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Figure 1: Two different animated scenarios containing jumps and sliding of the virtual character are synthesized from two
different vocal sound sequences and procedurally synchronized with them. Each short animated event is associated to the
sound "Tick", "Pop" or "Chhh". Our approach automatically detect these specific sounds from the recorded soundtrack and

triggers the associated animation.

ABSTRACT

We propose a method leveraging the naturally time-related ex-
pressivity of our voice to control an animation composed of a set
of short events. The user records itself mimicking onomatopoeia
sounds such as "Tick", "Pop", or "Chhh" which are associated with
specific animation events. The recorded soundtrack is automati-
cally analyzed to extract every instant and types of sounds. We
finally synthesize an animation where each event type and timing
correspond with the soundtrack. In addition to being a natural way
to control animation timing, we demonstrate that multiple stories
can be efficiently generated by recording different voice sequences.
Also, the use of more than one soundtrack allows us to control
different characters with overlapping actions.
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1 INTRODUCTION

Computer animation generation is an essential tool for entertain-
ment industries such as animation studios or video games devel-
opers. With the exception of complex dynamic phenomenons re-
quiring physically based simulations, the fundamental principle
of computer animation for virtual characters is mostly based on
key-framing, meaning that a model should match a predefined
shape at specific times, while in-betweens can be automatically
computed using interpolation schemes. Defining these key-times is
an important step and is called timing by animators.

While shape deformation and interpolation have been widely
studied, fewer works targeted the specific case of timing set-up.
Standard production softwares used for key-frame animation such
as Maya model the time as a 1D axis on which the animator pins
some key-poses, and possibly adapts the geometrical parameters
using animation-curves, i.e. 2D curves expressing the evolution of
each degree of freedom with respect to time. While such approach
allows a global and precise view of the entire timing of the anima-
tion, the time dimension is represented as a spatial one. A constant
mental conversion between space and time - associated with in-
tellectual effort and experience to master - is therefore required
when setting up these animations.

In this work, we propose to take advantage of the natural time-
related expressivity of our voice to control animation timing with-
out the use of any manual space-time curve definition. More pre-
cisely, a user records a sequence containing different expressive
sounds such as onomatopoeias ("Boum", "Zap", "Bang", etc), acting
as triggers for basic actions constituting the entire animation. Thus,
the timing of the recorded sound sequence defines the timing of
the animation. This sound sequence is automatically analyzed to
extract every individual expressive sound-related event, and the
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correspondence between a specific sound and the corresponding
action is encoded in a predefined database. As a result, the user-
made soundtrack can be efficiently converted into a set of different
keyframes, defined and parameterized by the type of sound, while
the timing is naturally encoded by the time-position in the sound-
track. The final animation can finally be run using some procedural
animation or interpolation.

While our approach doesn’t target the fine authoring reached
by standard animation-curves setup, it allows for a very fast and
expressive setup of rough animation. Indeed, mimicking sound is
a very natural and intuitive way to convey the sense of both tim-
ing and action. Pre-productions of movie animation could benefit
from such approach to efficiently generate animated storyboards,
depicting only rough graphics, but already including the temporal
information of the main actions. Games industry could also find ap-
plications where a player could mimic with his voice some actions,
and see the result of his voice record as an automatically adapting
story. Interestingly, some games controlled by voice sounds are
already available (Yasuhati [2017], Chicken Scream [2017], Karaoke
Revolution [2003]), but the controls are restricted so far to the mag-
nitude or pitch of the sound, without allowing explicit authoring
on the type of event.

2 STATE OF THE ART

Generating animation and sound is a long-standing problem in the
Computer Graphics community. While the efficient and realistic
generation of sound from an existing 3D scene remains a highly
studied research topics [Takala and Hahn 1992; van den Doel et al.
2001; Wang et al. 2018], we focus in this work on the converse,
namely, the synthesis of an animation given its sound as input.
An extensive research literature can be found on human
face synthesis from speech inputs used for virtual agent anima-
tion [Pelachaud et al. 1996; Vougioukas et al. 2019b] and goes be-
yond the scope of our approach. In the most recent works, both
speech recognition and expressive facial motion synthesis take
advantage of deep-learning approaches thanks to large available
databases [Cudeiro et al. 2019; Pham et al. 2018; Zhou et al. 2018].
Retargeting real video even achieve striking realistic results hard
to differentiate from real records [Suwajanakorn et al. 2017; Vou-
gioukas et al. 2019a]. Pure speech-based command has also been
explored in several commercial entertainment products related, for
instance, to video games (Mass Effects 3, Nevermind, etc.), VR (Ocu-
lus Voice, Alexa Skills Kit, etc.), and personal assistants (Google
Assistant, Alexa, etc.).
While achieving very high quality results, the complex pipeline
used for speech analysis is very specific and doesn’t fit directly
to our objective. Indeed, human speech is highly structured, and
usually analyzed through unit sound components called phonemes.
Speech recognition thus focus on the robust extraction of, possibly
complex, words and sentences from a common static dictionary
defined by a given language. In our case, we rather aim at extracting
quite simple onomatopoeia sounds from a single user, but these
sounds are expected to be easily changed and adapted to the ani-
mated scene. Moreover, the mapping between the sound and the
animated sequence is also scene dependent. This approach doesn’t
fit well to data-based learning approaches, and we therefore rely on
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more standard signal processing tools to analyze a generic sound
signal for which the mapping between the sound pattern and the
animation is directly provided by the user.

Fuzzy mapping between sound signals and animation has also
been studied in the case of musical inputs. Extracting musical char-
acteristics, and in particular its notion of rhythm and beats, led to
methods able to edit motions [Cardle et al. 2002], fully synthesize a
dancing characters [Kim et al. 2003; Sauer and Yang 2009; Shiratori
et al. 2006], visualize the music by mapping the mesh harmonics to
the sound frequencies [Lewiner et al. 2010], or animate the musi-
cian [Shlizerman et al. 2018]. Given an existing background music
and an animation, pure synchronization can be handled by adapt-
ing the timing of both inputs [Lee and Lee 2005]. Finally, video
synchronization with a given music was also explored [Liao et al.
2015a,b].

Closer to our objectives, Langlois and James [2014] proposed a
method to synthesize generic rigid-body motions, and in particular
use sound to trigger impacts and frictions. They fully automatize
the animation generation for the specific case of rigid bodies, but
the sound analysis is performed manually as the user is asked to
pin key-times corresponding to contact sounds. On the opposite,
our approach automatizes the sound extraction and mapping to
generic type of events, but requires the user to script the associated
triggered animation.

In the following, we explain in Chap. 3 the sound sequence setup
and analysis to extract specific patterns. Then we detail in Chap. 4
the usage of such soundtrack in the case of different animated
scenario, before discussing limitations and possible extensions in

Chap. 5.

3 ANALYZING THE SOUND SEQUENCE TO
EXTRACT ANIMATION RELATED
PATTERNS

Let us consider a set of possible types of events of an animated
scene such as a ball touching and bouncing on the floor, hitting a
wall or sliding on a surface. These possible events are called event-
types. Note that we consider two different categories of event-types:
impulse events, modeling an instantaneous change of state (ex. ball
hitting the floor triggering a bouncing animation), and continuous
ones, for which the corresponding action may last for some time
(ex. sliding).

In a preparatory stage, each type of event i is manually asso-
ciated with a specific onomatopoeia sounds, similar to a word in
a dictionary of events. We call sound pattern p; the short generic
sound signal associated to a given type of event. Once the associa-
tion between events and sound patterns is made, the user records a
sound sequence containing several onomatopoeia sounds played
in arbitrary order and time. We call s the signal associated to this
sequence, and suppose conventionally that s(¢) € [—1, 1]. Next, this
sound sequence is automatically processed to extract each sound
pattern and their time-positions.

Variability is an inherent part of sounds generated by human
voices, therefore the full sequence s will never contain an exact
copy of any sound pattern p;, but slight variations of it that we
call instances of the sound pattern. Our detection relies on robustly
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finding similarities between two signals s and p; using the cross-
correlation signal y; used as a simple and versatile readily available
tool, where

yi(t)=/ Rs(u)p,(u-rt)du.

The local maxima of y; indicates the precise localization of each
instance of the sound type i. Therefore, computing all cross-
correlations between s and all sound patterns allow us to extract
their respective local maxima and retrieve all instances of the events.
An example of such detection using three sound patterns "Tick" (im-
pulse event), "Poc" (impulse event), and "Chhh" (continuous event)
is illustrated in Figure 2.

Tick p1(t)  Pop p2(t)  Chhh ps(t)
Patterns
t g t t t3,begin t3,end
s(t)_Jatr] AL ; t(s)
| 1 2 3
1A + i
71(t) g ooll : O]
1A 1% ) i 3
1 1
72(t), : L O
0.8A 1 i—Z—jf 3
Y3(t)o ; ; —1(5)
1 2 3

Figure 2: Extraction of instances for three different sound
patterns. s(t) is the recorded sound sequence, and the three
following lines: y1 (1), y2(t), y3(¢) are the cross-correlation be-
tween the signal and the respective pattern. Their local max-
ima indicate the time where each event should be triggered.

Note that y; may have a noisy shape and different — but sound
alike — patterns p; and p; (ex. "Boum", and "Poum") which may
both be associated with local maximal values of their respective
cross-correlation y;,y; in the same short time period. To avoid
ambiguities, we consider a sound-event of type i to take place
at time t only if its cross-correlation have a large enough value
Yi(tg) > 0.5, and such that no greater local maxima of any other
cross-correlation take place in the same period of time defined by
[t — Ar/2, tr + Ar/2], where A; is the time length of the sound
pattern.

In the case of an impulse event, we store for each instance the
single time t; in which the sound is played. In the case of continuous
event, the sound may last for an arbitrary amount of time and
cannot be associated with a single time instant. We consider the
continuous period of time such that the cross-correlation remains,
in average, above a limit threshold to define the beginning and end
times [tk pegin> tk,ena] on which the instance is played.

Once an instance of a sound pattern is detected in the sequence,
we can compute the strength of the current instance to add an
extra expressive parameter that can be used to tune the animation
sequence associated with the event. Let us call x, subset of s, the
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signal corresponding to an instance of the sound pattern p; detected
at time #; such that

) t € [t — At/2,t; + A /2] for an impulse event
x(t) = st t € [tk, begins tk,enal for a continuous event
0, otherwise.

The sound strength is related to the energy of the associated signal
& computed as

Ex) = /t sz(t)dt )

As we are interested in the relative strength of x with respect to the
reference given by its pattern p;, we finally expressed this strength

by E(x) = (&(x)/E(pi)"/.

4 SYNTHESIZING 3D ANIMATION FROM
SOUND-RELATED KEYFRAMES

Please note that all the animated examples that we describe and their
soundtracks are available in the associated video.

We first consider a simple scene made of a falling sphere bounc-
ing on the floor. The animation contains only one action triggered
by the sound "Tick" corresponding to the time where the sphere hits
the ground. The user record a series of " Tick" sounds and the associ-
ated animation is automatically computed as seen in Figure. 3. We
compute the trajectory p(t) = (x(t), y(t), z(t)) of the sphere using
the basic ballistic equation p(t) = (0,0, —g) t?/2 + v° t + p°, where
g is the gravitational constant, v° and p° are the initial velocity and
position. Every instance "Tick" at time t; should correspond to the
constraint z(t) = 0. We enforce this constraint in adapting the
new bouncing speed in the z direction after each collision at time
tr such that v;(tg) = g (tg41 — tx)/2, ensuring that the next floor
hit will happen at time ;.

Tick pattern

’W% G ONO

t(s)

Figure 3: Sphere bouncing on the floor at every "Tick" in-
stance detected in the recorded voice sequence. Note that the
timing of the animation is fully defined by the soundtrack.

A second scene is generated by taking into account event-types
for a bouncing sphere illustrated in Figure 4: A hard bounce associ-
ated to the sound "Tick", a soft bounce where the sphere squashes
during bouncing impact associated to the sound "Pop", and a con-
tinuous friction associated to squashing happening as long as the
sound "Chhh" is made. The instances of the different event-types are
detected using the approach based on cross correlation described
previously.
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Figure 4: Animated sequence using three different sound
patterns. Various instances of these patterns are detected in
the voice sequence and lead to the three respective events:
hard bounce (blue), soft bound (red), and continuous sliding

(green).

More entertaining scenes can be generated in mapping the de-
formation of the previous sphere model to an arbitrary virtual
character squashed uniformly. Figure 1 illustrates two different
animated sequences using different soundtracks as inputs applied
to a Star-Wars character jumping and sliding on the floor. The two
animations use the same parameters, but the change of order and
timing of each recorded soundtrack allows us to model different an-
imated stories. Note that the left part of Figure 1 corresponds to the
same soundtrack as the one used for the previous ball deformation.

Character motion
Tick, Chhh

Throwing laser
Peww, Paww

Figure 5: Animation containing two elements: a laser and
the virtual character avoiding it. A first soundtrack is used
to trigger the laser shots, while a second soundtrack is used
to trigger the character jumping and sliding. The use of two
soundtracks allows us to handle partially overlapping ac-
tions and sounds.

In the case where the animation contains several overlapping
events, multiple soundtracks can be used. Figure 5 shows the case
where the virtual character tries to escape some lasers shots. Two
types of shots are respectively associated to the sounds "Peww"
corresponding to low shots, and "Paww" corresponding to high
shots. Once recorded and visualized, the user may vocalize, and
records, a second soundtrack expressing the motion of the char-
acter to avoid these laser shots using jumping (with "Tick") and
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sliding (with "Chhh"). The final scene shows overlapping events
applied to two different virtual models, both synchronized with the
soundtrack.

In the same type of idea, a game-like scene is illustrated in Fig-
ure 6. In this example, a first recorded sequence of short "Tack"
sounds is associated to the throw of a dart. The size of each dart is
parameterized by the strength of the corresponding "Tack" sound.
Note that our example used a linear increase of the dart size with
respect to the sound strength E(x). The spaceship can avoid these
darts by moving up and down when the respective continuous
sounds "Hooo" and "Heee" are pronounced, and recorded in a sec-
ond soundtrack. Note that the ascending and descending phase of
the spaceship are synchronized with the instant and time length of
each continuous sound.

Throwing darts
Tack

Spaceship motion
- Hooo, Heee

Figure 6: A game-like animation where a spaceship moves
up and down guided by two continuous sound patterns and
tries to avoid the yellow darts generated from a second
soundtrack.

Finally, another type of scene modeling raindrops is illustrated
in Figure 7. Every sound event corresponds to the impact of a rain
drop on the floor at a random location. The soundtrack is recorded
in two different situations: firstly a vocal record where the sound
pattern is given by the sound "Pom", and secondly a series of sound
impacts made by knocking the hand on a table. In the first case, the
voice magnitude of each sound instance parameterizes the size of
the drop. In the latter case, the record doesn’t correspond to a vocal
record but can still be used by our approach given the appropriated
sound pattern (the magnitude is not taken into account in this case).
In both scenario, the sound events are following the rhythm of
Tetris music.

All the visual animations presented in this work and shown in the
associated video are synthesized and rendered on the fly in real time
while playing the associated soundtrack in parallel. The preprocess
step, and in particular, the computation of the cross-correlation
yi with a single pattern signal takes around 1 to 3 seconds for an
input signal up to 15s. The entire computation over all patterns as
well as the detection of peaks remains under 15s of computational
time for all our examples. Note that we used a standard out-of-the
box correlation implementation - NumPy package in Python — and
applied over the entire input signal without any optimization.



Animation Synthesis Triggered by Vocal Mimics

Voice

Hand
knock |

Figure 7: Rain drops scene triggered by impulse sounds fol-
lowing the dynamic of the Tetris music. The first soundtrack
corresponds to a vocal record, while the second one corre-
sponds to a hand knocking on a table.

5 CONCLUSION AND FUTURE WORKS

We proposed a method to generate animated scenarios composed
of short events from a vocal — or hand-made - soundtrack. Our
approach offers an intuitive control of the timing of the animation
through the natural time-expressivity of sounds sequence. More-
over, multiple version of a scenario can efficiently be synthesized
by recording different soundtracks.

This work leads to several avenues for improvements. Our sound
extraction is currently using simple tools based on cross-correlation
on the entire signal. The approach may lack robustness for close-by
sounds that can be miss-detected, and requires the entire soundtrack
to be pre-recorded before looking at the result. More advanced and
efficient sound analysis can both increase its robustness and speed,
and developing a real-time visualization of our vocal input could be
a future extension well adapted to video games for instance. Sound
parameters such as pitch could also be used to further parameterize
the visual animation, and combining our approach with existing
speech recognition tools could be used to offer a higher level of
control.

Another possible extension relates to the mapping between the
sound pattern and the corresponding animation which is fully
predefined by manual scripting in this work. A more automatic
approach allowing us to match existing animation characteristics
with sound signal [Cardle et al. 2003] could ease this process.
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