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Laser-Supported Monocular Visual Tracking for Natural Environments

Georges Chahine! and Cédric Pradalier?

Abstract— This paper presents and demonstrates a 2D laser-
supported visual tracking solution, that can achieve reliable
performance in unstructured scenes such as those seen in
natural environment surveys. The method is shown to suffi-
ciently stabilize scale and account for scale drift, as well as
improve overall reliability. The suggested method is minimally
invasive, does not require any additional parameter and does
not necessarily require a laser, which can be replaced by any
set of points with known depth, with no constraint on the
temporal continuity of known points. We also test our method
on 4 surveys, captured in a natural riverine environment, that
proved to be challenging even for the state-of-the-art in visual
tracking.

I. INTRODUCTION

The practicality of using cameras for mapping and tracking
is still driving research in related fields such as Visual
Simultaneous Localization and Mapping (VSLAM), structure
from motion and visual odometery. However, few methods
focus on natural environments as demonstrated in [1].

Natural environments are challenging due to the lack of
scene structure such as edges, features such as SURF[2]
and ORB[3] and other geometrical shapes that might help
stabilize visual tracking. Natural environments also suffer
from fluctuating brightness conditions and in particular lens
flare, as well as moving features such as tree branches and
long grass. Also in [1], it was shown that tracking software
based on the direct method i.e., that optimizes a photometric
equation, tend to perform better than feature based methods
while working with unstructured scenes. However, even the
state-of-the-art in direct methods such as Direct Sparse
Odometry (DSO) [4] poorly performs in unstructured scenes
[1].

To the best of the authors’ knowledge, there is no spe-
cialized VSLAM method for natural environment, and the
existing solutions are not always reliable [1]. This paper
does not offer a new VSLAM approach, rather, proposes
a minimal support system for visual tracking that enables it
to be sufficiently robust for subsequent use.

Most existing laser-supported VSLAM solutions such as
[5], [6] are based on the availability of 3D lasers, which are
costly and sometimes bulky to carry in natural environments.
Sheng et al. [7] also comes short at solving the presented
problem, since PTAM [8] is feature based and therefore
unsuitable for natural environments [1].

1Georges Chahine is with the College of Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, USA gchahine@gatech.edu

2Cédric Pradalier is with the College of Computing, Georgia Institute of
Technology, UMI 2958 GT-CNRS (Georgia Tech Lorraine), Metz, France
cedric.pradalier@georgiatech-metz. fr

More closely related is the work of Zhang et al. [9],
suggesting a 2D laser fusion approach to recover scale with
a monocular camera. The main disadvantage of the proposed
method is the requirement for reconstruction of a semi-dense
surface around laser points, making the method unsuitable
for unstructured scenes.

The proposed method is a minimally invasive modifica-
tion to DSO, for the purpose of using 2D laser measure-
ments. DSO was specifically chosen based on a previously
conducted survey [1] that compared the state-of-the-art in
VSLAM, and found that DSO is most suitable candidate
for unstructured natural scenes. The proposed method does
not introduce any new parameter to the existing VSLAM
structure. Further detailed in III-A, the laser is assumed to be
installed in the normal direction of the movement, meaning
no assumption of overlapping laser points between camera
poses. This work however assumes an overlap between the
camera field of view (FOV) and the laser range, yet it is
not critically dependent on laser measurements as they can
be interrupted at any time, such as when DSO is unable
to track projected laser points, with no immediate effect on
stability.

In the remainder of this paper, we show the different steps
undertaken to stabilize visual tracking with a focus on natural
environments, with the purpose of recovering translational
scale and accounting for scale drift, as well as improve
overall reliability.

II. SYSTEM

In this section, we detail the steps undertaken to include
laser measurements with the purpose of stabilizing visual
tracking. As shown in Fig. 1, the system is dependent on
a camera feed and a sparse disparity image, here generated
from a 2D laser. Still in the same figure, it is assumed that the
extrinsics are inferred from a CAD model, further detailed
in section III.

A. Laser Projection

We solve the laser projection problem using the classic
pinhole camera model. Given a 2D laser ray that passes
through the FOV of a camera, we project the laser point
onto the corresponding camera image according to [10]:

P = ARJt]L (1)

Where A, [R|t] and L respectively represent the camera
intrinsics, the geometric transformation from the laser plane
to the camera image plane (extrinsics), and the 3D coordi-
nates of the laser points. Depth of the laser points in the
image plane is calculated by taking the third component of
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Fig. 1: System data flow

the product of the last two terms of the above equation,
as in [R|t]L. The laser point coordinates u,v in the image
frame are then recovered such as [u,v, 1] = [px’g%p’} with
P = [pz,py,p2]-

Subsequently, we publish a sparse disparity image (Fig.
2) using the previously projected laser coordinates and their
corresponding depth values in the camera frame.

B. Laser-Supported Visual Tracking

Visual tracking algorithms must have a point or feature
selection scheme, the nature of the latter being largely
dependent on the method being direct or indirect. We have
already established in Section I that direct methods are more
suitable for natural environments, we therefore propose the
following:

1) Forcing the selection of projected laser points as can-

didates to be tracked

2) Modifying the optimization step to enforce the known

prior from the disparity image

Forcing the selection of laser points is recommended to
improve the likelihood of tracking laser points, with no
expectation that visual tracking will keep track of all the
selected points. The selection process however varies from
algorithm to another, and it might be harder to force point
selection in feature based methods such as ORB SLAM[11],
compared to direct methods that inherently require the se-
lection of pixels for subsequent photometric optimizing.

If the received disparity image is empty, visual tracking
continues to run but becomes vulnerable to accumulating
scale drift and prone to failures. Once few laser points
are tracked again, the scale is recovered and any built-up
scale drift is eliminated. Other non-laser points are scaled
according to the average scale inferred from the tracked laser
points in other words, each time a new laser point is tracked,
the inferred scale s for other non-laser points is updated such
as:

1 dy
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Where N is the total number of tracked laser points, d; is
the real point depth inferred from projected laser measure-

(a) Disparity image with inverted colors.

(b) Projected laser line on the actual scene.

Fig. 2: Laser line projected on the corresponding camera,
using the pinhole model and the backpack frame CAD
extrinsics 3.

ments, and d,. is the VSLAM assigned depth, assumed to be
random and captured before setting d,, = d; as previously
discussed.

In addition to improving scale convergence time, the
purpose of scaling non-laser points is to prevent depth
discontinuities in-between laser and non-laser points, which
might result in classifying either set of points as outliers.

III. SETUP AND EVALUATION
A. About the Dataset

The dataset is that of a riverine environment, with few
snapshots shown in Fig. 4 and captured using the backpack
shown in Fig. 3. The transformation matrix representing the
extrinsics is calculated by using measurements inferred from
the CAD model, while also taking into account the location
of the image plane inside the camera hull, the latter provided
by the camera manufacturer datasheet.

The testing data is mostly a combination of open fields,
bushes, trees and long grass. In addition to the challenges



(a) Backpack used for data ac-
quisition in the natural environ-
ment Image

(b) Backpack CAD model

Fig. 3: Survey recording was made using the backpack shown
above. All fixtures were 3D printed or laser-cut according to
a pre-designed CAD model, so that to minimize geometric
projection error in-between components

associated with natural environments, the scene (camera
angle) (Fig. 9(b)) is tilted in favor of the narrower vertical
direction, meaning less room is available for feature tracking
compared to a horizontally held camera.

The testing data for this paper consists of 4 surveys
captured on a site near Nancy, France. In total, the surveys
consist of over 1700 seconds of camera footage and laser
recordings captured at 20 frames per second and 40 Hertz,
respectively.

B. Laser-supported DSO

As previously discussed, the projected laser line is com-
municated as a disparity image shown in Fig. 2.

We therefore implement a laser projection node based
on the method suggested in section II, that uses the Robot
Operating System (ROS) to subscribe to laser sensor readings
and publish a disparity image.

Subsequently, we modify DSO source files so that it
subscribes to the disparity image generated by the laser
projection node. Once DSO receives a non-empty dispar-
ity image, it will force the selection of the corresponding
points in its point selection step. Given that the geometric
transformation from laser to camera is subject to noise
such as 3D printing precision uncertainties, we also select
neighboring pixels to account for such errors and to improve
the likelihood of tracking a laser point. Finally, during the
point optimization step, tracked laser points are scaled using
the laser disparity image, while remaining non-laser points
are scaled as discussed in section II.

C. Discussion

1) Quantitative Assessment: Initially motivated by the
need for a support system for DSO, laser-supported DSO
proved to be a reliable solution, as shown in the completion
rates in Fig. 5.

Completion rates were generated by dividing the tracked
survey time before complete failure over the total survey

time. In details, each survey was divided into 4 equal parts,
for a total of 16 parts. Each part was subsequently evaluated
against the two tracking methods, while allowing a maximum
of 3 attempts for each part. Finally, The final tracked time
for a given survey is the sum of all the tracked portions of
each of its 4 parts. Given that most robotic systems involve
more than one sensor, usually at least a GPS and an IMU,
robustness in terms of completeness for visual surveys is
highly desired, even if the results are noisy or biased. Many
techniques, such as factor graphs, are available in literature
and can greatly benefit from camera input to refine position,
attitude and even scale estimation.

Scale drift is a major impediment often faced when
working with monocular visual tracking solutions, and DSO
is particularly prone to drift [1]. Fig. 6 shows the difference
between native DSO behavior and laser-supported DSO in
terms of scale drift. The figures show that laser-supported
DSO is capable of recovering and maintaining correct scale
throughout the survey. Note that a scale value in the vicinity
of 1 means correct scale estimation. The ground truth data
was generated by calculating the total trajectory length from
an on-board inertial navigation system (INS), and assuming
constant speed movement in a rolling ~5 seconds window.
For the same survey, Native DSO shows a highly nonlinear
scale trend. Still in Fig. 6, ripples and peaks are localized
violations of the constant speed assumption, used to generate
the ground truth. An example of these violations is when
the author was carrying the sensor backpack (Fig. 3) and
had to navigate through muddy or rough terrains, sometimes
pausing for few moments to perform a manoeuvre. The latter
statement is reinforced by observing that both native and
laser-supported DSO report localized scale jumps around the
same frame number (400, 600, 700 and 1200), and by manual
inspection of survey footage. The terrain corresponding to
Fig. 7(a) and Fig. 7(b) was easier to navigate and therefore,
ripples are less nuanced. Even-though both methods were
able to fully track this particular survey, map and pose are
evidently better suited for post processing when correctly
scaled.

Laser-supported DSO is also capable of recovering correct
scale after tracking is temporarily lost: Fig. 7(c) shows an
incident of tracking loss around frame 2000, a common
occurrence from which DSO typically recovers, yet at the
expense of a considerable jump in scale. Still in the same
figure, laser-supported DSO is shown to recover correct scale
estimation as tracking resumes after non-catastrophic failure.
Fig. 7(a) and Fig. 7(b) show correct scale estimation over
5000 and 2500 keyframes, respectively.

Fig. 8 shows performance metrics for angular drift using
both native and laser-supported DSO. Fig. 8(b) shows that
laser-supported DSO suffers 30% less drift as of 2000
keyframes (around 300 seconds). Fig. 8(a) shows that laser-
based DSO takes more time to converge, yet locally exhibits
a good follow-up on heading change increments. Still in
the same figure, note the sharp turn of around 90 degrees
undertaken around keyframe 1200, causing an angular drift
in both laser-supported and native DSO, with the former
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Fig. 4: Sample snapshots from natural environment surveys captured nearby a riverbed near Nancy, France. The same data

is used for evaluation in section III.

Completion Rate

Survey Number

Fig. 5: Completion rates for native (unmodified) DSO and
laser-supported DSO in 4 natural environment surveys.

exhibiting a modest recovery compared to the latter.

The results for heading estimation however, are not as
impressive as the ones previously shown for translational
scale. This is due to the fact that a projected 2D laser line
does not, by itself, offer sufficient information to constrain a
6 DOF transformation. Nevertheless, DSO has been shown
in Fig. 9 to be capable of tracking previously detected laser
lines, therefore constraining rotations to a limited extent as
long as several laser lines are tracked. Unfortunately, the
traceability of previously projected lines is less likely to
happen on rough turns, due to motion blur and the partial
failure of the underlying tracking model.

It has been shown that the potential for recovery of
translation scale can occur once few laser points are tracked
again, the same cannot be said on angular/heading drift. This
is due to the inherent temporal nature of rotations, namely
those that can cause visual tracking to fail or drift i.e., a rough
turn event will degrade the quality of the tracking, yet once
such rotation is complete, the information is permanently lost
since no further data on the completed rotation will become
available in the future.

2) Qualitative Assessment: The snapshots shown in Fig.
9 show a sample run of laser-supported DSO on one of the
surveys, while Fig. 9(b) shows that DSO was able to track
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Fig. 6: Scale evaluation for both laser-supported DSO and
native DSO for the only survey that both native and laser-
supported DSO completed without failure.
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Fig. 7: Scale estimation for 3 different natural environment surveys using laser-supported DSO, compared to ground truth.
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Fig. 8: Comparison of native and laser-based DSO in terms

of angular drift. The ground truth is inferred from the on-
board Inertial Navigation System (INS)

laser lines from previous frames.

The maps generated by DSO such as the one shown Fig.
9(a) show an improved visualization of the point cloud due
to the inclusion of laser points and drift compensation. The
projected laser lines such as the ones shown Fig. 9(b) also
seem to propagate into the scene depth (out of the camera
lens), providing a well distributed depth line that spans as
far as 10 meters into the scene. Still in the same figure,
notice the absence of tracked point inside the water pod,
given that the laser beam is completely absorbed by the
water, and the apparent blank hole left in the point cloud
at the corresponding camera position.

Further, it was noticed while running the surveys that
occasional loss of laser tracking can occur, due to lack
of image information such as overexposed scenes and fast
rotations. Passing nearby water pods causes the laser ray
to be temporarily lost as it is dissipated in the water. Such
effects contribute to the ripples seen in Fig. 7, but did not
affect the overall stability of laser-supported DSO.

While no new parameter was introduced, laser-supported
DSO appears to be sensitive to already existing parameters,
such as the total number of tracked points. Typically, increas-
ing the number of tracked points (above 4000 points) will
improve robustness however, it was observed that doing so
as laser-supported DSO is still initializing will occasionally
prevent the proposed method from converging to the depth
inferred from laser points, as it ignores the depth estimates
as outliers and reverts to its original behavior. There was
no issue in increasing the number of tracked points after
DSO converges, typically few seconds after initialization.
Increasing the maximum number of tracked keyframes in
DSO favorably affected the performance of laser-supported
dso, as previously projected laser lines become abundantly
available and help constrain motion in subsequent frames.
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(a) Laser-supported DSO point cloud (inverted colors), showing a muddy terrain with a

water pod, and few far trees

(b) Sparse depth image showing few tracked laser rays

Fig. 9: Snapshots taken from laser-supported DSO, showing a point cloud and the corresponding image at the current

position.

IV. CONCLUSIONS

We have presented a minimally invasive solution for the-
state-of-the-art in visual tracking, enabling such methods to
reliably perform even in the most challenging environments.
This work is relevant to both roboticists and environmen-
talists, given the absence of specialized method in literature
that can handle the complexity of unstructured natural scenes.
As expected, knowing the depth of few features/pixels can
help stabilize visual tracking and propagate the change to the
remaining unknown points.

The generated map and pose from laser-supported DSO is
far from perfect, yet opens the door for further refinement
and draws some attention to the lack of visual tracking
techniques in unstructured scenes. Future work will focus on
fusing map and attitude from multiple cameras as well as the
lidar, using similar datasets taken at difference times of the
year. Finally, we aim at achieving temporal alignment of 3D
maps generated in the natural environment, with the purpose
of automatic quantification of long-term natural changes: a
valuable asset for environmentalists seeking to easily yet
reliably monitor slow natural changes.
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