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Abstract: The characterization of vadose zone processes is a primary goal for understanding, 

predicting, and managing water resources. In this study, the issue of soil water monitoring on a 

vertical profile in the small forested Strengbach catchment (France) is investigated using numerical 

modeling with the long-term sequences 1D-Richards’ equation and parameter estimation through 

an inverse technique. Three matric potential sensors produce the observation data, and the 

meteorological data is monitored using an automatic weather station. The scientific questions 

address the selection of the calibration sequence, the initial starting point for inverse optimization 

and monitoring frequency used in the inverse procedure. As expected, our results show that the 

highly variable data period used for the calibration provides better estimations when simulating 

the long-term sequence. For the starting point of the initial parameters, handmade iterative initial 

parameters estimation leads to better results than a laboratory analysis or set of ROSETTA 

parameters. Concerning the frequency of monitoring, weekly and daily datasets provide efficient 

results compared to hourly data. As reported in other articles, the accuracy of the boundary 

conditions is important for estimating soil hydraulic parameters and accessing water stored in the 

layered profile. 

Keywords: forested catchment; hydrology; sensor monitoring; matric potential; parameter 

estimation; numerical modeling; one-dimensional simulations 

 

1. Introduction 

The thin layer of the Earth’s surface from the top of the vegetation canopy to the bottom of the 

weathering zone has been called the ‚Critical Zone‛ (CZ). The CZ is also subject to increasing 

anthropogenic perturbations due to human activities [1]. Hence, the monitoring, understanding, and 

modeling of the CZ are compelling research activities in Earth and environmental sciences during 

the 21st century [2]. 

Among the various topics investigated by the CZ science community, the soil-plant-atmosphere 

continuum (SPAC) is of interest, because it links aboveground and belowground systems. The 

interactions between these two systems address the water flow in soil and concurrent plant root 

water uptake [3], the influence of precipitation partitioning [4,5], the interaction between vegetation 

distribution, climate, and soil moisture spatial patterns [6], and the interaction between surface and 

subsurface processes at the catchment scale [7,8]. SPAC leads to the examination of the vadose zone 

(VZ), also called the unsaturated zone, which is the portion of the subsurface located above the 

groundwater table. Processes occurring in the VZ can strongly affect the quality of water and the 
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rate of aquifer recharge, which are critical issues for the use and management of groundwater. In the 

context of climate change [1], one of the key variables for understanding and modeling hydrological 

processes, as well as for developing predictive numerical tools to manage human activities 

(agricultural, industrial, domestic, etc.), is soil moisture [9]. 

Different methods may be used to estimate the soil moisture, which mainly include in situ 

methods [10], satellite-based data retrieval [11–13], and hydrological model based results [14]. The 

various available methods are generally combined to take advantage of their respective assets [15–17], as 

temporal-spatial scale issues and human-economic means dedicated to monitoring are important 

limiting factors. In the context of hydrology data assimilation, soil water is a key variable to be 

integrated into a model to predict the state and evolution of a system [16]. Hence, reliable in situ 

measurements are of considerable interest and have received increasing attention in recent studies. 

The issues of measurements and numerical models have been largely handled in the literature, 

which focuses on either technical sensor specifications, scale definitions and spatial averaging 

aspects, processes and parameters characterization, or data aggregation methods, and so on [17–20]. 

Nonetheless, as noticed by Vereecken et al. [16], improved measurement and modelling methods 

must be combined to advance the science of the vadose zone and catchment hydrology. In the 

present article, monitoring strategies established in the Strengbach catchment for local 

measurements of water matric potential are addressed. 

Our study is mainly focused on the integration of monitored data to access soil parameters, 

which can strongly affect the reliability of numerical simulations. To model water flow in the VZ, 

hydraulic parameters characterizing the soil, i.e., water retention curves and unsaturated hydraulic 

conductivity functions, must be defined [21]. To satisfy this characterization, direct measurement 

methods generally require soil samples followed by laboratory analysis. In situ measurements that 

include tension and pressure infiltrometers may be completed with the classic, undisturbed soil core 

methods in a laboratory [22]. The generalization of this approach to field scale applications is 

difficult, expensive and adaptation to modeling issues for flow and transport processes might 

require further discussion because of perturbation or the representativeness of small soil cores and 

scaling effects [23]. Hence, the development of indirect methods to derive soil hydraulic properties at 

the application scale of the model has gained popularity. On the one hand, parameter estimation 

using an inverse modeling approach based on flux data is often combined with measurements of 

matric potential, and this has become a common practice at the column scale [16,24]. On the other 

hand, only a limited number of studies use field scale measurements to inversely estimate soil 

hydraulic properties [16]. In their review paper, Vereecken et al. [16] argued that the selection of 

measurements is a critical point to provide physically reasonable estimates of hydraulic parameters. 

As a limiting factor, they also claimed that successful inversions require constraining parameters 

with additional information regarding measured matric potential, soil structural information, 

homogeneous soil assumptions, measured values of hydraulic properties, well-defined flow 

conditions with gravity-dominated flow, and known bottom boundary conditions. Therefore, 

inverse parameter estimation from field scale soil measurements under naturally occurring 

boundary conditions is a challenging issue, which has been moderately investigated. 

Nonetheless, a few (non-exhaustive list) examples are discussed here in the abovementioned 

context. The time series of water content and/or matric potential monitored at experimental sites has 

been reported by Jacques et al. [25], Ritter et al. [26,27], Ireson et al. [28], Wollschläger et al. [29], 

Scharnagl et al. [30], Andreasen et al. [31], Mathias et al. [32], Thoma et al. [33], Seki et al. [34], Singh 

et al. [35], Broca et al. [36], and Hawke and McConchie [37]. We retain from these studies the 

following information: (i) laboratory soil characterization (textural, structural, water retention 

curves) provides useful additional information; (ii) fluxes at the soil surface (rainfall and 

evapotranspiration) and, to some extent, at the bottom of the profile are of great importance; (iii) the 

application of Richards’ equation (RE) to model water flow in the VZ under natural conditions may 

lead to efficient results; (iv) a combination of input data may be sufficient for suitable parameter 

estimation; and (v) unsaturated hydraulic properties obtained through inverse parameter modeling 

are affected by a strong non-uniqueness of the inverse problem, which makes it difficult to find an 
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‚ideal‛ set of parameter values in natural field conditions. These points have been considered in the 

present article: RE has been used, different additional information about soil and hydraulic behavior 

has been integrated to constrain parameter estimation and a specific focus has been placed on 

boundary fluxes estimation. 

Another issue not yet addressed in this introduction is the frequency of measurements and their 

possible aggregation. Depending on the devices-site extension or treated subjects, measurement 

frequencies used in field monitoring are very disparate: 3 min [33], 5 min [37], 10 min [29,34], 15 min [37], 

30 min [28,31], 1–2 or 3 h [25,29,30,33,35], 1 day [28,32], or 1 week [28]. Data are sometimes averaged 

over time or space to satisfy the constraints of numerical tools [35], minimize temporal correlation [31], 

investigate variability [36], and synchronize the frequency of monitoring devices or facilitate global 

interpretation [30,32]. These various articles highlight the difficulty in addressing field 

measurements and establishing a generic monitoring scheme. This overview does not permit the 

establishment of a general rule to define the frequency of measurements, the spatial or temporal 

averaging strategy to be implemented for the handled subject, and the extension of the experimental 

site. In the present article, the issue of monitoring resolution and its connection to parameter 

estimation will be addressed. 

The scientific challenges resulting from climate and global change have raised the issue of data 

monitoring in many observatories, which are concerned with long-term observations and research 

in multi-compartment and multi-scale domains. The present study will describe an inverse 

parameters estimation approach based on measurements achieved under natural conditions at the 

experimental site of the Strengbach forested catchment. Hence, matric potential on a vertical profile 

and rainfall intensity were monitored and used to estimate the hydraulic properties of a 

heterogeneous forest soil. The originality and difficulty of this work relies on natural field conditions 

that have been considered. The second original point addresses the impact of the measurement 

frequency on the estimated parameters. To the best of our knowledge, this issue has not been 

addressed in this context. Hence, our purpose is to define a methodology that will take the best parts 

of different measurements obtained at the site to optimize its description in a potentially predictive 

numerical modeling approach. 

This study could also serve to generalize the monitoring strategy at other locations in the 

catchment and to progressively obtain a general characterization that could be helpful for numerical 

simulations of hydrological processes in a 3D domain. The introduction section provides general 

motivations to study hydrological processes that occur in the VZ. A brief overview of field studies 

focusing on soil water is proposed. The interest in monitoring soil water variables and the 

difficulties encountered in this domain are underlined throughout different previous articles. The 

second section of this paper is dedicated to the description of the site, materials used for in situ 

measurements, available soil properties based on sampling and laboratory analysis, and the 

numerical method used for parameter estimation. In Section 3, the dataset is described and 

parameter estimation based on inverse modeling is discussed. 

2. Materials and Methods 

2.1. Site Description and Monitoring Devices 

The present study was conducted in the forested Strengbach catchment, which is in the Vosges 

Mountains (northeastern France) (Figure 1A). This small watershed of 0.8 km2 has become a 

completely equipped environmental observatory with permanent sampling and measuring stations 

that have been in operation since 1986. This watershed is the study site of the Observatoire 

Hydro-Géochimique de l’Environnement (OHGE, http://ohge.unistra.fr) and belongs to the French 

and European networks of Critical Zone observatories. With altitudes ranging from 883 to 1146 

m (Figure 1B,C), the current climate is mountainous-oceanic with a mean annual rainfall of 1400 

mm and an average temperature of approximately 6 °C [38]. The site is well suited for 

multidisciplinary studies in hydrological, geochemical and forest research [39–42]. 
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Figure 1. (A) Regional map of the Vosges Massif and location of the Strengbach catchment. (B) 

Contour map of the Strengbach watershed. (C) Topographic map of the Strengbach watershed and 

location of the studied weathering profile (map from OHGE). (D) Vertical profile in the experimental 

spruce parcel (blue star in Figure 1C) where sensors have been installed. 

The monitoring devices have been installed in a 100-year-old spruce experimental stand located 

in the northern upper portion of the Strengbach catchment (Figure 1C,D, ALT: 1079 m; COORD: 

48°12.963’ N and 7°11.928’ E). This parcel is representative of a large part of the domain, which is 

90% covered by forest, which consists of 80% spruce and 20% beech. For hydrological 

instrumentation, a pit of approximately 1.30 m in depth and 0.70 m in width has been implemented 

between the trees during September 2010. Several probes, 5 Watermark sensors including a 

Campbell 257 for matric potential, and 4 Campbell 107 probes for temperature (the deeper location 

was not equipped) were horizontally inserted in the wall of the pit at five different depths (5, 16, 42, 

71, and 116 cm). Automatic data acquisition is obtained by the 9 sensors using a Campbell Scientific® 

CR1000 datalogger with a measurement frequency of 10 min, according to other devices monitored 

in the catchment. All the connecting wires were protected with a 40-mm flexible plastic tube to avoid 

instrumentation damage. After the in situ installation of these devices, the hole was refilled trying to 

maintain the natural order of the different layers of soil as close as possible to reduce soil 

disturbance. 

The Watermark sensor is a solid-state, electrical resistance sensing device with a granular 

matrix that estimates soil water potential between 0 and −2 bars. The matric potential (MP) values 

are calculated from resistance values (kOhm) using the following equations [43–45]: 
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where MP is the matric potential (kPa), R21 is the resistance at 21 °C, Rs is the measured resistance, 

and   21
S

dT T  Ts are the soil temperature. After preliminary tests conducted in the laboratory, the 

previous linear calibration relationship proposed by the manufacturer (Equation (1)) appeared to be 

well suited compared to the proposed nonlinear calibration relationship. 

The time series of precipitation, air temperature, relative humidity, wind speed, and solar 

radiation were obtained from a meteorological station located in a nearby clearing. These climatic 

variables monitored every 10 min were used to calculate potential evapotranspiration, which has 

been previously underlined as an important parameter controlling the applied boundary flux. The 
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data validation process of the pressure sensors led to discarded records for depths of 5 cm and 16 cm 

due to aberrant measurements. In this upper part of the profile and during different periods 

between 2011 and 2016, the pressure measurements were in contradiction with the monitored 

incoming flux; for example, these sensors show decreasing pressure heads while the soil was 

receiving rainwater. Despite the great focus given to preparation and field installation, this problem 

can be explained by a bad soil to sensor contact when positioning the probes and/or by disturbances 

related to the climatic conditions (such as ground freezing). 

2.2. Vertical Profile and Soil Properties 

During the probe installation operations, many soil samples were collected and subjected to 

laboratory analysis. Each sample was characterized in the following manner: 

 The hydraulic retention curve was determined (soil moisture as a function of pressure head); 

 The saturated hydraulic conductivity (Ksat) was estimated through 9 constant head permeability 

tests (Table 1). The measures concerning the layer between −15 cm and −20 cm were discarded 

due to their abnormally large values and large standard deviation. For the same reason the first 

measure of each sample was discarded; 

 The composition of the soil was determined through a laser diffraction particle sizing technique 

(Figure 2). The soil was mainly composed of sand (70–80%). A strong gradient of porosity can 

be observed over the first 15 cm, which is probably related to the richness of organic matter in 

this soil layer (Figure 2C). 

 

Figure 2. (A) Undisturbed soil cylinder samplers. (B) Soil composition profile; yellow stars 

correspond to sampling points and (C) porosity profile obtained through laboratory analysis of the 

field samples. These values are used for the ROSETTA pedotransfer function. The red lines in (C) 

represent the interfaces between the three layers of the adopted soil model. 

Samples were obtained from nine depths (Figure 2A); nonetheless, due to the restriction in 

operating devices and the complexity of parameter estimation under natural conditions, the domain 

discretization was simplified. Previous investigations in the catchment and local sampling at the 

bottom of the pit with a soil auger led to the consideration of a vertical profile of 150 cm depth. In 

addition, the soil composition (Figure 2B) and porosity profile (Figure 2C) may suggest simplifying 

the domain by considering two zones of approximately 50 cm on each side of the transition zone. 

Since two sensors have been installed at 71 and 116 cm, and to bring more flexibility to our inverse 

parameter estimation procedure, we have increased the number of degrees of freedom by dividing 

this deeper area into two zones. Finally, the horizons are placed halfway between the three lowest 

sensors (depths: 42 cm, 71 cm, and 116 cm). The first layer is from the soil surface to 56 cm, the 
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second layer is from 56 cm to 93 cm, and the third layer is from 93 cm to 150 cm. The data from the 

nine depths were fitted together to obtain the parameters of the three layers. 

2.3. Numerical Models 

2.3.1. Potential and Actual Evapotranspiration 

The estimation of the potential evapotranspiration (PET) is important for modeling the water 

flux at the soil surface [46,47]. Following Biron [48], the computation of PET for our forested 

catchment is based on the Penman model and is achieved according to the procedure given by 

Brochet and Gerbier [49] (PETBG in Equation (2)). Previous studies have shown that this approach 

considers the specificities of the experimental site, especially for the computation of the net radiation 

in the radiative term (first component of the r.h.s. term in Equation (2)) and the expression of the 

advective term (second component of the r.h.s. term in Equation (2)). Hence, to remain consistent 

with previous studies of the Strengbach catchment, the following equation was adopted: 

   
 n

BG 10 e

R1
PET 0.26 1 0.4 u

59

 
     

     
 (2) 

PETBG is given in mm·d−1,   is the derivative of saturated vapor pressure versus temperature 

(mbar·K−1) expressed as the air temperature Ta (°C) (see Equation (3)), Rn is the net radiation at the 

canopy surface (cal·cm−2·d−1), e  is the saturation vapor pressure deficit (mbar) expressed at the air 

temperature Ta (°C) and the relative humidity Hr (%) (see Equation (4)),   is the psychrometric 

constant (0.66 mbar·K−1) and U10 is the adjusted wind speed at 10 m height (m·s−1). 
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Originally, the estimation of net radiation was based on global radiation measurements and a 

table of sunshine duration for potential corrections. Hence, the previous equations (Equations (2)–(4)) 

have allowed for the computation of daily PETBG; since the data are available at a 10-min time step, 

net radiation is cumulated every hour and other variables were averaged to obtain hourly PETBG. 

Notice that the cumulated values of hourly PETBG are in concordance with daily or weekly 

estimations. Between January 2011 and December 2016, the amount of rainfall reached 1228 

mm/year, and the amount of PETBG is 446 mm/year. 

If PET represents the maximal evapotranspiration under well-watered conditions, the actual 

evapotranspiration (AET) considers the hydric stress and precipitation intercepted and evaporated 

by conifer foliage during different seasons. Using BILJOU© software 

(https://appgeodb.nancy.inra.fr/biljou/) [50], the AET was calculated as follows: 

  AET Tr In SEvap  (5) 

where Tr refers to transpiration by the canopy (mm·d−1), In is the interception (mm·d−1) and SEvap is 

the soil and understored evaporation (mm·d−1). 

Climatic variables such as PET and recorded precipitations are provided to BILJOU as input 

data, together with the site characterizing parameters, which concern canopy, plant interception, soil 

evaporation and changing of the seasons. The three contributions to AET in Equation (5) are partly 

driven by the maximum leaf area index (LAI), which is a dimensionless quantity that characterizes 

plant canopies and is defined as the projected leaf area per unit ground area (in this study LAI = 7). 

AET is calculated from BILJOU using a daily time step. Runoff has never been observed on the 

experimental parcel due to the vegetation cover. Therefore, considering that this type of surface–

subsurface interaction in the model is not required, the application of BILJOU software is possible. 
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Between January 2011 and December 2016, 12.1% of the rainfall amount was intercepted from the 

canopy, 13.5% returned to the air by transpiration and 1.4% was evaporated from the soil. 

Approximating the infiltrated water flux as the difference between rainfall and AET, it follows that 

73% (896.7 mm) of the precipitation (1228 mm) infiltrated the soil. 

2.3.2. Vadose Zone Model 

The adopted hydrological model is composed of the Richards’ Equation (6), which describes 

water movement in a variably saturated, porous medium. Furthermore, the standard Mualem-van 

Genuchten model (Equations (7) and (8)) describes the interdependencies between the pressure head 

(h), water content (θ), and relative conductivity (Kr) [51,52]: 
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where S is the storage coefficient [L−1], Se is the effective saturation [-], θ is the volumetric water 

content [L3·L−3], θs is the saturated water content [L3·L−3], θr is the residual water content [L3·L−3], h is 

the pressure head [L], K is the hydraulic conductivity [L·T−1], z is the vertical distance positive 

downward [L], t is the time [T], α is a parameter related to the mean pore size [L−1], n is a parameter 

reflecting the uniformity of the pore size distribution [-], m is a parameter defined by ( m 1 1 n  ) [-] 

[51], Ksat is the saturated hydraulic conductivity [L·T−1], and L is a parameter related to the tortuosity 

chosen here equal to 0.5 [-] [52]. 

A set of 5 parameters (Ksat, θs, θr, n, α) is needed for each layer of the considered domain. The 

hydraulic retention curves described in Section 2.2 were fitted to estimate the 5 parameters for a 

3-layer profile (Table 1). In each layer, data coming from the sampling analyses of the 9 layers were 

aggregated to correspond to the 3 layers of the discretized domain. A second estimation of the 

hydrodynamic parameters was obtained from soil granulometry and bulk density through the 

ROSETTA pedotransfer function [53]. 

Table 1. Estimation of hydrodynamic parameters obtained through fitting the hydraulic retention 

curves and ROSETTA pedotransfer function. The Ksat value of the first parameter set was obtained 

using the constant head permeability test. 

Layer 

Retention Curve Fit ROSETTA 

Ksat 

(cm/day) 

θr 

(-) 

θs 

(-) 

α 

(1/cm) 

n 

(-) 

Ksat 

(cm/day) 

θr 

(-) 

θs 

(-) 

α 

(1/cm) 

n 

(-) 

1 805 0.2 0.5 0.08 1.60 202 0.04 0.48 0.034 1.46 

2 843 0.2 0.5 0.10 1.40 213 0.04 0.41 0.041 1.92 

3 1616 0.0 0.5 0.40 1.15 262 0.04 0.42 0.041 1.96 

2.4. Numerical Simulations 

Simulations for the years 2012 to 2016 were run using ‚WaMoS-IPE-1D‛ (water movement in 

soil–inverse parameters estimation–1-dimensional). Numerical methods used in this Fortran 

computational code to solve the RE (Equation (6)) consist of the following: (i) a finite element 

method for spatial discretization; (ii) backward Euler scheme (full implicit) for temporal 

approximation; (iii) variable switching method with modified Picard or Newton methods for the 
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linearization strategy [54]; (iv) heuristic time stepping scheme based on the number of iterations for 

progression over time [55]; (v) a switching, flux-controlled procedure for the management of the top 

boundary condition (to preserve physical results) [56]; and (vi) Levenberg-Marquardt iterative 

algorithm to solve the inverse problem. A complete description of the code can be found in Lehmann 

and Ackerer [57]. A uniform mesh with 1 cm node spacing has been used for the spatial 

discretization of the domain. An initial pressure head profile was adopted as follows. High suction 

was initially assigned to the soil surface to facilitate water infiltration (htop = pF 4). The initial 

pressure head profile is then obtained through the interpolation of the values measured at −42 cm, 

−71 cm, and −116 cm. Each simulation was subjected to a sufficiently long warm-up period so that no 

impact of the initial pressure head profile on parameter estimation was observed. An imposed flux 

boundary condition (BC) was applied to the soil surface, which was combined with a free drainage 

bottom BC. 

A preliminary work has been achieved to validate the flux BC, which results from a 

combination of rainfall intensity and AET. Despite the simulated period, consideration of the raw 

rainfall data collected at the nearby meteorological weather station led to a systematic 

overestimation of humidity in the upper part of the soil profile. On the other hand, the AET was not 

subject to such an impact, especially during the dry period. Among several tested combinations, the 

most efficient and acceptable solution to construct the BC consisted of retaining 80% of precipitation 

data and subtracting the total amount of AET. In other words, the precipitation data likely had to be 

adjusted because of its required input data spatial adaptation for the specific location of the vertical 

profile. Simultaneously, the BILJOU parametrization, which was used in previous unpublished 

studies dealing with water balance estimation, was considered reliable, and therefore, it has been 

retained to estimate AET. Simulations were run using hourly, daily, and weekly BC frequencies. The 

BILJOU software estimates daily AET, and the weekly AET was obtained by cumulating daily AET. 

We assumed that the AET followed the same distribution over the course of a day as the PET, and 

consequently, the hourly AET was obtained as follows: 

h
h day

day

PET
AET AET

PET
  (9) 

2.5. Strategies Investigated for the Model Calibration 

The model was calibrated minimizing an objective function, which is defined as the square 

difference between pressure head measured values (hi) and simulated values  i
ĥ : 

 
invN 2

i i
i 1

ˆO h h


   (10) 

where Ninv is the amount of data (3 times the number of hourly, daily or weekly observation times) 

used for the inverse problem. 

As previously stated, the iterative solution to the inverse problem was obtained by applying the 

Levenberg-Marquardt algorithm [58]. The effectiveness of the calibrations was evaluated through 

the objective functions value and information indicators such as the Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) [59,60]. The AIC and BIC provide a measure of the 

relative quality of a model for a given set of data, which considers the number of data, number of 

model parameters, and the value of the objective function: 

p inv inv
AIC=2N +N Log(O/N )  (11) 

p inv inv inv
BIC=N Log(N )+N Log(O/N )  (12) 

where Np is the amount of parameters, Ninv is the amount of data used in the inverse problem, and O 

is the objective function value after minimization. The smaller the criterion value, the better the 

calibration. 
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Our parameter estimation strategy involved the comparison of the effects of data monitoring 

frequencies, calibration periods, and initial parameter descriptions for the calibrated parameters. 

Hence, the model was calibrated with data from two periods. The first period, which was from June 

to September 2012, represents an average annual sequence. The second period, which was from 

April to December 2015, constitutes an unusual sequence that includes a dry period with 

low-pressure values in the profile. The inverse simulations related to the first and second periods 

were preceded by a warm-up period of 5 months and 3 months, respectively, to reduce the potential 

impacts of errors in initial conditions. 

The model was calibrated with pressure head data presenting hourly, daily, or weekly 

frequencies (Figure 3). Since the collected observation data have a 10-min frequency, the required 

frequency was obtained through virtual sampling, i.e., by choosing one data point every hour, every 

day, or every week, without averaging the physical variables. The temporal discretization of BC 

leads to equivalent flux conditions, despite the time step size, i.e., the weekly or daily BC correspond 

to the accumulation of the hourly BC. As a starting point, several sets of parameters were tested for 

the optimization. Neither the parameters obtained through laboratory measurements nor the 

parameters obtained through the ROSETTA pedotransfer function led to a good match between 

measured and computed pressures. The best starting set of parameters was found empirically and is 

closer to the ROSETTA parameters than to the laboratory parameters (Table 2). The calibration 

process involved parameters Ksat, n, and α. Parameters θs and θr have empirically determined 

assigned values due to the difficulties in their optimization and to decrease the problems’ degrees of 

freedom. 

Table 2. Initial values of the hydraulic parameter estimation procedure using inverse modeling. 

Layer 
Ksat 

(cm/day) 

θr 

(-) 

θs 

(-) 

α 

(1/cm) 

n 

(-) 

1 211.989 0.044 0.510 0.014 1.067 

2 605.222 0.043 0.410 0.182 1.285 

3 3.095 0.043 0.420 0.041 1.975 

 

Figure 3. Conceptual scheme of the modeling approach. The data frequency changes at different 

steps during the process. The initial measured data and final simulated data have a 10-min time step. 

However, throughout the process, data with hourly, daily, and weekly time steps are used. The hmes 
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(hsim) is measured (simulated) pressure head, T °C is temperature, rain is rainfall, AET is the 

calculated actual evapotranspiration, Ksat is the saturated hydraulic conductivity, α and n are 

parameters for the Mualem-van Genuchten model, DF is the drained flux at −150 cm, SL is the 

saturation level, MBE is the mean bias error, RMSE is the root mean square error, and ME refers to 

the modeling efficiency. 

A global description of the modeling approach is summarized in Figure 3. This figure depicts 

the various steps, which include preparation of the data according to the selected frequency, 

constitution of the top boundary condition, estimation of parameters during the two calibration 

periods, direct simulations over the complete period, and analysis of results using statistical 

indicators. 

3. Results 

3.1. Parameters 

The parameters optimized using hourly, daily, and weekly pressure head data for the periods 

from June to September 2012 and from April to December 2015 are shown in Table 3. The standard 

error (SE) for each estimated parameter was computed as follows: 
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where J is the Jacobian matrix whose coefficients are the derivatives of predicted pressure head with 

respect to model parameters [57,61]. 

Table 3. Optimized parameters using hourly, daily, and weekly pressure head data. Data are 

selected from two periods: from June to September 2012 and from April to December 2015. The 

adopted values of θs and θr are shown in Table 1. 

Calibration 

Period 

Data 

Frequency 
Layer 

Ksat 

(cm/day) 

* SE 

(±) 

α 

(1/cm) 

* SE 

(±) 

n 

(-) 

* SE 

(±) 

2012 hourly 1 1463 366 0.018 0.002 1.040 0.001 

2012 hourly 2 865 455 0.106 0.017 2.976 0.202 

2012 hourly 3 6 7 0.075 0.022 2.661 1.107 

2012 daily 1 168 65 0.012 0.002 1.039 0.004 

2012 daily 2 3321 4836 0.180 0.077 2.617 0.549 

2012 daily 3 1 3 0.043 0.028 2.335 3.265 

2012 weekly 1 1144 36220 0.003 0.001 1.031 0.007 

2012 weekly 2 337 436 0.213 0.060 1.465 0.114 

2012 weekly 3 3 7 0.041 0.022 2.631 6.437 

2015 hourly 1 275 9 0.0111 0.0002 1.083 0.001 

2015 hourly 2 4970 392 0.1353 0.0023 1.580 0.008 

2015 hourly 3 148 142 0.0307 0.0015 1.713 0.009 

2015 daily 1 117 83 0.0050 0.0004 1.119 0.004 

2015 daily 2 2394 787 0.1193 0.0103 1.737 0.053 

2015 daily 3 730 665 0.0649 0.0147 1.532 0.026 

2015 weekly 1 153 72 0.0105 0.0021 1.077 0.010 

2015 weekly 2 4589 3016 0.1210 0.0149 1.576 0.062 

2015 weekly 3 973 1405 0.0482 0.0153 1.836 0.082 

* Standard error. 

The optimizations using the 2012 data result in Ksat values with very large SE, which means that 

this parameter has little influence on pressure head. Generally, the saturated hydraulic conductivity 

is known to be a very sensitive parameter [62,63]. Here, the large SE could be related to the lack of 
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dynamics in the pressure head values at depths of 71 cm and 116 cm, as well as to the small pressure 

variations during 2012. The 2015 optimized values also have quite a large SE value, but a value 

smaller than the 2012 SE. The optimized Ksat values are very large compared to the values estimated 

by the ROSETTA pedotransfer function and constant head permeability test (Table 1). Moreover, if 

previously estimated values are larger for the third layer, optimized values are larger for the first or 

second layer. This may be due to a higher organic matter content. The ‚n‛ optimized values for the 

first layers are typical of clay-rich soils. 

3.2. Simulation Quality Estimation 

According to the AIC and BIC criteria (Table 4), the best calibrations are those performed using 

weekly data, followed by daily and hourly data. Since the best statistical criteria values are obtained 

from the calibrations using the smaller dataset, this selection based on AIC and BIC criteria could be 

influenced by the number of data involved in the inverse optimizations. Normally, AIC and BIC 

consider the amount of data, but the applied weight was not sufficient. Similarly, the calibrations 

using the 2012 data obtain better results than those using the 2015 data, which are performed over a 

longer period. The root mean square error (RMSE), which is defined in Equation (14), has also been 

computed to compare the different calibrations. The RMSE values reported in Table 4 corroborate 

previous conclusions that result from the AIC and BIC criteria. 
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where Ninv refers to the number of pressure head measurements used in the inverse parameters 

estimation (Ninv = number of data in Table 4) and Ndir refers to the number of pressure head 

measurements used for the comparison of direct problem solutions. 

Table 4. Parameters characterizing the effectiveness of calibrations. 

Calibration 

Period 

Data 

Frequency 

Number 

of Data 

Objective 

Function 
1 RMSE 2 AIC 3 BIC 

2012 hourly 8568 1.71 × 107 44.7 28,299.4 28,316.8 

2012 daily 357 1.20 × 106 57.9 1276.6 1281.6 

2012 weekly 51 1.03 × 105 44.9 186.5 183.8 

2015 hourly 19,659 4.00 × 108 143 84,721.9 84,742.5 

2015 daily 822 1.75 × 107 146 3574.8 3583.0 

2015 weekly 117 2.34 × 106 142 521.3 521.9 
1 Root mean square error; 2 Akaike information criterion; 3 Bayesian information criterion. 

To evaluate the effectiveness of the direct simulations, 3 indicators have been computed: the 

RMSE (Equation (14)), mean bias error (MBE Equation (15)), and model efficiency (ME Equation 

(16)). These indicators were calculated from simulated pressure head values and observed values 

with a resolution of 10 min over the entire 2012–2016 period. These values are presented in Table 5 

with the goal of identifying the impact of the different calibrations (Table 3) on the predictive 

simulations [54] [64]. 
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ĥ h

MBE
N








 (15) 



Geosciences 2018, 8, x FOR PEER REVIEW  12 of 23 

 

 

 

dir

Lk

k

N 2

i i
i 1

N3 2

i L
k 1 i 1
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where Ndir refers to the number of pressure head measurements used for the comparison of direct 

problem solutions (Ndir = 3 × 227,371 = 628,113), 
kL

h  refers to the mean observed pressure head in 

layer Lk (k = 1, 2 or 3), and NLk refers to the number of values originating from layer Lk. Notice that 

the RMSE in Table 5 was computed using Ndir instead of Ninv. The desired value for ME is one, 

whereas the desired values for MBE and MRSE are zero. The modeling efficiency, ME, is a global 

model performance measure that provides the ratio of deviations regarding the measured values. It 

compares the square difference between the modelled and measured heads (numerator) with the 

square difference between the average measured values and the measured values (denominator). 

The RMSE statistical measure is an average error obtained through a term by term comparison of the 

square difference between the simulated and observed values. Hence, errors are cumulated using 

RMSE, whereas the MBE value is a relative measure that distinguishes between under and 

overestimation. MBE is positive (resp. negative) when the computed values are greater (resp. 

smaller) on average than the measurements. 

Table 5. Statistical measures for direct simulations over the period from 2012 to 2016 using eight 

different sets of parameters (see Figure 3). All the sets of parameters were obtained through 

calibration except for the ROSETTA parameters set and laboratory parameters set. The statistical 

measures are related to the entire profile, and those referring to each layer are provided as 

supplementary material. 

Direct Simulation 1 MBE 2 RMSE 3 ME 

2012 hourly calibration −13.82 201.42 −0.38 

2012 daily calibration −37.83 140.80 0.33 

2012 weekly calibration 94.81 903.92 −26.76 

2015 hourly calibration 50.79 135.72 0.37 

2015 daily calibration 28.51 130.46 0.42 

2015 weekly calibration 52.31 136.36 0.37 

ROSETTA parameters  5.83 163.05 0.10 

Laboratory parameters  −52.34 178.75 −0.09 
1 Mean bias error 2 root mean square error 3 model efficiency. 

According to the RMSE and ME, the best model performances over the period of 2012–2016 are 

those using the 2015 calibrations. This could be related to the fact that in 2015, pressure head 

measures reached high negative values that significantly impacted the RMSE. The calibration using 

daily sampled data resulted in simulations with a slightly smaller RMSE and a larger ME than other 

sampling frequencies. The model predictions obtained using the set of parameters from the 

ROSETTA pedotransfer function and the retention curve fit (laboratory parameters) (Table 1) show 

RMSE values of 163 and 179, respectively. All sets of calibrated parameters result in smaller RMSE 

values, except for the parameter set optimized using the 2012 weekly and hourly data. 

According to the statistical indicators (AIC, BIC, RMSE), the 2012 optimizations are better than 

those from 2015, but at the same time, the best direct simulations over the 2012–2016 period are those 

performed using the 2015 calibrated parameters (RMSE, ME). Thus, the model calibration is useless 

if the calibration period is not carefully chosen. In conclusion, the best calibrations are those 

performed using the 2015 pressure head data with a daily frequency. Nevertheless, since the 

difference in RMSE between the results of daily sampled calibration and weekly sampled calibration 

is modest (less than 8%), weekly sampling could result in good modeling in those cases where an 

optimization of financial and human resources is needed. The parameters estimated by ROSETTA result 

in a quite a good model prediction, in which there is only a 25% difference in the RMSE compared to the 
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best parameters set of the 2015 calibration. Concerning the MBE, the best parameters set is provided by 

ROSETTA, followed by the results of the 2012 calibration using the hourly data and by the 2015 

calibration using the daily data. Parameter estimation achieved for the 2015 calibration period leads to a 

systematic overestimation of the results compared to the measurements. This point has not been 

observed for the results using the parameters sets from the 2012 calibration period. Finally, the 

parameters set derived from laboratory tests are not suitable for a direct application in numerical code. 

This result agrees with previous studies [26,27,29,30]; therefore, it is clearly advised to improve any 

experimental parameter estimation by using ROSETTA or an inverse method. 

 

3.3. Pressure Head 

The sampling frequency of the 2015 calibration data has little impact on the simulations of the 

2012–2016 pressure head, which has also been deduced from the RMSE (Figures 4 and 5). The peaks 

are quite well described, but an offset can be observed at the baseline, especially at the 71 cm and 116 

cm depths (Figure 5). Moreover, the lower layers present a dynamic that is influenced by the 

boundary conditions is not present in the observed values. 

 
(a) 

 
(b) 



Geosciences 2018, 8, x FOR PEER REVIEW  14 of 23 

 

 
(c) 

Figure 4. Pressure head values modeled for the period from May 2012 to September 2016. The model 

is calibrated using hourly, daily, and weekly data for the period from June to September 2012 

(limited by vertical straight lines): pressure head values at depths of 42 cm (a), 71 cm (b) and 116 cm 

(c). 
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(b) 
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Figure 5. Pressure head values modeled for the period from May 2012 to September 2016. The model 

is calibrated using hourly, daily, and weekly data for the period from April to December 2015 

(limited by vertical straight lines in the picture): pressure head values at depths of 42 cm (a), 71 cm 

(b), and 116 cm (c). 

Simulations using 2012 calibrations do not show the offset observed when using the 2015 

calibrations (Figure 4), but the peaks are not well reproduced. The −42 cm peaks are overestimated 

by the hourly and weekly calibrations, and the −71 cm and −116 cm peaks are underestimated by all 

calibrations. This may be related to the lack of dynamic and large depressions in the 2012 calibration 

data set. A strong impact of the 2012 calibration data frequency is seen for the simulated pressure 

head at a depth of 42 cm. No clear trend can be identified, but the weekly calibration leads to very 

large depressions (−12,000 cm), whereas the daily and hourly calibrations show smaller depressions 

(−1000 cm and −3000 cm). From this point of view, the numerical results obtained with the 

parameters coming from the 2012 weekly calibration are less realistic and quite different compared 

to the measurements. 

The lowest impact of sample frequency on the calibration, which was observed for the 2015 

data, may be related to higher variability in this dataset in the sense of higher information content. A 

less variable dataset is more likely influenced by the sample frequency, since it is more affected by 

each information loss. 

3.4. Drained Flux 

Modeling of the drained water flux at 150 cm depth is useful for evaluating aquifer recharge 

and water balance. Cumulative drained fluxes are strictly controlled by infiltration fluxes and thus 

by the boundary conditions. The cumulative drained flux curve is almost superimposed onto the 

cumulative boundary condition at the soils surface (Figure 6a). There was little calibration impact 

observed on the cumulative drained flux. Only the 2012 weekly calibration results in a deviated 

curve, but this calibration has the largest uncertainty on the parameters (Table 3). Comparing the 

cumulative drained flux to the imposed top boundary condition shows that the average relative 

error is less than 1% using the 2015 calibrated parameters; this average relative difference is greater 

for the 2012 calibrated parameters with a maximum of over 15% for the weekly frequency. An 

impact can be noticed on the instant drained flux, which is not on its dynamic but on its peak 

amplitude. The 2015 calibrations show approximately 50% higher peaks, and there is almost no 

calibration impact of the sampling frequency. A larger sampling frequency impact is observed using 

the 2012 calibrations, which shows higher peaks for the hourly sampling. 
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Figure 6. Modeled cumulative (a) and daily (b and c) drained flux at the depth of 150 cm for the 

period from May 2012 to September 2016. The model is calibrated using hourly, daily, and weekly 

data for the periods from April to December 2015 (b) and from June to September 2012 (c) 

(calibration period is limited by vertical straight lines on each picture). 

The modeling of drained flux is therefore hardly influenced by the sampling frequency of the 

calibration data or the choice of the calibration period. The influence of the calibration on the drained 

flux is relevant only for peak heights. As previously observed for the pressure head, the 2015 

calibrations are less influenced by the sampling frequency due to their higher effectiveness. 

3.5. Water Saturation  
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The water saturation of each layer, which is computed using Equation (17), provides 

information about the water quantity contained in the soil porosity. The saturation level for each 

layer is estimated as follows: 
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where SLLj refers to the saturation level of the jth layer [-] and NnLj is the number of nodes in layer j. 

Small effects from the sampling frequency on the saturation level simulations are seen for the 

2015 calibrations (Figure 7a). Only daily sampling provides a larger saturation level than the hourly 

and weekly sampling for a third layer. 

 
(a) 

 
(b) 

Figure 7. Saturation level modeled for the period from May 2012 to September 2016 for a three-layer 

model. The model is calibrated using hourly, daily and weekly data for the periods from April to 

December 2015 (a) and from June to September 2012 (b) (calibration period is limited by vertical 

straight lines on each picture). 

A larger effect is observed for the 2012 calibrations, except for the first layer saturation level 

(Figure 7b). Weekly sampling provides a larger saturation level for the second layer. The third layer 

saturation level increases passing from hourly to weekly and back to daily sampling. 

Both 2012 and 2015 calibrations result in an unlikely, very humid first layer; its mean saturation 

is greater than 95% during the entire period. This is probably related to the clay-like small ‚n‛ values 

of the first layer obtained for all calibrations. Inversely, the mean saturation level of layers 2 and 3 

are smaller than 25% for the 2015 calibration period due to the larger values of ‚n‛ and Ksat. 
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4. Conclusions 

Soil hydraulic parameters are of great importance in the numerical modeling of vadose zone 

processes. Their measurement or determination throughout laboratory experiments or in situ tests is 

usually invasive, destructive, and often inappropriate for the model definition and scales. Since the 

simulated pressure heads at different depths agree well with the monitored data over a period of 

five years, this study demonstrates that the inverse modeling approach provides an interesting and 

efficient way to assess soil parameters. 

The first step to emphasize is the great attention dedicated to boundary conditions, which is 

suggested in the literature. Based on this, we have deduced that the BILJOU software provides a 

good estimation of the AET. Precipitation monitored near the soil profile should be reduced to 80% 

to avoid overestimation of the soil humidity. This difficulty, which is potentially linked to the 

topography and aerodynamic effects, has also been mentioned in the literature [34]. Contrary to 

other experimental sites where the bottom boundary condition is also monitored, we assumed a free 

drainage condition. 

Sample analyses allowed us to propose a consistent discretization of the domain in 3 layers. 

Even if the first two MP sensors could not be included in our inverse modeling approach due to 

incoherent results in regards to the top BC, data from the 3 Campbell 257 (Watermark) devices at 

depths of 42 cm, 71 cm, and 116 cm have been stored every 10 min between 2011 and 2016. 

Temperature correction has been implemented to prevent perturbations, which was as advised in 

the instruction manual and previous studies [43,64]. Because of its internal gypsum tablet, the sensor 

was not sensitive to the soil bulk electroconductivity. This type of sensor generally required 

polynomial calibration relationships or better still, field calibration curves [64]. The accuracy of the 

measurement can also be correlated to the soil saturation level, which suggests adopting various 

models for the calibration curves [65]. Nonetheless, Watermark users generally investigated a first 

relationship to estimate the MP and then converted its value into water content through a 

logarithmic equation or a power function (van Genuchten model). Our approach was quite different 

because no other control measurements were available in the vertical profile, which prevented field 

calibration. In addition, the use of a quadratic function was not successful. Finally, the 

van-Genuchten model was implied for the inverse parameters estimation instead of into the sensor 

calibration. In the context of field studies in natural (not controlled) environment, the results 

depicted in this paper clearly illustrated both the originality and efficiency of our approach. 

McCann et al. [45] and Thompson et al. [65] discussed the limitations displayed by the 

Watermark sensor in case of rapidly drying media or very moist soil. Varble and Chávez [64] also 

suggested that the energy state of the water into the sensor must equilibrate with that of the 

surrounding soil. The higher discrepancy between measurements and simulations in the deeper 

layers, which have a higher content of sand and could drain water faster, may be explained in the 

abovementioned point. In addition, the saturation level of the deeper layers is less. In fact, more 

fluctuations were observed in the numerical results because the sensors have perhaps encountered 

limitations due to the dynamic effect. Thompson et al. [65] indicated that no clear advantage was 

obtained by using continuously collected data (2 times per hour) compared to using single daily data 

points. This remark noted for calibration investigations joins the results of our study on the impact of 

the measurement frequency used in the inverse problem. Hydraulic parameters obtained using daily 

sampled data led to very accurate results. Nevertheless, these authors also claimed to include 

dynamic datasets because of the constantly changing field conditions. As shown by comparing two 

calibration periods, our results agree with the necessity of selecting measurements that can reflect 

the range of variations in the field conditions. 

Concerning the parameters estimation using the inverse modeling approach, our objective was 

to use the MP measurements to estimate 3 hydraulic parameters of the Mualem-van Genuchten 

model (Ksat, n, α) for each of the three layers. This goal is consistent with what appeared in the 

literature (see [66–69]). Estimating the water content at saturation would have required the collection 

of additional data, which was done in other studies [70–72]. Nonetheless, we underline that the 
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present exercise was challenging due to a range of variations in the MP measurements, which were 

quite extensive compared to the cases generally presented that dealt with (field) data monitoring. 

The best direct simulation over the 2012–2016 period is the one performed using the 2015 daily 

calibrated parameters (according to RMSE and ME), although the best parameter optimizations 

(according to AIC, BIC, and RMSE) are those related to the 2012 period. The 2015 daily calibrated 

parameters more efficiently reproduce the observed dynamic and extreme events. Nonetheless, the 

means bias errors indicate that the ROSETTA computer program provides a parameter set that 

allows for the efficient description of the trend of measured data. 

In this study, the importance of the choice of calibration period clearly emerges. A dataset with 

high variability is suitable, and should include a recording frequency apt to describe the dynamic of 

the measured physical variables. The 2015 pressure head measurements show high variability and 

thus bring ‚more information‛ to the calibration process. Consequently, the model calibrations 

performed using 2015 data are more stable and less influenced by the frequency of data sampling. In 

contrast, the 2012 data set shows low variability, model calibrations performed using 2012 data are 

heavily influenced by the frequency of data sampling, and optimized parameters show larger errors. 

An interesting issue in this study is that once a good period of calibration is chosen, the 

influence of the sampling frequency is minor, at least under our conditions. This means that data 

acquisition using a weekly frequency could be sufficient to estimate the drainage flux and thus the 

aquifer recharge. If this issue is confirmed, weekly sampling could allow for an optimization of financial 

and human resources in the environmental observatories. To add to what has been stated previously, 

diversifying the sensors is certainly an interesting means for accessing other parameters or monitoring 

other sites. 

Finally, several reasons may explain the discrepancy between the measured and simulated MP: 

(i) Water content values have not been monitored, which probably left uncertainty in the soil 

hydraulic properties; (ii) Hysteresis has been omitted in this study, whereas the wetting and drying 

processes are followed by one another in the field environment; (iii) The bottom boundary condition 

was not monitored and the modeling approach contained part of the uncertainty; and (iv) Since the 

rainfall measurement was not determined directly near the vertical profile, the top boundary 

condition has been estimated as the difference between 80% rainfall and the AET obtained using the 

BILJOU software. The results presented in this article will be the basis for future investigations, and 

the abovementioned points could improve our modeling of the catchment. 
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