

The Saegusa Oxidation and Related Procedures

Jean Le Bras, Jacques Muzart

▶ To cite this version:

Jean Le Bras, Jacques Muzart. The Saegusa Oxidation and Related Procedures. John Wiley & Sons, Inc., 98, pp.1-172, 2019, Organic reactions, 10.1002/0471264180.or098.01. hal-02307204

HAL Id: hal-02307204 https://hal.science/hal-02307204

Submitted on 7 Jan2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	THE SAEGUSA OXIDATION AND RELATED PROCEDURES
2	
3	Jean Le Bras and Jacques Muzart
4	Institute of Molecular Chemistry of Reims, UMR 7312
5	CNRS - University of Reims Champagne-Ardenne, B.P. 1039, 51687 Reims Cedex 2, France
6	
7	CONTENTS
8	INTRODUCTION
9	MECHANISM AND STEREOCHEMISTRY
10	Silyl Enol Ethers or Silyl Ketene Acetals as Substrates
11	1,4-Benzoquinone as the Oxidant
12	Oxygen, Oxygen and a Copper Salt, or Oxygen and Oxone as the Oxidant
13	Oxygen and tert-Butyl Hydroperoxide as the Oxidant
14	Allyl Carbonate as the Oxidant
15	Enol Acetates as Substrates
16	Alkyl Enol Ethers and Vinyl Halides as Substrates
17	Allyl Enol Carbonates, Allyl β -Keto Carboxylates, or Allyl Malonates as Substrates
18	α-Chloro Ketones as Substrates
19	SCOPE AND LIMITATIONS
20	Silyl Enol Ethers or Silyl Ketene Acetals as Substrates
21	Palladium(II) and 1,4-Benzoquinone or Copper Salt (Methods A and B)
22	Palladium Acetate, DMSO, and Oxygen (Method C)
23	Palladium(0)/SiO ₂ and Oxygen (Method D)

jacques.muzart@univ-reims.fr jean.lebras@univ-reims.fr

1	Palladium(II) Acetate, Oxone, and Oxygen (Method E)
2	Palladium(II) Hydroxide and tert-Butyl Hydroperoxide, Oxygen, and a Base (Method F)
3	Palladium(0) Complexes and Diallyl Carbonate (Method G)
4	Atypical Dehydrogenation Reactions
5	Comparison of the Aforementioned Procedures
6	Enol Acetates as Substrates
7	Alkyl Enol Ethers as Substrates
8	Allyl Enol Carbonates, Allyl β -Keto Carboxylates, or Allyl Malonates as Substrates
9	α-Chloro Ketones as Substrates
10	APPLICATIONS TO SYNTHESIS
11	Desymmetrization/Palladium-Mediated Dehydrosilylation Reaction Sequence
12	Enones as Intermediates in Natural Product Synthesis
13	Tandem Reactions Involving Enones
14	Saegusa Reaction on an Industrial Scale
15	COMPARISON WITH OTHER METHODS
16	EXPERIMENTAL CONDITIONS
17	Silyl Enol Ethers as Substrates
18	Enol Acetates as Substrates
19	Allyl Enol Carbonates as Substrates
20	Allyl β-Keto Carboxylates as Substrates
21	EXPERIMENTAL PROCEDURES
22	5,5-Dimethyl-3a',4'-dihydro-1'H-spiro[[1,3]dioxane-2,2'-pentalen]-5'(3'H)-one [Stoichiometric
23	Dehydrogenation of a Ketone via a Silyl Enol Ether]

1	4-Isopropylcyclohex-2-enone [Dehydrogenation of a Ketone in the Presence of Benzoquinone
2	via a Silyl Enol Ether]
3	1,4-Dioxaspiro[4.5]dec-6-en-8-one [Catalytic Dehydrogenation of a Silyl Enol Ether in the
4	Presence of an Allyl Carbonate]
5	Bicyclo[4.1.0]hept-3-en-2-one [Catalytic Dehydrogenation of a Silyl Enol Ether in the Presence
6	of <i>tert</i> -Butyl Hydroperoxide and Oxygen]
7	(4R,5S)-5-Ethyl-4,5-dihydroxycyclohex-2-enone [Catalytic Dehydrogenation of a Silyl Enol
8	Ether in the Presence of Oxygen]
9	(1R,5R)-1-[((((1,1-Dimethylethyl)dimethylsilyloxy)methyl)]bicyclo[3.1.0]hex-3-en-2-one
10	[Catalytic Dehydrogenation of a Ketone in the Presence of Oxygen via a Silyl Enol
11	Ether]
12	4-Cyano-4-(3,4-dichlorophenyl)cyclohex-2-enone [Catalytic Dehydrogenation of an Enol
13	Acetate in the Presence of an Allyl Carbonate]
14	(4R,5S)-2-Allyl-4,5-bis((benzyloxy)methyl)-4,5-dimethylcyclopent-2-enone [Catalytic
15	Decarboxylative Dehydrogenation of an Allyl β-Keto Carboxylate]
16	6-[(Z)-7-[(Tetrahydropyranyl)oxy]hept-1,5-diyn-3-ene]-6-[(<i>tert</i> -
17	butyldimethylsilyl)oxy]cyclohex-2-en-1-one [Catalytic Decarboxylative
18	Dehydrogenation of an Allyl Enol Carbonate]
19	(E)-6-Oxohex-4-en-1-yl Acetate [Catalytic Dehydrogenation of an Alkyl Enol Ether in the
20	Presence of Benzoquinone]
21	(E)-4-Phenyl-2-butenal [Catalytic Dehydrogenation of an Alkyl Enol Ether in the Presence of
22	Cu(II)]
23	TABULAR SURVEY

1	Table 1A. Acyclic α , β -Unsaturated Ketones
2	Table 1B. Cyclic 2,3-En-1-ones
3	Table 1C. Heterocyclic 2,3-En-1-ones
4	Table 1D. Cross-Conjugated Dienones
5	Table 1E. Phenolic Systems
6	Table 2. α,β-Unsaturated Aldehydes
7	Table 3. α,β-Unsaturated Esters
8	Table 4. α , β -Unsaturated Lactones and Lactams
9	Table 5. α , β , γ , δ -Unsaturated Ketones, Esters, and Amides
10	REFERENCES
11	
12	INTRODUCTION
12 13	INTRODUCTION α,β -Unsaturated carbonyl compounds are highly useful synthetic materials in organic
12 13 14	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis, {HK-03}, {ABK-08}, {HHG-08}, {TH-09} and regioselective dehydrogenation of carbonyl
12 13 14 15	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis,{HK-03},{ABK-08},{HHG-08},{TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in
12 13 14 15 16	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis,{HK-03},{ABK-08},{HHG-08},{TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in synthetic chemistry.{BP-91},{L-99} One-pot, palladium-mediated dehydrogenation reactions of
12 13 14 15 16 17	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis, {HK-03}, {ABK-08}, {HHG-08}, {TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in synthetic chemistry. {BP-91}, {L-99} One-pot, palladium-mediated dehydrogenation reactions of ketones, aldehydes, esters, lactones, and amides are known, but such reactions are limited primarily to
12 13 14 15 16 17	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis, {HK-03}, {ABK-08}, {HHG-08}, {TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in synthetic chemistry. {BP-91}, {L-99} One-pot, palladium-mediated dehydrogenation reactions of ketones, aldehydes, esters, lactones, and amides are known, but such reactions are limited primarily to simple substrates. {M-10}, {TCN-16}, {CR-15}, {CT-16}, {DMC-15} Moreover, they suffer from lack of
12 13 14 15 16 17 18	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis,{HK-03},{ABK-08},{HHG-08},{TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in synthetic chemistry.{BP-91},{L-99} One-pot, palladium-mediated dehydrogenation reactions of ketones, aldehydes, esters, lactones, and amides are known, but such reactions are limited primarily to simple substrates.{M-10},{TCN-16},{CR-15},{CT-16},{DMC-15} Moreover, they suffer from lack of regiocontrol in the case of unsymmetrical ketones. In 1977, Ito, Hirato, and Saegusa reported the
12 13 14 15 16 17 18 19 20	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis,{HK-03},{ABK-08},{HHG-08},{TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in synthetic chemistry.{BP-91},{L-99} One-pot, palladium-mediated dehydrogenation reactions of ketones, aldehydes, esters, lactones, and amides are known, but such reactions are limited primarily to simple substrates.{M-10},{TCN-16},{CR-15},{CT-16},{DMC-15} Moreover, they suffer from lack of regiocontrol in the case of unsymmetrical ketones. In 1977, Ito, Hirato, and Saegusa reported the conversion of silyl enol ethers to the corresponding α,β-unsaturated ketones and aldehydes using
12 13 14 15 16 17 18 19 20 21	INTRODUCTION α,β-Unsaturated carbonyl compounds are highly useful synthetic materials in organic synthesis,{HK-03},{ABK-08},{HHG-08},{TH-09} and regioselective dehydrogenation of carbonyl compounds to the corresponding α,β-unsaturated carbonyl compounds is an important transformation in synthetic chemistry.{BP-91},{L-99} One-pot, palladium-mediated dehydrogenation reactions of ketones, aldehydes, esters, lactones, and amides are known, but such reactions are limited primarily to simple substrates.{M-10},{TCN-16},{CR-15},{CT-16},{DMC-15} Moreover, they suffer from lack of regiocontrol in the case of unsymmetrical ketones. In 1977, Ito, Hirato, and Saegusa reported the conversion of silyl enol ethers to the corresponding α,β-unsaturated ketones and aldehydes using stoichiometric or substoichiometric amounts of palladium(II) salts.{IHS-78} Although silyl enol ethers

1	application of the Saegusa Reaction was reported. Studies to improve on the original procedure by using
2	lower catalyst loadings have since appeared. A brief review of the Saegusa Reaction concerning the
3	literature up to 1998 is available, {IS-02} and related methods devised primarily by the Tsuji and Larock
4	groups are discussed in reviews {T-86}, {TM-87}, {MNY-87} and books {L-99}, {T-95}, {T-04}, {SD-04}, {T-04}, {SD-04}, {SD-04}, {T-04}, {SD-04}, {S
5	14}.
6	This review concerns the Saegusa Reaction and related methods. In addition to enol silanes, enol
7	acetates, alkyl enol ethers, allyl enol carbonates, allyl β -keto carboxylates, allyl malonates, and α -chloro
8	ketones have been transformed into α , β -unsaturated carbonyl products. This chapter covers the literature
9	through February 2016.
10	
11	MECHANISM AND STEREOCHEMISTRY
12	The mechanism of the formation of α , β -unsaturated carbonyl compounds using palladium-
13	mediated procedures related to the Saegusa Reaction is substrate-dependent, but a majority of known
14	examples involve a palladium enolate as the key intermediate. Catalytic reactions have been developed
15	under various conditions.
16	
17	Silyl Enol Ethers or Silyl Ketene Acetals as Substrates
18	Most palladium-mediated, oxidative dehydrogenation reactions of silyl enol ethers and silyl
19	ketene acetals use a palladium(II) salt. The coordination of the C=C bond to the palladium species
20	results in transmetalation, which leads to loss of the silyl group and formation of a palladium
21	enolate. {IS-02} The latter compound exists as an equilibrium between the $0x0-\eta^3$ -allyl palladium and
22	the C- and O-enolate tautomers (Scheme 1). {AME-99} Subsequent β -hydride elimination affords the
23	α , β -unsaturated carbonyl compound and a hydridopalladium complex. Although the stability of

palladium hydrides is ligand-dependent, {HF-04} they are converted, in most cases, to palladium(0)
species. Because addition/elimination of hydridopalladium species to olefins is reversible, (*E*)-α,βunsaturated carbonyl compounds are usually produced selectively from acyclic substrates.

4

5

(1)

To achieve a catalytic process, the Saegusa Reaction is carried out in the presence of an
oxidant—often 1,4-benzoquinone or oxygen—to regenerate the active palladium(II) species. The
proposed catalytic cycle generates AcOSiR₃ and acetic acid (i.e., YSiR₃ and HY of Scheme 1) as the
byproducts of the first turnover and hydroquinone or peroxides as the stoichiometric byproducts.
However, palladium(0) species can form relatively stable palladium(0)–alkene complexes, which can
impede the catalytic cycle (Scheme 2). {PBT-99} Such complexes can be decomposed on heating or
treatment with silica gel.

13

(2)

14 1,4-Benzoquinone as the Oxidant. Coordination of 1,4-benzoquinone to palladium(0) in the
presence of acetic acid generates 4-hydroxyphenoxypalladium acetate (Scheme 3). {GGB-93}, {PTS-06}
This intermediate reacts with AcOSiR₃ to regenerate palladium(II) acetate. A mixture of 4trimethylsilyloxyphenol and 1,4-bis(trimethylsilyloxy)benzene has been isolated. {IHS-78} It is also
possible that HPdOAc reacts directly with 1,4-benzoquinone, rather than undergoing reductive
elimination to form palladium(0) first. {T-71}

20

(3)

Oxygen, Oxygen and a Copper Salt, or Oxygen and Oxone as the Oxidant. The use of oxygen as the oxidant in DMSO leads to formation of a peroxopalladacycle. Addition of acetic acid affords a hydroperoxypalladium complex, which reacts with AcOSiR₃ to regenerate palladium(II)

1	acetate (Scheme 4). {LHK-95} The mechanism of the formation of active palladium(II) species from
2	hydridopalladium intermediates and oxygen remains unknown. {GM-06}, {M-06}, {GS-09}, {SG-14}
3	(4)
4	In the presence of both oxygen and a copper salt, the catalyst can be regenerated in a manner
5	analogous to the Wacker oxidation (Scheme 5). {KH-09}
6	(5)
7	A recently developed catalytic procedure involves the use of Oxone under an oxygen or air
8	atmosphere. The exact role of oxygen under these conditions has not been elucidated. {LLL-13}
9	Silica-supported palladium(0) has been used as a catalyst under an oxygen atmosphere primarily
10	in NMP; acetonitrile is a poor solvent for this method. {BNN-89}, {BNN-90} The dispersion of oxygen
11	on palladium(0) is proposed to oxidize part of the supported palladium(0) into palladium(II), and the
12	silyl ether is adsorbed onto the catalytic surface. {BNN-90}
13	Oxygen and tert-Butyl Hydroperoxide as the Oxidant. Cycloalkenyloxy triisopropylsilyl
14	ethers can be used to prepare cyclic α , β -enones; this process employs palladium(II) hydroxide on carbon
15	as the catalyst and is performed in the presence of oxygen, a base (disodium hydrogen phosphate or
16	triethylamine), and excess amounts of <i>tert</i> -butyl hydroperoxide. {YWC-05}, {Y-15} The catalyst is
17	believed to initiate a radical process by palladium-mediated homolytic cleavage of the O-H bond of the
18	hydroperoxide (Scheme 6). However, because tert-butyl hydroperoxide is capable of generating active
19	palladium(II) species from palladium(0), {MCM-80} a catalytic cycle similar to that shown in Scheme 1
20	cannot be ruled out.
21	(6)

Allyl Carbonate as the Oxidant. An alkyl allyl carbonate or a diallyl carbonate reacts with a palladium(0) catalyst to afford an η^3 -allyl palladium complex (Scheme 7, R^3 = alkyl or allyl, Z =

 $(R^4)_3Si$). {MTS-86} This palladium(II) species reacts with a silvl enol ether to form the η^3 -allyl 1 palladium enolate, which provides the unsaturated carbonyl compound and an η^3 -allyl palladium 2 3 hydride. The latter complex then releases propene and regenerates palladium(0). (7) 4 5 **Enol Acetates as Substrates** 6 7 Enones can also be obtained from enol acetates using an excess of an alkyl allyl cabonate and catalytic amounts of both palladium(II) acetate and tributyltin methoxide. The proposed mechanism is 8 depicted in Scheme 7 ($R^3 = alkyl$, $Z = Bu_3Sn$). The role of tributyltin methoxide is to form the tin 9 enolate, which easily transmetalates with the palladium species to afford the η^3 -allyl palladium enolate 10 with concomitant generation of the tributyltin alkoxide. 11 Oxidative dehydroacetoxylation of enol acetates can also be accomplished with silica-supported 12 palladium(0) in the presence of oxygen (9 atm). Under these conditions, oxygen is dispersed over the 13 heterogeneous catalyst and takes part in the reaction. {BIN-90} 14 15 **Alkyl Enol Ethers and Vinyl Halides as Substrates** 16 The palladium-mediated formation of enals from alkyl enol ethers is carried out under aqueous 17 conditions with either stoichiometric or catalytic amounts of palladium(II) acetate. Under catalytic 18 conditions, either copper(II) acetate{TKA-92} or 1,4-benzoquinone{LHA-12} is typically employed as 19 the stoichiometric oxidant. The proposed mechanism parallels the catalytic cycle of the Wacker 20 21 oxidation, {MSS-14} wherein the key step is addition of water to the C=C bond that is activated by coordination to palladium(II) acetate (Scheme 8). {TKA-92} The resulting intermediate undergoes 22

regioselective β -hydride elimination, in preference to β -OH or β -OR elimination, {M-12} to afford the 1 enal. A similar reaction is also possible with vinyl halides. {TR-02} 2 (8) 3 4 5 Allyl Enol Carbonates, Allyl β-Keto Carboxylates, or Allyl Malonates as Substrates The palladium-catalyzed trasformation of allyl enol carbonates, allyl β-keto carboxylates, and 6 7 allyl malonates into α , β -unsaturated carbonyl compounds also involves a palladium enolate as the key intermediate (Scheme 9). {ST-82} The latter arises from the initial formation of an η^3 -allyl palladium 8 carbonate or an η^3 -allyl palladium carboxylate, followed by subsequent decarboxylation. In agreement 9 10 with this proposed mechanism, treatment of sodium 2-oxocyclohexanecarboxylate with a stoichiometric amount of PdCl₂(PPh₃)₂ and an excess of sodium acetate at room temperature affords cyclohex-2-enone 11 (Scheme 10). A catalytic process is possible by including copper(II) chloride as the oxidant. {TCN-80} 12 (9) 13 14 (10) 15 α-Chloro Ketones as Substrates 16 The synthesis of enones from α -chloro ketones proceeds by oxidative insertion of palladium(0) 17 18 into the C-Cl bond to afford a chloropalladium enolate, which then likely follows the catalytic cycle shown in Scheme 11.{WBM-12} 19 (11) 20 21 **SCOPE AND LIMITATIONS** 22 Silvl Enol Ethers or Silvl Ketene Acetals as Substrates 23

1 Palladium(II) and 1,4-Benzoquinone or Copper Salt (Methods A and B). The seminal report by Ito, Hirato, and Saegusa describes the synthesis of α , β -unsaturated ketones and aldehydes from 2 trimethylsilyl enol ethers using either a stoichiometric amount of palladium(II) acetate (Method A^S) or 3 0.5 equivalents each of palladium(II) acetate and 1,4-benzoquinone (Method A^C) at room temperature in 4 5 acetonitrile. {IHS-78} Both procedures are well documented. Trimethylsilyl enol ethers are obtained 6 from the corresponding saturated carbonyl compounds (Scheme 12){HT-98b} and are often used 7 without purification owing to their hydrolytic instability. More stable silyl enol ethers such as triethylsilyl (TES){YSH-09},{CMM-96},{HHN-10},{PDA-12},{TTI-11},{HCS-12},{MYK-09},{TJJ-8 01},{HMS-09},{HHN-11}, TBS{PDA-12},{SNH-01},{KMM-01a},{KMM-02},{ZYX-14},{IKK-9 08},{CXB-12},{RZP-09},{KKW-93},{LHK-95},{KKT-01} or TIPS ethers{LHJ-13},{SSL-10 13}, {HLW-11}, {WGL-12}, {HHN-11} can be employed as well, though these products are also 11 12 typically used without purification. (12) 13

Saegusa's original conditions are effective for the synthesis of α,β-unsaturated lactones,
dienones, and heterocyclic 2,3-en-1-ones. Some reactions are, however, carried out with stoichiometric
or excess amounts of both palladium(II) acetate and 1,4-benzoquinone. {HBK-01}, {IKK-08}, {CXB-12}
Saegusa Reactions are compatible with halides {OT-88} and ethers, but acid-catalyzed hydrolysis of the
trimethylsilyl enol ethers may compete with the desired reaction, resulting in isolation of the original
saturated ketones. {NJV-99}

Another possible side reaction is cyclization onto a tethered alkene (Scheme 13). {KRS-82a}, {LM-16} This pathway likely involves the coordination of the tethered alkene to the palladium enolate {IAH-79}, {IAS-80} or addition of the silyl enol ether to the palladium-complexed pendant alkene. {KRS-82}, {KW-85} This cyclization reaction is sensitive to crowding around the C=C bond, as

1	shown in the reaction of silyl enol ether 1, which affords only the enone (Scheme 14).{TL-86} By
2	comparison, silyl enol ether 2 affords a mixture of cyclohexenones 3–5 (Scheme 15).{TL-86} This
3	cycloalkenylation procedure has been utilized in the synthesis of a variety of natural products. {KRS-
4	$\label{eq:solution} 82\}, \{KS-83\}, \{SMI-86\}, \{TNM-93\}, \{TSF-93\}, \{TWN-95\}, \{TRI-00\}, \{TI-02\}, \{YCM-14\}, \{TSF-93\}, \{TSF-93\}, \{TWN-95\}, \{TRI-00\}, \{TI-02\}, \{YCM-14\}, \{TSF-93\}, \{T$
5	(13)
6	(14)
7	(15)
8	When subjected to the original Saegusa conditions, a number of substrates afford none of the
9	expected α , β -unsaturated carbonyl compounds or form them only in low yields. These problematic
10	substrates are summarized in Figure 1. The nature of the silyl group or the troublesome step (silylation
11	or palladation) is not always specified, and consequently, the problematic substrates may be depicted as
12	either the silyl enol ether or the carbonyl compound. In some cases, strong complexation of the catalyst
13	to basic groups such as an isoquinoline moiety precludes the Saegusa Reaction. {NPS-09}
14	(16)
15	{FPR-05},{PMS-97},{SON-07},{STF-13},{SHN-04},{KNT-86},{HIS-11},{LGG-13},{LDD-
16	13}.{KHH-06}.{SST-04}.{SIS-05}.{TF-05}.{EML-07}.{NPS-09}.{SSD-00}.{BFB-10}.{GX-
17	09\.{HMH-04\.{RBT-06\.{MO-02\.{CFI-10\.{NMV-05\.{BCD-02\.{BSG-97\.{MRT-98\.{SJS-
18	02}.{CD-01}
10	Several modifications of the Saegusa procedure have been reported such as using stoichiometric
15	
20	amounts of Pd(OCOCF ₃) ₂ in MeCN,{DDL-11} CH ₂ Cl ₂ /MeCN,{KMF-05} or DMF;{SJS-02} using
21	stoichiometric amounts of Pd(OAc) ₂ in DMSO{NKY-09},{AWD-08},{PP-09},{WM-11},{OFM-
22	12}, {LDD-13}, {CGO-14}, DMSO/MeCN, {LDD-13}, {MM-03b} or THF {HAC-13}; and using 1-5
23	equivalents of Pd(OAc) ₂ with 0.5-5 equivalents of 1,4-benzoquinone in MeCN{CM-86},{KAP-

90},{CWM-98},{JYR-98},{HBK-01},{FM-06},{BAW-07},{IKK-08},{KMP-10},{BBC-11},{CXB-1 12}, {BBW-13} or CH₂Cl₂. {SJC-13} The Pd(OAc)₂/DMSO procedure appears to furnish the highest 2 3 yields with small scale reactions. {WM-11} In a footnote, Saegusa and coworkers mention that 6-methyl-2-cyclohexenone is produced 4 quantitatively at room temperature by treating an oxygenated acetonitrile solution of 6-methyl-1-5 trimethylsilyloxy-1-cyclohexene with catalytic amounts of both palladium(II) acetate and copper(II) 6 acetate. {IAH-79} Under an oxygen atmosphere, superstoichiometric quantities of both palladium(II) 7 acetate and copper(II) acetate at 50° in acetonitrile provide the desired product, {HCS-12} as does 8 9 catalytic amounts of palladium(II) acetate. Alternative reaction conditions include the use of palladium(II) acetate and copper(I) chloride in the presence of HMPA (0.5 equivalents) in THF at room 10 temperature (Method B, Scheme 16){HNT-92}. The α -hydroxy ketone can be formed as the major 11 12 product if traces of water are present in the reaction mixture. {HNT-92} (17)13

Palladium Acetate, DMSO, and Oxygen (Method C). The use of anhydrous DMSO as the
solvent under an oxygen atmosphere at room temperature is particularly effective for the Saegusa
Reaction, {LHK-95} likely due to the ability of DMSO to coordinate to palladium species. {GM-06}, {M06}, {GS-09}, {SG-14}, {BHL-95}, {SFS-02}, {S-04}, {ZP-05}, {PS-09}, {M-14} Under these conditions,
traces of water or an increase of the reaction temperature to 80° leads to the concomitant formation of
large amounts of the saturated ketone. Switching the solvent from DMSO to acetonitrile results in the
formation of no enone product. {LHK-95}

A variety of silyl groups may be used in this procedure: trimethyl-, triethyl-, triisopropyl-, and *tert*-butyldimethylsilyl enol ethers are all viable substrates. However, substitution on the enol itself is problematic, and trisubstituted enoxysilanes afford low yields. The method is effective for the

1	preparation of α , β -unsaturated ketones and aldehydes, but extension to α , β -unsaturated esters is only
2	moderately successful. {LHK-95} For less reactive substrates, heating in DMSO under oxygen with
3	catalytic{LHK-95} or superstoichiometric{YMM-11},{CFO-13} amounts of palladium(II) acetate can
4	be successful, but desilylation of the starting material can become a significant side reaction. {LHK-95}
5	This desilylation appears to depend on the batch of palladium(II) acetate used and on the scale of the
6	reaction. {FHM-13} Another possible side reaction is the formation of unsaturated lactones by a Baeyer-
7	Villiger-type oxidation in the reaction of cyclic silyl enol ethers (Scheme 17). {TTI-11}
8	(18)
9	Silyl enol ethers bearing tethered alkenes cyclize to form bridged bicyclic products using
10	palladium(II) acetate and oxygen in DMSO (Scheme 18). {TI-02}, {TRI-02}, {TWK-98}, {VM-
11	09},{YCM-14},{LM-16}
12	(19)
13	Figure 2 depicts substrates which do not undergo clean dehydrogenation under the
14	aforementioned conditions.
15	(20)
16	$\{LDD-13\}, \{DXW-11\}, \{STF-13\}, \{CFI-10\}, \{BMO-13\}, \{GKS-98\}$
17	Palladium(0)/SiO ₂ and Oxygen (Method D). The trimethylsilyl enol ethers of cyclopentanone
18	and cyclohexanone are converted to the corresponding cycloalk-2-en-1-ones by employing a
19	heterogeneous catalyst—palladium(0)/SiO ₂ —under an oxygen atmosphere at 60° in NMP.{BNN-89}
20	To date, this procedure has been used only for these two substrates.
21	Palladium(II) Acetate, Oxone, and Oxygen (Method E). Oxone has been employed as the
22	stoichiometric oxidant for the palladium(II) acetate catalyzed oxidative dehydrogenation of
23	trimethylsilyl enol ethers. The reaction takes place under an atmosphere of oxygen in acetonitrile that

contains disodium hydrogen phosphate. Enones and enals are formed in good yields, {LLL-13} and this
 protocol is compatible with the presence of a cyclic acetal, or an OTBS group.

3

Palladium(II) Hydroxide, tert-Butyl Hydroperoxide, Oxygen, and a Base (Method F).

Triisopropylsilyl enol ethers of cycloalkanones may be converted to the corresponding enones by using
20 mol % of palladium(II) hydroxide on carbon (Pearlman's catalyst), either disodium hydrogen
phosphate or triethylamine, and an excess of *tert*-butyl hydroperoxide in CH₂Cl₂ at room temperature
under oxygen. {YWC-05} Interestingly, β-silyloxy-α,β-enones are obtained when cesium carbonate is
used as the base (Scheme 19).

9

(21)

These reaction conditions cannot be used with trimethylsilyl enol ethers or with the substrates depicted in Figure 3. An allylic peroxide intermediate is thought to be involved (Scheme 6), and the presence of radicals may limit the reaction scope. However, the survival of the cyclopropyl unit of substrate **6** under the experimental conditions (Scheme 20) is "an indication that the reaction of the allylic radical with molecular oxygen or *t*-BuOO• is fast relative to cleavage of the three-membered ring".{YWC-05},{Y-15},{MFI-76},{BM-80},{MW-86}

16

17

(23)

(22){DLY-08},{TDV-10}

Palladium(0) Complexes and Diallyl Carbonate (Method G). When palladium(0) reacts with an allyl carbonate, the resulting palladium(II) species can participate in the Saegusa Reaction with a trimethylsilyl enol ether formed from a ketone, aldehyde, ester, or lactone. This method relies on the allyl carbonate to generate the reactive η^3 -allyl palladium(II) complex (Scheme 9), usually in either acetonitrile or benzonitrile. However, the optimal experimental conditions depend on the type of substrates. For the synthesis of enones and enals, Pd(OAc)₂/dppe (1:1) and diallyl carbonate appear to be

1	best, whereas dppe-free Pd(OAc) ₂ with allyl methyl carbonate is superior for preparing α , β -unsaturated
2	esters and lactones. Typical conditions involve 0.01–0.1 equivalents of the catalyst and 1.4–2
3	equivalents of an allyl carbonate in a solvent at reflux. {TMS-83}, {TMS-84}, {TTM-84}, {MTS-86} The
4	importance of the solvent is clearly seen in reactions carried out with Pd2(dba)3•CHCl3/dppe: selective
5	formation of the α -allyl ketones or aldehydes (the Tsuji–Trost reaction) is observed in THF (Scheme
6	21), whereas the Saegusa Reaction is observed in acetonitrile.{TMS-83b} The use of a silica-supported
7	palladium catalyst favors the C-allylation reaction pathway in a variety of solvents, including
8	acetonitrile.{BNN-90a},{BNS-91}
9	(24)
10	Some silyl protecting groups are removed under the reaction conditions. The TBS enol ether in
11	substrate 7 is unaffected by the use of diallyl carbonate and Pd ₂ (dba) ₃ •CHCl ₃ in acetonitrile at room
12	temperature{OXT-02},{OXT-04},{HGT-05},{MKY-06},{MD-07},{NLE-09} (Scheme 22).{NLE-09}
13	However, the TMS protecting group in substrate 8 is cleaved with $Pd(OAc)_2/dppe$ in benzonitrile at
14	reflux (Scheme 23).{TMS-83}
15	(25)
16	(26)
17	Unsuccessful examples of the Saegusa Reaction under the aforementioned conditions are shown
18	in Figure 4.
19	(27)
20	$\label{eq:tr-05}, \{CBL-06\}, \{PMS-97\}, \{TNK-10\}, \{SR-14\}, \{SST-04\}, \{SIS-05\}, \{ZLF-11\}, \{ZLF-11$
21	Atypical Dehydrogenation Reactions. In the course of the synthesis of (–)-platyphyllide, the
22	expected product 10 is obtained from TES enol ether 9 with Method A ^S , whereas a mixture of
23	constitutional isomers 10 and 11 is produced with Method C (Scheme 24). {HHN-10} The unexpected

1	isomer forms only in the presence of the free hydroxyl group on the side chain and is favored by a bulky
2	silyl ether, as exemplified by the different reactivities of silyl enol ethers 12, 13, 14, and 15 (Schemes 25
3	and 26). {HHN-11} A substituent at the 3-position of the cyclohex-1-en-1-yloxysilyl unit appears to be
4	indispensable to the formation of the isomeric enone, which becomes the sole product when the 3-
5	position is blocked (Scheme 27). The participation of the hydroxyl group in the palladium-mediated
6	isomerization of the silyl enol ether appears to promote the atypical constitutional site selectivity. {HHN-
7	11}
8	
9	(28)
10	(29)
11	(30)
12	(31)
13	When the TIPS enol ether of α -dihydronaphthol is subjected to Method F, aromatization occurs
14	without cleavage of the silyl protecting group (Scheme 28). {YWC-05}, {Y-15}
15	(32)
16	Comparison of the Aforementioned Procedures. A comparison of the palladium-catalyzed
17	oxidative dehydrogenation methods of several silyl enol ethers is summarized in Figure 5.
18	(33)
19	$ \{LHJ-13\}, \{KMM-01\}, \{QST-04\}, \{QSR-04\}, \{NLE-06\}, \{NLE-09\}, \{PP-09\}, \{WKS-98\}, \{TMS-01\}, \{PP-09\}, \{WKS-98\}, \{TMS-01\}, \{PP-09\}, \{PP-09\},$
20	$83\}, \{MTS-86\}, \{LHK-95\}, \{MD-07\}, \{CBL-06\}, \{OXT-02\}, \{OXT-04\}, \{TMS-83\}, \{MTS-86\}, \{IHS-64\}, $
21	$78\}, \{TTI-11\}, \{HHN-10\}, \{IHS-78\}, \{LHK-95\}, \{HHN-11\}, \{BMO-13\}, \{IHS-78\}, \{BNN-89\}, \{TMS-78\}, \{TMS-78\}, \{TMS-78\}, \{BNN-89\}, \{BNN-89\}, \{TMS-78\}, \{BNN-89\}, \{TMS-78\}, \{BNN-89\}, \{BNN-89\},$
22	$84\}, \{HNT-92\}, \{CGM-12\}, \{IHS-78\}, \{LHK-95\}, \{MTS-86\}, \{HNT-92\}, \{LLL-13\}, \{IHS-78\}, \{YWC-12\}, \{IHS-78\}, \{IHS-78\},$
23	05},{Y-15}

Enol Acetates as Substrates

3	The initial report on the formation of α , β -unsaturated cycloalkenones from enol acetates
4	involves allyl carbonate in refluxing acetonitrile with catalytic amounts of tributyltin methoxide and
5	either Pd(OAc) ₂ or Pd(OAc) ₂ /dppe.{TMS-83a} Since this report, the reaction has been found to be
6	highly dependent on the purity of the reagents, {ACH-01} and the most effective palladium catalyst
7	appears to be substrate-dependent. {MTS-86} The transformation of (S)-enol acetate 16 under the
8	aforementioned conditions produces (S)-enone 17 without loss of enantiomeric purity (analyzed by
9	specific rotation), {GSR-91}, {SGU-91}, {WK-02} but reinvestigation by chiral stationary phase HPLC
10	analysis has since indicated partial racemization (Scheme 29). {KKS-14} An increase in racemization at
11	a longer reaction time is attributed to the formation of an (η^3 -allyl)PdH species derived from product
12	17. {KKS-14} The formation of the enones from (S)-enol acetates 18 {CBS-97} and 19 proceeds without
13	racemization (Scheme 30), as evidenced by chiral stationary phase HPLC analysis. {ACH-01} This
14	preservation of enantiopurity is consistent with the racemization mechanism described, since
15	substitution at the 4-position precludes the formation of a (η^3 -allyl)PdH complex.
16	(34)
17	(35)
18	Although this method is ineffective for the synthesis of enals, {MTS-86} it can be used for the
19	synthesis of dienones and cycloalkenones and is compatible with cyano, chloroaryl, and ether groups.
20	
21	Alkyl Enol Ethers as Substrates
22	α , β -Unsaturated aldehydes can be prepared from methyl enol ethers, and a typical procedure
23	employs palladium(II) acetate (0.5 equivalents), copper(II) acetate monohydrate (1 equivalent), and

1	sodium bicarbonate (0.5 equivalents) in acetonitrile. {TKA-92} By changing the solvent to water/acetic
2	acid or acetic acid/dichloromethane, the catalyst loading can be lowered to 0.01-0.05 equivalents of
3	palladium(II) acetate. This reaction takes place between room temperature and 40° and uses 1,4-
4	benzoquinone as the oxidant. {LHA-12} Because these reactions involve a Wacker-type addition, alkyl
5	enol ethers containing pendant OH groups afford 2,5-dihydrofurans instead of α , β -unsaturated
6	aldehydes (Scheme 31). {LHA-12} Common functional groups such as alkenes, silyl ethers, acetates,
7	benzyl groups, vinylsilanes, and dioxolanes are compatible with these reaction conditions.
8	(36)
9	This method is effective for the synthesis of α , β -unsaturated aldehydes, but there are no
10	literature examples for the synthesis of α , β -unsaturated ketones from alkyl enol ethers. However, traces
11	of cyclohexenone 20 were formed from the reaction of 1-methoxy-6,6-dimethylcyclohex-1-ene with a
12	stoichiometric amount of palladium(II) acetate in acetonitrile (Scheme 32). {KRS-82}
13	
14	(37)
15	
16	Allyl Enol Carbonates, Allyl β-Keto Carboxylates, or Allyl Malonates as Substrates
17	α , β -Unsaturated ketones can be prepared from allyl β -keto carboxylates or allyl enol carbonates
18	by treatment with Pd(OAc) ₂ /dppe in refluxing acetonitrile (Scheme 33). {ST-82} This approach is very
19	sensitive to the nature of the catalyst and experimental conditions. For example, at room temperature or
20	with solvents such as acetone or <i>tert</i> -butanol, the main product is either the saturated ketone or the α -
21	allyl ketone, $\{ST-82\}, \{SMT-83\}$ the latter compound being selectively obtained from the Pd(PPh ₃) ₄
22	catalyzed reaction of allyl β -keto carboxylates in DMF. {TCN-80}
23	(38)

-	
2	preferred to Pd(OAc) ₂ /dppe,{TMS-84},{MNY-87},{MMA-91},{RMK-94},{MMP-97},{YKT-
3	00},{WRG-02},{SMG-10} depending on the substrate.{SMT-83} This method has been used to prepare
4	isoflavones {DFR-93} and α , β -unsaturated esters, {KKK-09}, {KK-10}, {HKS-12} but has rarely been
5	used to make α , β -unsaturated aldehydes{SMT-83},{MNY-87} owing to decarboxylative
6	allylation.{AT-14} The procedure is compatible with the presence of phenol and cyano groups, as well
7	as alkyl, benzyl, aryl, and silyl ethers, but is ineffective for substrates having an indole or a carbamate-
8	protected indolyl group (Figure 6). {KK-10}
9	(39) {KK-10}
10	The substitution pattern of the substrate affects its reactivity. In general, allyl β -keto carboxylates
11	generate 2-substituted cyclopent-2-enones in yields up to 90%. {ST-82}, {TMS-84}, {MNY-87}, {WRG-
12	02},{SMG-10} However, the synthesis of unsubstituted cyclopent-2-enone is problematic; neither allyl
13	carboxylate 21 nor allyl carbonate 22 furnishes the desired enone product in a useful yield. Instead, the
14	major product is 2-allylcyclopentanone, which results from decarboxylative allylation (Scheme
15	34).{SMT-83},{TB-05}
16	(40)
17	As depicted in Scheme 9, a Pd-H species is involved in the dehydrogenation reaction. When
18	carbon–palladium(II) intermediates have both a hydrogen and an acetate in the β -position, competition
19	can occur between β -H and β -OAc elimination.{LM-12} Favoring the latter pathway provides an
20	effective synthesis of α -methylene ketones, esters, lactones, and lactams from allyl acetoxymethyl
21	carboxylates such as substrate 23 (Scheme 35). The same reaction is observed from substrates 24 and 25
22	which bear a carbonate or a benzoate instead of an acetate group. {TNM-86}, {TNM-87} On the other

1 With respect to catalyst, palladium(II) acetate or Pd₂(dba)₃ (with or without PPh₃) is sometimes

19

1	hand, substrates 26 and 27, which bear a methoxy or a hydroxyl group, respectively, afford the α -allyl
2	carbonyl compounds as the major products. {TNM-86}
3	(41)
4	
5	α-Chloro Ketones as Substrates
6	α -Chloro ketones undergo palladium-catalyzed dehydrohalogenation to form the corresponding
7	enones.{GLP-12},{WBM-12} Attempts to effect a methoxycarbonylation of 2-chloro-1-tetralone afford
8	70% of 1-naphthol and only 5% of the β -keto ester (Scheme 36). {WBM-12}
9	(42)
10	This method for preparing enones by palladium-catalyzed dehydrohalogenation of α -halo
11	ketones has not seen synthetic applications. Simpler reaction conditions than those documented {GLP-
12	12},{WBM-12} may be effective but remain uninvestigated.
13	
14	APPLICATIONS TO SYNTHESIS
15	A number of examples in the Tabular Survey describe the synthesis of key intermediates that are
16	used for subsequent elaboration. Only selected applications of Saegusa-type reactions are detailed
17	below.
18	
19	Desymmetrization/Palladium-Mediated Dehydrosilylation Reaction Sequence
20	Enantioselective deprotonation of prochiral cyclic ketones{WF-80},{S-86},{CCC-90},{ATN-
21	97},{SW-13} provides convenient access to non-racemic, 4-substituted cyclohex-2-en-1-ones (Scheme
22	37).{STK-86},{CS-91},{SYK-01},{TH-12},{CVP-11},{RVS-05},{NAN-15} This method involves
23	quenching with chlorotrimethylsilane $\{CG-84\}$ followed by palladium-catalyzed dehydrosilylation.

2 3 **Enones as Intermediates in Natural Product Synthesis** Enones are useful intermediates in the total synthesis of natural products, wherein they are often 4 prepared by the Saegusa Reaction. Representative examples include the syntheses of gambierol 5 (Schemes 38 and 39), {FHH-10}, {FHM-09}, {M-10a}, {MCJ-06}, {KTS-03}, {KTS-03b}, {FSS-6 02},{FKT-02},{SF-14},{SF-04} (±)-preussomerins F, K and L (Scheme 40),{QSR-04},{QST-04}, 7 zoanthamine, {M-07}, {YSH-09} zoanthenol, {YTT-11} norzoanthamine (Scheme 41), {MSH-04}, {M-8 9 07}, {YSH-09}, {YMH-09} gochnatiolides, {LDZ-12} and methyl (±)-jasmonate (Scheme 42). {KYG-87} 10 (44) 11 (44a) 12 {FHM-09}, {FHH-10}, {M-10a}, {KTS-03}, {KTS-03b}, {FSS-02}, {FKT-02} 13 14 (45){QST-04},{QSR-04} 15 (46) 16 17 (47) 18 19 **Tandem Reactions Involving Enones** Saegusa Reaction products have been used as intermediates in various tandem reactions. For 20 21 example, sonication of a DMSO solution of silyl enol ether 28 in the presence of palladium(II) acetate 22 under an atmosphere of air generates dienone 29, which undergoes a cross-Diels-Alder reaction with enone 30 to produce intermediate 31 (Scheme 43). {LDZ-12} Isomerization of compound 31 yields 23 gochnatiolide C, and allylic oxidation of the latter compound affords gochnatiolides A and B. Also 24

1	isolated is compound 33, which arises from a homo-Diels-Alder reaction of dienone 29 to form
2	intermediate 32 , followed by isomerization and allylic oxidation (Scheme 44).
3	(48)
4	(48a)
5	Scheme 45 depicts a spontaneous intramolecular Diels-Alder reaction of a Saegusa product en
6	route to the methyl ester of sordaricin. {KKW-93}
7	(49)
8	The synthesis of 3-arylacrylate 36 involves decarboxylative palladation of acid 34 and oxidative
9	dehydrogenation of enol silane 35 , followed by a Heck-type coupling (Scheme 46).{FHK-10}. Notably,
10	all three steps of this tandem reaction are catalyzed by the same palladium species, palladium(II) acetate.
11	(50)
12	
13	Saegusa Reaction on an Industrial Scale
14	Because the Saegusa Reaction is a reliable method for enone synthesis, it has found application
15	in industrial syntheses. The synthesis of a receptor agonist involves a phenol intermediate that can be
16	accessed from enone 37 by palladium-mediated, oxidative dehydrogenation (Scheme 47). {HAC-
17	13}{TM-87} Up to 11.5 kg of palladium(II) acetate is used in this stoichiometric dehydrogenation
18	reaction, resulting in kilogram quantities of the desired intermediate. Elaborate workup procedures are
19	used to recover the palladium metal; in one example, 10.3 kg of palladium metal was recovered from a
20	reaction that employed 10.5 kg of palladium(II) acetate.
21	(51)
22	
23	COMPARISON WITH OTHER METHODS

1	Because of the well-known utility of α , β -unsaturated carbonyl compounds in increasing molecular
2	complexity in organic synthesis, their preparation has been the subject of a large number of studies and
3	many different approaches are available. In this section, the Saegusa Reaction is compared with
4	alternative methods for the dehydrogenation of carbonyl compounds and related substances to the
5	corresponding α , β -unsaturated carbonyl compounds. Included in this discussion are bromination–
6	dehydrobromination, {SH-73}, {MW-72}, {GMO-72}, {BW-91}, {BC-83} thiolation-oxidation-
7	elimination,{TSH-76} and selenation-oxidation-elimination{RRR-73},{RRR-75},{SLT-73},{RW-
8	93},{BLL-78},{BLL-80} reaction sequences. In addition, palladium,{M-10},{TCN-16},{DS-
9	$11\}, \{GHQ-12\}, \{DWS-12\} iodine, \{NZB-00\}, \{NMB-02\}, \{NGM-02\}, \{NMB-02a\}, \{NMBZ-02\}, \{SHR-11\}, \{GHQ-12\}, \{DWS-12\}, \{OHD-12\}, (OHD-12), $
10	10} N-tert-butyl benzenesulfinimidoyl chloride, {MMK-00}, {MA-05} and 2,3-dichloro-5,6-dicyano-
11	1,4-benzoquinone (DDQ){RMH-78} chemistry are discussed as well, as is dye-sensitized
12	photooxygenation. {RLC-78} Examples of products that are best prepared by methods other than the
13	Saegusa Reaction are summarized in Table A, whereas Table B depicts substrates for which the Saegusa
14	Reaction was most efficient. Table C depicts the examples of the α , β -unsaturated carbonyl compounds
15	that have been obtained in similar yields by the Saegusa Reaction and by another method. The
16	relationships between the method, substrate, and yield are not obvious within these datasets, and
17	therefore, identifying the best reaction sequence for a given substrate remains a largely empirical
18	process.

(52)

20	{RFZ-12},{GKS-98},{CBL-06},{STF-13},{CMM-96},{HML-06},{TF-05},{TDV-10},{KDY-
21	$00\}, \{BFB-10\}, \{D-99\}, \{XWZ-15\}, \{PMS-97\}, \{SSD-00\}, \{HMH-04\}, \{O-01\}, \{O-02\}, \{DLY-10\}, \{O-02\}, \{DLY-10\}, \{O-11\}, \{$
22	$08\}, \{LGG-13\}, \{BAW-07\}, \{D-99\}, \{BSG-97\}, \{HSI-11\}, \{BCD-02\}, \{GX-09\}, \{CFI-10\}, \{NKV-10\}, \{N$
23	06},{RZP-09},{KNT-86},{FPR-05},{SHN-04},{NPS-09},{LDD-13}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(53) {JDV-14},{MMA-97},{IZM-01},{HGC-02},{GFB-00},{CBL-06},{D-99},{HZ-96},{PP-09},{D-99},{D-99},{RS-79},{D-99},{BMO-13},{WT-07},{FPK-15},{G-08},{DWJ-14},{SIF-02},{FKT-02},{NKV-06},{YMM-11},{QST-04},{QSR-04},{JW-97b},{DD-15},{DDH-15} (54) {CBL-06}, {NPT-08}, {BBW-13}, {FTF-05}, {NPS-09}, {NKV-06} The dehydrogenation of bis(trimethylsilyl enol ether) 38 is an interesting case, because multiple reaction pathways are possible (Scheme 48). {NJV-99} Chemoselective dehydrogenation of substrate 38 is observed in the presence of two equivalents of palladium(II) acetate (Method A^S). On the other hand, both enol ethers react with phenylselenyl chloride, and the products that are isolated depend on the nature of the oxidant, which can also promote a Pummerer-type reaction prior to the desired dehydrogenation reaction. (55) All of the methods discussed herein involve a metal (either catalytic or stoichiometric), but there is one example of a metal-free dehydrogenation of a silyl enol ether. 3-(Trimethylsilyl)cyclohex-2-enone is formed by aerobic oxidation of 1-(trimethylsilyloxy)-3-(trimethylsilyl)cyclohex-1-ene in the absence of a metal (Scheme 49). {HCH-08}

- 18
- 19
- 20

EXPERIMENTAL CONDITIONS

(56)

21 The potential hazards in Saegusa oxidations include the use of oxygen and organotin reagents. Oxygen enrichment may result in combustion or lead to explosions under certain conditions. Caution is 22 23 required when using tin, as it may induce acute and chronic health effects.

1	The efficiencies of the aforementioned palladium-mediated syntheses of α , β -unsaturated
2	carbonyl compounds may be significantly affected by solvent, catalyst, temperature, and purity of the
3	reagents, as well as the scale of the reactions. Typical findings are summarized below.
4	
5	Silyl Enol Ethers as Substrates
6	When diallyl carbonate is used to regenerate the catalyst, Pd ₂ (dba) ₃ •CHCl ₃ produces higher
7	yields than Pd(OAc) ₂ (with or without dppe) at room temperature and at reflux. {OXT-04} In the case of
8	Method C, side reactions may occur to varying degrees depending on the batch of Pd(OAc) ₂ and on the
9	scale. {FHM-12}, {FHM-13}
10	
11	Enol Acetates as Substrates
12	Product yields are very sensitive to the purity of the reagents when Pd(OAc) ₂ /dppe and allyl
13	methyl carbonate are employed. {ACH-01} In some cases, the use of dppe lowers the yields. {TMS-
14	84},{MTS-86}
15	
16	Allyl Enol Carbonates as Substrates
17	α , β -Unsaturated ketones are obtained in better yields using Pd(OAc) ₂ /dppe than with
18	Pd(OAc) ₂ /PPh ₃ at 80°. The decarboxylation/allylation pathway predominates at room temperature or
19	with Pd ₂ (dba) ₃ /dppe or Pd(PPh ₃) ₄ /dppe.{SMT-83} Both Pd(OAc) ₂ and Pd ₂ (dba) ₃ in MeCN are effective
20	in the absence of phosphine ligands. {TMS-84}
21	
22	Allyl β-Keto Carboxylates as Substrates

1	The use of Pd(OAc) ₂ /dppe is slightly more efficient in MeCN than in DMF, whereas the use of
2	acetone or <i>t</i> -BuOH as solvent provides mainly the decarboxylation/allylation product. {ST-82}
3	Decarboxylative allylation also predominates when PPh ₃ is employed instead of dppe.{ST-82},{MDC-
4	15} With $Pd_2(dba)_3$ as the catalyst, the reaction may stop prematurely in DMF. {KK-10}
5	
6	EXPERIMENTAL PROCEDURES
7	(57)
8	5,5-Dimethyl-3a',4'-dihydro-1' <i>H</i> -spiro[[1,3]dioxane-2,2'-pentalen]-5'(3' <i>H</i>)-one
9	[Stoichiometric Dehydrogenation of a Ketone via a Silyl Enol Ether].{D-00} To a stirred solution of
10	the cyclopentanone (1.80 g, 8.0 mmol, 1 equiv) in dry CH ₂ Cl ₂ (100 mL) at -78° under an argon
11	atmosphere were added Et ₃ N (3.44 mL, 24 mmol, 3 equiv) and Me ₃ SiI (2.35 mL, 16 mmol, 2 equiv).
12	After the mixture had been stirred at -78° for 30 min, saturated aqueous NaHCO ₃ (10 mL) was added,
13	and the mixture was allowed to warm to rt. The phases were separated, and the aqueous phase was
14	extracted with Et ₂ O (3 \times 10 mL). The organic extracts were combined and dried over anhydrous MgSO ₄ .
15	Evaporation of the solvent gave the silyl enol ether (2.19 g, 92%) as a colorless oil. The silyl enol ether
16	was used without further purification.

To a solution of $Pd(OAc)_2$ (1.59 g, 7.1 mmol, 1.0 equiv) in dry MeCN (90 mL) at rt was added a solution of the unpurified silyl enol ether (2.09 g, 7.1 mmol, 1 equiv) in dry MeCN (10 mL). After the mixture had been stirred at rt for 2 h, it was filtered through a short column of Florisil. The column was washed with Et₂O, and the combined filtrates were concentrated under reduced pressure. Colum chromatography on silica gel (4 cm × 25 cm; petroleum ether/EtOAc, 2:1) of the residue gave the

1	product (1.29 g, 72%) as a white solid: mp 84–86° (after recrystallization from nexane); IR (KBr) 2959,
2	1704, 1635, 1103 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 0.94 (s, 3H), 1.01 (s, 3H), 1.40 (dd, $J = 6.2, 6.2$
3	Hz, 1H), 2.08 (dd, <i>J</i> = 9.0, 1.7 Hz, 1H), 2.60 (dd, <i>J</i> = 9.0, 3.0 Hz, 1H), 2.65 (dd, <i>J</i> = 6.2, 4.0 Hz, 1H),
4	2.87 (d, <i>J</i> = 9.0 Hz, 1H), 2.99 (d, <i>J</i> = 9.0 Hz, 1H), 3.12 (m, 1H), 3.47 (dd, <i>J</i> = 5.0 Hz, 2H), 3.52 (dd, <i>J</i> =

04 0 00 (0

. 11.

0

- 5 5.0 Hz, 2H), 5.89 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 22.3, 22.4, 30.1, 38.1, 42.0, 42.1, 43.4, 71.6,
- 6 72.5, 109.0, 125.8, 185.6, 209.6; HRMS (m/z): [M]⁺ calcd for C₁₃H₁₈O₃, 222.1256; found, 222.1255.
- 7 Anal. Calcd. for C₁₃H₁₈O₃: C, 70.25; H, 8.16. Found: C, 70.36; H, 8.30

. . .

1 • 1

8

(1.00

700/)

(58)

4-Isopropylcyclohex-2-enone [Dehydrogenation of a Ketone in the Presence of 9 Benzoquinone via a Silvl Enol Ether]. **FSM-08** A 2.3 M solution of *n*-BuLi (1.93 mL, 4.49 mmol, 10 2.1 equiv) was added to a solution of *i*-Pr₂NH (0.660 mL, 4.71 mmol, 2.2 equiv) in THF (8 mL) at -78°. 11 The mixture was warmed to 0° over 30 min and then cooled to -78° . A solution of 4-12 isopropylcyclohexanone (0.300 g, 2.14 mmol, 1 equiv) in THF (2 mL) was added dropwise, and the 13 reaction mixture was stirred at -78° for 1 h. TMSCl (0.410 mL, 3.21 mmol, 1.5 equiv) was added 14 dropwise, and the resulting mixture was stirred at rt for 18 h before being quenched with saturated 15 aqueous NaHCO₃ solution (8 mL). The reaction mixture was diluted with Et₂O (8 mL), and the aqueous 16 layer was extracted with Et_2O (2 × 10 mL). The combined organic layers were washed with saturated 17 aqueous NaCl (30 mL), dried over Na₂SO₄, and concentrated in vacuo to yield 4-isopropylcyclohex-1-18 envloxytrimethylsilane (0.590 g, 2.79 mmol) as a yellow oil that was used without further purification. 19 A solution of 4-isopropylcyclohex-1-envloxytrimethylsilane (0.590 g, 2.79 mmol, 1 equiv) in 20

 \rightarrow ID (IZD \rightarrow 2050

1 benzoquinone (0.210 g, 1.95 mmol, 0.7 equiv) in MeCN (8 mL) at rt. The reaction mixture was stirred at rt for 16 h, and then was filtered through a pad of Celite. The pad of Celite was washed with Et₂O (30 2 3 mL), and the filtrates were concentrated in vacuo. This material was purified by silica gel column chromatography (petroleum ether/EtOAc, 9:1) to yield the product (0.270 g, 1.96 mmol, 92% over two 4 steps) as a pale-yellow oil: IR (liquid film) 2960, 2872, 1676, 1419, 1389, 1187, 1145 cm⁻¹; ¹H NMR 5 $(CDCl_3, 500 \text{ MHz}) \delta 0.97 \text{ (app t, } J = 7.1 \text{ Hz, 6H}), 1.72 - 1.87 \text{ (m, 2H)}, 1.97 - 2.05 \text{ (m, 1H)}, 2.27 - 2.39 \text{ (m, 1H)}, 2.27 - 2.39 \text{ (m, 2H)}, 1.97 - 2.05 \text{ (m, 2H)}, 1.97 -$ 6 2H), 2.51 (dt, J = 16.7, 4.1 Hz, 1H), 6.15 (dd, J = 10.4, 2.5 Hz, 1H), 6.90 (dt, J = 10.4, 1.9 Hz, 1H); ¹³C 7 NMR (CDCl₃, 125 MHz) δ 19.4, 19.6, 25.2, 31.5, 37.4, 42.5, 129.6, 154.4, 200.1; EIMS (*m/z*): [M + H]⁺ 8 9 139 (49), 94 (100), 81 (48), 64 (81), 52 (60), 40 (45); HRMS (m/z): [M]⁺ calcd for C₉H₁₄O, 138.1039; 10 found, 138.1039.

11

(59)

1,4-Dioxaspiro[4.5]dec-6-en-8-one [Catalytic Dehydrogenation of a Silyl Enol Ether in the 12 Presence of an Allyl Carbonate]. {KMM-01} A solution of Pd(OAc)₂ (36.0 mg, 0.16 mmol, 0.05 13 14 equiv) and dppe (58.0 mg, 0.14 mmol, 0.04 equiv) in MeCN (50 mL) was heated to reflux, and then diallyl carbonate (0.64 g, 4.51 mmol, 1.4 equiv) and the silyl enol ether (0.74 g, 3.24 mmol, 1 equiv) 15 were added. The mixture was heated at reflux for 40 h. The solvent was then evaporated under reduced 16 17 pressure to furnish a residue, which was purified by filtration through a column of silica gel (Et₂O/light petroleum, 1:1). The filtrate was evaporated under reduced pressure to provide the product (0.41 g, 82%) 18 as a pale-yellow oil: IR (film) 1683 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.20 (t, J = 6.5, 2H), 2.63 (t, J 19 = 6.5, 2H, 4.05 (m, 4H), 6.00 (d, J = 10.2, 1H), 6.61 (d, J = 10.2, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20 33.0, 35.4, 65.2, 104.1, 130.6, 146.6, 198.8; HRMS (*m/z*): [M + H]⁺ calcd for C₈H₁₁O₃, 155.0708; found, 21 155.0710. Anal. Calcd for C₈H₁₀O₃: C, 62.30; H, 6.50. Found: C, 62.31; H, 6.35. 22

Bicyclo[4.1.0]hept-3-en-2-one [Catalytic Dehydrogenation of a Silyl Enol Ether in the 2 Presence of tert-Butyl Hydroperoxide and Oxygen].{YWC-05},{Y-15} Under an atmosphere of air, a 3 4 50-mL, round-bottomed flask equipped with a magnetic stirring bar was charged with $Pd(OH)_2/C$ (20% 5 Pd) (17 mg, 0.032 mmol, 0.05 equiv), NEt₃ (0.86 mL, 6.4 mmol, 10 equiv), CH₂Cl₂ (2 mL), and the silvl enol ether (69 mg, 0.64 mmol, 1 equiv). The flask was purged with pure oxygen gas and was kept under 6 an oxygen atmosphere with a balloon. To this mixture was added *tert*-butyl hydroperoxide (40 µL, 0.40 7 mmol, 5 equiv) [sic] in 4 portions every 2 h with vigorous stirring. The resulting mixture was stirred at rt 8 for 72 h, at which point TLC analysis indicated that the reaction was complete. The mixture was then 9 10 filtered through a short pad of silica gel, and the pad was washed with CH₂Cl₂. After removal of the 11 solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/Et₂O, 1:1) to provide the product as a clear oil (48 mg, 70%): IR (neat) 2923, 1704, 1664, 1362, 12 1258, 864 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.28–1.34 (m, 2H), 1.72–1.78 (m, 1H), 1.86–1.90 (m, 13 1H), 2.64–2.77 (m, 2H), 5.88–5.90 (m, 1H), 6.47–6.51 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 12.3, 14 21.9, 25.4, 51.1, 127.0, 143.3, 197.7; HRMS (70 eV) (*m/z*): [M + H]⁺ calcd for C₇H₉O, 109.0653; found, 15 109.0658. 16

17

(61)

(4*R*,5*S*)-5-Ethyl-4,5-dihydroxycyclohex-2-enone [Catalytic Dehydrogenation of a Silyl Enol
Ether in the Presence of Oxygen].{HLW-11} A 500-mL, round-bottomed flask was charged
sequentially with a Teflon-coated stirring bar, the starting diol (9.60 g, 30.6 mmol, 1 equiv), and DMSO
(15.3 mL). Pd(OAc)₂ (685 mg, 3.06 mmol, 0.1 equiv) was then added. The reaction flask was purged

(60)

1 with oxygen by three evacuation-refill cycles, using a balloon of oxygen to fill the flask. The resulting mixture was stirred under a balloon of oxygen for 10 h at rt. The reaction flask was then purged again 2 3 three times with oxygen, and stirring was continued for an additional 7 h at rt under a balloon of oxygen. The product mixture was purified by column chromatography on silica gel (hexanes/acetone, 55:45) to 4 afford the product as a viscous, colorless oil (4.41 g, 92%): TLC Rf 0.20 (ethyl acetate/hexanes, 7:3, 5 SiO₂); IR (film) 3407, 1675, 1463, 1385 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.97 (t, J = 8.0 Hz, 3H), 6 1.72 (app q, J = 7.5 Hz, 2H), 2.26 (s, 1H), 2.48 (d, J = 16.5 Hz, 1H), 2.64 (dd, J = 16.5, 0.5 Hz, 1H), 7 2.76 (d, J = 8.5 Hz, 1H), 4.38 (dt, J = 9.0, 2.5 Hz, 1H), 6.04 (ddd, J = 11.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 2.0, 1.0, 2.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 1.0 Hz, 1H), 6.74 (dd, J = 1.0, 1.0 Hz, 1H), 1.0, 1.0 Hz, 1H), 1.0, 1.0 Hz, 1H), 1.0, 1.0 Hz, 1H), 1 8 = 10.0, 2.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz), δ 7.9, 31.2, 46.1, 70.1, 76.8, 128.9, 149.8, 198.3; 9 10 HRMS-CI (m/z): $[M + H]^+$ calcd for C₈H₁₃O₃, 157.0859; found, 157.0855.

11

(62)

(1*R*,5*R*)-1-[(((1,1-Dimethylethyl))dimethylsilyloxy)methyl)]bicyclo[3.1.0]hex-3-en-2-one 12 13 [Catalytic Dehydrogenation of a Ketone in the Presence of Oxygen via a Silyl Enol Ether].{JDV-14} To a solution of the ketone (0.647 g, 2.69 mmol, 1 equiv) in CH₂Cl₂ (13.5 mL) was added TBSOTf 14 (0.742 mL, 3.23 mmol, 1.2 equiv). Triethylamine (1.12 mL, 8.07 mmol, 3 equiv) was added dropwise. 15 The reaction mixture was stirred at rt for 1 h and then was diluted with a saturated aqueous NaHCO3 16 17 solution. The organic layer was removed, and the aqueous layer was extracted with CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue 18 19 was passed through a short column of silica gel (pretreated with 3% triethylamine in hexanes). The residue was eluted with 1% triethylamine in hexanes. Concentration of the fractions in vacuo yielded a 20 colorless liquid that was dissolved in DMSO (26.9 mL). 21

1 To the solution of the silvl enol ether in DMSO was added $Pd(OAc)_2$ (60.4 mg, 0.269 mmol, 0.1 equiv). The reaction flask was purged with molecular oxygen before attaching a balloon filled with 2 3 oxygen. The reaction mixture was heated to 55° and stirred at that temperature for 48 h. The reaction mixture was allowed to cool to rt and was extracted with hexanes. The combined extracts were dried 4 over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography 5 on silica gel (hexanes/ethyl acetate, 97:3 to 92:8) to provide the product as a colorless oil (0.495 g, 77%) 6 over two steps): ¹H NMR (C₆D₆, 400 MHz) δ 0.02 (s, 6H), 0.82–0.93 (m, 10H), 1.11 (app dd, J = 6.9, 7 3.3 Hz, 1H), 2.02 (ddd, J = 6.8, 2.9, 2.9, 1H), 3.68 (d, J = 10.5 Hz, 1H), 4.22 (d, J = 10.5 Hz, 1H), 5.42 8 $(d, J = 5.7 \text{ Hz}, 1\text{H}), 6.90 (dd, J = 5.7, 2.8 \text{ Hz}, 1\text{H}); {}^{13}\text{C} \text{ NMR} (C_6 D_6, 100 \text{ MHz}) \delta -5.34, -5.27, 18.5,$ 9 26.1, 26.3, 36.1, 37.6, 60.0, 128.8, 162.0, 204.5; HRMS-ESI (m/z): $[M + Na]^+$ calcd for C₁₃H₂₂O₂NaSi, 10 261.1287; found, 261.1300. 11

12

(63)

13 4-Cyano-4-(3,4-dichlorophenyl)cyclohex-2-enone [Catalytic Dehydrogenation of an Enol Acetate in the Presence of an Allyl Carbonate]. {ACH-01} To a solution of 4-cyano-4-(3',4'-dichloro-14 phenyl)cyclohex-1-enyl acetate (150 mg, 0.4 mmol, 1 equiv) in dry MeCN (5 mL) were added Pd(OAc)₂ 15 (6.7 mg, 0.03 mmol, 0.075 equiv), dppe (12 mg, 0.03 mmol, 0.075 equiv), and allyl methyl carbonate 16 17 (0.07 mL, 0.62 mmol, 1.55 equiv). The mixture was stirred for 30 min at rt, and then tributyltin methoxide (0.03 mL, 0.12 mmol, 0.3 equiv) was added. The reaction mixture was heated at reflux for 18 18 h, cooled to rt, and filtered through a pad of Celite. After CH₂Cl₂ (15 mL) was added, the organic layer 19 was washed with a saturated aqueous NH₄Cl solution (3 × 15 mL), dried over MgSO₄, and concentrated 20 21 in vacuo. The crude product was purified by column chromatography on silica gel (hexane; then hexane/Et₂O, 1:1) to yield the product (77.4 mg, 65%) as a colorless oil: TLC R_f 0.62 (hexane/EtOAc, 22

1:1); IR (film) 2239, 1693 cm⁻¹; ¹H (CDCl₃, 300 MHz) δ 2.13–2.86 (m, 4H), 6.33 (d, *J* = 9.9 Hz, 1H),
 6.80 (d, *J* = 9.9 Hz, 1H), 7.24–7.54 (m, 3H); ¹³C (CDCl₃, 75 MHz) δ 34.65, 37.63, 42.25, 118.41,
 125.48, 128.31, 131.52, 132.49, 133.73, 134.03, 137.91, 143.61, 195.22; EIMS (*m/z*): [M]⁺ 265 (44),
 237 (82), 202 (23), 267 (32), 239 (57), 174 (100); HRMS–ESI (*m/z*): [M]⁺ calcd for C₁₃H₉Cl₂NO,
 265.0061; found 265.0065.

6

(64)

7 (4R,5S)-2-Allyl-4,5-bis((benzyloxy)methyl)-4,5-dimethylcyclopent-2-enone [Catalytic 8 Decarboxylative Dehydrogenation of an Allyl β-Keto Carboxylate].{SMG-10} A solution of (3S,4R)-allyl 1-allyl-3,4-bis((benzyloxy)methyl)-3,4-dimethyl-2-oxocyclopentanecarboxylate (5.0 g, 9 10 10.5 mmol, 1 equiv) in MeCN (20 mL) was added slowly to a solution of Pd(OAc)₂ (117 mg, 0.525 11 mmol, 0.05 equiv) and PPh₃ (37 mg, 0.525 mmol, 0.05 equiv) in MeCN at 90° under Ar. The reaction mixture was then stirred at 90° for 3 h before being allowed to cool to rt. Filtration of the reaction 12 mixture through a plug of silica, removal of solvent, and column chromatography on silica gel 13 (hexanes/EtOAc, 20:1) furnished the product (3.6 g, 90%) as a colorless oil: IR (film) 3064, 3030, 2979, 14 2858, 1705, 1454, 1360, 1093, 914, 737, 698 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) δ 1.13 (s, 3H), 1.15 (s, 15 3H), 2.91 (ddd, J = 6.6, 2.7, 1.3 Hz, 1H), 3.48 (d, J = 9.0 Hz, 1H), 3.50 (d, J = 9.0 Hz, 1H), 3.56 (d, J = 16 17 9.4 Hz, 1H), 3.59 (d, J = 9.4 Hz, 1H), 4.33 (s, 2H), 4.33 (d, J = 11.9 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 5.01–5.10 (m, 2H), 5.83 (tdd, *J* = 16.8, 10.1, 6.6 Hz, 1H), 6.97 (t, *J* = 1.4 Hz, 1H), 7.17–7.31 (m, 10H); 18 19 ¹³C NMR (CDCl₃, 90 MHz) δ 19.8, 20.1, 29.1, 49.5, 54.3, 72.8, 73.1, 73.5, 74.7, 116.4, 127.2, 127.3, 127.4, 128.1, 128.2, 134.5, 138.2, 138.3, 140.6, 161.5, 210.9; HRMS (*m/z*): [M + H]⁺ calcd for 20 21 C₃₆H₃₁O₃, 391.2268; found, 391.2273.

5

6

9

10

11

12

13

14

15

6-[(Z)-7-[(Tetrahydropyranyl)oxy]hept-1,5-diyn-3-ene]-6-[(tert-2 butyldimethylsilyl)oxylcyclohex-2-en-1-one [Catalytic Decarboxylative Dehydrogenation of an 3 4 Allyl Enol Carbonate].{MMP-97} To a solution of the carbonate (41.7 g, 83.3 mmol, 1 equiv) in anhydrous MeCN (420 mL) heated at reflux under argon was added Pd(OAc)₂ (375 mg, 1.67 mmol, 0.02 equiv). The reaction mixture was heated at 80° for 4 h until TLC (hexanes/Et₂O, 4:1) showed that the reaction was complete. Celite 545 (15 g) was added, and the mixture was allowed to cool over 30 7 min with vigorous stirring. The solution was filtered through a pad of Celite, and the solvent was 8 evaporated in vacuo. The residue was immediately purified by column chromatography on silica gel (hexanes/Et₂O, 4:1) to provide the product as a colorless oil (26.2 g, 76%): IR (film) 2928, 2854, 1706, 1620 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.18 (s, 3H), 0.20 (s, 3H), 0.86 (s, 9H), 1.50–1.83 (m, 6H), 2.17-2.41 (m, 2H), 2.35-2.47 (m, 1H), 2.50-2.66 (m, 1H), 3.46-3.55 (m, 1H), 3.78-3.84 (m, 1H), 4.32-4.46 (m, 2H), 4.78 (bt, 1H), 5.77–5.88 (m, 2H), 5.95 (bd, 1H), 6.84–6.89 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ -3.2, -3.1, 18.3, 19.0, 25.1, 25.3, 25.8, 30.2, 38.8, 54.7, 62.0, 73.2, 82.9, 84.4, 93.2, 94.4, 96.9, 118.9, 120.2, 126.9, 149.8, 193.6; HRMS (m/z): $[M + H]^+$ calcd for C₂₄H₃₅O₄Si, 415.2315; found,

415.2305. 16

17

(66)

(E)-6-Oxohex-4-en-1-yl Acetate [Catalytic Dehydrogenation of an Alkyl Enol Ether in the 18 Presence of Benzoquinone]. {LHA-12} To a 4-mL borosilicate glass vial containing 6-methoxyhex-5-19 en-1-yl acetate (172 mg, 1.00 mmol, 1 equiv), 1,4-benzoquinone (130 mg, 1.2 mmol, 1.2 equiv), water 20 21 (20.0 µL, 1.11 mmol, 1.1 equiv), and AcOH (240 µL, 4.19 mmol, 4 equiv) was added Pd(OAc)₂ (2.4

(65)

mg, 0.02 mmol, 0.01 equiv), followed by CH₂Cl₂ (1 mL). The reaction mixture was stirred at rt until 1 2 completion (12 h), as indicated by GC analysis. The reaction mixture was then diluted with CH_2Cl_2 (50 3 mL) and washed with water (50 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexanes/EtOAc, 9:1) to 4 provide the product (125 mg, 80%) as a clear, colorless oil: FTIR (film) 2955, 1734, 1686, 1367, 1242, 5 1045 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.87 (quint, J = 6.4 Hz, 2H), 2.06 (s, 1H), 2.41–2.47 (m, 2H), 6 4.12 (t, J = 6.4 Hz, 2H), 6.87 (dt, J = 15.6, 6.8 Hz, 1H), 9.52 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 7 MHz) δ 20.8, 26.8, 29.1, 63.2, 133.3, 156.9, 170.9, 193.7; HRMS (*m/z*): [M + Na]⁺ calcd for 8 9 C₈H₁₂NaO₃, 179.0679; found, 179.0671.

10

(67)

(E)-4-Phenyl-2-butenal [Catalytic Dehydrogenation of an Alkyl Enol Ether in the Presence 11 of Cu(II)].{TKA-92} To a stirred suspension of Pd(OAc)₂ (30 mg, 0.134 mmol, 0.5 equiv) in MeCN 12 13 (0.6 mL) at rt were added 5% aqueous NaHCO₃ (0.05 mL, 0.05 equiv) and Cu(OAc)₂•H₂O (54 mg, 0.268 mmol, 1.0 equiv). After the mixture was cooled to 0°, a solution of (4-methoxybut-3-en-1-14 yl)benzene (43 mg, 0.268 mmol, 1 equiv) in MeCN (0.35 mL) was added. The resulting mixture was 15 stirred vigorously at 0° for 1 h and then at rt for 1 h. The mixture was poured into saturated aqueous 16 17 NH₄Cl solution, and the aqueous layer was extracted with CHCl₃. The organic extract was dried over MgSO₄ and concentrated. The residue was purified by column chromatography on silica gel 18 (hexane/EtOAc, 7:1) to provide the product (45 mg, 83%): UV (EtOH) λ_{max} 217 nm; IR (CHCl₃) 1690 19 cm^{-1} ; ¹H NMR (270 MHz) δ 3.65 (dd, J = 6.4, 1.7 Hz, 2H), 6.11 (ddt, J = 15.8, 7.7, 1.7 Hz, 1H), 6.97 20 $(dt, J = 15.8, 6.4 \text{ Hz}, 1\text{H}), 9.53 (d, J = 7.7 \text{ Hz}, 1\text{H}); \text{EIMS} (m/z): [M]^+ 146 (84), 117 (100), 115 (61), 91$ 21 (51); HRMS (m/z): $[M]^+$ calcd for C₁₀H₁₀O, 146.0730; found, 146.0730. 22

TABULAR SURVEY

2	The Tabular Survey covers the literature through February 2016. The tables are organized	
3	according to the type of substrates and the resulting products. In all tables and subtables, the substrates	
4	are listed in order of increasing carbon count. The carbon count is based on all carbon atoms of the	
5	starting materials, but small groups on heteroatoms, protecting groups, and the ester groups of β -keto	
6	esters are excluded.	
7	Full experimental conditions are typically available for the Saegusa Reaction steps only. When	
8	overall yields of the successive steps are shown in the tables, they reflect the available data from the	
9	literature. Silyl enol ethers are often used without purification.	
10	Table 1 presents oxidative dehydrogenation reactions leading to enones, cross-conjugated	
11	dienones, and phenols. Tables 2 and 3 concern the synthesis of α , β -unsaturated aldehydes and esters,	
12	respectively. Table 4 shows oxidative dehydrogenations leading to unsaturated lactones and lactams.	
13	Table 5 contains the synthesis of α , β , γ , δ -unsaturated ketones, esters, and amides.	
14	Some dehydrogenation reactions, which were used to prepare key intermediates starting from the	
15	silyl enol ethers, were reported without experimental details and yields, and consequently are not	
16	included in Tables. These compounds include 2-methoxy-14,15-dehydro-estrone, {MDG-09} 2-	
17	cyclooctenone, {LZH-09}, {OH-11} and 8,9-dihydro-5 <i>H</i> -benzo[7]annulen-5-one{OH-11} prepared by	
18	Methods A; 6-phenyl-cyclohex-2-en-1-one{SSY-08} by Method G;{TMS-83} and (<i>R</i>)-4-((<i>tert</i> -	
19	butyldimethylsilyl)oxy)cyclohex-2-enone, {MAO-10} 4-tert-butylcyclohexenone, {S-11} and 3-nonen-5-	
20	one{S-11} using Method C.{LHK-95}	
21	In addition to those listed in "The Journal of Organic Chemistry Standard Abbreviations and	
22	Acronyms", the following abbreviations are used in the Tabular Survey:	
1	BOM	benzyloxymethyl
----	-----------	---
2	C_4H_3S	thienyl
3	CSA	camphorsulfonic acid
4	dba	dibenzylideneacetone
5	dppe	1,2-bis(diphenylphosphino)ethane
6	HMDS	hexamethyldisilazane
7	MPM	4-methoxybenzyl
8	MS	molecular sieves
9	PMP	4-methoxyphenyl
10	TBDPS	tert-butyldiphenylsilyl
11	TES	triethylsilyl
12	TPAP	tetra- <i>n</i> -propylammonium perruthenate
13	Xantphos	4,5-bis(diphenylphosphino)-9,9-dimethylxanthene
14		

Scheme 1

LB-Muzart-TxGr01-.cdx 6/20/18 1:23 PM

Scheme 9

Scheme 11

Scheme 15

.....

Ref. PMS-97

Ref. STF-13^a

OTMS TMSO *i*-Pr

Ref. SHN-04

Ref. KNT-86

Ref. HIS-11^a

TMSO O HO BzO HO

OPMB

Ref. LDD-13^a

Ref. KHH-06

Ref. SST-0405^b

N TMSO

Ref. TF-05^{*a*}

Ref. EML-07

^{*a*} A low yield of the enone product was obtained. ^{*b*} The silylation reaction was unsuccessful.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

^{*a*} A low yield of the enone product was obtained.

Figure 2. Substrates leading to inefficient $Pd(OAc)_2/O_2/DMSO$ reactions.

^{*a*} A low yield of the enone product was obtained. ^{*b*} The silylation reaction was unsuccessful.

Figure 4. Substrates leading to inefficient reactions under Pd(0)/allyl carbonate conditions.

Scheme 28

$A^{C} \sim D (98\%) > B \sim G$	$A^{S}(87\%) > A^{C}(53\%)$	$A^{C} \sim E \sim G (93\%)$	$A^{C}(91\%) > F(74\%)$
(80%)	> C (25%)	> B (89%) > C (58%)	IHS-78, YWC-05
IHS-78, BNN-89,	CGM-12	IHS-78, LHK-95, MTS-86,	
TMS 84, HNT-92		HNT-92, LLL-13	

Method A^{C} : Pd(OAc)₂ (cat.), benzoquinone, MeCN.

Method A^S: Pd(OAc)₂ (1 equivalent or more), with or without benzoquinone, MeCN. Method A[?]: Pd(OAc)₂ (unspecified amount), benzoquinone, MeCN. Method B: PdCl₂(MeCN)₂ or Pd(OAc)₂ (cat.), CuCl (0.05 equivalent), HMPA (0.5 equivalent), O₂, THF. Method C: Pd(OAc)₂ (cat.), O₂, DMSO. Method D: Pd(0)/SiO₂ (cat.), O₂, *N*-methyl-2-pyrrolidone. Method E: Pd(OAc)₂ (cat.), Oxone (1 equivalent), Na₂HPO₄ (1 equivalent), O₂, MeCN. Method F: Pd(OH)₂ (cat.), *t*-BuOOH (2.5 equivalent), Na₂HPO₄ or NEt₃ (0.1–10 equivalent), O₂, CH₂Cl₂. Method G: Pd(0)L_n (cat.), allyl carbonate (2 equivalent), MeCN or PhCN.

Figure 5. α , β -Enones obtained from silyl enol ethers using Methods A–G.

Scheme 31

Scheme 37

Scheme 43

LB-Muzart-TxGr48a-.cdx 6/20/18 1:25 PM

48a

α,β-Unsaturated Carbonyl Product	Pd-Mediated Oxidative Dehydrogenation Conditions	Effective Method from Silylated (SS) or Carbonyl (CS) Substrate	Ref
CO ₂ Me	С	CS: 2-iodoxybenzoic acid/DMSO	RFZ-12
	С	SS: phenylselenation, oxidative elimination	GKS-98
	A?	CS: bromination, ketalisation, dehydrobromination, deprotection	CBL-06
TBSO	A?, C	SS: bromination, dehydrobromination	STF-13
H O TBSO H	A?	CS: sulfenylation, dehydrosulfenylation	CMM-96
TBDPSO H	A ^S	CS: phenylselenation, oxidative elimination	HML-06
EtO ₂ C O	A?, G	CS: bromination, dehydrobromination	TF-05

Table A. α,β-Unsaturated Carbonyl Compounds Prepared More Efficiently by Methods Other ThanPd-Mediated Oxidative Dehydrogenation of Silyl Enol Ethers

	F	CS: $Pd(OAc)_2$	TDV-10
MeO ₂ C TMSO ¹¹¹ O	A?	CS: SeO ₂	KDY-00
TBSO O	A?	CS: bromination, dehydrobromination, phenylselenation, oxidative elimination	BFB-10
	A ^S	CS: benzeneseleninic anhydride	D-99
$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	С	CS: 2-iodoxybenzoic acid/DMSO	XWZ-15
EtO ₂ C' TMSO	A?, G	SS: phenylselenation, oxidative elimination	PMS-97
COMe	A?	CS: NaH, PhSe(O)Cl, warming	SSD-00
Ph O O H	A?	CS: LDA, <i>N-t</i> -butyl phenylsulfinimidoyl chloride	HMH-04

LGG-13

CF₃CO₂H

 $\mathbf{A}^{?}$

CS: 2-iodoxybenzoic acid/NMO/DMSO

CS: benzeneseleninic anhydride	D-99
--------------------------------	------

SS: phenylselenation, oxidative elimination **BSG-97**

TBSC Ĥ

 $\mathbf{A}^{\mathbf{S}}$

 $\mathbf{A}^{?}$

A?

CS: phenylselenation, oxidative elimination GX-09

CS: LDA, *N-t*-butyl phenylsulfinimidoyl CFI-10 chloride

SS: phenylselenation, oxidative elimination NKV-06

SS: DDQ, 2,6-di-*t*-butyl-4-methylpyridine RZP-09

SS: singlet oxygen, PPh₃ KNT-86

CS: epoxidation, TsOH

FPR-05

Method A^S: Pd(OAc)₂ (1 equivalent or more), with or without benzoquinone, MeCN. Method A[?]: Pd(OAc)₂ (unspecified amount), benzoquinone, MeCN. Method C: Pd(OAc)₂ (cat.), O₂, DMSO. Method F: Pd(OH)₂ (cat.), *t*-BuOOH (2.5 equivalent), Na₂HPO₄ or NEt₃ (0.1–10 equivalent), O₂, CH₂Cl₂. Method G: Pd(0)Ln (cat.), allyl carbonate (2 equivalent), MeCN or PhCN.

α,β-Unsaturated Carbonyl Product	Effective Procedure	Less Effective Method from Silylated (SS) or Carbonyl (CS) Substrate	Ref
TBSO	С	CS: phenylselenation, oxidative elimination	JDV-14
TBDMSO	A ^C	CS: phenylselenation, oxidative elimination	MMA-97
TBSO	A ^S	CS: phenylselenation, oxidative elimination	IZM-01
H O TBSO OTBS	A ^S	SS: 2-iodoxybenzoic acid/ 4-methoxypyridine <i>N</i> -oxide/DMSO CS: 2-iodoxybenzoic acid/DMSO	HGC-02
O NHCbz	A ^S	CS: bromination, dehydrobromination and sulfenylation, dehydrosulfenylation	GFB-00
H H O	A ^C	CS: phenylselenation, oxidative elimination, 2-iodoxybenzoic acid/DMSO, 2-iodoxybenzoic acid/ 4-methoxypyridine <i>N</i> -oxide/DMSO, 2-iodoxybenzoic acid/NMO/DMSO, and HIO ₃ /DMSO	CBL-06

 Table B. α,β-Unsaturated Carbonyl Compounds Prepared More Efficiently by Pd-Mediated Oxidative

 Dehydrogenation of Silyl Enol Ethers Than by Other Methods

 $\mathbf{A}^{\mathbf{S}}$

С

 $\mathbf{A}^{\mathbf{S}}$

TBSO¹

SS: 2-iodoxybenzoic acid **FPK-15**

SS: 2-iodoxybenzoic acid/ 4-methoxypyridine N-oxide/DMSO G-08 CS: 2-iodoxybenzoic acid/DMSO

CS: iodoxybenzoic acid/NMO/DMSO **DWJ-14** and 2-iodoxybenzoic acid/DMSO

SIF-02

SS: phenylselenation, oxidative elimination CS: LDA, N-t-butyl phenylsulfinimidoyl **FKT-02** chloride and 2-iodoxybenzoic acid/DMSO

Boc

Ē

Method A^{C} : Pd(OAc)₂ (cat.), benzoquinone, MeCN. Method A^{S} : Pd(OAc)₂ (1 equivalent or more), with or without benzoquinone, MeCN. Method C: Pd(OAc)₂ (cat.), O₂, DMSO.

^{*a*} 1.5 equivalents of $Pd(OAc)_2$ were used.

α,β-Unsaturated Carbonyl Product	Seagusa's procedure	Other Effective Method from Silylated (SS) or Carbonyl (CS) Substrate	Ref
	A ^C	CS: 2-iodoxybenzoic acid/DMSO or HIO ₃ /DMSO	CBL-06
H O O O O O O	A ^S	SS: 2-iodoxybenzoic acid/ 4-methoxypyridine <i>N</i> -oxide/DMSO	NPT-08
H H OAc	A ^S	CS: 2-iodoxybenzoic acid/DMSO, TsOH	BBW-13
<i>i</i> -Pr	A ^S	SS: 2-iodoxybenzoic acid/DMSO	FTF-05
	A ^C	SS: 2-iodoxybenzoic acid/ 4-methoxypyridine <i>N</i> -oxide/DMSO	NPS-09

Table C. α,β-Unsaturated Enones Prepared in Comparable Yields Using Seagusa's Procedures and Other Methods

Method A^{C} : Pd(OAc)₂ (cat.), benzoquinone, MeCN. Method A^{S} : Pd(OAc)₂ (1 equivalent or more), with or without benzoquinone, MeCN. Method C: Pd(OAc)₂ (cat.), O₂, DMSO.

Scheme 49

57

REFERENCES

AAO-11, Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.; Salomon, E.; Tarnus, C.; Weibel, J.-M. *Bioorg. Med. Chem.* **2011**, *19*, 1434.

ABH-06, Austin, K. A. B.; Banwell, M. G.; Harfoot, G. J.; Willis, A. C. *Tetrahedron Lett.* **2006**, *47*, 7381.

ABK-08, Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M. *Chem. Rev.* **2008**, *108*, 2796.

ACH-01, Allan, G.; Carnell, A. J.; Hernandez, M. L. E.; Pettman, A. *Tetrahedron* 2001, *57*, 8193.

AFV-12, Alonso, E.; Fuwa, H.; Vale, C.; Suga, Y.; Goto, T.; Konno, Y.; Sasaki, M.; LaFerla,

F. M.; Vieytes, M. R.; Giménez-Llort, L.; Botona, L. M. J. Am. Chem. Soc. 2012, 134, 7467.

AHH-15, Abe, H.; Horii, Y.; Hagiwara, M.; Kobayashi, T.; Ito, H. Chem. Commun. 2015, 6108.

AME-99, Albéniz, A. C.; Catalina, C.; Espinet, P.; Redón, R. Organometallics 1999, 18, 5571.

ANI-11, Arimitsu, K.; Nomura, S.; Iwasaki, H.; Ozeki, M.; Yamashita, M. *Tetrahedron Lett.* **2011**, *52*, 7046.

ANM-09, Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Org. Lett. 2009, 11, 5554.

AOO-98, Amano, S.; Ogawa, N.; Ohtsuka, M.; Chida, N. Chem. Commun. 1998, 1263.

AOO-99, Amano, S.; Ogawa, N.; Ohtsuka, M.; Chida, N. Tetrahedron 1999, 55, 2205.

AT-14, Ariyarathna, Y.; Tunge, J. A. Org. Biomol. Chem. 2014, 12, 8386.

ATN-97, Aoki, K.; Tomioka, K.; Noguchi, H.; Koga, K. Tetrahedron 1997, 53, 13641.

ATO-99, Amano, S.; Takemura, N.; Ohtsuka, M.; Ogawa, S.; Chida, N. *Tetrahedron* **1999**, *55*, 3855.

AUO-05, Arai, N.; Ui, H.; Omura, S.; Kuwajima, I. Synlett 2005, 1691.

AV-98, Ainge, S. W.; Vogel, P. Tetrahedron Lett. 1998, 39, 4039.

AWD-08, Angeles, A. R.; Waters, S. P.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13765.

BAW-07, Banwell, M. G.; Austin, K. A. B.; Willis, A. C. Tetrahedron 2007, 63, 6388.

BBC-02, Barrett, A. G. M.; Blaney, F.; Campbell, A. D.; Hamprecht, D.; Meyer, T.; White, A. J. P.; Witty, D.; Williams, D. J. *J. Org. Chem.* **2002**, *67*, 2735.

BBC-11, Bon, D. J.-Y. D.; Banwell, M. G.; Cade, I. A.; Willis, A. C. *Tetrahedron* **2011**, *67*, 8348.

BBW-13, Bon, D. J.-Y. D.; Banwell, M. G.; Ward, J. S.; Willis, A. C. *Tetrahedron* **2013**, *69*, 1363.

BC-83, Bellamy, F. D.; Chazan, J. B.; Ou, K. Tetrahedron 1983, 39, 2803.

BCD-02, Brocksom, T. J.; Coelho, F.; Deprés, J.-P.; Greene, A. E.; Freire de Lima, M. E.;

Hamelin, O.; Hartmann, B.; Kanazawa, A. M.; Wang, Y. J. Am. Chem. Soc. 2002, 124, 15313.

BFB-10, Beingessner, R. L.; Farand, J. A.; Barriault, L. J. Org. Chem. 2010, 75, 6337.

BHO-91, Brown, M. J.; Harrison, T.; Overman, L. E. J. Am. Chem. Soc. 1991, 113, 5378.

BHO-12, Burns, D. J.; Hachisu, S.; O'Brien, P.; Taylor, R. J. K. Org. Biomol. Chem. 2012, 10, 7666.

BHL-9514, For papers and reviews on the Pd/DMSO interactions and the regeneration of Pd(II) active species, see: a) GMG0609; b) van Benthem, R. A. T. M.; Hiemstra, H.; van

Leeuwen, P. W. N. M.; Geus, J. W.; Speckamp, W. N. Angew. Chem., Int. Ed. Engl. 1995, 34,

457. c) Steinhoff, B. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766. d) Stahl, S.

S. Angew. Chem. Int. Ed. 2004, 43, 3400. e) Zierkiewicz, W.; Privalov, T. Organometallics

2005, 24, 6019. f) Popp, B. V.; Stahl, S. S. Chem. Eur. J. 2009, 15, 2915. g) Muzart, J; In

Comprehensive Organic Synthesis; Molander, G. A., Knochel, P. Eds, 2nd Edition, Vol. 7, Elsevier: Oxford, 2014, pp 295-301.

BIN-90, Baba, T.; Izumi, K.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Mol. Catal. 1990, 62, L5.

BLL-78, Barton, D. H. R.; Lester, D. J.; Ley, S. V. J. Chem. Soc., Chem. Commun. 1978, 130.
BLL-80, Barton, D. H. R.; Lester, D. J.; Ley, S. V. J. Chem. Soc., Perkin Trans I 1980, 2209.
BMO-13, Burns, D. J.; Mommer, S.; O'Brien, P.; Taylor, R. J. K.; Whitwood, A. C.; Hachisu, S. Org. Lett. 2013, 15, 394.

BNN-89, Baba, T; Nakano, K.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Chem. Soc., Chem. Commun. 1989, 1697.

BNN-90, Baba, T.; Nakano, K.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Chem. Soc., Perkin Trans. 2 1990, 1113.

BNN-90a, Baba, T; Nakano, K.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Chem. Soc., Chem. Commun. 1990, 348.

BNS-91, Baba, T; Nakano, K.; Sawa, K.; Izumi, K.; Nishiyama, S.; Tsuruya, S.; Masai, M.; Yamada, H. *J. Mol. Catal.* **1991**, *64*, 201.

BP-91, Buckle, D. R.; Pinto, I. L. In *Comprehensive Organic Synthesis* Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, **1991**, Vol. 7, pp 119-149.

- BPR-10, Berhal, F.; Perard-Viret, J.; Royer, J. Tetrahedron: Asymmetry 2010, 21, 325.
- BRK-15, Belov, D. S.; Ratmanova, N. K.; Andreev, I. A.; Kurkin, A. V. Chem. Eur. J. 2015, 21, 4141.
- BSG-97, Bonjoch, J.; Solé, D.; García-Rubio, S.; Bosch, J. J. Am. Chem. Soc. 1997, 119, 7230.
- BSM-14, Bruss, H.; Schuster, H.; Martinez, R.; Kaiser, M.; Antonchick, A. P.; Waldmann, H. Beilstein J. Org. Chem. 2014, 10, 194.
- BW-91, Berkowitz, W. F.; Wilson, P. J. J. Org. Chem. 1991, 56, 3097.
- BWS-08, Bisai, A.; West, S. P.; Sarpong, R. J. Am. Chem. Soc. 2008, 130, 7222.
- CBL-06, Cramer, N.; Buchweitz, M.; Laschat, S.; Frey, W.; Baro, A.; Mathieu, D.; Richter,
- C.; Schwalbe, H. Chem. Eur. J. 2006, 12, 2488.
- CBS-97, Carnell, A. J.; Barkely, J.; Singh, A. Tetrahedron Lett. 1997, 38, 7781.
- CCC-90, Cain, C. M.; Cousins, R. P. C.; Coumbarides, G.; Simpkins, N. S. *Tetrahedron* **1990**, *46*, 523.
- CCS-10, Chen, C.-H.; Chen, Y.-K.; Sha, C.-K. Org. Lett. 2010, 12, 1377.
- CD-01, Cox, C.; Danishefsky, S. J. Org. Lett. 2001, 3, 2899.
- CFI-10, Churruca, F.; Fousteris, M.; Ishikawa, Y.; von Wantoch Rekowski, M.; Hounsou, C.;
- Surrey, T.; Giannis, A. Org. Lett. 2010, 12, 2096.
- CFO-13, Canham, S. M.; France, D. J.; Overman, L. E. J. Org. Chem. 2013, 78, 9.
- CG-11, Camps, P.; Gómez, T. Arkivoc 2011, iii, 128.
- CG-84, Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495.
- CGM-12, Camps, P.; Gómez, T.; Monasterolo, C. J. Org. Chem. 2012, 77, 11270.
- CGO-14, Camps, P.; Gómez, T.; Otermin, A. Tetrahedron 2014, 70, 5190.
- CKM-06, Crawford, J. J.; Kerr, W. J.; McLaughlin, M.; Morrison, A. J.; Pauson, P. L.;
- Thurston, G. J. Tetrahedron 2006, 62, 11360.
- CM-86, Crimmins, M. T.; Mascarella, S. W. J. Am. Chem. Soc. 1986, 108, 3435.
- CMM-96, Clive, D. L. J.; Magnuson, S. R.; Manning, H. W.; Mayhew, D. L. J. Org. Chem. **1996**, *61*, 2095.
- CR-15, a) Chen, Y.; Romaire, J. P.; Newhouse, T. R. J. Am. Chem. Soc. 2015, 137, 5875. b)
- Chen, Y.; Turlik, A.; Newhouse, T. R. J. Am. Chem. Soc. 2016, 138, 1166.
- CS-07, Clive, D. L. J.; Sunasee, R. Org. Lett. 2007, 9, 2677.
- CS-91, Cox, P. J.; Simpkins, N. S. Tetrahedron: Asymmetry 1991, 2, 1.
- CVP-11, Clark, J. S.; Vignard, D.; Parkin, A. Org. Lett. 2011, 13, 3980.
- CW-96, Corey, E. J.; Wood, H. B., Jr. J. Am. Chem. Soc. 1996, 118, 11982.

CWM-98, Crimmins, M. T.; Wang, Z.; McKerlie, L. A. J. Am. Chem. Soc. 1998, 120, 1747.

- CXB-12, Chen, J.-Q.; Xie, J.-H.; Bao, D.-H.; Liu, S.; Zhou, Q.-L. Org. Lett. **2012**, *14*, 2714. D-00, Dragojlovic, V. *Molecules* **2000**, *5*, 674.
- D-99, Dragojlovic, V. J. Chem. Res. (S) 1999, 256, J. Chem. Res. (M) 1999, 1240.
- DD-15, a) Dethe, D. H.; Dherange, B. D. J. Org. Chem. 2015, 80, 4526; b) Dethe, D. H.

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016. Personal communication, 2015.

DDL-11, Dong, L.; Deng, L.; Lim, Y. H.; Leung, G. Y. C.; Chen, D. Y.-K. *Chem. Eur. J.* **2011**, *17*, 5778.

DEK-09, Dunn, T. B.; Ellis, J. M.; Kofink, C. C.; Manning, J. R.; Overman, L. E. Org. Lett. **2009**, *11*, 5658.

DFR-93, Donnelly, D. M. X.; Finet, J.-P.; Rattigan, B. A. J. Chem. Soc., Perkin Trans. 1 1993, 1729.

DLL-13, Deng, J.; Li, R.; Luo, Y.; Li, J.; Zhou, S.; Li, Y.; Hu, J.; Li, A. Org. Lett. 2013, 15, 2022.

DLY-08, Dang, H. T.; Lee, H. J.; Yoo, E. S.; Hong, J.; Bao, B.; Choi, J. S.; Jung, J. H. Bioorg. Med. Chem. 2008, 16, 10228.

DMC-15, Diaba, F.; Martínez-Laporta, A.; Coussanes, G.; Fernández, I.; Bonjoch, J. *Tetrahedron* **2015**, *71*, 3642.

- DMH-01, Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 755.
- DPV-05, Dominguez, C.; Prieto, L.; Valli, M. J.; Massey, S. M.; Bures, M.; Wright, R.A.;

Johnson, B. G.; Andis, S. L.; Kingston, A.; Schoepp, D. D.; Monn, J. A. J. Med. Chem. 2005, 48, 3605.

- DRG-14, Desrat, S.; Remeur, C.; Geny, C.; Riviere, G.; Colas, C.; Dumontet, V.; Birlirakis,
- N.; Iorga, B. I.; Roussi, F. Chem. Commun. 2014, 50, 8593.
- DRR-15, Desrat, S.; Remeur, C.; Roussi, F. Org. Biomol. Chem. 2015, 13, 5520.
- DS-11, Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566.

DWJ-14, Dong, L.-B.; Wu, Y.-N.; Jiang, S.-Z.; Wu, X.-D.; He, J.; Yang, Y.-R.; Zhao, Q.-S. *Org. Lett.* **2014**, *16*, 2700.

- DWS-12, Diao, T.; Wadzinski, T. J.; Stahl, S. S. Chem. Sci. 2012, 3, 887.
- DXW-11, Ding, Z.; Xue, S.; Wulff, W. D. Chem. Asian J. 2011, 6, 2130.
- EFH-99, Egner, U.; Fritzemeier, K.-H.; Halfbrodt, W.; Heinrich, N.; Kuhnke, J.; Müller-
- Fahrnow, A.; Neef, G.; Schöllkopf, K.; Schwede, W. Tetrahedron 1999, 55, 11267.

EML-07, El Sheikh, S.; Meier zu Greffen, A.; Lex, J.; Neudörfl, J.-M.; Schmalz, H.-G. *Synlett* **2007**, 1881.

FCL-10, Flick, A. C.; Caballero, M. J. A.; Lee, H. I.; Padwa, A. J. Org. Chem. 2010, 75, 1992.

FDK-98, Frontier, A. J.; Danishefsky, S. J.; Koppel, G. A.; Meng, D. *Tetrahedron* **1998**, *54*, 12721.

FFT-04, Fuwa, H.; Fujikawa, S.; Tachibana, K.; Takakura, H.; Sasaki, M. *Tetrahedron Lett.* **2004**, *45*, 4795.

FHH-10, Furuta, H.; Hasegawa, Y.; Hase, M.; Mori, Y. Chem. Eur. J. 2010, 16, 7586.

FHK-10, Fu, Z.; Huang, S.; Kan, J.; Su, W.; Hong, M. Dalton Trans. 2010, 39, 11317.

FHM-09, Furuta, H.; Hasegawa, Y.; Mori, Y. Org. Lett. 2009, 11, 4382.

FHM-12, Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Org. Lett. 2012, 14, 2195.

FHM-13, Farcet, J.-B.; Himmelbauer, M.; Mulzer, J. Eur. J. Org. Chem. 2013, 4379.

FHP-13, Fazakerley, N. J.; Helm, M. D.; Procter, D. J. Chem. Eur. J. 2013, 19, 6718.

FKT-02, Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. J. Am. Chem. Soc. 2002, 124, 14983.

FM-06, Fairweather, K. A.; Mander, L. N. Org. Lett. 2006, 8, 3395.

FPK-15, Felker, I.; Pupo, G.; Kraft, P.; List, B. Angew. Chem. Int. Ed. 2015, 54, 1960.

FPR-05, Fernández-Mateos, A.; Pascual Coca, G.; Rubio González, R. *Tetrahedron* **2005**, *61*, 8699.

FR-05, Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411.

FSM-08, Findley, T. J. K.; Sucunza, D.; Miller, L. C.; Davies, D. T.; Procter, D. J. Chem. Eur. J. 2008, 14, 6862.

FSS-02, Fuwa, H.; Sasaki, M.; Satake, M.; Tachibana, K. Org. Lett. 2002, 4, 2981.

FTF-05, Fujieda, S.; Tomita, M.; Fuhshuku, K.i.; Ohba, S.; Nishiyama, S.; Sugai, T. Adv. Synth. Catal. 2005, 347, 1099.

FYY-12, Fujioka, K.; Yokoe, H.; Yoshida, M.; Shishido, K. Org. Lett. 2012, 14, 244.

G-08, Gatti, F. G. Tetrahedron Lett. 2008, 49, 4997.

GAG-02, Gerber-Lemaire, S.; Ainge, S. W.; Glanzmann, C.; Vogel, P. Helv. Chim. Acta 2002, 85, 417.

GC-06, Gotchev, D. B.; Comins, D. L. J. Org. Chem. 2006, 71, 9393.

GCM-07, García-Fortanet, J.; Carda, M.; Marco, J. A. Tetrahedron 2007, 63, 12131.

GGC-90, Gross, A. S.; Grieco, P. A.; Collins, J. L. J. Am. Chem. Soc. 1990, 112, 9436.

GFB-00, Gentile, G.; Fattori, D.; Botta, M.; Corelli, F.; Fusar-Bassini, D.; Lamba, D. *Can. J. Chem.* **2000**, *78*, 925.

GGB-93, Grennberg, H.; Gogoll, A.; Bäckvall, J.-E. Organometallics 1993, 12, 1790.

GHQ-12, Gao, W.; He, Z.; Qian, Y.; Zhao, J.; Huang, Y. Chem. Sci. 2012, 3, 883.

GJZ-06, Gao, S.-H.; Jia, Y.-X.; Zhao, X.-Z.; Tu, Y.-Q. Chin. J. Chem. 2006, 24, 595.

GKS-98, Girlanda-Junges, C.; Keyling-Bilger, F.; Schmitt, G.; Luu, B. *Tetrahedron* **1998**, *54*, 7735.

GLP-12, Giboulot, S.; Liron, F.; Prestat, G.; Wahl, B.; Sauthier, M.; Castanet, Y.; Mortreux, A.; Poli, G. *Chem. Commun.* **2012**, *48*, 5889.

GMG-0609, For reviews on the use of O₂ to regenerate Pd(II) active species, see: a)

Gligorich, K. M. Sigman, M. S. Angew. Chem. Int. Ed. 2006, 118, 6612; b) Muzart, J. Chem.

Asian J. 2006, 1, 508; c) Gligorich, K. M. Sigman, M. S. Chem. Commun. 2009, 3854; d)

Scheuermann, M. L.; Goldberg, K. I. Chem. Eur. J. 2014, 20, 14556.

GMO-72, Greene, A. E.; Muller, J.-C.; Ourisson, G. Tetrahedron Lett. 1972, 13, 3375.

GMR-06, González-Avión, X. C.; Mouriño, A.; Rochel, N.; Moras, D. J. Med. Chem. 2006, 49, 1509.

GSR-91, (a) Gordon, P. M.; Siegel, C.; Razdan, R. K. J. Chem. Soc., Chem. Commun. 1991,

692. (b) Siegel, C.; Gorden, P. M.; Uliss, D. B.; Handrick, G. R.; Dalzell, H. C.; Razdan, R.

K. J. Org. Chem. 1991, 56, 6865.

GX-09, Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163.

HA-08, Hanessian, S.; Auzzas, L. Org. Lett. 2008, 10, 261.

HAC-13, Harris, R. M.; Andrews, B. I.; Clark, S.; Cooke, J. W. B.; Gray, J. C. S.; Ng, S. Q. Q. Org. Process Res. Dev. 2013, 17, 1239.

HBK-01, Hoffmann, R. W.; Brandl, T.; Kirsch, P.; Harms, K. Synlett 2001, 960.

HBL-08, Harvey, M. J.; Banwell, M. G.; Lupton, D. W. Tetrahedron Lett. 2008, 49, 4780.

Banwell, M. G. Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia. Personal communication, 2013.

HCH-08, Hwu, J. R.; Chen, C. H.; Hsu, C.-I.; Das, A. R.; Li, Y. C.; Lin, L. C. Org. Lett. **2008**, *10*, 1913.

HCS-12, Hessler, F.; Císařova, I.; Sedlák, D.; Bartůněk, P.; Kotora, M. *Chem. Eur. J.* 2012, 18, 5515.

HF-04, Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 13178.

HGC-02, Hodgson, D. M.; Galano, J.-M.; Christlieb, M. Chem. Commun. 2002, 2436.

HGC-03, Hodgson, D. M.; Galano, J.-M.; Christlieb, M. Tetrahedron 2003, 59, 9719.

HGT-05, Hayashi, Y.; Gotoh, H.; Tamura, T.; Yamaguchi, H.; Masui, R.; Shoji, M. J. Am. Chem. Soc. 2005, 127, 16028.

HHG-08, Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.

HHN-10, Hiraoka, S.; Harada, S.; Nishida, A. J. Org. Chem. 2010, 75, 3871.

HHN-11, Hiraoka, S.; Harada, S.; Nishida, A. Tetrahedron Lett. 2011, 52, 3079.

HJO-93, Hirst, G. C.; Johnson, T. O.; Overman, Jr., L. E. J. Am. Chem. Soc. 1993, 115, 2992.

HK-03, Huddleston, R. R.; Krische, M. J. Synlett 2003, 12.

HKS-12, Humenny, W. J.; Kyriacou, P.; Sapeta, K.; Karadeolian, A.; Kerr, M. A. Angew. Chem. Int. Ed. 2012, 51, 11088.

HKY-93, Herlem, D.; Kervagoret, J.; Yu, D.; Khuong-Huu, F.; Kende, A. S. *Tetrahedron* **1993**, *49*, 607.

HLL-09, Hsieh, M. T.; Liu, H. J.; Ly, T. W.; Shia, K. S. Org. Biomol. Chem. 2009, 7, 3285.

HLW-11, Herzon, S. B.; Lu, L.; Woo, C. M.; Gholap, S. L. J. Am. Chem. Soc. 2011, 133, 7260.

HM-05, Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 5342.

HMH-04, Hara, S.; Makino, K.; Hamada, Y. Tetrahedron 2004, 60, 8031.

HML-06, Hanessian, S.; Mainetti, E.; Lecomte, F. Org. Lett. 2006, 8, 4047.

HMS-09, Hayashi, M.; Motosawa, K.; Satoh, A.; Shibuya, M.; Ogasawara, K.; Iwabuchi, Y. *Heterocycles* **2009**, *77*, 855.

HMT-05, Hughes, C. C.; Miller, A. K.; Trauner, D. Org. Lett. 2005, 7, 3425.

HMT-12, Hog, D. T.; Mayer, P.; Trauner, D. J. Org. Chem. 2012, 77, 5838.

HNT-92, Hosokawa, T.; Nakahira, T.; Takano, M.; Murahashi, S.-I. *J. Mol. Catal.* **1992**, *74*, 489.

HP-08, Henderson, J. A.; Phillips, A. J. Angew. Chem. Int. Ed. 2008, 47, 8499.

HSI-11, Hiroya, K.; Suwa, Y.; Ichihashi, Y.; Inamoto, K.; Doi, T. J. Org. Chem. 2011, 76, 4522.

HT-98, Hoffman, R. V.; Tao, J. Tetrahedron Lett. 1998, 39, 3953.

HT-98b, Hoffman, R. V.; Tao, J. J. Org. Chem. 1998, 63, 3979.

HTZ-06, Hu, X.-D.; Tu, Y. Q.; Zhang, E.; Gao, S.; Wang, S.; Wang, A.; Fan, C.-A.; Wang,

M. Org. Lett. 2006, 8, 1823.

HZ-96, Hauser, F. M.; Zhou, M. J. Org. Chem. 1996, 61, 5722.

HZG-11, Han, Y.; Zhu, L.; Gao, Y.; Lee, C.-S. Org. Lett. 2011, 13, 588.

HZS-01, Hauser, F. M.; Zhou, M.; Sun, Y. Synth. Commun. 2001, 31, 77.

IAH-79, Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494.

IAS-80, Ito, Y.; Aoyama, H.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 4519.

IDG-84, Ireland, R. E.; Dow, W. C.; Godfrey, J. D.; Thaisrivongs, S. J. Org. Chem. 1984, 49, 1001.

IGT-81, Ireland, R. E.; Godfrey, J. D.; Thaisrivongs, S. J. Am. Chem. Soc. **1981**, 103, 2446. IHS-78, Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. **1978**, 43, 1011.

IIY-07, Inoue, M.; Iwatsu, M.; Yamashita, S.; Hirama, M. Heterocycles 2007, 72, 327.

IKK-08, Ishikawa, T.; Kudo, K.; Kuroyabu, K.; Uchida, S.; Kudoh, T.; Saito, S. *J. Org. Chem.* **2008**, *73*, 7498.

IMT-99, Ihara, M.; Makita, K.; Takasu, K. J. Org. Chem. 1999, 64, 1259.

IS-02, Ito, Y.; Suginome, M. In *Handbook of Organopalladium Chemistry for Organic Synthesis*, Wiley: Hoboken, **2002**, pp 2873-2879.

ISI-07, Inoue, M.; Saito, F.; Iwatsu, M.; Ishihara, Y.; Hirama, M. *Tetrahedron Lett.* **2007**, *48*, 2171.

IST-93, Ihara, M.; Suzuki, S.; Taniguchi, N.; Fukumoto, K. Synlett 1993, 435.

ITH-12, Isaka, N.; Tamiya, M.; Hasegawa, A.; Ishiguro, M. Eur. J. Org. Chem. 2012, 665.

IYI-06, Inoue, M.; Yamashita, S.; Ishihara, Y.; Hirama, M. Org. Lett. 2006, 8, 5805.

IZM-01, Ishii, S.; Zhao, S.; Mehta, G.; Knors, C. J.; Helquist, P. J. Org. Chem. 2001, 66, 3449.

JDV-14, Jung, M. E.; Dwight, T. A.; Vigant, F.; Østergaard, M. E.; Swayze, E. E.; Seth, P. P. *Angew. Chem. Int. Ed.* **2014**, *53*, 9893.

JRC-12, Jousseaume, T.; Retailleau, P.; Chabaud, L.; Guillou, C. *Tetrahedron Lett.* **2012**, *53*, 1370.

JYR-98, Janusz, J. M.; Young, P. A.; Ridgeway, J. M.; Scherz, M. W.; Enzweiler, K.; Wu, L.

I.; Gan, L.; Darolia, R.; Matthews, R. S.; Hennes, D.; Kellstein, D. E.; Green, S. A.; Tulich, J.

L.; Rosario-Jansen, T.; Magrisso, I. J.; Wehmeyer, K. R.; Kuhlenbeck, D. L.; Eichhold, T. H.;

Dobson, R. L. M.; Sirko, S. P.; Farmer, R. W. J. Med. Chem. 1998, 41, 1112.

JW-97a, Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 2050.

JW-97b, Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 5773.

KAP-90, Kim, M.; Applegate, L. A.; Park, O.-S.; Vasudevan, S.; Watt, D. S. Synth. Commun. **1990**, *20*, 989.

KC-91, Kraus, G. A.; Chen, L. Synlett 1991, 51.

KC-91a, Kraus, G. A.; Chen, L. J. Org. Chem. 1991, 56, 5098.

KDF-99, Krafft, M. E.; Dasse, O. A.; Fu, Z. J. Org. Chem. 1999, 64, 2475.

KDN-03, Kraus, G. A.; Dneprovskaia, E.; Nguyen, T. H.; Jeon, I. *Tetrahedron* **2003**, *59*, 8975.

KDS-99, Krafft, M. E.; Dasse, O. A.; Shao, B. Tetrahedron 1998, 54, 7033.

KDY-00, Kabanyane, S.; Decken, A.; Yu, C.-M.; Strunz, G. M. Can. J. Chem. 2000, 78, 270.

KH-09, Keith, J. A.; Henry, P. M. Angew. Chem. Int. Ed. 2009, 48, 9038.

KHH-06, Kreilein, M. M.; Hofferberth, J. E.; Hart, A. C.; Paquette, L. A. J. Org. Chem. 2006, 71, 7329.

KHN-88, Kende, A.S.; Hebeisen, P.; Newbold, R. C. J. Am. Chem. Soc. 1988, 110, 3315.

KHO-96, Kamikubo, T.; Hiroya, K.; Ogasawara, K. Tetrahedron Lett. 1996, 37, 499.

KHT-05, Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.

E.; Cheng, Y.-C.; Kato, K. Nucleosides, Nucleotides, Nucleic Acids 2005, 24, 73.

KIT-11, Kamon, T.; Irifune, Y.; Tanaka, T.; Yoshimitsu, T. Org. Lett. 2011, 13, 2674.

KK-10, Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2010, 75, 6830.

KKK-09, Kim, K. H.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 5322.

KKH-04, Kumamoto, H.; Kato, K.; Haraguchi, K.; Tanaka, H.; Nitanda, T.; Baba, M.;

Dutschman, G. E.; Cheng, Y.-C. Nucleic Acids Symposium Series 2004, 48, 41.

KKN-00, Kaji, Y.; Koami, T.; Nakura, A.; Fujimoto, Y. Chem. Pharm. Bull. 2000, 48, 1480.

KKS-14, Kawashima, H.; Kaneko, Y.; Sakai, M.; Kobayashi, Y. Chem. Eur. J. 2014, 20, 272.

KKT-01, Kadota, K.; Kurusu, T.; Taniguchi, T.; Ogasawara, K. Adv. Synth. Catal. 2001, 343, 618.

KKW-93, Kato, N.; Kusakabe, S.; Wu, X.; Kamitamari, M.; Takeshita, H. J. Chem. Soc., Chem. Commun. 1993, 1002.

KM-08, Kreuzer, T.; Metz, P. Eur. J. Org. Chem. 2008, 572.

KMF-05, Kende, A. S.; Mota Nelson, C. E.; Fuchs, S. Tetrahedron Lett. 2005, 46, 8149.

KMM-01, Kerr, W. J.; McLaughlin, M.; Morrison, A. J.; Pauson, P. L. Org. Lett. 2001, 3, 2945.

KMM-01a, Kende, A. S.; Martin Hernando, J. I.; Milbank, J. B. J. Org. Lett. 2001, *3*, 2505.
KMM-02, Kende, A. S.; Martin Hernando, J. I.; Milbank, J. B. J. Tetrahedron 2002, *58*, 61.
KMP-10, Kim, N.-J.; Moon, H.; Park, T.; Yun, H.; Jung, J.-W.; Chang, D.-J.; Kim, D.-D.;
Suh, Y.-G. J. Org. Chem. 2010, *75*, 7458.
KNT-86, Kato, N.; Nakanishi, K.; Takeshita, H. Bull. Chem. Soc. Jpn. 1986, *59*, 1109.

KRS-82, Kende, A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem. Soc. 1982, 104, 5808.

KRS-82a, Kende, A. S.; Roth, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784.

- KS-83, Kende, A. S.; Sanfilippo, P. J. Synth. Commun. 1983, 13, 715.
- KSA-09, Kopp, S.; Schweizer, W. B.; Altmann, K.-H. Synlett 2009, 1769.
- KST-99, Kato, K.; Suzuki, H.; Tanaka, H.; Miyasaka, T.; Baba, M.; Yamaguchi, K.; Akita, H. *Chem. Pharm. Bull.* **1999**, *47*, 1256.
- KTS-03, Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 46.
- KTS-03b, Kadota, H.; Takamura, K.; Sato, A.; Ohno, K.; Matsuda, M.; Satake, Y.
- Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 11893.
- KTT-15, Kobayashi, T.; Tokumoto, K.; Tsuchitani, Y.; Abe, H.; Ito, H. *Tetrahedron* 2015, 71, 5918.

KTY-00, Kumamoto, T.; Tabe, N.; Yamaguchi, K.; Ishikawa, T. *Tetrahedron Lett.* **2000**, *41*, 5693.

- KTY-01, Kumamoto, T.; Tabe, N.; Yamaguchi, K.; Yagishita, H.; Iwasa, H.; Ishikawa, T. *Tetrahedron* **2001**, *57*, 2717.
- KW-85, Kende, A. S.; Wustrow, D. J. Tetrahedron Lett. 1985, 26, 5411.
- KWA-93, Kato, M.; Watanabe, M.; Awen, B. Z. J. Org. Chem. 1993, 58, 5145.
- KYG-87, Kataoka, H.; Yamada, T.; Goto, K.; Tsuji, J. Tetrahedron 1987, 43, 4107.

L-99, Larock, R. C. In *Comprehensive Organic Transformations*; John Wiley & Sons: New York, 1999, pp 251–256.

- LDD-13, Li, C.; Dong, T.; Dian, L.; Zhang, W.; Lei, X. Chem. Sci. 2013, 4, 1163.
- LDZ-12, Li, C.; Dian, L.; Zhang, W.; Lei, X. J. Am. Chem. Soc. 2012, 134, 12414.
- LGG-13, Luo, S.-P.; Guo, L.-D.; Gao, L.-H.; Li, S.; Huang, P.-Q. Chem. Eur. J. 2013, 19, 87.
- LH-99, Liu, J. F.; Heathcock, C. H. J. Org. Chem. 1999, 64, 8263.
- LHA-12, Lauer, M. G.; Henderson, W. H.; Awad, A.; Stambuli, J. P. Org. Lett. 2012, 14, 6000.
- LHJ-13, Liffert, R.; Hoecker, J.; Jana, C. K.; Woods, T. M.; Burch, P.; Jessen, H. J.;
- Neuburger, M.; Gademann, K. Chem. Sci. 2013, 4, 2851.
- LHK-95, Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. *Tetrahedron Lett.* **1995**, *36*, 2423.
- LKS-08, Li, X.; Keon, A. E.; Sullivan, J. A.; Ovaska, T. V. Org. Lett. 2008, 10, 3287.
- LL-91, Larock, R. C.; Lee, N. H. Tetrahedron Lett. 1991, 32, 5911.
- LL-99, Liu, W.-C.; Liao, C.-C. Chem. Commun. 1999, 117.
- LLD-13, Lu, Z.; Li, Y.; Deng, J.; Li, A. Nature Chem. 2013, 5, 679.

LLK-98, Lee, H.-Y.; Lee, S.; Kim, D.; Kim, B. K.; Bahn, J. S.; Kim, S. *Tetrahedron Lett.* **1998**, *39*, 7713.

LLL-13, Lu, Y.; Long Nguyen, P.; Lévaray, N.; Lebel, H. J. Org. Chem. 2013, 78, 776.

LLS-11, Liu, J.; Lotesta, S. D.; Sorensen, E. J. Chem. Commun. 2011, 47, 1500.

LLT-11, Leung, G. Y. C.; Li, H.; Toh, Q.-Y.; Ng, A. M.-Y.; Sum, R. J.; Bandow, J. E.; Chen,

D. Y.-K. Eur. J. Org. Chem. 2011, 183.

LM-12, Le Bras, J.; Muzart, J. Tetrahedron 2012, 68, 10065.

LM-16, Le Bras, J.; Muzart, J. Tetrahedron 2015, 71, 9035.

LP-11, Lu, Y.-S.; Peng, X.-S. Org. Lett. 2011, 13, 2940.

LS-00, Limanto, J.; Snapper, M. L. J. Am. Chem. Soc. 2000, 122, 8071.

LTK-03, Lee, H.-Y.; Tae, H. S.; Kim, B. G.; Choi, H.-M. Tetrahedron Lett. 2003, 44, 5803.

LWZ-09, Liu, J.-D.; Wang, S.-H.; Zhang, F.-M.; Tu, Y.-Q.; Zhang, Y.-Q. Synlett 2009, 3040.

LZH-09, Lee, K.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253.

LZM-15, Lo Re, D.; Zhou, Y.; Mucha, J.; Jones, L. F.; Leahy, L.; Santocanale, C.; Krol, M.; Murphy, P. V. *Chem. Eur. J.* **2015**, *21*, 18109.

M-07, Miyashita, M. Pure Appl. Chem. 2007, 79, 651.

M-10, a) Muzart, J. *Eur. J. Org. Chem.* **2010**, 3779. b) Turlik, A.; Chen, Y.; Newhouse, T. R. *Synlett* **2016**, *27*, 331.

M-10a, Mori, Y. Heterocycles 2010, 81, 2203.

M-12, For a review on the β -elimination competitions, see: Muzart, J. *Tetrahedron* **2012**, *68*, 10065.

MA-05, Matsuo, J.-i; Aizawa, Y. Tetrahedron Lett. 2005, 46, 407.

MAN-12, Miyake, Y.; Ashida, Y.; Nakajima, K.; Nishibayashi, Y. *Chem. Commun.* **2012**, *48*, 6966.

MAO-10, Morris, K. A.; Arendt, K. M.; Oh, S. H.; Romo, D. Org. Lett. 2010, 12, 3764.

MB-13, Mehta, G.; Bera, M. K. Tetrahedron 2013, 69, 1815.

MBI-92, Magee, T. V.; Bornmann, W. G.; Isaacs, R. C. A.; Danishefsky, S. J. J. Org. Chem. 1992, 57, 3274.

MCJ-06, Majumder, U.; Cox, J. M.; Johnson, H. W. B.; Rainier, J. D. Chem. Eur. J. 2006, 12, 1736.

MCK-03, McMorris, T. C.; Cong, Q.; Kelner, M. J. J. Org. Chem. 2003, 68, 9648.

MCM-80, Mimoun, H.; Charpentier, R.; Mitschler, A.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. **1980**, 102, 1047.

MD-07, Maloney, D. J.; Danishefsky, S. J. Heterocycles 2007, 72, 167.

MDC-15, For a recent report of such a reaction, see: Marziale, A. N.; Duquette, D. C.; Craig II, R. A.; Kim, K. E.; Liniger, M.; Numajiri, Y.; Stoltz, B. M. *Adv. Synth. Catal.* **2015**, *357*, 2238.

MDG-09, Möller, G.; Deluca, D.; Gege, C.; Rosinus, A.; Kowalik, D.; Peters, O.; Droescher, P.; Elger, W.; Adamski, J.; Hillisch, A. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 6740.

MFI-76, For the isomerization of cyclopropyl carbinyl radicals, see: a) Maillard, B.; Forrest,

D.; Ingold, K. U. J. Am. Chem. Soc. **1976**, *98*, 7024; b) Beckwith, A. L. J.; Moad, G. J. Chem. Soc., Perkin Trans. 2 **1980**, 1473; c) Mathew, L.; Warkentin, J. J. Am. Chem. Soc. **1986**, *108*, 7981.

MKI-97, Makita, K.; Fukumoto, K.; Ihara, M. Tetrahedron Lett. 1997, 38, 5197.

MKN-15, Mukai, K.; Kasuya, S.; Nakagawa, Y.; Urabe, D.; Inoue, M. *Chem. Sci.* **2015**, *6*, 3383.

MKY-06, Matsuzawa, M.; Kakeya, H.; Yamaguchi, J.; Shoji, M.; Onose, R.; Osada, H.;

Hayashi, Y. Chem. Asian J. 2006, 1, 845.

MM-03, Mehta, G.; Murthy, A. S. K. Tetrahedron Lett. 2003, 44, 5243.

MM-03b, Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400.

MMA-91, Mercier, C.; Mignani, G.; Aufrand, M.; Allmang, G. *Tetrahedron Lett.* **1991**, *32*, 1433.

MMA-97, Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org. Chem. 1997, 62, 8095.

MMK-00, Mukaiyama, T.; Matsuo, J.-i; Kitagawa, H. Chem. Lett. 2000, 1250.

MMP-97, Magnus, P.; Miknis, G. F.; Press: N. J.; Grandjean, D.; Taylor, G. M.; Harling, J. J. *Am. Chem. Soc.* **1997**, *119*, 6739.

MMR-86, Mehta, G.; Murthy, A. N.; Reddy, D. S.; Reddy, A. V. J. Am. Chem. Soc. 1986, 108, 3443.

MNI-00, Miyata, J.; Nemoto, H.; Ihara, M. J. Org. Chem. 2000, 65, 504.

MNY-87, Minami, I.; Nisar, M.; Yuhara, M.; Shimizu, I.; Tsuji, J. Synthesis 1987, 992.

MO-02, Miyazawa, N.; Ogasawara, K. Synlett 2002, 1065.

MOF-10, McLachlan, M. M. W.; O'Connor, P. D.; Fairweather, K. A.; Willis, A. C.; Mander, L. N. *Aust. J. Chem.* **2010**, *63*, 742.

MP-06, Mehta, G.; Pallavi, K. Tetrahedron Lett. 2006, 47, 8355.

MQS-01, Molander, G. A.; Quirmbach, M. S.; Silva, L. F.; Spencer, K. C.; Balsells, J. Org. Lett. 2001, 3, 2257.

MRC-02, Marino, J. P.; Rubio, M. B.; Cao, G.; de Dios, A. J. Am. Chem. Soc. 2002, 124, 13398.

MRT-98, Mehta, G.; Reddy, M. S.; Thomas, A. Tetrahedron 1998, 54, 7865.

MS-99, Mehta, G.; Srinivas, K. Synlett 1999, 555.

MSD-11, Mehta, G.; Sunil Kumar, Y. C.; Das, M. Tetrahedron Lett. 2011, 52, 3505. Mehta,

G. Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012. Personal communication, 2013.

MSH-04, Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science 2004, 305, 495.

MSS-14, Michel, B. W., Steffens, L. D. and Sigman, M. S. *The Wacker Oxidation, Organic Reactions*, Vol 84, John Wiley & Sons: New York, 2014, pp 75–414

MSS-12, a) Mehta, G.; Samineni, R.; Srihari, P. Tetrahedron Lett. 2012, 53, 829; b)

Samineni, R. Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012. Personal communication, 2013.

MTS-86, Minami, I.; Takahashi, K.; Shimizu, I.; Kimura, T.; Tsuji, J. *Tetrahedron* **1986**, *42*, 2971.

- MYK-09, Murata, Y.; Yamashita, D.; Kitahara, K.; Minasako, Y.; Nakazaki, A.; Kobayashi, S. *Angew. Chem. Int. Ed.* **2009**, *48*, 1400.
- NAN-15, Nakajima, M.; Arai, S.; Nishida, A. Chem. Asian J. 2015, 10, 1065.
- NGM-02, Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem. Int. Ed. 2002, 41, 996.

NJV-99, Nicolaou, K. C.; Jautelat, R.; Vassilikogiannakis, G.; Baran, P. S.; Simonsen, K. B. *Chem. Eur. J.* **1999**, *5*, 3651.

NKS-00, Nakazato, A.; Kumagai, T.; Sakagami, K.; Yoshikawa, R.; Suzuki, Y.; Chaki, S.; Ito, H.; Taguchi, T.; Nakanishi, S.; Okuyama, S. *J. Med. Chem.* **2000**, *43*, 4893.

NKS-05, Nakamura, A.; Kaji, Y.; Saida, K.; Ito, M.; Nagatoshi, Y.; Hara, N.; Fujimoto, Y. *Tetrahedron Lett.* **2005**, *46*, 6373.

NKV-06, Nicolaou, K. C.; Koftis, T. V.; Vyskocil, S.; Petrovic, G.; Tang, W.; Frederick, M. O.; Chen, D. Y.-K.; Li, Y.; Ling, T.; Yamada, Y. M. A. *J. Am. Chem. Soc.* **2006**, *128*, 2859.

NKY-09, Namba, K.; Kaihara, Y.; Yamamoto, H.; Imagawa, H.; Tanino, K.; Williams, R. M.; Nishizawa, M. *Chem. Eur. J.* **2009**, *15*, 6560.

NLE-06, Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem. Int. Ed. 2006, 45, 7086.
NLE-09, Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc.
2009, 131, 16905.

- NMB-02, Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem. Int. Ed. 2002, 41, 993.
- NMB-02a, Nicolaou, K. C.; Montagnon, T.; Baran, P. S. *Angew. Chem. Int. Ed.* **2002**, *41*, 1386.
- NMBZ-02, Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. *J. Am. Chem. Soc.* **2002**, *124*, 2245.
- NMI-99, Nemoto, H.; Miyata, J.; Ihara, M. Tetrahedron Lett. 1999, 40, 1933.
- NMV-05, Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G.; Mathison, C. J. N. J. Am. Chem. Soc. 2005, 127, 8872.
- MW-72, Miller, B.; Wong, H.-S. Tetrahedron 1972, 28, 2369.
- NPS-09, Nicolaou, K. C.; Peng, X.-S.; Sun, Y.-P.; Polet, D.; Zou, B.; Lim, C. S.; Chen, D. Y.-K. J. Am. Chem. Soc. **2009**, 131, 10587.
- NPT-08, Nicolaou, K. C.; Pappo, D.; Tsang, K. Y.; Gibe, R.; Chen, D. Y.-K. Angew. Chem. Int. Ed. 2008, 47, 944.
- NZB-00, Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596.
- O-01, Ohmori, N. Chem. Commun. 2001, 1552.
- O-02, Ohmori, N. J. Chem. Soc., Perkin Trans. 1 2002, 755.
- O-11, Ovaska, T. V. Arkivoc 2011, 5, 34.
- OFM-04, Ohira, S.; Fujiwara, H.; Maeda, K.; Habara, M.; Sakaedani, N.; Akiyama, M.;
- Kuboki, A. Tetrahedron Lett. 2004, 45, 1639.
- OFM-12, Ohyoshi, T.; Funakubo, S.; Miyazawa, Y.; Niida, K.; Hayakawa, I.; Kigoshi, H. *Angew. Chem. Int. Ed.* **2012**, *51*, 4972.
- OH-11, O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712.
- OMA-11, Ohyoshi, T.; Miyazawa, Y.; Aoki, K.; Ohmura, S.; Asuma, Y.; Hayakawa, I.;
- Kigoshi, H. Org. Lett. 2011, 13, 2160.
- OP-03, Overman, L. E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143.
- OT-88, Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110, 2248.
- OTT-13, Okamoto, R.; Takeda, K.; Tokuyama, H.; Ihara, M.; Toyota, M. J. Org. Chem. 2013, 78, 93.
- OXT-02, Ohshima, T.; Xu, Y.; Takita, R.; Shimizu, S.; Zhong, D. Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14546. Correction: 2003, 125, 2014.
- OXT-04, Ohshima, T.; Xu, Y.; Takita, R.; Shibasaki, M. Tetrahedron 2004, 60, 9569.
- PBT-99, Porth, S.; Bats, J. W.; Trauner, D.; Giester, G.; Mulzer, J. Angew. Chem. Int. Ed. 1999, 38, 2015.
- OH-11, O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712.

PCM-02, Piettre, A.; Chevenier, E.; Massardier, C.; Gimbert, Y.; Greene, A. E. Org. Lett. 2002, 4, 3139.

PDA-12, Peng, F.; Dai, M.; Angeles, A. R.; Danishefsky, S. J. Chem. Sci. 2012, 3, 3076.

PGS-98, Poigny, S.; Guyot, M.; Samadi, M. J. Org. Chem. 1998, 63, 5890.

PLW-96, Paquette, L. A.; Lanter, J. C.; Wang, H.-L. J. Org. Chem. 1996, 61, 1119.

PMS-97, Parmee, E. R.; Mortlock, S. V.; Stacey, N. A.; Thomas, E. J.; Mills, O. S. J. Chem. Soc., Perkin Trans. 1 1997, 381.

- PMS-99, Pérez Sestelo, J.; Mouriño, A.; Sarandeses, L. A. Org. Lett. 1999, 1, 1005.
- PP-09, Paquette, L. A.; Pettigrew, J. D. Synthesis 2009, 379.
- PS-15, Peng, S.-Z.; Sha, C.-K. Org. Lett. 2015, 17, 3486.
- PTS-06, Popp, B. V.; Thorman, J. L.; Stahl, S. S. J. Mol. Catal. A: Chem. 2006, 251, 2.
- PW-11, Petronijevic, F. R.; Wipf, P. J. Am. Chem. Soc. 2011, 133, 7704.
- QSR-04, Quesada, E.; Stockley, M.; Ragot, J. P.; Prime, M. E.; Whitwood, A. C.; Taylor, R.
- J. K. Org. Biomol. Chem. 2004, 2, 2483.
- QST-04, Quesada, E.; Stockley, M.; Taylor, R. J. K. Tetrahedron Lett. 2004, 45, 4877.
- QZ-11, Qian, S.; Zhao, G. Synlett 2011, 722.
- RBT-06, Reddy, T. J.; Bordeau, G.; Trimble, L. Org. Lett. 2006, 8, 5585.
- RC-12, Richard, J.-A.; Chen, D. Y.-K. Eur. J. Org. Chem. 2012, 484.
- RCH-98, Rigby, J. H.; Cavezza, A.; Heeg, M. J. J. Am. Chem. Soc. 1998, 120, 3664.
- RFZ-12, Revol, G.; Fuchs, C.; Zard, S. Z. Can. J. Chem. 2012, 90, 927.
- RH-04, Rüedi, G.; Hansen, H.-J. Helv. Chim. Acta 2004, 87, 1628.
- RLC-78, Rousseau, G.; Le Perchec, P.; Conia, J. M. Synthesis 1978, 67.
- RMH-78, Ryu, I.; Murai, S.; Hatayama, Y.; Sonoda, N. Tetrahedron Lett. 1978, 3455.
- RMK-94, Roth, G. P.; Marshall, D. R.; Kadow, J. F.; Mamber, S. W.; Rose, W. C.; Solomon,
- W.; Zein, N. Bioorg. Med. Chem. Lett. 1994, 4, 711.
- RRR-73, Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc. 1973, 95, 5813.
- RRR-75, Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434.
- RS-79, Roberts, M. R.; Schlessinger, R. H. J. Am. Chem. Soc. 1979, 101, 7626.

RVS-05, Rodeschini, V.; Van de Weghe, P.; Salomon, E.; Tarnus, C.; Eustache, J. *J. Org. Chem.* **2005**, *70*, 2409.

- RW-93, Reich, H. J.; Wollowitz, S. Org. React. 1993, 44, 1.
- RZP-09, Reddy, M. S.; Zhang, H.; Phoenix, S.; Deslongchamps, P. *Chem. Asian J.* **2009**, *4*, 725.
- S-11, Streuff, J. Chem. Eur. J. 2011, 17, 5507.

S-86, Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1986, 88.

SBC-07, Scott, T. L.; Burke, N.; Carrero-Martínez, G.; Söderberg, B. C. G. *Tetrahedron* 2007, *63*, 1183.

SC-99, Sarakinos, G.; Corey, E. J. Org. Lett. 1999, 1, 811.

SD-14. Stahl, S. S.; Diao, T. In Comprehensive Organic Synthesis Molander, G. A.; Knochel,

P. Eds, 2nd Edition, Vol. 7, Elsevier, Oxford, 2014, pp 178-212.

- SF-04, Sasaki, M.; Fuwa, H. Synlett 2004, 1851.
- SF-14, Sasaki, M.; Fuwa, H. Chem. Record. 2014, 14, 678.
- SH-73, Stotter, P. L.; Hill, K. A. J. Org. Chem. 1973, 38, 2576.
- SHN-04, Sunazuka, T.; Handa, M.; Nagai, K.; Shirahata, T.; Harigaya, Y.; Otoguro, K.;
- Kuwajima, I.; Ōmura, S. Tetrahedron 2004, 60, 7845.
- SHR-10, Satam, V.; Harad, A.; Rajule, R.; Pati, H. Tetrahedron 2010, 66, 7659.
- SHZ-02, Sha, C.-K.; Huang, S.-J.; Zhan, Z.-P. J. Org. Chem. 2002, 67, 831.
- SIF-02, Sasaki, M.; Ishikawa, M.; Fuwa, H.; Tachibana, K. Tetrahedron 2002, 58, 1889.
- SIK-05, Asano, M.; Inoue, M.; Katoh, T. Synlett 2005, 2599.

SIS-91, Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org. Chem. 1991, 56, 4167.

- SJS-02, Semmelhack, M. F.; Jaskowski, M.; Sarpong, R.; Ho, D. M. *Tetrahedron Lett.* **2002**, *43*, 4947.
- SJC-13, Song, J.; Jones, L. M.; Chavarria, G. E.; Charlton-Sevcik, A. K.; Jantz, A.; Johansen, A.; Bayeh, L.; Soeung, V.; Snyder, L. K.; Lade, S. D. Jr.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 2801.
- SJW-97, Scribner, A. W.; Jonson, S. D.; Welch, M. J.; Katzenellenbogen, J. A. *Nucl. Med. Biol.* **1997**, *24*, 209.
- SKC-00, Stoltz, B. M.; Kano, T.; Corey, E. J. J. Am. Chem. Soc. 2000, 122, 9044.
- SKD-07, Smith, A. B., III; Kürti, L.; Davulcu, A. H.; Cho, Y. S.; Ohmoto, K. J. Org. Chem. 2007, 72, 4611.
- SKT-11, Shindo, K.; Kumagai, G.; Takano, M.; Sawada, D.; Saito, N.; Saito, H.; Kakuda, S.; Takagi, K.-i.; Ochiai, E.; Horie, K.; Takimoto-Kamimura, M.; Ishizuka, S.; Takenouchi, K.; Kittaka, A. *Org. Lett.* **2011**, *13*, 2852.
- SLT-73, Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. J. Am. Chem. Soc. 1973, 95, 6137.
- SMA-14, Arai, S.; Nakajima, M.; Nishida, A. Angew. Chem. Int. Ed. 2014, 53, 5569.
- SMG-10, Shi, L.; Meyer, K.; Greaney, M. F. Angew. Chem. Int. Ed. 2010, 49, 9250.
- SMI-86, Shibasaki, M.; Mase, T.; Ikegami, S. J. Am. Chem. Soc. 1986, 108, 2090.

- SMN-98, a) Shimizu, I.; Matsumoto, Y.; Nishikawa, M.; Kawahara, T.; Satake, A.;
- Yamamoto, A. Chem. Lett. 1998, 983; b) Satake, A. Personal communication, 2014.
- SMS-00, Pérez Sestelo, J.; Mouriño, A.; Sarandeses, L. A. J. Org. Chem. 2000, 65, 8290.
- SMT-83, Shimizu, I.; Minami, I.; Tsuji, J. Tetrahedron Lett. 1983, 24, 1797.
- SN-04, Shiina, J.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 9033.
- SNF-00, Sasaki, M.; Noguchi, K.; Fuwa, H.; Tachibana, K. Tetrahedron Lett. 2000, 41, 1425.
- SNH-01, Sato, M.; Nakashima, H.; Hanada, K.; Hayashi, M.; Honzumi, M.; Taniguchi, T.;
- Ogasawara, K. Tetrahedron Lett. 2001, 42, 2833.
- SO-85, Shibasaki, M.; Ogawa, Y. Tetrahedron Lett. 1985, 26, 3841.
- SON-07, Shiina, J.; Oikawa, M.; Nakamura, K.; Obata, R.; Nishiyama, S. *Eur. J. Org. Chem.* **2007**, 5190.
- SOT-06, Shiina, J.; Obata, R.; Tomoda, H.; Nishiyama, S. Eur. J. Org. Chem. 2006, 2362.
- SR-05, Srikrishna, A.; Ramasastry, S. S. V. Tetrahedron Lett. 2005, 46, 7373.
- SR-06, Srikrishna, A.; Ramasastry, S. S. V. Tetrahedron Lett. 2006, 47, 335.
- SR-14, Sizemore, N.; Rychnovsky, S. D. Org. Lett. 2014, 16, 688.
- SSC-86, Stork, G.; Sher, P. M.; Chen, H.-L. J. Am. Chem. Soc. 1986, 108, 6384.
- SSD-00, Smith, A. B., III; Sestelo, J. P.; Dormer, P. G. Heterocycles 2000, 52, 1315.
- SSL-13, Shu, D.; Song, W.; Li, X.; Tang, W. Angew. Chem. Int. Ed. 2013, 52, 3237.
- SST-0405, Shimokawa, J.; Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew.
- *Chem. Int. Ed.* **2004**, *43*, 1559. Shimokawa, J.; Ishiwata, T.; Shirai, K.; Koshino, H.; Tanatani, A.; Nakata, T.; Hashimoto, Y.; Nagasawa, K. *Chem. Eur. J.* **2005**, *11*, 6878.
- SSU-10, Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. **2010**, *49*, 1103.
- SSU-10a, Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. *Tetrahedron* **2010**, *66*, 6569.
- SSY-08, Selim, K.; Soeta, T.; Yamada, K.-i.; Tomioka, K. Chem. Asian J. 2008, 3, 342.
- ST-82, Shimizu, I.; Tsuji, J. J. Am. Chem. Soc. 1982, 104, 5844.
- STF-13, Shimizu, K.-i.; Tomita, M.; Fuhshuku, K.-i.; Sugai, T.; Shoji, M. *Natural Prod. Commun.* **2013**, *8*, 897.
- STK-12, Shiroma, K.; Takamura, H.; Kadota, I. Heterocycles 2012, 86, 997.
- STK-86, Shirai, R.; Tanaka, M.; Koga, K. J. Am. Chem. Soc. 1986, 108, 543.
- STT-03, Sasaki, M.; Tsukano, C.; Tachibana, K. Tetrahedron Lett. 2003, 44, 4351.
- SYG-06, Scott, T. L.; Yu, X.; Gorugantula, S. P.; Carrero-Martinez, G.; Soederberg, B. C. G. *Tetrahedron* **2006**, *62*, 10835.

SYK-01, Suzuki, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 2001, 66, 1494.

T-04, Tsuji, J. Palladium Reagents and Catalysts – New Perspectives for the 21st Century,

Wiley: Chichester, 2004, pp 95-96 and 500-506.

T-71, Theissen, R. J. J. Org. Chem. 1971, 36, 752.

T-86, Tsuji, J. Tetrahedron 1986, 42, 4361.

T-95, Tsuji, J. *Palladium Reagents and Catalysts – Innovations in Organic Synthesis*, Wiley, Chichester, 1995, pp 104-105, 363-365 and 388-391.

TAH-09, Takahashi, K.; Akao, R.; Honda, T. J. Org. Chem. 2009, 74, 3424.

TB-05, For reviews on decarboxylative allylations, see: Tunge, J. A., Burger, E.C. Eur. J.

Org. Chem. **2005**, 1715. Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. *Chem. Rev.* **2011**, *111*, 1846

TCN-80, Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 6381.

TDV-10, Trost, B. M.; Dong, G.; Vance, J. A. Chem. Eur. J. 2010, 16, 6265.

TES-05, Tsukano, C.; Ebine, M.; Sasaki, M. J. Am. Chem. Soc. 2005, 127, 4326.

TF-05, Taber, D. F.; Frankowski, K. J. J. Org. Chem. 2005, 70, 6417.

TFC-92, Torneiro, M.; Fall, Y.; Castedo, L.; Mouriño, A. Tetrahedron Lett. 1992, 33, 105.

TFC-97, Torneiro, M.; Fall, Y.; Castedo, L.; Mouriño, A. Tetrahedron 1997, 53, 10851.

TFM-00, Tobe, Y.; Fujii, T.; Matsumoto, H.; Tsumuraya, K.; Noguchi, D.; Nakagawa, N.;

Sonoda, M.; Naemura, K.; Achiba, Y.; Wakabayashi, T. J. Am. Chem. Soc. 2000, 122, 1762.

TFZ-09, Tang, M.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.-Q. Tetrahedron 2009, 65, 5716.

TH-07, Tokunaga, N.; Hayashi, T. Adv. Synth. Catal. 2007, 349, 513.

TH-09, Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439.

TH-12, Tun, M. K. M.; Herzon, S. B. J. Org. Chem. 2012, 77, 9422.

TI-02, Toyota, M.; Ihara, M. Synlett 2002, 1211.

TIO-02, Toyota, M.; Ilangovan, A.; Okamoto, R.; Masaki, T.; Arakawa, M.; Ihara, M. *Org. Lett.* **2002**, *4*, 4293.

TJJ-01, Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 9974.

TKA-92, Takayama, H.; Koike, T.; Aimi, N.; Sakai, S. J. Org. Chem. 1992, 57, 2173.

TL-86, Torres, L. E.; Larson, G. L. Tetrahedron Lett. 1986, 27, 2223.

TLL-97, Templeton, J. F.; Ling, Y.; Lin, W.; Majgier-Baranowska, H.; Marat, K. J. Chem. Soc., Perkin Trans. 1 1997, 1895.

TM-87, Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140.

TM-90, Tsushima, K.; Murai, A. Chem. Lett. 1990, 761.

- TMI-01, Toyota, M.; Majo, V. J.; Ihara, M. Tetrahedron Lett. 2001, 42, 1555.
- TMI-02, Takasu, K.; Mizutani, S.; Ihara, M. J. Org. Chem. 2002, 67, 2881.
- TMS-83, Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 5635.
- TMS-83a, Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 5639.
- TMS-83b, Tsuji, J.; Minami, I.; Shimizu, I. Chem. Lett. 1983, 1325.
- TMS-84, Tsuji, J.; Minami, I.; Shimizu, I.; Kataoka, H. Chem. Lett. 1984, 1133.
- TNK-10, Trost, B. M.; Nguyen, H. M.; Koradin, C. Tetrahedron Lett. 2010, 51, 6232.
- TNM-86, Tsuji, J.; Nisar, M.; Minami, I. Tetrahedron Lett. 1986, 27, 2483.
- TNM-87, Tsuji, J.; Nisar, M.; Minami, I. Chem. Lett. 1987, 23.
- TNM-93, Toyota, M.; Nishikawa, Y.; Motoki, K.; Yoshida, N.; Fukumoto, K. *Tetrahedron Lett.* **1993**, *34*, 6099.
- TNM-97, Toyooka, N.; Nishino, A.; Momose, T. Tetrahedron 1997, 53, 6313.
- TNS-84, Tsuji, J.; Nisar, M.; Shimizu, I.; Minami, I. Synthesis 1984, 1009.
- TNY-79, Trost, B. M.; Nishimura, Y.; Yamamoto, K.; McElvain, S. S. J. Am. Chem. Soc. **1979**, *101*, 1328.
- TON-02, Toyooka, N.; Okumura, M.; Nemoto, H. J. Org. Chem. 2002, 67, 6078.
- TOO-04, Toyota, M.; Okamoto, R.; Ogata, T.; Ihara, M. Tetrahedron Lett. 2004, 45, 9203.
- TQR-06, Trullinger, T. K.; Qi, J.; Roush, W. R. J. Org. Chem. 2006, 71, 6915.
- TR-02, Thadani, A. N.; Rawal, V. H. Org. Lett. 2002, 4, 4321.
- TRI-00, Toyota, M.; Rudyanto, M.; Ihara, M. Tetrahedron Lett. 2000, 41, 8929.
- TRI-02, Toyota, M.; Rudyanto, M.; Ihara, M. J. Org. Chem. 2002, 67, 3374.
- TSF-93, Toyota, M.; Seishi, T.; Fukumoto, K. Tetrahedron Lett. 1993, 34, 5947.
- TSH-76, Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887.
- TTI-11, Tamiya, M.; Takada, F.; Isaka, N.; Iimura, N.; Ishiguro, M. *Heterocycles* **2011**, *82*, 1119.
- TTM-84, Tsuji, J.; Takahashi, K.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1984, 25, 4783.
- TV-01, Tietze, L. F.; Volkel, L. Angew. Chem. Int. Ed. 2001, 40, 901.
- TWH-08, Takahashi, K.; Watanabe, M.; Honda, T. Angew. Chem. Int. Ed. 2008, 47, 131.
- TWK-98, Toyota, M.; Wada, T.; Fukumoto, K.; Ihara, M. J. Am. Chem. Soc. 1998, 120, 4916.
- TWN-95, Toyota, M.; Wada, T.; Nishikawa, Y.; Yanai, K.; Fukumoto, K.; Kabuto, C. *Tetrahedron* **1995**, *51*, 6927.
- TYT-09, Takahashi, Y.; Yoshimura, F.; Tanino, K.; Miyashita, M. Angew. Chem. Int. Ed. 2009, 48, 8905.
- UYK-06, Uchida, K.; Yokoshima, S.; Kan, T.; Fukuyama, T. Org. Lett. 2006, 8, 5311.

- VM-09, Varseev, G. N.; Maier, M. E. Angew. Chem. Int. Ed. 2009, 48, 3685.
- W-97, Waegell, B. Pure Appl. Chem. 1997, 69, 627.
- WBL-09, West, S. P.; Bisai, A.; Lim, A. D.; Narayan, R. R.; Sarpong, R. J. Am. Chem. Soc. **2009**, *131*, 11187.
- WBM-12, Wahl, B.; Bonin, H.; Mortreux, A.; Giboulot, S.; Liron, F.; Poli, G.; Sauthier, M. Adv. Synth. Catal. 2012, 354, 3105.
- WF-80, Whitesell, J. K.; Felman, S. W. J. Org. Chem. 1980, 45, 755.
- WGL-12, Woo, C. M.; Gholap, S. L.; Lu, L.; Kaneko, M.; Li, Z.; Ravikumar, P. C.; Herzon,
- S. B. J. Am. Chem. Soc. 2012, 134, 17262.
- WK-02, William, A. D.; Kobayashi, Y. J. Org. Chem. 2002, 67, 8771.
- WKS-98, Weiper-Idelmann, A.; aus dem Kahmen, M.; Schäfer, H. J.; Gockeln, M. Acta Chem. Scand. **1998**, *52*, 672.
- WM-11, Wright, P. M.; Myers, A. G. Tetrahedron 2011, 67, 9853.
- WMF-02, Wang, L.; Meegalla, S. K.; Fang, C.-L.; Taylor, N.; Rodrigo, R. *Can. J. Chem.* **2002**, *80*, 728.
- WP-08, Wilson, M. S.; Padwa, A. J. Org. Chem. 2008, 73, 9601.
- WRG-02, Winkler, J. D.; Rouse, M. B.; Greaney, M. F.; Harrison, S. J.; Jeon, Y. T. J. Am. Chem. Soc. 2002, 124, 9726.
- WT-07, Wilson, E. M.; Trauner, D. Org. Lett. 2007, 9, 1327.
- WWG-13, Wang, C.; Wang, D.; Gao, S. Org. Lett. 2013, 15, 4402.
- XL-11, Xue, Y.-P.; Li, W.-D. Z. J. Org. Chem. 2011, 76, 57.
- YCM-14, Yeoman, J. T. S.; Cha, J. Y.; Mak, V. W.; Reisman, S. E. *Tetrahedron* **2014**, *70*, 4070.
- YHM-98, Yang, S.; Hungerhoff, B.; Metz, P. Tetrahedron Lett. 1998, 39, 2097.
- YIH-08, Yamashita, S.; Iso, K.; Hirama, M. Org. Lett. 2008, 10, 3413.
- YKT-00, Yamaguchi, H.; Konegawa, T.; Tanabe, M.; Nakamura, T.; Matsumoto, T.; Suzuki, K. *Tetrahedron Lett.* **2000**, *41*, 8389.
- YMH-09, Yamashita, D.; Murata, Y.; Hikage, N.; Takao, K.-i.; Nakazaki, A.; Kobayashi, S. *Angew. Chem. Int. Ed.* **2009**, *48*, 1404.
- YMM-11, Yokoe, H.; Mitsuhashi, C.; Matsuoka, Y.; Yoshimura, T.; Yoshida, M.; Shishido, K. J. Am. Chem. Soc. 2011, 133, 8854.
- YNK-98, Yamada, S.; Nagashima, S.; Takaoka, Y.; Torihara, S.; Tanaka, M.; Suemune, H.; Aso, M. J. Chem. Soc., Perkin Trans. 1 1998, 1269.

YNN-15, Yamashita, S.; Naruko, A.; Nakazawa, Y.; Zhao, L.; Hayashi, Y.; Hirama, M. *Angew. Chem. Int. Ed.* **2015**, *54*, 8538.

YOK-10, Yamakoshi, H.; Ohori, H.; Kudo, C.; Sato, A.; Kanoh, N.; Ishioka, C.; Shibata, H.; Iwabuchi, Y. *Bioorg. Med. Chem.* **2010**, *18*, 1083.

YSH-09, Yoshimura, F.; Sasaki, M.; Hattori, I.; Komatsu, K.; Sakai, M.; Tanino, K.;

Miyashita, M. Chem. Eur. J. 2009, 15, 6626.

YTK-15, Yamashita, S.; Takeuchi, K.; Koyama, T.; Inoue, M.; Hayashi, Y.; Hirama, M. *Chem. Eur. J.* **2015**, *21*, 2621.

YTM-12, Yoshimura, F.; Tanino, K.; Miyashita, M. Acc. Chem. Res. 2012, 45, 746.

YTT-11, Yoshimura, F.; Takahashi, Y.; Tanino, K.; Miyashita, M. *Chem. Asian J.* **2011**, *6*, 922.

YTY-05, Yasuda, N.; Tan, L.; Yoshikawa, N.; Hartner, F. W. J. Synth. Org. Chem, Jpn. 2005, 63, 1147.

YWC-05, Yu, J.-Q.; Wu, H.-C.; Corey, E. J. *Org. Lett.* **2005**, *7*, 1415. Yu, J.-Q. Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA 92037. Personal communication, 2015.

XWZ-15, Xu, Z.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2015, 137, 6712.

YYK-06, Yoshimura, T.; Yakushiji, F.; Kondo, S.; Wu, X.; Shindo, M.; Shishido, K. Org. Lett. 2006, 8, 475.

ZD-10, Zhang, Y.; Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 9567.

ZLF-11, Zhang, X.; Luck, R. L.; Fang, S. J. Organomet. Chem. 2011, 696, 2047.

ZSM-12, Zhang, J.; Shi, H.; Ma, Y.; Yu, B. Chem. Commun. 2012, 48, 8679.

ZTL-06, Zhang, F.-M.; Tu, Y.-Q.; Liu, J.-D.; Fan, X.-H.; Shi, L.; Hu, X.-D.; Wang, S.-H.; Zhang, Y.-Q. *Tetrahedron* **2006**, *62*, 9446.

ZYW-15, Zhang, Y.; Ye, Q.; Wang, X.; She, Q.-B.; Thorson, J. S. *Angew. Chem. Int. Ed.* **2015**, Ahead of Print127, 11371.

ZWD-12, Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T.; Li, Q.; Fan, C.-A. Org. Lett. 2012, 14, 3696.

ZYW-15, Zhang, Y.; Ye, Q.; Wang, X.; She, Q.-B.; Thorson, J. S. *Angew. Chem. Int. Ed.* **2015**, *54*, 11219.

ZYX-14, Zhou, L.; Yao, Y.; Xu, W.; Liang, G. J. Org. Chem. 2014, 79, 5345.

ZZY-13, Zhu, L.; Zhou, C.; Yang, W.; He, S.; Cheng, G.-J.; Zhang, X.; Lee, C.-S. *J. Org. Chem.* **2013**, *78*, 7912.