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Abstract: With the emergence of the Internet of Things, environmental sensing has been gaining interest,1

promising to improve agricultural practices by facilitating decision-making based on gathered environmental2

data (i.e., weather forecasting, crop monitoring, soil moisture sensing). Environmental sensing, and by extension3

what is referred to as precision or smart agriculture, pose new challenges, especially regarding the collection of4

environmental data in presence of connectivity disruptions, their gathering, and their exploitation by end-users5

or by systems that must perform actions according to the values of those collected data. In this paper, we6

present a middleware platform for the Internet of Things that implements disruption tolerant opportunistic7

networking and computing techniques, and that makes it possible to expose and to manage physical objects8

through Web-based protocols, standards and technologies, thus providing interoperability between objects and9

creating a Web of Things (WoT). This WoT-based opportunistic computing approach is backed up by a practical10

experiment whose outcomes are analyzed in this article.11

Keywords: Web of Things, Intermittent Connectivity, Opportunistic Computing, Opportunistic Sensing,12

Precision Agriculture, Smart Agriculture13

1. Introduction14

With the recent progress achieved in the automation of farm machinery and in the monitoring of the physical15

environment, the agriculture moves towards a more environmental-friendly, smart and precise agriculture,16

addressing challenges ranging from manpower shortage, adaptation to climate changes, optimization of17

environment resource usage, reduction of the usage of chemical crop protection products, etc. The Internet of18

Things (IoT) – which aims at connecting to the Internet physical objects that can sense, communicate, compute19

and sometimes actuate – can indubitably contribute to the development of the smart agriculture and farming. A20

few number of research works have recently experimented the usage of IoT platforms in the agriculture and21

farming context [1–3]. These experiments have highlighted several issues that must be addressed to efficiently22

and automatically collect data in such challenging contexts, especially regarding the network connectivity, the23

network architecture and the interoperability between physical objects. Applications and services dedicated to24

smart agriculture and farming can tolerate, in some cases, delays and disruptions in data exchanges. Indeed, some25

physical objects do not need to be connected to the Internet permanently, because they measure environmental26

properties that do not evolve quickly (e.g. soil moisture, plant growth), and because they are in sleep mode most27

of the time for energy saving purposes. An alternative or a complement to long range, low power and low rate28

wireless standards such as LoRa/LoRaWAN and SigFox, could be to interconnect such devices to gateways29

opportunistically using data mules and short radio range wireless interfaces such as IEEE 802.15.4 and IEEE30

802.11 — that allow to transfer, thanks to a higher throughput, a significant amount of data in a short time31

from sensors (e.g. camera) or to agribots (field maps, tasks to achieve, etc.). Such an alternative, that relies on32

opportunistic communication and computing techniques, is known as the opportunistic sensing paradigm [4].33
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Besides these problems, the lack of semantic description and logical representation of physical objects34

does not allow to easily consolidate collected data with data from external Web services (e.g. weather forecast,35

plant growth models), to assemble objects to build sophisticated systems, and to create high level services and36

applications that should help farmers to take decisions, or even to perform tasks automatically. The Web of37

Things (WoT) [5] is an attractive solution to address these issues. Indeed the WoT extends the IoT, and aims at38

doing for physical objects what the Web did for information resources, namely an identification of resources using39

Uniform Resource Identifiers (URIs), a semantic description of resources, an access of resources through standard40

protocols, and the inclusion in resources of links to other resources in order to enable a scalable discovery of41

highly distributed resources. Following the trend of Web 2.0 participatory services, in particular Web Mashups, it42

thus is possible to create applications mixing physical devices with virtual services on the Web — this type of43

applications is often referred to as physical Mashup [6,7].44

In this paper, we present a WoT oriented platform, called ASAWoO1 [8], that implements opportunistic and45

disruption-tolerant networking and computing techniques. This platform makes it possible to define and instantiate46

logical extensions, called Avatars, of physical objects. Physical objects can be configured and controlled through47

their avatar. Avatars provide a semantic description of physical objects and of their functionalities. Functionalities48

are implemented as REST services, and can be deployed dynamically by the avatars themselves according49

to the description of the physical objects and of the execution context of these ones. Like functionalities,50

execution contexts are described semantically, thus allowing avatars to reason on these descriptions and to51

perform adaptations dynamically. REST services can be invoked using standard protocols such as HTTP or52

CoAP, either using Internet-legacy transport protocols or disruption-tolerant and opportunistic protocols. This53

platform can be deployed on physical objects themselves provided that they enough processing and memory54

capacities, on gateways to which physical objects are connected or on cloud infrastructure. Objects can be fixed55

or mobile. For instance, data generated by the fixed sensors can be collected by data mules (e.g., tractors) and56

transmitted to their logical representations deployed in a cloud infrastructure. These features make this platform57

a relevant support for the development and the deployment of cyber-physical systems and applications dedicated58

to the environmental sensing and to the smart agriculture. In this paper, we also report experiments we achieved59

with this platform in an experimental agricultural farm.60

The remainder of this paper is structured as follows. Section 2 presents research works dealing with61

opportunistic environmental sensing, and details their limitations. Section 3 presents the ASAWoO middleware62

platform, the concept of avatars, and discuss of the advantages such a platform could bring in an opportunistic63

sensing and actuating context like the smart agriculture and farming. Section 4 describes the experiments we64

performed with the ASAWoO platform, and presents some results we obtained. Section 5 concludes this paper by65

summarizing our contribution.66

2. Related work67

Over the last years, a large majority of research works dealing with agricultural crop monitoring have68

focused on the development of small-scale testbeds and specialized applications built on wireless networks69

formed by fixed sensors (WSN) [3,9,10]. [11] is an example of such works that rely on an infrastructure, where70

all the devices – a meteorological station, a sprinkler system and humidity sensors deployed a the field, a base71

station installed near the field and connected to the network infrastructure, which plays the role of gateway72

between the network of sensors and the infrastructure – are in radio range. Some works consider the issues73

of distances and of intermittent connections – mainly induced by the duty cycles of sensors for energy saving74

purposes – between the devices, and solves them by adding redundant relays and gateways so as to build a75

connected network. A few number of works dealing with precision and sustainable agriculture propose to exploit76

the mobility of devices carried by people or embedded in agricultural vehicles (e.g. farm tractors, agribots) in77

order to collect data generated by sensors or to deliver data to actuators (e.g. sprinkler system, agribots). Such a78

1 https://asawoo.gitlab.io/
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collection process, that leverages the contact opportunities between devices, is referred as being opportunistic79

sensing.80

Opportunistic sensing and communication techniques, which have an indubitable interest in the agricultural81

domain, have also been considered in a few number of systems that propose to exploit mobile devices (carried by82

people or embedded in vehicles) to collectively measure social or environmental data in large-scale pervasive83

environments. These systems rely on opportunistic and people-centric sensing techniques. They differ from84

first-generation sensor networks, not only in their goal to support concurrent people-centric and opportunistic85

sensing applications in urban environments, but also in their hardware and software heterogeneity, high volatility,86

and very large scale. CarTel [12], MetroSense [13], MobiScopes [14], SenseWeb [15], Urbanet [16] and Urban87

Atmospheres [17] are examples of such systems. To report information from a given region using these systems,88

applications run sensing tasks on the mobile devices that are located in this region and that have chosen to89

participate to the sensing process. Mobile devices report sensor data through opportunistic network connections,90

such as those they establish with third-party access points existing in their radio range. For instance in CarTel,91

a network node is a mobile device coupled to a set of sensors. Each node gathers and processes sensor data92

locally before delivering them to a central portal on the Internet, where the data are stored in a database for93

further analysis and visualization. Mobile devices opportunistically communicate, using their wireless interface94

(e.g. Wi-Fi, Bluetooth), with other CarTel mobile devices and with Internet access points found in urban areas.95

The portal and the mobile nodes use a delay-tolerant network stack, called CafNet, to communicate. CarTel96

applications run on the portal, and submit SQL queries to a delay-tolerant continuous query processor called97

ICEDB. This query processor maintains a list of queries submitted by the applications, and pushes them to remote98

nodes using CafNet. It receives results from remote nodes, and puts them into a relational database. MetroSense99

adopts a similar approach, and envisions a future Internet in which a large part of the data traffic is generated by100

sensors carried by people during their daily life. BikeNet [18] and CenceMe [19] are examples of applications101

based on the MetroSense system. In BikeNet, bicycles equipped with multiple sensors communicated with102

neighboring bikes as well as the network infrastructure, and deliver sensing data to a Web portal that promotes103

social networking among cyclists. Similarly in CenceMe, mobile phones collect data about a user’s activity and104

share it with buddies via a social network. Several other sensing applications have been proposed by project105

Urban Atmospheres [17] and the MIT Senseable City Lab [20]. Project SenseWeb proposes a Web-based106

platform and tools to publish and query sensor data across Internet. Sensors can measure various physical107

variables, can be static or mobile and carried by humans, or embedded in vehicles or on robots. To hide the108

heterogeneity and the intermittent connectivity of sensors, sensors are connected to a gateway that provides a109

uniform interface to communicate with them. Urbanet also focuses on sensing in spontaneous urban networks110

composed of heterogeneous and potentially mobile sensors. But unlike the above-mentioned works, it does not111

rely on central collection points across the Internet that perform data and task management, and act as mediators112

between users and the network. Urbanet proposes three middleware solutions to develop distributed sensing113

applications that don’t require servers or Internet connectivity; sensing applications running on mobile devices.114

These solutions respectively present the network 1) as a distributed sensor database that can be queried via a115

SQL-like language, 2) as a single virtual name space that applications use to access individual resources offered116

by nodes, and 3) as a client-service model where services migrate to different network nodes to maintain a117

semantically correct and continuous interaction with clients.118

The above-mentioned works have drawbacks regarding the opportunistic protocol they implement, as well119

as Web-based approach they propose. Indeed like CafNet [21], opportunistic protocols used in these works120

often rely on a simple epidemic (nodes exchange with the other nodes they encounter all the messages they121

have). Yet, such an epidemic approach is known to not be the more efficient one, especially when there is a122

lot of data to exchange; more sophisticated and efficient opportunistic protocols have indeed been proposed123

to address the issues of the epidemic routing protocol [22]. Moreover, these works propose a Web portal that124

renders the data that have been collected from the sensors, and do not propose logical extensions of physical125

objects in the Web that are able to provide a semantic description of these objects and of their functionalities, and126

that offer means to configure and to control them through Web standards and protocols. Yet, as mentioned in127

the introduction of this paper, such an approach offer significant advantages; the physical Mashup being one128
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Figure 1. Opportunistic networking in a disconnected mobile network.

of them. WoT solutions have been investigated in the agricultural context [23,24] (and also in the smart home129

context [25,26]) in order to improve the processing of dataflows produced by sensors and to expose API of130

physical objects in the Web. Agri-IoT [23] is a data analytic platform composed of multiple layers, allowing131

to communicate with devices (lower layer), to analyze data (intermediate layers) and to present information132

to end-users either using dashboards or mobile applications (higher layer). In this platform, sensors, and the133

data they produce, are semantically described using agricultural ontologies. But again, these solutions do not134

implement disruption-tolerant or opportunistic networking techniques to cope with the connectivity disruptions135

that can occur in smart agriculture and farming application domains, and more generally in scenarios involving136

mobile devices communicating with short range wireless interfaces.137

In the next section, we present a WoT dedicated platform called ASAWoO. This platform implements138

opportunistic networking and computing mechanisms, and addresses the drawbacks of above-presented works.139

3. Leveraging the Web of Things and the opportunistic computing to build systems for the smart140

agriculture141

The smart agriculture mainly consists in growing seedlings and plants while preserving natural resources142

(e.g. water) and limiting crop protection products. To do so, both environmental properties (soil moisture,143

ambient temperature, sunshine, ...) and crop growth are monitored using fixed sensors or sensors embedded on144

field machines, drones or agribots. Collected data are compared to agricultural data and models to make decisions145

about the treatments to be performed and the means to achieve them (traditional agricultural machines, agribots,146

drones). We argue that models, protocols, techniques and approaches developed both in the WoT and in the147

opportunistic computing can help develop and deploy cyber-physical systems and applications dedicated to the148

smart agriculture. In the remainder of this section, we develop and justify these words by explaining successively149

how the opportunistic computing and the WoT can contribute to the smart agriculture. Before detailing these150

contributions, we remind the key features of the opportunistic computing and of the WoT.151

3.1. Contribution of the opportunistic computing152

This subsection first explains what opportunistic computing is and to what extent it could benefit smart153

agriculture. Then it thoroughly describes how a support for opportunistic computing was implemented in a Web154

of Things platform.155

3.1.1. Definitions of opportunistic computing and sensing, and their suitability for smart agriculture156

Opportunistic networking is a research field that can be considered as being a derivative of the Delay-Tolerant157

Networking (DTN) research domain. While DTN [27] characterizes networks with long-delay communications158

and/or with an unreliable connectivity, opportunistic networks denote mobile networks that exploit transient159

– and sometimes non-predictable – radio contacts between mobile devices to exchange data [28]. Opportunistic160

networking therefore mostly targets disconnected mobile ad hoc networks (D-MANETs) as illustrated on Figure 1.161

Yet the differences between these two approaches, which both rely on the “store-carry-and-forward” principle,162

are marginal, and both terms are indistinctly used in this paper. Numerous opportunistic forwarding protocols163

have been proposed over the past years [22], investigating forwarding strategies based notably on epidemic164

approaches or on social criteria (computed from mobility patterns, history of contacts or location information).165
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Figure 2. Opportunistic Sensing in a crop monitoring scenario.

The opportunistic computing [29] is an extension of the opportunistic networking, where resources offered by166

devices are, in general, abstracted and made available through services, thus allowing devices to access resources167

provided by the devices they have encountered directly or via intermediate devices. Opportunistic computing168

and networking do not make assumptions about the network topology and support frequent and unpredictable169

changes in this one, as well as its fragmentation.170

Such features make opportunistic computing and networking interesting for the development of systems171

dedicated to the smart agriculture. Unlike urban areas that may offer solid network infrastructures favorable172

to environmental sensing, farms are usually located in rural areas where the cellular network coverage is often173

lackluster and therefore does not provide a reliable network infrastructure. Furthermore devices involved in smart174

agriculture (e.g. sensors, agribots, drones) are by nature likely to fall in the D-MANET category, because devices175

may run out of battery or enter a sleep mode for energy-saving purposes, and because mobile devices enter176

and exit the communication radius of other nodes as they roam. Computing systems relying on opportunistic177

communications though make it possible to collect data generated by sparsely distributed sensors, even if these178

ones are not up at the same time and/or if it does not exist an end-to-end path between some sensors and the179

gathering point. For this purpose, mobile devices (e.g. tractors, agribots, drones, smartphones carried by farmers)180

can in addition be used as “data mules” to collect data from sensors directly or to transfer data between the181

different parts of the network that are isolated from one another. Opportunistic computing furthermore allows182

farmers to deploy sensors or actuators in their fields and/or in their farms, even on their animals [30], without183

having to worry about the location, the radio range, the duty cycle and the sleep phases of these devices.184

For the sake of illustration, let us consider a crop irrigation management application that can process soil185

moisture data produced by sensors deployed in agricultural fields, and that can trigger the watering system if the186

soil is too dry and if no rainfall is expected soon. As shown in Figure 2 two farming vehicles A and B, that act as187

data mules in this smart agriculture scenario, can participate to the collect of data and to their transmission to the188

gateway, where they will be analyzed by a WoT application in order to decide if the watering system must be189

triggered or not. In Figure 2.A gateway G emits a service invocation message to query sensor S. This message is190

stored and carried by the tractor A. In Figure 2.B the tractor enters in the radio range of sensor S, and delivers the191

message to S. Finally, in Figure 2.C the service response sent by sensor S is forwarded back to the gateway G by192

the tractor B which returns to its shelter located in the gateway vicinity. The experiment further presented in this193

paper implements a similar scenario.194

3.1.2. Opportunistic computing implementation in ASAWoO Web of Things platform195

In project ASAWoO, we have designed and developed a disruption-tolerant RESTful support for the196

WoT [31]. In this opportunistic computing implementation, resources offered by physical objects are identified by197

URIs and accessed through stateless services. Service requests and responses are forwarded using the “store, carry198

and forward” principle. This communication support provides a complete service invocation model, allowing to199
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perform unicast, anycast, multicast and broadcast service invocations either using HTTP or CoAP, which makes200

it particularly suited for the WoT. It is compliant with the six constraints –the sixth one is optional– defined by201

the REST architecture style for performance, scalability and simplicity purposes. Indeed, it does not maintain any202

session state, and implements a loosely-coupled client/server architecture where resources offered by physical203

objects are accessible through well defined service interfaces. By implementing the “store, carry and forward”204

principle, it makes it possible to store service responses in the cache of clients and of intermediate nodes, but also205

the service requests that have been sent in the network. Intermediate hosts equipped with this communication206

system can also act as proxies, and can respond on behalf of a server if they have the response in their local cache,207

when this one is still valid. Such an approach improves the performance and the scalability of the system, because208

it naturally performs load balancing and data caching on intermediate hosts, and thus fulfills both the “system209

layering” requirement and the “response cacheablilty” requirement promoted by the RESTful architecture style.210

Finally, as WoT applications can be partially or fully developed in Javascript, a part of the application can be211

executed on the client side, thus allowing to be compliant with REST optional “code-on-demand” constraint, and212

to reduce the computation load on the physical objects.213

Like most of the disruption-tolerant communication systems, our system implements a multiple copy214

forwarding strategy. It can thus take advantage of these message transmission models to increase the message215

delivery probability and to reduce the response time in a WoT context. For instance, several sensors can216

simultaneously be invoked using a multicast transmission model without naming them explicitly. All the217

responses returned by these sensors will be transmitted to the client.218

Figure 3. Overview of the implementation of the RESTful opportunistic computing middleware support.

The system we have developed allows to invoke services using the HTTP and CoAP application-level219

protocols. The application-level messages (i.e. HTTP and CoAP messages) can be encapsulated in UDP220

datagrams, in TCP segments or in messages of a given disruption-tolerant communication system in order221

to be transmitted to their destination. Different wireless technologies (e.g. Bluetooth, Wi-Fi, zigbee) can be222

employed to communicate with physical objects. As shown in Figure 3, this system is implemented by two223

main elements, namely an HTTP/CoAP proxy and a DTN adapter. The HTTP/CoAP proxy makes it possible224

for standard HTTP and CoAP clients and servers to send and receive service requests and responses using225

disruption-tolerant communication techniques. Thanks to this proxy, programmers can develop HTTP and CoAP226

WoT applications using regular HTTP and CoAP, libraries. Moreover, standard HTTP and CoAP servers do not227

need to be modified. This proxy can also invoke remote REST services using Internet-legacy routing protocols228

(i.e. TCP/IP). The HTTP/CoAP proxy is a common element shared between all the implementations. As for229

the DTN adapter, it binds the proxy and the disruption-tolerant communication system in charge of forwarding230

messages in the network. Hence, the DTN adapter depends on the underlying communication system and is231

specifically developed for each different system. Two adapters have been developed: one relying on the Bundle232

Protocol (BP) [32], which is the standard message-based protocol over the DTN architecture [33], and another233

one relying on the C3PO opportunistic communication platform C3PO [34]. This platform provides interesting234

features to implement the anycast, multicast and broadcast communication models efficiently. For instance,235

service responses are used to stop the propagation of service requests in the network, and messages can be236

restricted to a given geographical area. In the experiment presented in the next section, we used the C3PO237

adapter. The original and efficient features implemented in this RESTful opportunistic computing middleware238
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support allows platform ASAWoO to not have the same drawbacks as those presented in section 2, and make it239

an interesting platform adapted to the opportunistic sensing and to the smart agriculture and farming.240

3.2. Contribution of the Web of Things241

The Web of Things allows to control and to communicate with physical objects through the logical software242

entities that represent them in the Web, and via Web standards and protocols. These logical software entities243

allow 1) to describe the objects, 2) to syntactically and semantically describe functionalities (i.e. the Web244

services) providing access to hardware capabilities of the physical objects, 3) to establish communications with245

the physical objects, by eventually adapting the Web protocols and standards to the proprietary protocols and data246

formats used by the objects, 4) to provide environment to deliver and to run WoT applications. Thanks to these247

logical software entities, physical objects can be combined together using Web mashup techniques so as to create248

complex cyber-physical systems that can be, for instance, designed for the smart agriculture. For instance, a WoT249

application built on the logical extensions of a crop irrigation system, of sensors deployed in fields to measure soil250

moiture, and of a weather forecast Web service available on the Internet, could easily be developed using mashup251

techniques so as to process data produced by sensors, and to trigger the watering system if the soil is too dry252

and if no rainfall is expected soon. As mentioned before, the data generated by the sensors can be collected by253

data mules (e.g., tractors) and transmitted to their logical representations deployed in a cloud infrastructure. The254

application can query these logical representations to obtain the environmental measures, can invoke a forecast255

Web service available on the Internet, and can decide on the basis of these pieces of information to trigger the256

watering or not. If so, this application will act on the watering system through its logical representation.257

In the remainder of this section, we present the concept of avatar [35] and the middleware platform we have258

proposed in project ASAWoO, and how they can be used in a smart agriculture scenario similar to that described259

in the previous lines. We also give a comparison of the concept of avatars with the concept of servient proposed260

by the W3C [36].261

3.2.1. Overview of the Avatar concept262

The purpose of an avatar is to provide device vendors, software developers and end-users with a263

comprehensible abstraction that makes physical objects accessible on the Web and that extends their status and264

capabilities (processing, acting, sensing, etc.) into homogeneous and user-understandable functionalities. An265

avatar can be viewed as a "Web-based cyber-physical object" that defines and embodies high-level behaviors for266

physical devices.267

An avatar is composed of 7 modules (see Figure 4). The interoperability module makes it possible to268

configure and to manage the physical object linked to the avatar. It acts as an adaptation layer that hides269

objects’ own protocols. The communication module provides avatar-to-avatar and avatar-to-Web-browser270
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communications. Different kinds of applicative protocols (e.g. HTTP, CoAP) and transport protocols (UDP,271

TCP, the disruption-tolerant protocol provided by the opportunistic communication support presented previously272

in this section) are supported to communicate with the avatars. Moreover, different wireless technologies273

are currently supported to achieve communications with physical objects, such as Bluetooth, Wi-Fi, Wi-Fi274

Direct and XBee. The functionality module manages the capabilities and the functionalities of an avatar. Like275

functionalities, capabilities are pieces of codes that make it possible to exploit the resources offered by the276

physical objects. But unlike functionalities – which are device independent –, capabilities depend on the physical277

objects. They can be viewed as implementations of elementary functionalities. Thanks to this approach, an agribot278

can for instance expose a higher-level of abstraction for the navigation functionality that exploits lower-level279

functionalities, such as GPS positioning and steering capabilities. Both capabilities and functionalities are280

described semantically. Reasoning about semantic descriptions of the capabilities and of the functionalities help281

inferring complex functionalities involving sub-functionalities, thus allowing to define high-level representations282

that better match the users’ needs than the low-level capabilities. Based on the inferences made by the semantic283

reasoner, the functionality manager can incrementally deploy new functionalities. These functionalities are284

filtered by the context manager according to the information it processes continuously, thus allowing to select the285

implementations of the functionalities that are the most suited to the running conditions of the physical object, as286

well as to perform dynamic adaptations. Various contextual properties can be taken into account, such as the287

location of the object, its processing and memory capacities and its power budget. Functionalities are exposed as288

REST services by the WoT module, and therefore can be invoked remotely by WoT applications (WoTApps) or289

by other avatars for collaboration purposes. The WoT application container deploys and manages the life-cycle of290

WoTApps. WoTApps can fully run server-side (i.e. on the avatar), be distributed and executed both on the avatar291

and in a Web browser, or be exclusively run in a Web browser. Finally, avatars implement a collaboration module292

relying on an agent-based approach. This module aims at endowing an autonomous behavior to the avatar and293

physical object, so that they can discover the functionalities they can partially achieve and that require the help of294

other avatars to be performed. After discovering the missing functionality in another avatar, they can enroll this295

avatar to provide the functionality.296

The main differences between the proposition of the W3C for the WoT, called Servient [36], and the297

avatar-based model reside in the ability of avatars to tolerate the connectivity disruptions, to dynamically298

adapt their behavior and the functionalities they provide to their running context, to automatically deploy new299

functionalities inferred on the basis of the semantic description of more elementary ones, and to collaborate300

with other avatars. Indeed like avatars, servients implement a legacy communication module that makes it301

possible to communicate with physical objects using proprietary protocols, a protocol binding module that302

allows to use several types of applicative protocols (MQTT, HTTP, CoAP) to communicate with the servients,303

a model of resources and of description of objects, and a runtime environment to run WoTApps. These304

differences between avatars and servients make avatars more suited to develop cyber-physical systems that305

integrate autonomous mobile objects, and therefore more adapted to systems dedicated to the smart agriculture306

and farming. Furthermore, the reference implementation of the W3C standard is not as mature as that proposed307

by the ASAWoO project. Unlike solutions proposed in works [23–26], both Servients and Avatars provide users308

and developers with a comprehensive virtual representation of physical objects to access and control them. This309

unified resource representation helps coping with device heterogeneity, which is not well supported in Agri-IoT310

according to its authors.311

3.2.2. Avatar runtime environment312

In order to configure themselves automatically, avatars rely on a set of semantic and code repositories313

as represented on Figure 5. These repositories contain device setups, semantic descriptions of capabilities314

and functionalities of avatars and semantic descriptions of execution contexts. The code repositories provide315

independent syntactic descriptions of REST interfaces of functionalities, and specific implementations of316

capabilities, functionalities and WoTApps. Most of capabilities are device dependent, which is not the case of317

the functionalities. The implementations of functionalities can still differ for non functional purposes such as318

quality of service requirements. Avatars download pieces of code from the code repositories and deploy them319
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Figure 5. Avatar runtime environment.

locally, doing so they instantiate new capabilities and functionalities, and infer new high-level ones progressively.320

Avatars are executed in a runtime environment that manages their life-cycle and that exposes them in the Web. An321

avatar is instantiated in the runtime environment either automatically when a new physical object is discovered in322

the local area network or when a user registers a new device manually. The avatar runtime environment and the323

code repositories can be installed either in a cloud platform, on a gateway, or even on a physical object if this324

one has enough processing power and memory capacity. Needless to say, the repositories and the avatar runtime325

environments can be deployed on separated devices.326

3.2.3. Technical Implementation327

The ASAWoO runtime environment is developed in Java and is based on the OSGi Apache Felix platform2.328

It is designed as a set of services that are deployed using bundles (i.e. a JAR augmented with metadata), and329

that manage the life-cycle of avatars. An avatar (i.e. the different modules and managers forming the avatar’s330

architecture) is also implemented as a set of OSGi services. Configuration files and the pieces of code of331

capabilities, functionalities and WoTApps are also deployed using bundles. Code repositories are implemented332

by OSGi Bundle Repositories (OBR), which can be either local on remote. An OBR offers a customizable333

dependency management that has been tuned to take into account functionalities and capabilities requirements.334

The semantic reasoner module depends on Apache Jena3 inference engine and queries Fuseki SPARQL endpoints.335

In the current implementation, the Vert.x4 stack is used to serve WoTApps and to expose functionalities as REST336

services over HTTP. Vert.x handler mechanism also helps in managing asynchronous calls to functionalites. The337

opportunistic communication module implementation based on C3PO has already been thoroughly covered in338

subsection 3.1.2 and in [31].339

ASAWoO source code which is distributed under the CeCILL license (compatible with GNU GPLv2), is340

available in GIT repository5 and users and developers documentation can be accessed on ASAWoO website6.341

2 http://felix.apache.org/
3 https://jena.apache.org/
4 https://vertx.io/
5 https://gitlab.com/asawoo
6 https://asawoo.gitlab.io/

http://felix.apache.org/
https://jena.apache.org/
https://vertx.io/
https://gitlab.com/asawoo
https://asawoo.gitlab.io/
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Figure 6. Montoldre experiment farm.

4. Experiment342

This section describes the experiment conducted during 4 months in Montoldre (France) experimental343

farm in cooperation with IRSTEA7. This experiment aims firstly at evaluating the effective functioning of the344

ASAWoO midldleware platform and its performances in real conditions, and secondly at studying the relevance345

and the viability of a Web of Thing approach in an agricultural context.346

4.1. Presentation of the experiment environment347

Montoldre experimental farm is a large plot of agricultural land dedicated to the experimentation of348

agricultural techniques, especially fertilizer spreading techniques. The area shown on the satellite view Figure 6349

is composed of a dozen fields (in red) maintained by a handful of agricultural vehicles.350

The application considered in this first experiment consisted in collecting environmental data (humidity351

and temperature) measured by sensors. This experiment was ran in the early stages of ASAWoO development.352

Even though the whole middleware was not complete at that time, the opportunistic communication module was353

operational. Hardened sensors that can be exposed to bad weather conditions were also not ready to use for this354

experiment. Consequently, we used tiny single-board computers (RaspberryPi’s) equipped with Wi-Fi antennas355

that produce data exactly as the sensors would have done. As these devices are not hardened, they were placed in356

farm buildings, as shown in Figure 7. These experimental conditions may appear as degraded, but those are not357

in reality because the communication behavior of sensors has been reproduced as accurately as possible. This358

experiment allowed us to validate the RESTful opportunistic communication support presented in Section 3.359

Three instances of ASAWoO runtime have been deployed on RaspberryPi’s equipped with 5dB Wi-Fi360

antennas. The first one, identified as RASP00, acted as a base station located in IRSTEA office at the limit of361

Wi-Fi communication range from the tractors’ warehouse. The two other RaspberryPi’s (RASP01 and RASP02)362

were equipped with an external battery pack and a GPS module. The kits were embedded on two tractors.363

GPS antennas were placed on the tractors’ roofs and the battery power cords were plugged into the tractors’364

cigarette lighters to power up/on the Raspberry and recharge. Two other self-powered RaspberryPi’s with smaller365

range acting as sensors have been deployed in farm buildings located on tractors paths. Locations of the five366

nodes are shown on the map Figure 7. The embedded system deployed on sensors was restricted to ASAWoO367

7 http://www.irstea.fr/en/research/research-units/regions-jru

http://www.irstea.fr/en/research/research-units/regions-jru
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Figure 7. Node locations and their approximate communication ranges.

Trip
duration

Number of messages exchanged Number of GPS positions
RASP00/
RASP01

RASP00/
RASP02

RASP01/
RASP02

RASP01 RASP02

Day 1 5h09 46 110 48 5 147
Day 2 4h50 28 47 3 0 28
Day 3 6h21 56 0 0 266 0
Day 4 7h31 334 0 0 1005 0
Day 5 7h44 219 0 51 0 2063

Table 1. Data of active days.

communication module since the whole middleware stack was not required. During this experiment, the sensors368

produced data every 30 minutes.369

During the 4 months of experimentation, over 30 trips have been monitored. Mobility traces of RASP01370

and RASP02 (i.e. tractors) have been stored in log files, as well as the contacts and exchanges between tractors371

and the base station). Logs were compiled and sent to the base station when entering its radio range. A ssh tunnel372

between the base station at IRSTEA and our lab has been established in order to access the logs, update the code373

if necessary, and remotely monitor the experiment throughout its progress. The following subsection presents the374

experiment outcomes, focusing on a few trips involving both tractors or longer activity periods.375

4.2. Experiment results376

After 4 months of sparse activity, logs gathered on the base station have been compiled, sanitized and377

analyzed. Since the two equipped tractors were rarely operating simultaneously, we focused on the logs of days378

providing the most extensive data. A summary of the activity during these days is presented in Table 1. Day379

one was the experiment setup, we checked that communication was well established between the three nodes,380

and moved RASP01 and RASP02 to make them enter and exit communication range with each other and with381

sensors. On day 3, the tractor carrying RASP01 has been spreading fertilizer, and on day 4 it sowed the fields.382

Day 5 featured the longer trip from RASP02.383
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Average speed
Communication range

Maximum range Average range Median range
15,9 km/h 468 m 237 m 185 m

Table 2. Tractors average speed and radio-contact range.
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Figure 8. Real contacts vs estimated contacts of RASP00, RASP01 and RASP02 on day 1.

Table 2 compiles global observations made throughout the experiment. When tractors were active, we384

reported an average speed of 16km/h which was not an hindrance to message delivery. Opportunistic sensing and385

the data mule approach is therefore a viable solution in the agricultural context where vehicles speed is moderate.386

Although cellular network coverage was quite poor on Montoldre site, opportunistic networking via ad hoc Wi-Fi387

proved to be effective to convey small messages such as environmental data. Under the right circumstances the388

communication range exceeded our expectations with a recorded maximum range of 468 meters. This result is389

further supported by the figure 8 which shows the number of actual contacts at a given time between two nodes390

versus an estimate derived from the actual node positions and a fixed range of 200 meters. More often than not,391

actual contacts were established whereas the estimate did not consider the nodes to be within radio range.392

Contacts durations (i.e. the time periods during which the nodes are in contact and can communicate) are393

presented on Figure 9. On day 5, half of the contacts lasted less than three minutes while only a tenth of the394

contacts exceeded 10 minutes. The few contacts exceeding one hour were due to RASP02 instance remaining395

active in the warehouse, within range of the base station. The relatively moderate speed of the tractors combined396

with the long range Wi-Fi interfaces resulted in long enough contacts allowing for wide communication time397

periods. Since the size of exchanged messages, were they gossiping relating to the opportunistic communication398

protocol or sensor data, was quite small (a few bytes), such a time frame is sufficient to perform opportunistic399

sensing (i.e. collect sensor data and opportunistically forward this data).400
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Figure 9. Cumulative distribution of contacts durations on day 5.

Nevertheless it is worth to note that the experiment did not go smoothly all the way. Sometimes the401

RaspberryPi was slow to receive the GPS signal, which not only led to missing positions, but also to clock402

desynchronization and erroneous timestamps since the system clock was set to GPS time. However, logs could be403

resynchronized using contacts and exchanged messages with the base station. Due to farming vehicle vibrations,404

sometimes the device got its GPS antenna or its power cord unplugged, and the shutdown and powering up that405

should have been controlled by the battery was not always done properly, which led to corrupted log files that406

had to be discarded or corrected. In a concrete deployment, kits should be designed and built to better fit the407

specificities of agricultural vehicles (e.g. with antivibration material, properly integrated power management and408

a CMOS clock battery).409

Lastly, the final encountered issue was the considerable size of the covered area combined with the fact that410

the two equipped vehicles were hardly running together, which resulted in too few contacts between the mobile411

nodes outside the vicinity of their rallying point (the warehouse). The lack of contact data does not affect the412

effectiveness of opportunistic sensing nonetheless. Even though contacts are more likely to occur in the rallying413

point area, tractors are still able to retrieve data from faraway sensors and forward it to the base station. The414

two mobile ASAWoO instances were indeed able to successfully gather data from sensors up to the base station415

without a permanent connectivity between each node.416

4.3. Evaluation of the Web of Things approach417

The experiment described in the previous section focused on the validation of ASAWoO opportunistic418

communication capabilities whereas the Web of Things aspect could not be tested at that time. WoT modules419

were nonetheless still validated in the later stages of ASAWoO development in another experiment which will be420

shortly presented in this subsection. During the Montoldre experiment ASAWoO middleware mainly consisted421

of the avatar core, the functionalities management and registry features (i.e. functionalities were advertised as422

RESTful services) plus the opportunistic communication module. The second experiment was run in Bordeaux,423

France. It introduced the device manager and the semantic reasoning features to instantiate capabilities, simple424

and composite functionalities, as well as the WoT Application module. Unlike the farm experiment which425

spanned over 4 months, this one lasted only one day. Since the communication module had already been validated426

in the long-run experiment, the goal was to validate ASAWoO final stage, particularly the WoT related modules427

(e.g. WoTApp manager, automatic instantiation of functionalities from device configurations and semantic428

repositories, ...).429
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Figure 10. All-terrain mobile platform running ASAWoO next to the base station kit

This experiment was based on the same data collection WoTApp and the same hardware kits. Although430

the RaspberryPi-based kits (with GPS module and Wi-Fi interface) have been reused, this time the data mule431

was a robot, the Jackal all-terrain mobile platform8, on which was deployed an instance of ASAWoO hosting432

its own avatar. Figure 10 shows a picture of the robot and the packaged base station kit on the experimentation433

field. In addition to its navigation capabilities, a camera was mounted on the platform. A ROS9 bridge434

interoperability module was developed for ASAWoO to expose these capabilities, which in turn enabled higher435

level functionalities such as person detection and video surveillance. The video surveillance and the navigation436

functionalities were then combined to provide a patrol functionality.437

The scenario written for this experiment consisted in making the robot patrol from sensor to sensor to438

collect data as long as it did not encounter a person. If the video surveillance functionality was to trigger an439

alarm, the reasoning module will give priority to the patrol functionality and use the navigation functionality to440

go back to a rallying point. This scenario is illustrated on ASAWoO code repository homepage10.441

During the experiment, all devices hosting an ASAWoO platform were accessible through their second Wi-Fi442

interface set on access point mode. When connecting to a device’s main WoTApp we could navigate through its443

neighbors and query their functionalites. Figure 11 presents a screenshot of the main WoTApp hosted on the444

robot. It features system functionalities (e.g. functionalities registry, neighborhood, device configuration and445

WoTApp deployment), as well as other avatars whose remote functionalities can be reached through multi-hop446

asynchronous DTN RESTful requests. The screenshot shows a JSON-formatted GPS position in response to a447

GET request sent to a sensor’s LocationService functionality. The retrieved sensor data were also displayed on448

the data collection WoTApp.449

It is worth to note that although this paper mainly focuses on sensing functionalities, ASAWoO also supports450

actuators and the conclusions that we drew also apply to this class of devices. The general practice that has451

been followed in ASAWoO was to bind actuator functionalities to PUT and POST HTTP methods while GET452

methods were used for sensor functionalities. In the patrol surveillance scenario, the navigation functionality is453

an example of an actuator functionality. Eventually, results regarding context adaptation and semantic reasoning454

performances were presented in [37].455

8 Jackal unmanned ground vehicle: https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
9 ROS, Robot Operating System: http://www.ros.org/
10 https://asawoo.gitlab.io/

https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
http://www.ros.org/
https://asawoo.gitlab.io/
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Figure 11. Screenshot of ASAWoO administration WoTApp

4.4. Results discussion456

During the second experiment, the WoT approach allowed us to successfully interact with different devices457

through their logical representations. Devices heterogeneity was indeed hidden behind avatars using web458

standards (JSON over HTTP requests). The web browsers from a laptop, a smartphone or a tablet were used459

interchangeably.460

Both experiments were conclusive regarding the opportunistic computing aspect. The monitored contact461

durations and distances between mobile and/or static nodes, resulting from the data mules speed and their462

communication range, both support the idea that opportunistic sensing is a possible option for smart agriculture.463

The communication range measured in the second experiment confirmed the first results with a maximum range464

of 283 meters between the base station and the robot. We however observed that farming vehicles were not465

operating on a daily basis whereas data gathering depends on their operation frequency for an opportunistic466

sensing approach entirely relies on nodes mobility.467

Even though the following perspective is beyond the scope of this article, we argue that the node density468

issue can be addressed by emulation techniques. At the end of the first experiment, we obtained valuable data469

on the mobility of farming vehicles in actual conditions. These mobility data could be made available on a470

service such as CRAWDAD11 and leveraged with simulation tools such as LEPTON [38] which is an emulation471

platform for opportunistic networking development. LEPTON allows the execution of functional code to run472

in an emulated environment under controlled and repeatable conditions, where only the mobility of nodes is473

simulated. The possibility to replay scenarios based on actual tractors paths gives the opportunity to evaluate our474

approach under different conditions and therefore to finely tune scenario parameters such as the number of data475

mules, their paths and speed, or the positions of sensors, without starting over an actual experimental campaign.476

11 https://crawdad.org/

https://crawdad.org/
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Thus, testing different smart agriculture scenarios could indeed help in deducing an optimal setup to improve477

opportunistic sensing solutions for precision agriculture.478

5. Conclusion479

The Internet of Things will become a reality when connected object makers will propose off-the-shelves480

cyber-physical objects that can communicate and interoperate through open standard protocols and data formats,481

or that can be connected to Web of Things (WoT) platforms that bridge the gap between proprietary protocols482

and Web standard formats and protocols. Such objects and platforms appear as attractive solutions to build483

complex systems notably for the environmental sensing and for the smart agriculture and farming. Nevertheless484

in challenging environments, such as in agricultural and farming environments, it is often difficult to deploy485

systems relying exclusively on infrastructure-based networks because rural areas have often a poor network486

coverage, and because there are frequent and unpredictable connectivity disruptions resulting from both the487

mobility of agricultural machines (e.g. tractors, agribots, drones) communicating with short range radio interfaces488

and from the sleep phases kept by some devices for energy saving purposes.489

In this paper we presented how opportunistic computing can be combined with the WoT to contribute to490

the smart agriculture, and how such an approach was implemented in a middleware platform called ASAWoO.491

Opportunistic computing and networking techniques leverage the mobility of agricultural machines to provide492

intermittent connectivity between physical objects that would not have been connected by any route otherwise.493

This platform provides a virtual representation of the physical objects in the Web, called avatars, which give494

access to the objects functionalities in order to allow WoT users to interact with devices at an higher level of495

abstraction.496

ASAWoO platform was evaluated in a practical smart agriculture scenario through a 4-month experiment.497

Two tractors carried ASAWoO instances responsible for collecting data of sensors disseminated in an experimental498

farm. Experiment results showed that ASAWoO platform was able to perform environmental sensing using499

opportunistic computing in real conditions, and that the low pace of farming vehicles makes opportunistic500

computing possible in the agricultural context. Based on these outcomes we conclude that both the integration501

of sensors and actuators like agribots in WoT applications, and the implementation of opportunistic computing502

mechanisms are likely to improve agricultural practices and compensate for the potential lack of network503

infrastructure. Such an approach is not limited to smart agriculture and farming, and could also be transposed to504

other related critical contexts such as disaster relief.505
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