by DM and ROM5. 

 

In order to better analyze the differences between DM and ROM5 responses, the time 

evolution of the variables 𝜌, 𝐴𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇  for two positions along the loop 𝑥 =
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0.415 𝑚  (evaporator) and 𝑥 = 1.165 𝑚  (condenser) are presented in Figure 8. The 

legend for all graphs is the one of Figure 8a. The variables evolve globally by steps, 

showing that for both locations, a steady state is very quickly reached, because the 

thermal inertia of the duct wall depth of the loop is not taken into account in the DM 

(and hence in the ROM). 

Some deviations appear in the density variations between 𝑡 = 600 𝑠  and 𝑡 = 800 𝑠 

(Figure 8a) i.e. when heat power decreases. During this period, at these locations, the 

mixture contains both liquid and vapor, meaning that density takes values in the zones 

of sharp discontinuities of Figure 6a. These zones are particularly difficult to reproduce 

by ROMs. A similar behavior can be underlined for mass flow rate (see Figure 8b) and 

for the internal energy (see Figure 8c). As shown by Figure 8d, the sudden decrease of 

velocity in the evaporator between 𝑡 = 600 𝑠  and 𝑡 = 800 𝑠  is very accurately 

described by ROM5. However, a velocity difference remains in the condenser. Regarding 

pressure and temperature, depicted in Figure 8e and in Figure 8f respectively, variations 

are very faithfully reproduced by ROM5. 
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Figure 8 - Case 1: time variations of 𝜌, 𝐴𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇 at 𝑥=0.415m (evaporator) and 
𝑥=1.165m (condenser) by DM and ROM5. 

 

In Figure 9 are shown the space fields of the flow variables at two instants corresponding 

to the maximum heat power (𝑡 = 350 𝑠) and to the minimum heat power (𝑡 = 750 𝑠). 

It can be noticed that the space fields computed by DM and ROM5 are almost 

superimposed even though the space discontinuities are very large for the variables 

𝜌, 𝜌𝑒, 𝑢. 
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Figure 9 - Case 1: space variations of 𝜌, 𝐴𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇 at 𝑡 = 350 𝑠 and 𝑡 = 750 𝑠 by 
DM and ROM5. 

5.2.2 Case 2: sinus–shaped signal 

For this second validation case, the thermal load at the evaporator is depicted in Figure 

10. The sinusoidal signal whose amplitude and frequency vary evolves slowly in time. 

Hence, the 2PLT’s behavior will not reach a steady state. The time step for ROM5 

simulation is Δ𝑡 = 1𝑠. The signal consists of 𝑁𝑡 = 2500 time steps. 
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Figure 10 - Input signal 𝑄̇𝑒𝑣𝑎𝑝 for the validation case 2. 

 

Table 4 summarizes the mean quadratic relative errors between DM and ROMs 

computed fields for each variable, as well as the global relative error. As for the 

identification process, these errors decrease with ROM order 𝑚. Let us note that these 

errors are slightly smaller. This is due to the heat power signal form which shows smooth 

variations. 

 

Table 4 - ROM validation case 2. 𝜀 function of the ROM order 

ROM order 𝑚 1 2 3 4 5 

𝜀𝜌 (%) 10.04 5.73 3.35 2.80 1.80 

𝜀𝜌𝑢 (%) 21.29 16.73 6.83 6.52 4.01 

𝜀𝜌𝑒 (%) 10.18 6.43 3.77 3.23 2.12 

𝜀𝑢 (%) 15.06 4.60 1.10 1.12 0.81 

𝜀𝑝 (%) 20.85 2.09 1.28 1.23 1.87 

𝜀𝑇  (%) 1.12 0.73 0.29 0.27 0.14 

𝜺𝒈𝒍𝒐𝒃 (%) 14.84 7.96 3.54 3.26 2.16 

 

Time and space variations of the flow variables 𝜌, 𝐴𝜌𝑢, 𝜌𝑒 computed by DM and ROM5 

are presented in Figure 11 by 3D surface plots. On the whole, variables 𝜌, 𝜌𝑒 present 

large variations in space due to the high ratio between liquid and vapor densities 

(around 1000). Apart from some very confined peaks, the space discontinuities are well-

reproduced by ROM5. The time evolution of these variables is strongly damped 
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compared to the heat power one. The 2PLT start-up is accurately calculated by ROM5, 

as shown in Figure 11b, where the mass flow rate starts from 0 𝑘𝑔. 𝑠−1 , then goes 

through a maximum before decreasing around 3 𝑘𝑔. 𝑠−1. As shown in Table 4, the error 

computed for the mass flow rate is the greatest again and reaches 4%. It can be 

explained by peaks in the evaporator and in the condenser, visible in Figure 11b and in 

Figure 14b. These peaks are confined in time and space and are difficult to reproduce by 

ROMs. 

 

Figure 11 – Case 2: Space and time map of 𝜌, 𝐴𝜌𝑢, 𝜌𝑒 by DM and ROM5. 

 

The maps for 𝑢, 𝑝, 𝑇 are presented in Figure 12. The hard discontinuities of velocity are 

accurately computed by ROM5 (see Figure 12a), this is confirmed by the 0.81% error 
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(see Table 4). Pressure and temperature depicted in Figure 12b and Figure 12c 

respectively follow the heat power time variations and once again ROM5 provides a 

good approximation of the DM outputs. 

 

Figure 12 - Case 2: space and time map of 𝑢, 𝑝, 𝑇 by DM and ROM5. 

 

Regarding now the time evolution of the variables 𝜌, 𝐴𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇 for two positions 

along the loop 𝑥 = 0.415 𝑚  (evaporator) and 𝑥 = 1.165 𝑚  (condenser) depicted in 

Figure 13, it can be remarked that the variations with respect to time present the same 

sinusoidal shape than the heat load applied to the evaporator. These evolutions are slow 

in time and there is no difficulty for ROM5 to compute these outputs. As usual, the 

greatest variations between both points are for density (see Figure 13a), mass flow rate 
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(see Figure 13b) and velocity (see Figure 13d) because the liquid initially present in the 

evaporator turns into vapor and the vapor initially present in the condenser becomes 

liquid. 

 

Figure 13 - Case 2: time variations of 𝜌, 𝐴𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇 at 𝑥=0.415m (evaporator) and 
𝑥=1.165m (condenser) by DM and ROM5. 

Regarding now the space fields of the flow variables at 𝑡 = 625 𝑠 and 𝑡 = 1480 𝑠, a very 

good agreement can be observed between ROM5 and DM outputs, as shown in Figure 

14. Of course, this also holds true for other instants of the simulation. Note that for this 

second test case, the global error is equal to 2.16% compared to 3.95% for the first test 

case. This difference is due to the slow dynamics of the sinusoidal signal. 
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Figure 14 - Case 2: space variations of 𝜌, 𝐴𝜌𝑢, 𝜌𝑒, 𝑢, 𝑝, 𝑇 at 𝑡 = 625 𝑠 and 𝑡 = 1480 𝑠 
by DM and ROM5. 

 

5.2.3 CPU time gain 

The interest of using a ROM lies in the significant gain in CPU time: 2.47 105 s and 7.29 

105 s for DM versus 0.02 s and 0.08 s for ROM5, for cases 1 and 2 respectively. 

This CPU time gain close to 107 is due to: 

• First, for about a 102 factor, the reduction of the number of degrees of freedom 

of the dynamical system (only 5 for the ROM versus 900 for the DM); 

• Second, for about a 105 factor, the fact that the reduced model is not constrained 

by the Courant-Friedrichs-Lewy condition allowing the use of a much larger time 

step for simulation (∆𝑡 = 1 𝑠 for ROM versus ∆𝑡 = 10−5 𝑠 for DM). 

 



50 
 

6 Conclusion 

In this paper, a numerical study is carried out in order to investigate model reduction of 

a two-phase closed loop thermosyphon. As a detailed model of the 2PLT is needed in 

order to determine the structure of the reduced order model (ROM), the 1D two-phase 

flow model describing the liquid-gas mixture in both mechanical and thermal 

equilibrium is first briefly recalled. Then, from this detailed model, two ROM 

formulations have been developed via the Galerkin projection method. The first one 

which takes into account closure laws and uses a specific set of dynamics for each 

variable, features some drawbacks. The second one which does not take into account 

closure laws and uses a unique set of dynamics for all variables, is the simplest possible 

nonlinear ROM. A series of ROMs of order 1 to 5, based on this second ROM formulation, 

has been built through a parameter estimation problem. The total CPU time for the 

identification of ROMs of order 1 to 5 took at least 10 times less than a single 

computation run of the DM. After the identification stage, two test cases, corresponding 

to different heat loads at the evaporator, have shown that the overall levels of density, 

velocity, mass flow rate, pressure, temperature and internal energy in the loop are 

satisfactorily reproduced by the order 5 ROM with a global relative error less than 5%. 

The ROM enables a significant gain in CPU time (107). It would be interesting to 

develop, build and test ROMs of intermediate complexity between ROM n°1 and ROM 

n°2 formulations. Such ROMs with two or three sets of dynamics for describing the six 

variables could allow improving accuracy while preserving high CPU time gain. Shortly, 

the ROM will have to take into account the dynamic viscosity 𝜇 as a function of mass 

fraction and temperature, as it was done for the DM in [14]. Another interesting 
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prospect would be the construction of ROMs able to compute fields of variables in 

response to two independent time-varying inputs: heat power applied to the evaporator 

and cold external temperature at the condenser (or even mass flow rate of cold 

secondary fluid driving the heat exchange coefficient). Such ROMs could be employed 

to investigate feedback control of the 2PLT: temperature regulation of electronics 

dissipating heat power at evaporator (perturbation) using the heat exchanger input at 

condenser (actuator). Among other future developments, the identification of low order 

models directly from measurements recorded on an actual 2PLT (for instance, 

temperature or pressure measurements at specific locations e.g. at the evaporator), 

would be of great interest. 

 

Appendix A: the four terms in the Galerkin projection (32) 

The four terms in the Galerkin projection (32) are written below. 

∀𝑘 = 1,… ,𝑚: 

∫𝑅(𝛿𝜌)(𝑥, 𝑡)𝜙𝑘
(𝛿𝜌)

(𝑥)𝑑𝑥

𝐿

0

=∑(𝑀1)𝑘𝑖
𝑑𝑎𝑖(𝑡)

𝑑𝑡

𝑚

𝑖=1

+∑(𝐿1)𝑘𝑖𝑎𝑖(𝑡)

𝑚

𝑖=1

 

∫𝑅(𝛿(𝜌𝑢))(𝑥, 𝑡)𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)𝑑𝑥

𝐿

0

=∑(𝑀2)𝑘𝑖
𝑑𝑎𝑖(𝑡)

𝑑𝑡

𝑚

𝑖=1

+∑∑(𝑄1)𝑘𝑖𝑗𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑚

𝑗=1

𝑚

𝑖=1

+∑((𝐿2)𝑘𝑖 + (𝐿3)𝑘𝑖 + (𝐿4)𝑘𝑖)𝑎𝑖(𝑡)

𝑚

𝑖=1
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∫𝑅(𝛿(𝜌𝑒))(𝑥, 𝑡)𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)𝑑𝑥

𝐿

0

=∑(𝑀3)𝑘𝑖
𝑑𝑎𝑖(𝑡)

𝑑𝑡

𝑚

𝑖=1

+∑∑((𝑄2)𝑘𝑖𝑗 + (𝑄3)𝑘𝑖𝑗 + (𝑄4)𝑘𝑖𝑗)𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑚

𝑗=1

𝑚

𝑖=1

+∑((𝐿5)𝑘𝑖 + (𝐿6)𝑘𝑖)𝑎𝑖(𝑡)

𝑚

𝑖=1

+ (𝑉0)𝑘𝑄̇𝑒𝑣𝑎𝑝(𝑡) 

∫𝑅(𝛿𝑢)(𝑥, 𝑡)𝜙𝑘
(𝛿𝑢)

(𝑥)𝑑𝑥

𝐿

0

=∑∑(𝑄5)𝑘𝑖𝑗𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑚

𝑗=1

𝑚

𝑖=1

+∑((𝐿7)𝑘𝑖 + (𝐿8)𝑘𝑖)𝑎𝑖(𝑡)

𝑚

𝑖=1

 

Expressions of tensors 𝑀𝑖, 𝑖 = 1,… ,3 , 𝐿𝑖 , 𝑖 = 1,… ,8  and 𝑄𝑖, 𝑖 = 1,… ,5  are given in 

Appendix B. Equation (33) is obtained by adding the four terms and using the following 

notations: 𝑀0 = ∑ 𝑀𝑖
3
𝑖=1 , 𝐿0 = ∑ 𝐿𝑖

8
𝑖=1  and 𝑄0 = ∑ 𝑄𝑖

5
𝑖=1 . 

 

Appendix B: tensors expressions in the Galerkin projection (32) 

In this section, indices 𝑖, 𝑗, 𝑘 range from 1 to 𝑚. 

(𝑀1)𝑘𝑖 = ∫𝜙𝑖
(𝛿𝜌)(𝑥)𝜙𝑘

(𝛿𝜌)(𝑥)𝑑𝑥

𝐿

0

 

(𝐿1)𝑘𝑖 = ∫
𝑑

𝑑𝑥
(𝜙𝑖

(𝛿(𝜌𝑢))
(𝑥))𝜙𝑘

(𝛿𝜌)(𝑥)𝑑𝑥

𝐿

0

 

(𝑀2)𝑘𝑖 = ∫𝜙𝑖
(𝛿(𝜌𝑢))

(𝑥)𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)𝑑𝑥

𝐿

0

 

(𝑄1)𝑘𝑖𝑗 = ∫
𝑑

𝑑𝑥
(𝜙𝑖

(𝛿(𝜌𝑢))
(𝑥)𝜙𝑗

(𝛿𝑢)(𝑥))𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)𝑑𝑥

𝐿

0
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(𝐿2)𝑘𝑖 = ∫
𝑑

𝑑𝑥
(𝜙𝑖

(𝛿𝑝)(𝑥))𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)𝑑𝑥

𝐿

0

 

(𝐿3)𝑘𝑖 =
64𝜇

2𝑑2
∫𝜙𝑖

(𝛿𝑢)(𝑥)𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)𝑑𝑥

𝐿

0

 

(𝐿4)𝑘𝑖 = −𝑔∫𝜖(𝑥)𝜙𝑖
(𝛿𝜌)(𝑥)𝜙𝑘

(𝛿(𝜌𝑢))
(𝑥)𝑑𝑥

𝐿

0

 

(𝑀3)𝑘𝑖 = ∫𝜙𝑖
(𝛿(𝜌𝑒))

(𝑥)𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)𝑑𝑥

𝐿

0

 

(𝑄2)𝑘𝑖𝑗 = ∫
𝑑

𝑑𝑥
(𝜙𝑖

(𝛿(𝜌𝑒))
(𝑥)𝜙𝑗

(𝛿𝑢)(𝑥))𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)𝑑𝑥

𝐿

0

 

(𝑄3)𝑘𝑖𝑗 = ∫𝜙𝑖
(𝛿𝑝)(𝑥)

𝑑

𝑑𝑥
(𝜙𝑗

(𝛿𝑢)(𝑥))𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)𝑑𝑥

𝐿

0

 

(𝑄4)𝑘𝑖𝑗 = −
64𝜇

2𝑑2
∫𝜙𝑖

(𝛿𝑢)(𝑥)𝜙𝑗
(𝛿𝑢)(𝑥)𝜙𝑘

(𝛿(𝜌𝑒))
(𝑥)𝑑𝑥

𝐿

0

 

(𝐿5)𝑘𝑖 =
ℎ𝑐𝑜𝑛𝑑 𝑆𝑒𝑥𝑡
𝑐𝑜𝑛𝑑

∫ 𝜙𝑖
(𝛿𝑇)(𝑥)𝜙𝑘

(𝛿(𝜌𝑒))
(𝑥)𝑑𝑥

𝑐𝑜𝑛𝑑

 

(𝐿6)𝑘𝑖 = ∫(
𝑑

𝑑𝑥
(𝜙𝑖

(𝛿𝑢)(𝑥)(𝜌𝑒)0(𝑥)) + 𝑝0(𝑥)
𝑑

𝑑𝑥
(𝜙𝑖

(𝛿𝑢)(𝑥)))𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)𝑑𝑥

𝐿

0

 

(𝑉0)𝑘 = −
1

𝑒𝑣𝑎𝑝
∫ 𝜙𝑘

(𝛿(𝜌𝑒))
(𝑥)𝑑𝑥

𝑒𝑣𝑎𝑝

 

(𝑄5)𝑘𝑖𝑗 = −∫𝜙𝑖
(𝛿𝜌)(𝑥)𝜙𝑗

(𝛿𝑢)(𝑥)𝜙𝑘
(𝛿𝑢)(𝑥)𝑑𝑥

𝐿

0
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(𝐿7)𝑘𝑖 = ∫𝜙𝑖
(𝛿(𝜌𝑢))

(𝑥)𝜙𝑘
(𝛿𝑢)(𝑥)𝑑𝑥

𝐿

0

 

(𝐿8)𝑘𝑖 = −∫𝜌0(𝑥)𝜙𝑖
(𝛿𝑢)(𝑥)𝜙𝑘

(𝛿𝑢)(𝑥)𝑑𝑥

𝐿

0

 

 

Appendix C: proof that matrix 𝑴𝟎 is invertible 

(𝑀0)𝑘𝑖 =∑(𝑀𝑗)𝑘𝑖

3

𝑗=1

= ∫(𝜙𝑖
(𝛿𝜌)(𝑥)𝜙𝑘

(𝛿𝜌)(𝑥) + 𝜙𝑖
(𝛿(𝜌𝑢))

(𝑥)𝜙𝑘
(𝛿(𝜌𝑢))

(𝑥)

𝐿

0

+ 𝜙𝑖
(𝛿(𝜌𝑒))

(𝑥)𝜙𝑘
(𝛿(𝜌𝑒))

(𝑥)) 𝑑𝑥                 ∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚] 

Let us define: 

𝜙𝑘
′⃗⃗⃗⃗  ⃗(𝑥) = (𝜙𝑘

(𝛿𝜌)
(𝑥) 𝜙𝑘

(𝛿(𝜌𝑢))
(𝑥) 𝜙𝑘

(𝛿(𝜌𝑒))
(𝑥))

𝑇

        ∀𝑘 = 1, … ,𝑚 

We get (𝑀0)𝑘𝑖 = ∫ 𝜙𝑖′⃗⃗⃗⃗ (𝑥). 𝜙𝑘
′⃗⃗⃗⃗  ⃗(𝑥)𝑑𝑥

𝐿

0
         ∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚] 

Let us suppose that 𝑀0 is not invertible. Hence 𝑀0 would not be of rank 𝑚 meaning that 

least one of its rows, let’s say raw ℓ, would be a linear combination of other rows: 

(𝑀0)ℓ𝑖 =∑𝛼𝑗(𝑀0)𝑗𝑖

𝑚

𝑗=1
𝑗≠ℓ

      ∀𝑖 ∈ [1;𝑚]  

⟺∫𝜙𝑖′⃗⃗⃗⃗ (𝑥). 𝜙ℓ
′⃗⃗ ⃗⃗ (𝑥)𝑑𝑥

𝐿

0

=∑𝛼𝑗∫𝜙𝑖′⃗⃗⃗⃗ (𝑥). 𝜙𝑗′⃗⃗⃗⃗ (𝑥)𝑑𝑥

𝐿

0

𝑚

𝑗=1
𝑗≠ℓ

      ∀𝑖 ∈ [1;𝑚] 
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⟺∫𝜙𝑖′⃗⃗⃗⃗ (𝑥).

(

 
 
𝜙ℓ
′⃗⃗ ⃗⃗ (𝑥) −∑𝛼𝑗𝜙𝑗′⃗⃗⃗⃗ (𝑥)

𝑚

𝑗=1
𝑗≠ℓ )

 
 
𝑑𝑥

𝐿

0

= 0      ∀𝑖 ∈ [1;𝑚] 

⟺𝜙ℓ
′⃗⃗ ⃗⃗ (𝑥) =∑𝛼𝑗𝜙𝑗′⃗⃗⃗⃗ (𝑥)

𝑚

𝑗=1
𝑗≠ℓ

 

Which means: 

{
  
 

  
 𝜙ℓ

(𝛿𝜌)(𝑥) = ∑ 𝛼𝑗𝜙𝑗
(𝛿𝜌)(𝑥)𝑚

𝑗=1
𝑗≠ℓ

𝜙ℓ
(𝛿(𝜌𝑢))

(𝑥) = ∑ 𝛼𝑗𝜙𝑗
(𝛿(𝜌𝑢))

(𝑥)𝑚
𝑗=1
𝑗≠ℓ

𝜙ℓ
(𝛿(𝜌𝑒))

(𝑥) = ∑ 𝛼𝑗𝜙𝑗
(𝛿(𝜌𝑒))

(𝑥)𝑚
𝑗=1
𝑗≠ℓ

 

 

Function 𝜙ℓ
(𝛿𝜌)(𝑥)  (respectively 𝜙ℓ

(𝛿(𝜌𝑢))
(𝑥)  and 𝜙ℓ

(𝛿(𝜌𝑒))
(𝑥)) would thus be a linear 

combination of functions 𝜙𝑗
(𝛿𝜌)(𝑥)  (respectively 𝜙𝑗

(𝛿(𝜌𝑢))
(𝑥)  and 𝜙𝑗

(𝛿(𝜌𝑒))
(𝑥) ), 𝑗 ∈

[1;𝑚], 𝑗 ≠ ℓ . This is in contradiction with the definition of functions 𝜙𝑗
(𝛿𝜌)(𝑥) , 

𝜙𝑗
(𝛿(𝜌𝑢))

(𝑥)  and 𝜙𝑗
(𝛿(𝜌𝑒))

(𝑥), 𝑗 ∈ [1;𝑚]  as truncations of bases of the Hilbert space 

formed by ℒ2([0; 𝐿]) space equipped with the inner product (𝑓 , 𝑔 )
Ω
= ∫ 𝑓 𝑔 𝑑𝑥

𝐿

0
. 

As a consequence, the hypothesis “𝑀0 is not invertible” is not valid and 𝑀0 is invertible. 
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