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Generalized Conditional Gradient with Augmented Lagrangian for

Composite Minimization

Antonio Silveti-Falls∗ Cesare Molinari∗ Jalal Fadili∗

Abstract. In this paper we propose a splitting scheme which hybridizes generalized conditional gradient with a prox-

imal step which we call CGALP algorithm, for minimizing the sum of three proper convex and lower-semicontinuous

functions in real Hilbert spaces. The minimization is subject to an affine constraint, that allows in particular to deal

with composite problems (sum of more than three functions) in a separate way by the usual product space technique.

While classical conditional gradient methods require Lipschitz-continuity of the gradient of the differentiable part of

the objective, CGALP needs only differentiability (on an appropriate subset), hence circumventing the intricate ques-

tion of Lipschitz continuity of gradients. For the two remaining functions in the objective, we do not require any

additional regularity assumption. The second function, possibly nonsmooth, is assumed simple, i.e., the associated

proximal mapping is easily computable. For the third function, again nonsmooth, we just assume that its domain is

weakly compact and that a linearly perturbed minimization oracle is accessible. In particular, this last function can

be chosen to be the indicator of a nonempty bounded closed convex set, in order to deal with additional constraints.

Finally, the affine constraint is addressed by the augmented Lagrangian approach. Our analysis is carried out for a wide

choice of algorithm parameters satisfying so called "open loop" rules. As main results, under mild conditions, we show

asymptotic feasibility with respect to the affine constraint, boundedness of the dual multipliers, and convergence of the

Lagrangian values to the saddle-point optimal value. We also provide (subsequential) rates of convergence for both the

feasibility gap and the Lagrangian values.

Key words. Conditional gradient; Augmented Lagrangian; Composite minimization; Proximal mapping; Moreau

envelope.

AMS subject classifications. 49J52, 65K05, 65K10.

1 Introduction

1.1 Problem Statement

In this work, we consider the composite optimization problem,

min
x∈Hp

{f(x) + g(Tx) + h(x) : Ax = b} , (P)

where Hp,Hd,Hv are real Hilbert spaces (the subindices p, d and v denoting the “primal”, the “dual” and

an auxiliary space - respectively), endowed with the associated scalar products and norms (to be understood
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from the context), A : Hp → Hd and T : Hp → Hv are bounded linear operators, b ∈ Hd and f , g, h

are proper, convex, and lower semi-continuous functions with C def
= dom (h) being a weakly compact subset

of Hp. We allow for some asymmetry in regularity between the functions involved in the objective. While

g is assumed to be prox-friendly, for h we assume that it is easy to compute a linearly-perturbed oracle

(see (1.2)). On the other hand, f is assumed to be differentiable and satisfies a condition that generalizes

Lipschitz-continuity of the gradient (see Definition 2.6).

Problem (P) can be seen as a generalization of the classical Frank-Wolfe problem in [15] of minimizing

a Lipschitz-smooth function f on a convex closed bounded subset C ⊂ Hp,

min
x∈Hp

{f(x) : x ∈ C} (1.1)

In fact, if A ≡ 0, b ≡ 0, g ≡ 0, and h ≡ ιC is the indicator function of C then we recover exactly (1.1) from

(P).

1.2 Contribution

We develop and analyze a novel algorithm to solve (P) which combines penalization for the nonsmooth

function g with the augmented Lagrangian method for the affine constraint Ax = b. In turn, this achieves

full splitting of all the parts in the composite problem (P) by using the proximal mapping of g (assumed

prox-friendly) and a linear oracle for h of the form (1.2). Our analysis shows that the sequence of iterates

is asymptotically feasible for the affine constraint, that the sequence of dual variables converges weakly to

a solution of the dual problem, that the associated Lagrangian converges to optimality, and establishes con-

vergence rates for a family of sequences of step sizes and sequences of smoothing/penalization parameters

which satisfy so-called "open loop" rules in the sense of [31] and [13]. This means that the allowable se-

quences of parameters do not depend on the iterates, in contrast to a "closed loop" rule, e.g. line search or

other adaptive step sizes. Our analysis also shows, in the case where (P) admits a unique minimizer, weak

convergence of the whole sequence of primal iterates to the solution.

The structure of (P) generalizes (1.1) in several ways. First, we allow for a possibly nonsmooth term g.

Second, we consider h beyond the case of an indicator function where the linear oracle of the form

min
s∈H

h (s) + 〈x, s〉 (1.2)

can be easily solved. Observe that (1.2) has a solution over dom(h) since the latter is weakly compact. This

oracle is reminiscent of that in the generalized conditional gradient method [7, 8, 5, 3]. Third, the regularity

assumptions on f are also greatly weakened to go far beyond the standard Lipschitz gradient case. Finally,

handling an affine constraint in our problem means that our framework can be applied to the splitting of a

wide range of composite optimization problems, through a product space technique, including those involving

finitely many functions hi and gi, and, in particular, intersection of finitely many nonempty bounded closed

convex sets; see Section 5.

1.3 Relation to prior work

In the 1950’s Frank and Wolfe developed the so-called Frank-Wolfe algorithm in [15], also commonly referred

to as the conditional gradient algorithm [24, 12, 13], for solving problems of the form (1.1). The main idea

is to replace the objective function f with a linear model at each iteration and solve the resulting linear

optimization problem; the solution to the linear model is used as a step direction and the next iterate is
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computed as a convex combination of the current iterate and the step direction. We generalize this setting

to include composite optimization problems involving both smooth and nonsmooth terms, intersection of

multiple constraint sets, and also affine constraints.

Frank-Wolfe algorithms have received a lot of attention in the modern era due to their effectiveness in fields

with high-dimensional problems like machine learning and signal processing (without being exhaustive,

see, e.g., [20, 6, 22, 17, 39, 26, 10]). In the past, composite, constrained problems like (P) have been

approached using proximal splitting methods, e.g. generalized forward-backward as developed in [32] or

forward-douglas-rachford [25]. Such approaches require one to compute the proximal mapping associated

to the function h. Alternatively, when the objective function satisfies some regularity conditions and when

the constraint set is well behaved, one can forgo computing a proximal mapping, instead computing a linear

minimization oracle. The computation of the proximal step can be prohibitively expensive; for example,

when h is the indicator function of the nuclear norm ball, computing the proximal operator of h requires a full

singular value decomposition while the linear minimization oracle over the nuclear norm ball requires only

the leading singular vector to be computed ([21], [38]). Unfortunately, the regularity assumptions required

by classical Frank-Wolfe style algorithms are too restrictive to apply to general problems like (P).

While finalizing this work, we became aware of the recent work of [37], who independently developed a

conditional gradient-based framework which allows one to solve composite optimization problems involving

a Lipschitz-smooth function f and a nonsmooth function g,

min
x∈C
{f(x) + g (Tx)} . (1.3)

The main idea is to replace g with its Moreau envelope of index βk at each iteration k, with the index param-

eter βk going to 0. This is equivalent to partial minimization with a quadratic penalization term, as in our

algorithm. Like our algorithm, that of [37] is able to handle problems involving both smooth and nonsmooth

terms, intersection of multiple constraint sets and affine constraints, however their algorithms employ differ-

ent methods for these situations. Our algorithm uses an augmented Lagrangian to handle the affine constraint

while the conditional gradient framework treats the affine constraint as a nonsmooth term g and uses penal-

ization to smooth the indicator function corresponding to the affine constraint. In particular circumstances,

outlined in more detail in Section 6, our algorithms agree completely.

Another recent and parallel work to ours is that of [16], where the Frank-Wolfe via Augmented Lagrangian

(FW-AL) is developed to approach the problem of minimizing a Lipschitz-smooth function over a convex,

compact set with a linear constraint,

min
x∈C
{f(x) : Ax = 0} . (1.4)

The main idea of FW-AL is to use the augmented Lagrangian to handle the linear constraint and then apply

the classical augmented Lagrangian algorithm, except that the marginal minimization on the primal variable

that is usually performed is replaced by an inner loop of Frank-Wolfe. It turns out that the problem they

consider is a particular case of (P), discussed in Section 6.

1.4 Organization of the paper

In Section 2 we introduce the notation and review some necessary material from convex and real analysis. In

Section 3 we present the Conditional Gradient with Augmented Lagrangian and Proximal-step (CGALP )

algorithm and the underlying assumptions. In Section 4, we first state our main convergence results and then

turn to their proof. The latter is divided in three main parts. First we show the asymptotic feasibility, then the
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boundedness of the dual multiplier in the augmented Lagrangian and finally the optimality guarantees, i.e.

weak convergence of the sequence (µk)k∈N to a solution of the dual problem, weak subsequential convergence

of the sequence (xk)k∈N to a solution of the primal problem, and convergence of the Lagrangian values, and

with convergence rates. In Section 5 we describe how our framework can be instantiated to solve a variety of

composite optimization problems. In Section 6 we provide a more detailed discussion comparing CGALP to

prior work. Some numerical results are reported in Section 7.

For readers who are primarily interested in the practical perspective, we suggest skipping directly to Sec-

tion 3 for the algorithms and its assumptions or Section 4 for the main convergence results.

2 Notation and Preliminaries

We first recall some important definitions and results from convex analysis. For a more comprehensive

coverage we refer the interested reader to [4, 30] and [33] in the finite dimensional case. Throughout, we let

H denote an arbitrary real Hilbert space and g an arbitrary function fromH to the real extended line, namely

g : H → R ∪ {+∞}. The function g is said to belong to Γ0 (H) if it is proper, convex, and lower semi-

continuous. The domain of g is defined to be dom (g)
def
= {x ∈ H : g (x) < +∞}. The Legendre-Fenchel

conjugate of g is the function g∗ : H → R ∪ {+∞} such that, for every u ∈ H,

g∗ (u)
def
= sup

x∈H
{〈u, x〉 − g (x)} .

Notice that

g1 ≤ g2 =⇒ g∗2 ≤ g∗1 . (2.1)

Moreau proximal mapping and envelope The proximal operator for the function g is defined to be

proxg (x)
def
= argmin

y∈H

{

g(y) +
1

2
‖x− y‖2

}

and its Moreau envelope with parameter β as

gβ (x)
def
= inf

y∈H

{

g(y) +
1

2β
‖x− y‖2

}

. (2.2)

Denoting x+ = proxg (x), we have the following classical inequality (see, for instance, [30, Chapter 6.2.1]):

for every y ∈ H,

2
[

g(x+)− g(y)
]

+ ‖x+ − y‖2 − ‖x − y‖2 + ‖x+ − x‖2 ≤ 0. (2.3)

We recall that the subdifferential of the function g is defined as the set-valued operator ∂g : H → 2H such

that, for every x inH,

∂g(x) =
{

u ∈ H : g(y) ≥ g(x) + 〈u, y − x〉 ∀y ∈ H
}

. (2.4)

We denote dom(∂g)
def
=
{

x ∈ H : ∂g(x) 6= ∅
}

. When g belongs to Γ0 (H), it is well-known that the

subdifferential is a maximal monotone operator. If, moreover, the function is Gâteaux differentiable at x ∈ H,

then ∂g(x) = {∇g(x)}. For x ∈ dom(∂g), the minimal norm selection of ∂g(x) is defined to be the

unique element
{

[∂g (x)]0
}

def
= Argmin

y∈∂g(x)
‖y‖. Then we have the following fundamental result about Moreau

envelopes.
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Proposition 2.1. Given a function g ∈ Γ0 (H), we have the following:

(i) The Moreau envelope is convex, real-valued, and continuous.

(ii) Lax-Hopf formula: the Moreau envelope is the viscosity solution to the following Hamilton Jacobi

equation:
{

∂
∂β g

β (x) = −1
2

∥

∥∇xg
β (x)

∥

∥

2
(x, β) ∈ H × (0,+∞)

g0 (x) = g (x) x ∈ H.
(2.5)

(iii) The gradient of the Moreau envelope is 1
β -Lipschitz continuous and is given by the expression

∇xg
β (x) =

x− proxβg (x)

β
.

(iv) ∀x ∈ dom(∂g),
∥

∥∇gβ (x)
∥

∥ ր
∥

∥

∥[∂g (x)]
0
∥

∥

∥ as β ց 0.

(v) ∀x ∈ H, gβ(x)ր g(x) as β ց 0. In addition, given two positive real numbers β′ < β, for all x ∈ H
we have

0 ≤ gβ
′
(x)− gβ (x) ≤ β − β′

2

∥

∥

∥
∇xg

β′
(x)
∥

∥

∥

2
;

0 ≤ g (x)− gβ (x) ≤ β

2

∥

∥

∥
[∂g (x)]0

∥

∥

∥

2
.

Proof. (i): see [4, Proposition 12.15]. The proof for (ii) can be found in [2, Lemma 3.27 and Remark 3.32]

(see also [19] or [1, Section 3.1]). The proof for claim (iii) can be found in [4, Proposition 12.29] and the

proof for claim (iv) can be found in [4, Corollary 23.46]. For the first part in (v), see [4, Proposition 12.32(i)].

To show the first inequality in (v), combine (ii) and convexity of the function β 7→ gβ (x) for every x ∈ H.

The second inequality follows from the first one and (iv), taking the limit as β′ → 0.

Remark 2.2.

(i) While the regularity claim in Proposition 2.1(iii) of the Moreau envelope gβ (x) w.r.t. x is well-known,

a less known result is the C1-regularity w.r.t. β for any x ∈ H (Proposition 2.1(ii)). To our knowledge,

the proof goes back, at least, to the book of [2]. Though it has been rediscovered in the recent literature

in less general settings.

(ii) For given functions H : H → R and g0 : H → R, a natural generalization of the Hamilton-Jacobi

equation in (2.5) is

{

∂
∂β g (x, β) +H (∇xg (x, β)) = 0 (x, β) ∈ H× (0,+∞)

g (x, 0) = g (x) x ∈ H.

Supposing that H is convex and that lim
‖p‖→+∞

H(p)/ ‖p‖ = +∞, the solution of the above system is

given by the Lax-Hopf formula (see [14, Theorem 5, Section 3.3.2]1):

g (x, t)
def
= inf

y∈H

{

g0(y) + tH∗
(

y − x

t

)}

.

If H(p) = 1
2 ‖p‖

2
, then H∗(p) = 1

2 ‖p‖
2

and we recover the result in Proposition 2.1.

1The proof in [14] is given in the finite-dimensional case but it extends readily to any real Hilbert space.
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Regularity of differentiable functions In what follows, we introduce some definitions related with regu-

larity of differentiable functions. They will provide useful upper-bounds and descent properties. Notice that

the the notions and results of this part are independent from convexity.

Definition 2.3. (ω-smoothness) Consider a function ω : R+ → R+ such that ω(0) = 0 and

ξ (s)
def
=

∫ 1

0
ω (st) dt (2.6)

is non-decreasing. A differentiable function g : H → R is said to belong to C1,ω (H) or to be ω-smooth if

the following inequality is satisfied for every x, y ∈ H:

‖∇g (x)−∇g (y)‖ ≤ ω (‖x− y‖) .

Lemma 2.4. (ω-smooth Descent Lemma) Given a function g ∈ C1,ω (H) we have the following inequality:

for every x and y inH,

g (y)− g (x) ≤ 〈∇g (x) , y − x〉 + ‖y − x‖ ξ (‖y − x‖) ,

where ξ is defined in (2.6).

Proof. We recall here the simple proof for completeness:

g (y)− g (x) =

∫ 1

0

d

dt
g (x+ t (y − x)) dt

=

∫ 1

0
〈∇g (x) , y − x〉 dt+

∫ 1

0
〈∇g (x+ t (y − x))−∇g (x) , y − x〉 dt

≤ 〈∇g (x) , y − x〉 + ‖y − x‖
∫ 1

0
‖∇g (x+ t (y − x))−∇g (x)‖ dt

≤ 〈∇g (x) , y − x〉 + ‖y − x‖
∫ 1

0
ω (t ‖y − x‖) dt,

where in the first inequality we used Cauchy-Schwartz and in the second Definition 2.3. We conclude using

the definition of ξ.

For L > 0 and ω (t) = Ltν , ν ∈]0, 1], C1,ω (H) is the space of differentiable functions with Hölder

continuous gradients, in which case ξ (s) = Lsν/(1 + ν) and the Descent Lemma reads

g (y)− g (x) ≤ 〈∇g (x) , y − x〉 + L

1 + ν
‖y − x‖1+ν , (2.7)

see e.g., [27, 28]. When ν = 1, we have that C1,ω (H) is the class of differentiable functions withL-Lipschitz

continuous gradient, and one recovers the classical Descent Lemma.

Now, following [18], we introduce some notions that allow one to further generalize (2.7). Given a function

G : H → R ∪ {+∞}, differentiable on the open set C0 ⊂ int (dom (G)), define the Bregman divergence of

G as the function DG : dom (G)× C0 → R,

DG(x, y) = G(x)−G(y)− 〈∇G(y), x − y〉. (2.8)

Then we have the following result.
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Lemma 2.5. (Generalized Descent Lemma, [18, Lemma 1]) Let G and g be differentiable on C0, where C0
is an open subset of int (dom (G)). Assume that G− g is convex on C0. Then, for every x and y in C0,

g(y) ≤ g(x) + 〈∇g(x), y − x〉+DG(y, x).

Proof. For our purpose, we intentionally weakened the hypothesis needed in the original result of [18,

Lemma 1]. We repeat their argument but show the result is still valid under our weaker assumption. Let

x and y be in C0, where, by hypothesis, C0 is open and contained in int (dom(G)). As G− g is convex and

differentiable on C0, from the gradient inequality (2.4) we have, for all y ∈ C0,

(G− g) (y) ≥ (G− g) (x) + 〈∇ (G− g) (x), y − x〉.

Rearranging the terms and using the definition of DG in (2.8), we obtain the claim.

The previous lemma suggests the introduction of the following definition, which extends Definition 2.3.

Definition 2.6. ((G, ζ)-smoothness) Let G : H → R ∪ {+∞} and ζ :]0, 1] → R+. The pair (g, C), where

g : H → R ∪ {+∞} and C ⊂ dom(g), is said to be (G, ζ)-smooth if there exists an open set C0 such that

C ⊂ C0 ⊂ int (dom (G)) and

(i) G and g are differentiable on C0;
(ii) G− g is convex on C0;

(iii) it holds

K(G,ζ,C)
def
= sup

x,s∈C; γ∈]0,1]
z=x+γ(s−x)

DG(z, x)

ζ (γ)
< +∞. (2.9)

K(G,ζ,C) is a far-reaching generalization of the standard curvature constant widely used in the literature of

conditional gradient.

Remark 2.7. Assume that (g, C) is (G, ζ)-smooth. Using first Lemma 2.5 and then the definition in (2.9),

we have the following descent property: for every x, s ∈ C and for every γ ∈]0, 1],

g (x+ γ (s− x)) ≤ g(x) + γ〈∇g(x), s − x〉+DG(x+ γ (s− x) , x)

≤ g(x) + γ〈∇g(x), s − x〉+K(G,ζ,C)ζ (γ) .

Notice that, as in the previous definition, we do not require C to be convex. So, in general, the point z =
x+ γ (s− x) may not lie in C.

Lemma 2.8. Suppose that the set C is bounded and denote by dC
def
= supx,y∈C ‖x− y‖ its diameter. Moreover,

assume that the function g is ω-smooth on some open and convex subset C0 containing C. Set ζ(γ)
def
= ξ(dCγ),

where ξ is given in (2.6). Then the pair (g, C) is (g, ζ)-smooth with K(g,ζ,C) ≤ dC .

Proof. With G = g and g being ω-smooth on C0, both G and g are differentiable on C0 and G − g ≡ 0 is

convex on C0. Thus, all conditions required in Definition 2.6 hold true. It then remains to show (2.9) with the

bound K(g,ζ,C) ≤ dC . First notice that, for every x, s ∈ C and for every γ ∈]0, 1], the point z = x+γ (s− x)
belongs to C0. Indeed, C ⊂ C0 and C0 is convex by hypothesis. In particular, as g is ω-smooth on C0, the
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Descent Lemma 2.4 holds between the points x and z. Then

K(g,ζ,C) = sup
x,s∈C; γ∈]0,1]
z=x+γ(s−x)

Dg(z, x)

ζ (γ)

= sup
x,s∈C; γ∈]0,1]
z=x+γ(s−x)

g(z) − g(x) − 〈∇g(x), z − x〉
ξ(dCγ)

≤ sup
x,s∈C; γ∈]0,1]
z=x+γ(s−x)

‖z − x‖ ξ (‖z − x‖)
ξ(dCγ)

= sup
x,s∈C; γ∈]0,1]

γ ‖s− x‖ ξ (γ ‖s− x‖)
ξ(dCγ)

≤ sup
γ∈]0,1]

γdCξ (dCγ)
ξ(dCγ)

= dC .

In the first inequality we used Lemma 2.4, while in the second we used that ‖s− x‖ ≤ dC (both x and s
belong to C, that is bounded by hypothesis) and the monotonicity of the function ξ (see Definition 2.3).

Indicator and support functions Given a subset C ⊂ H, we define its indicator function as ιC(x) = 0
if x belongs to C and ιC(x) = +∞ otherwise. Recall that, if C is nonempty, closed, and convex, then ιC
belongs to Γ0 (H). Remember also the definition of the support function of C, σC def

= ι∗C . Equivalently,

σC (x)
def
= sup {〈z, x〉 : z ∈ C}. We denote by ri (C) the relative interior of the set C (in finite dimension,

it is the interior for the topology relative to its affine full). We denote par(C) as the subspace parallel to C
which, in finite dimension, takes the form R(C −C).

We have the following characterization of the support function from the relative interior in finite dimen-

sion.

Proposition 2.9. ([35, Lemma 1]) LetH be finite-dimensional and C ⊂ H a nonempty, closed bounded and

convex subset. If 0 ∈ ri(C), then σC ∈ Γ0(R
n) is sublinear, non-negative and finite-valued, and

σC(x) = 0 ⇐⇒ x ∈ (par(C))⊥.

Coercivity We recall that a function g is coercive if lim‖x‖→+∞ g (x) = +∞ and that coercivity is equiv-

alent to the boundedness of the sublevel-sets [4, Proposition 11.11]. We have the following result, that relates

coercivity to properties of the Fenchel conjugate.

Proposition 2.10. ([4, Theorem 14.17]) Given g in Γ0 (H), g∗ is coercive if and only if 0 ∈ int (dom(g)).

The recession function (sometimes referred to as the horizon function) of g at a given point d ∈ R
n is

defined to be gd,∞ : Rn → R ∪ {+∞} such that, for every x ∈ R
n,

gd,∞ (x)
def
= lim

α→∞
g (d+ αx)− g (d)

α
.

Recall that, if g is convex, the recession function is independent from the selection of the point d ∈ R
n and

can be then simply denoted as g∞. In finite dimension, the following result relates coercivity to properties

of the recession function.
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Proposition 2.11. Let g ∈ Γ0 (R
n) and A : Rm → R

n be a linear operator. Then,

(i) g coercive ⇐⇒ g∞ (x) > 0 ∀x 6= 0.

(ii) g∞ ≡ σdom(g∗).

(iii) (g ◦ A)∞ ≡ g∞ ◦ A.

In particular, we deduce that g ◦ A is coercive if and only if σdom(g∗)(Ax) > 0 for every x 6= 0.

Proof. The proofs can be found in [34, Theorem 3.26], [34, Theorem 11.5] and [23, Corollary 3.2] respec-

tively.

Real sequences We close this section with some definitions and lemmas for real sequences that will be

used to prove the convergence properties of the algorithm. We denote ℓ+ as the set of all sequences in

[0,+∞[. Given p ∈ [1,+∞[, ℓp is the space of real sequences (rk)k∈N such that

( ∞
∑

k=1

|rk|p
)1/p

< +∞.

For p = +∞, we denote by ℓ∞ the space of bounded sequences. Furthermore, we will use the notation

ℓp+
def
= ℓp ∩ ℓ+. In the next, we recall some key results about real sequences.

Lemma 2.12. ([11, Lemma 3.1]) Consider three sequences (rk)k∈N ∈ ℓ+, (ak)k∈N ∈ ℓ+, and (zk)k∈N ∈ ℓ1+,

such that

rk+1 ≤ rk − ak + zk, ∀k ∈ N.

Then (rk)k∈N is convergent and (ak)k∈N ∈ ℓ1+.

Lemma 2.13. ([36, Theorem 2] and [36, Proposition 2(ii)]) Consider two sequences (pk)k∈N ∈ ℓ+ and

(wk)k∈N ∈ ℓ+ such that (pkwk)k∈N ∈ ℓ1+ and (pk)k∈N /∈ ℓ1. Then the following holds:

(i) there exists a subsequence
(

wkj

)

j∈N such that

wkj ≤ P−1
kj

,

where Pn =
∑n

k=1 pk. In particular, lim inf
k

wk = 0.

(ii) If moreover there exists a constant α > 0 such that wk − wk+1 ≤ αpk for every k ∈ N, then

lim
k

wk = 0.

Lemma 2.14. Consider the sequences (rk)k∈N ∈ ℓ+, (pk)k∈N ∈ ℓ+, (wk)k∈N ∈ ℓ+, and (zk)k∈N ∈ ℓ+.

Suppose that (zk)k∈N ∈ ℓ1+, (pk)k∈N /∈ ℓ1, and that, for some α > 0, the following inequalities are satisfied

for every k ∈ N:

rk+1 ≤ rk − pkwk + zk;

wk − wk+1 ≤ αpk.
(2.10)

Then,

(i) (rk)k∈N is convergent and (pkwk)k∈N ∈ ℓ1+.

(ii) lim
k

wk = 0.

(iii) For every k ∈ N, inf1≤i≤k wi ≤ (r0 + E)/Pk , where, again, Pn =
∑n

k=1 pk and E =
∑+∞

k=1 zk.

(iv) There exists a subsequence
(

wkj

)

j∈N such that, for all j ∈ N, wkj ≤ P−1
kj

.

Proof. (i) See Lemma 2.12.
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(ii) Claim (ii) follows by combining (i) and Lemma 2.13(ii).

(iii) Sum (2.10) using a telescoping property and summability of (zk)k∈N.

(iv) Claim (iv) follows by combining (i) and Lemma 2.13(i).

Notice that the conclusions of Lemma 2.14 remain true if non-negativity of the sequence (rk)k∈N is re-

placed with the assumption that it is bounded from below by a trivial translation argument. Observe also that

Lemma 2.14 guarantees the convergence of the whole sequence to zero, but it gives a convergence rate only

on a subsequence.

3 Algorithm and assumptions

3.1 Algorithm

As described in the introduction, we combine penalization with the augmented Lagrangian approach to form

the following functional

Jk (x, y, µ) = f (x) + g (y) + h (x) + 〈µ,Ax− b〉 + ρk
2
‖Ax− b‖2 + 1

2βk
‖y − Tx‖2 , (3.1)

where µ is the dual multiplier, and ρk and βk are non-negative parameters. The steps of our scheme, then,

are summarized in Algorithm 1.

Algorithm 1: Conditional Gradient with Augmented Lagrangian and Proximal-step (CGALP )

Input: x0 ∈ C = dom(h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N, (θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0
repeat

yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins∈Hp
{h (s) + 〈zk, s〉}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;

Output: xk+1.

For the interpretation of the algorithm, notice that the first step is equivalent to

{yk} = Argmin
y∈Hv

Jk (xk, y, µk) .

Now define the functional Ek (x, µ) def
= f (x) + gβk (Tx) + 〈µ,Ax− b〉 + ρk

2 ‖Ax− b‖2 . By convexity of

the set C and the definition of xk+1 as a convex combination of xk and sk, the sequence (xk)k∈N remains in

C for all k, although the affine constraint Axk = b might only be satisfied asymptotically. It is an augmented
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Lagrangian, where we do not consider the non-differentiable function h and we replace g by its Moreau

envelope. Notice that

∇xEk (x, µk) = ∇f(x) + T ∗[∇gβk ](Tx) +A∗µk + ρkA
∗ (Ax− b)

= ∇f(x) + 1

βk
T ∗ (Tx− proxβkg

(Tx)
)

+A∗µk + ρkA
∗ (Ax− b) .

(3.2)

where in the second equality we used 2.1(iii). Then zk is just ∇xEk (xk, µk) and the first three steps of the

algorithm can be condensed in

sk ∈ Argmin
s∈Hp

{h (s) + 〈∇xEk (xk, µk) , s〉} . (3.3)

Thus the primal variable update of each step of our algorithm boils down to conditional gradient applied to

the function Ek (·, µk), where the next iterate is a convex combination between the previous one and the new

direction sk. A standard update of the Lagrange multiplier µk follows.

3.2 Assumptions

3.2.1 Assumptions on the functions

In order to help the reading, we recall in a compact form the following notation that we will use to refer to

various functionals throughout the paper:

Φ (x)
def
= f (x) + g (Tx) + h (x) ;

Φk (x)
def
= f (x) + gβk (Tx) + h (x) +

ρk
2
‖Ax− b‖2 ;

Φ̄ (x)
def
= Φ(x) + (ρ/2) ‖Ax− b‖2 ;

ϕ̄(µ)
def
= Φ̄∗ (−A∗µ) + 〈b, µ〉;

L (x, µ) def
= f (x) + g (Tx) + h (x) + 〈µ,Ax− b〉 ;

Lk (x, µ) def
= f (x) + gβk (Tx) + h (x) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ;

Ek (x, µ) def
= f (x) + gβk (Tx) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ,

(3.4)

where ρ is defined in Assumption (P.4) to be ρ = sup
k

ρk.

In the list (3.4), we can recognize Φ as the objective, Φk as the smoothed objective augmented with a

quadratic penalization of the constraint, andLk as a smoothed augmented Lagrangian. L denotes the classical

Lagrangian. Recall that (x⋆, µ⋆) ∈ Hp × Hd is a saddle-point for the Lagrangian L if for every (x, µ) ∈
Hp ×Hd,

L (x⋆, µ) ≤ L (x⋆, µ⋆) ≤ L (x, µ⋆) . (3.5)

It is well-known from standard Lagrange duality, see e.g. [4, Proposition 19.19] or [30, Theorem 3.68], that

the existence of a saddle point (x⋆, µ⋆) ensures strong duality, that x⋆ solves (P) and µ⋆ solves the dual

problem,

min
µ∈Hd

(f + g ◦ T + h)∗(−A∗µ) + 〈µ, b〉 . (D)

The following assumptions on the problem will be used throughout the convergence analysis (for some

results only a subset of these assumptions will be needed):
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(A.1) f, g ◦ T , and h belong to Γ0 (Hp).

(A.2) The pair (f, C) is (F, ζ)-smooth (see Definition 2.6), where we recall C def
= dom (h).

(A.3) C is weakly compact (and thus contained in a ball of radius R > 0).

(A.4) TC ⊂ dom(∂g) and sup
x∈C

∥

∥

∥
[∂g (Tx)]0

∥

∥

∥
<∞.

(A.5) h is Lipschitz continuous relative to its domain C with constant Lh ≥ 0, i.e., ∀(x, z) ∈ C2, |h(x) −
h(z)| ≤ Lh ‖x− z‖.

(A.6) There exists a saddle-point (x⋆, µ⋆) ∈ Hp ×Hd for the Lagrangian L.

(A.7) ran(A) is closed.

(A.8) One of the following holds:

(a) A−1 (b) ∩ int (dom (g ◦ T )) ∩ int (C) 6= ∅, where A−1 (b) is the pre-image of b under A.

(b) Hp and Hd are finite dimensional and











A−1 (b) ∩ ri (dom (g ◦ T )) ∩ ri (C) 6= ∅
and

ran (A∗) ∩ par (dom (g ◦ T ) ∩ C)⊥ = {0} .
(3.6)

At this stage, a few remarks are in order.

Remark 3.1.

(i) By Assumption (A.1), C is also closed and convex. This together with Assumption (A.3) entail, upon

using [4, Lemma 3.29 and Theorem 3.32], that C is weakly compact.

(ii) Since the sequence of iterates (xk)k∈N generated by Algorithm 1 is guaranteed to belong to C under

(P.1), we have from (A.4)

sup
k

∥

∥

∥[∂g (Txk)]
0
∥

∥

∥ ≤M. (3.7)

where M is a positive constant.

(iii) Assumption (A.5) will only be needed in the proof of convergence to optimality (Theorem 4.2). It is

not needed to show asymptotic feasibility (Theorem 4.1).

(iv) Assume that A−1(b) ∩ dom(g ◦ T ) ∩ C 6= ∅, which entails that the set of minimizers of (P) is a

non-empty convex closed bounded set under (A.1)-(A.3). Then there are various domain qualification

conditions, e.g., one of the conditions in [4, Proposition 15.24 and Fact 15.25], that ensure the existence

of a saddle-point for the Lagrangian L (see [4, Theorem 19.1 and Proposition 9.19(v)]).

(v) Observe that under the inclusion assumption of Lemma 3.2, (A.8)(a) is equivalent toA−1 (b)∩int (C) 6=
∅.

(vi) Assumption (A.8) will be crucial to show that ϕ̄ is coercive on ker(A∗)⊥ = ran(A) (the last equality

follows from (A.7)), and hence boundedness of the dual multiplier sequence (µk)k∈N provided by

Algorithm 1 (see Lemma 4.10 and Lemma 4.11).

The uniform boundedness of the minimal norm selection on C, as required in Assumption (A.4), is impor-

tant when we will invoke Proposition 2.1(v) in our proofs to get meaningful estimates. The following result

gives some sufficient conditions under which (A.4) holds (in fact an even stronger claim).

Lemma 3.2. Let C be a nonempty bounded subset of Hp, g ∈ Γ0 (Hv) and T : Hp → Hv be a bounded

linear operator. Suppose that TC ⊂ int (dom (g)). Then the assumption (A.4) holds.
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Proof. Since g ∈ Γ0 (Hp), it follows from [4, Proposition 16.21] that

TC ⊂ int (dom (g)) ⊂ dom(∂g).

Moreover, by [4, Corollary 8.30(ii) and Proposition 16.14], we have that ∂g is locally weakly compact on

int (dom (g)). In particular, as we assume that C is bounded, so is TC, and since TC ⊂ int (dom (g)), it

means that for each z ∈ TC there exists an open neighborhood of z, denoted by Uz , such that ∂g (Uz) is

bounded. Since (Uz)z∈C is an open cover of TC and TC is bounded, there exists a finite subcover (Uzk)
n
k=1.

Then,

⋃

x∈C
∂g (Tx) ⊂

n
⋃

k=1

∂g (Uzk) .

Since the right-hand-side is bounded (as it is a finite union of bounded sets),

sup
x∈C, u∈∂g(Tx)

‖u‖ < +∞,

whence the desired conclusion trivially follows.

3.2.2 Assumptions on the parameters

We also use the following assumptions on the parameters of Algorithm 1 (recall the function ζ in Definition

2.6):

(P.1) (γk)k∈N ⊂]0, 1] and the sequences (ζ (γk))k∈N ,
(

γ2k/βk
)

k∈N and (γkβk)k∈N belong to ℓ1+.

(P.2) (γk)k∈N /∈ ℓ1.
(P.3) (βk)k∈N ∈ ℓ+ is non-increasing and converges to 0.

(P.4) (ρk)k∈N ∈ ℓ+ is non-decreasing with 0 < ρ = infk ρk ≤ supk ρk = ρ < +∞.

(P.5) For some positive constants M and M , M ≤ infk (γk/γk+1) ≤ supk (γk/γk+1) ≤M .

(P.6) (θk)k∈N satisfies θk = γk
c for all k ∈ N for some c > 0 such that M

c −
ρ

2 < 0.

(P.7) (γk)k∈N and (ρk)k∈N satisfy ρk+1 − ρk − γk+1ρk+1 +
2
cγk −

γ2
k

c ≤ γk+1 for all k ∈ N and for c in

(P.6).

Remark 3.3.

(i) One can recognize that the update of the dual multiplier µk in Algorithm 1 has a flavour of gradient

ascent applied to the augmented dual with step-size θk. However, unlike the standard method of mul-

tipliers with the augmented Lagrangian, Assumption (P.6) requires θk to vanish in our setting. The

underlying reason is that our update can be seen as an inexact dual ascent (i.e., exactness stems from

the conditional gradient-based update on xk which is not a minimization of over x of the augmented

Lagrangian Lk). Thus θk must annihilate this error asymptotically.

(ii) A sufficient condition for (P.7) to hold consists of taking ρk ≡ ρ > 0 and γk+1 ≥ 2
c(1+ρ)γk. In

particular, if (γk)k∈N satisfies (P.5), then, for (P.7) to hold, it is sufficient to take ρk ≡ ρ > 2M/c as

supposed in (P.6).

(iii) The relevance of having ρk vary is that it allows for more general and less stringent choice of the

step-size γk. It is, however, possible (and easier in practice), to simply pick ρk ≡ ρ for all k ∈ N as

described above.

There is a large class of sequences that fulfill the requirements (P.1)-(P.7). A typical one is as follows.
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Example 3.4. Take2, for k ∈ N,

ρk ≡ ρ > 0, γk =
(log(k + 2))a

(k + 1)1−b
, βk =

1

(k + 1)1−δ
, with

a ≥ 0, 0 ≤ 2b < δ < 1, δ < 1− b, ρ > 22−b/c, c > 0.

In this case, one can take the crude bounds M = (log(2)/ log(3))a and M = 21−b, and choose ρ > 2M/c
as devised in Remark 3.3(ii). In turn, (P.4)-(P.7) hold. In addition, suppose that f has a ν-Hölder continuous

gradient (see (2.7)). Thus for (P.1)-(P.2) to hold, simple algebra shows that the allowable choice of b is in
[

0,min
(

1/3, ν
1+ν

)[

.

4 Convergence analysis

4.1 Main results

We state here our main results.

Theorem 4.1 (Asymptotic feasibility). Suppose that Assumptions (A.1)-(A.4) and (A.6) hold. Consider the

sequence of iterates (xk)k∈N from Algorithm 1 with parameters satisfying Assumptions (P.1)-(P.6). Then,

(i) Axk converges strongly to b as k → ∞, i.e., the sequence (xk)k∈N is asymptotically feasible for (P)

in the strong topology.

(ii) Pointwise rate:

inf
0≤i≤k

‖Axi − b‖ = O

(

1√
Γk

)

and ∃ a subsequence
(

xkj
)

j∈N s.t. for all j ∈ N,‖Axkj − b‖ ≤ 1
√

Γkj

,

(4.1)

where, for all k ∈ N, Γk
def
=
∑k

i=0 γi.

(iii) Ergodic rate: for each k ∈ N, let x̄k
def
=
∑k

i=0 γixi/Γk. Then

‖Ax̄k − b‖ = O

(

1√
Γk

)

. (4.2)

Theorem 4.1 will be proved in Section 4.3.

Theorem 4.2 (Convergence to optimality). Suppose that assumptions (A.1)-(A.8) and (P.1)-(P.7) hold, with

M ≥ 1. Let (xk)k∈N be the sequence of primal iterates generated by Algorithm 1 and (x⋆, µ⋆) a saddle-point

pair for the Lagrangian. Then, in addition to the results of Theorem 4.1, the following holds

(i) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ⋆) = L (x⋆, µ⋆) . (4.3)

(ii) Every weak cluster point x̄ of (xk)k∈N is a solution of the primal problem (P), and (µk)k∈N converges

weakly to µ̄ a solution of the dual problem (D), i.e., (x̄, µ̄) is a saddle point of L.

2Of course, one can add a scaling factor in the choice of the parameters which would allow for more practical flexibility. But this

does not change anything to our discussion nor to the bahviour of the CGALP algorithm for k large enough.
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(iii) Pointwise rate:

inf
0≤i≤k

L (xi, µ⋆)− L (x⋆, µ⋆) = O

(

1

Γk

)

and

∃ a subsequence
(

xkj
)

j∈N s.t. for each j ∈ N,L
(

xkj+1, µ
⋆
)

− L (x⋆, µ⋆) ≤ 1

Γkj

.

(4.4)

(iv) Ergodic rate: for each k ∈ N, let x̄k
def
=
∑k

i=0 γixi+1/Γk. Then

L (x̄k, µ⋆)− L (x⋆, µ⋆) = O

(

1

Γk

)

. (4.5)

An important observation is that Theorem 4.2, which will be proved in Section 4.5, actually shows that

lim
k→∞

[

L (xk, µ⋆)− L (x⋆, µ⋆) +
ρk
2
‖Axk − b‖2

]

= 0,

and subsequentially, for each j ∈ N,

L
(

xkj , µ
⋆
)

− L (x⋆, µ⋆) +
ρkj
2
‖Axkj − b‖2 ≤ 1

Γkj

. (4.6)

This means, in particular, that the pointwise rate for feasibility and optimality hold simulatenously for the

same subsequence.

The following corollary is immediate.

Corollary 4.3. Under the assumptions of Theorem 4.2, if the problem (P) admits a unique solution x⋆, then

the primal-dual pair sequence (xk, µk)k∈N converges weakly to a saddle point (x⋆, µ⋆).

Proof. By uniqueness, it follows from Theorem 4.2(ii) that (xk)k∈N has exactly one weak sequential clus-

ter point which is the solution to (P). Weak convergence of the sequence (xk)k∈N then follows from [4,

Lemma 2.38].

Example 4.4. Suppose that the sequences of parameters are chosen according to Example 3.4. Let the func-

tion σ : t ∈ R
+ 7→ (log(t+ 2))a/(t+ 1)1−b. We obviously have σ(k) = γk for k ∈ N. Moreover, it is easy

to see that ∃k′ ≥ 0 (depending on a and b), such that σ is decreasing for t ≥ k′. Thus, ∀k ≥ k′, we have

Γk ≥
k
∑

i=k′

γi ≥
∫ k+1

k′
σ(t)dt ≥

∫ k+2

k′+1
(log(t))atb−1dt =

∫ log(k+2)

log(k′+1)
taebtdt.

It is easy to show, using integration by parts for the first case, that

Γ−1
k =



















o
(

1
(k+2)b

)

a = 1, b > 0,

O
(

1
(k+2)b

)

a = 0, b > 0,

O
(

1
log(k+2)

)

a = 0, b = 0.

This result reveals that picking a and b as large as possible results in a faster convergence rate, with the

proviso that b satisfy some conditions for (P.1)-(P.7) to hold, see the discussion in Example 3.4 for the largest

possible choice of b.
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4.2 Preparatory results

The next result is a direct application of the Descent Lemma 2.7 and the generalized one in Lemma 2.5 to

the specific case of Algorithm 1. It allows to obtain a descent property for the function Ek (·, µk) between

the previous iterate xk and next one xk+1.

Lemma 4.5. Suppose Assumptions (A.1), (A.2) and (P.1) hold. For each k ∈ N, define the quantity

Lk
def
=
‖T‖2
βk

+ ‖A‖2ρk. (4.7)

Then, for each k ∈ N, we have the following inequality:

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+K(F,ζ,C)ζ (γk)

+
Lk

2
‖xk+1 − xk‖2.

Proof. Define for each k ∈ N,

Ẽk (x, µ) def
= gβk (Tx) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ,

so that Ek (x, µ) = f(x) + Ẽk (x, µ). Compute

∇xẼk (x, µ) = T ∗∇gβk(Tx) +A∗µ+ ρkA
∗ (Ax− b) ,

which is Lipschitz-continuous with constant Lk = ‖T‖2
βk

+‖A‖2ρk by virtue of (A.1) and Proposition 2.1(iii).

Then we can use the Descent Lemma (2.7) with ν = 1 on Ẽk (·, µk) between the points xk and xk+1, to obtain,

for each k ∈ N,

Ẽk (xk+1, µk) ≤ Ẽk (xk, µk) + 〈∇Ẽk (xk, µk) , xk+1 − xk〉+
Lk

2
‖xk+1 − xk‖2 . (4.8)

From Assumption (A.2), Lemma 2.5 and Remark 2.7, we have, for each k ∈ N,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+DF (xk+1, xk)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+K(F,ζ,C)ζ (γk) ,

where we used that both xk and sk lie in C, that γk belongs to ]0, 1] by (P.1) and thus xk+1 = xk +
γk (sk − xk) ∈ C. Summing (4.8) with the latter and recalling that Ek (x, µk) = f(x) + Ẽk (x, µk), we

obtain the claim.

Again for the function Ek (·, µk), we also have a lower-bound, presented in the next lemma.

Lemma 4.6. Suppose Assumptions (A.1) and (A.2) hold. Then, for all k ∈ N, for all x, x′ ∈ Hp and for all

µ ∈ Hd,

Ek (x, µ) ≥ Ek
(

x′, µ
)

+ 〈∇xEk
(

x′, µ
)

, x− x′〉+ ρk
2
‖A(x− x′)‖2.
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Proof. First, split the function Ek (·, µ) as Ek (x, µ) = E0k (x, µ) + ρk
2 ‖Ax− b‖2 for an opportune definition

of E0k (·, µ). For the first term, simply by convexity, we have

E0k (x, µ) ≥ E0k
(

x′, µ
)

+ 〈∇xE0k
(

x′, µ
)

, x− x′〉. (4.9)

Now use the strong convexity of the term (ρk/2) ‖ · −b‖2 between points Ax and Ax′, to affirm that

ρk
2
‖Ax− b‖2 ≥ ρk

2
‖Ax′ − b‖2 + 〈∇

(ρk
2
‖ · −b‖2

)

(

Ax′
)

, Ax−Ax′〉+ ρk
2
‖A(x− x′)‖2. (4.10)

Compute

〈∇
(ρk
2
‖ · −b‖2

)

(

Ax′
)

, Ax−Ax′〉 = ρk〈A∗ (Ax′ − b
)

, x− x′〉

= 〈∇
(ρk
2
‖A · −b‖2

)

(

x′
)

, x− x′〉.

Summing (4.9) and (4.10) and invoking the gradient computation above, we obtain the claim.

Lemma 4.7. Suppose that assumptions (A.1)-(A.8) and (P.1)-(P.7) hold, with M ≥ 1. Let (xk)k∈N be the

sequence of primal iterates generated by Algorithm 1 and µ⋆ a solution of the dual problem (D). Then we

have the following estimate,

L (xk, µ⋆)− L (xk+1, µ
⋆) ≤ γkdC (M ‖T‖ +D + Lh + ‖A‖ ‖µ⋆‖)

Proof. First define uk
def
= [∂g(Txk)]

0
and recall that, by (A.4) and its consequence in (3.7), ‖uk‖ ≤ M for

every k ∈ N. Then,

L (xk, µ⋆)− L (xk+1, µ
⋆) = Φ(xk)− Φ(xk+1) + 〈µ⋆, A (xk − xk+1)〉
≤ 〈uk, T (xk − xk+1)〉+ 〈∇f(xk), xk − xk+1〉
+ Lh‖xk − xk+1‖+ ‖µ⋆‖ ‖A‖ ‖xk − xk+1‖,

where we used the subdifferential inequality (2.4) on g, the gradient inequality on f , the Lh-Lipschitz con-

tinuity of h relative to C (see (A.5)), and the Cauchy-Schwartz inequality on the scalar product. Since

xk+1 = xk + γk (xk − sk), we obtain

L (xk, µ⋆)− L (xk+1, µ
⋆) ≤ γk

(

〈uk, T (xk − sk)〉+ 〈∇f(xk), xk − sk〉+ Lh‖xk − sk‖

+ ‖µ⋆‖ ‖A‖ ‖xk − sk‖
)

≤ γkdC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖) ,

where we have denoted by D the constant D
def
= supx∈C ‖∇f(x)‖ < +∞ (see (4.32)).

Lemma 4.8. Suppose that assumptions (A.3) and (P.4) hold. Let (xk)k∈N be the sequence of primal iterates

generated by Algorithm 1. Then we have the following estimate,

ρk
2
‖Axk − b‖2 − ρk+1

2
‖Axk+1 − b‖2 ≤ ρdC‖A‖ (‖A‖R + ‖b‖) γk,

where R is the radius of the ball containing C and ρ = supk ρk.
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Proof. By (P.4) and convexity of the function
ρk+1

2 ‖A · −b‖2, we have

ρk
2
‖Axk − b‖2 − ρk+1

2
‖Axk+1 − b‖2 ≤ ρk+1

2
‖Axk − b‖2 − ρk+1

2
‖Axk+1 − b‖2

≤ 〈∇
(ρk+1

2
‖A · −b‖2

)

(xk), xk − xk+1〉.

Now compute the gradient and use the definition of xk+1, to obtain

ρk
2
‖Axk − b‖2 − ρk+1

2
‖Axk+1 − b‖2 ≤ ρk+1γk〈Axk − b, A (xk − sk)〉

≤ ρdC‖A‖ (‖A‖R + ‖b‖) γk.

In the last inequality, we used Cauchy-Schwartz inequality, triangle inequality, the fact that

‖xk − sk‖ ≤ dC , and assumptions (A.3) and (P.4) (respectively, supx∈C ‖x‖ ≤ R and ρk+1 ≤ ρ).

4.3 Asymptotic feasibility

We begin with an intermediary lemma establishing the main feasibility estimation and some summability

results that will also be used in the proof of optimality.

Lemma 4.9. Suppose that Assumptions (A.1)-(A.4) and (A.6) hold. Consider the sequence of iterates (xk)k∈N
from Algorithm 1 with parameters satisfying Assumptions (P.1)-(P.6). Define the two quantities ∆p

k and ∆d
k

in the following way,

∆p
k

def
= Lk (xk+1, µk)− L̃k (µk) , ∆d

k
def
= L̃ − L̃k (µk) ,

where we have denoted L̃k (µk)
def
= minx Lk (x, µk) and L̃ def

= L (x⋆, µ⋆). Denote the sum ∆k
def
= ∆p

k + ∆d
k.

Then we have the following estimation,

∆k+1 ≤ ∆k − γk+1

(

M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)

+
Lk+1

2
γ2k+1d

2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M +

(

ρk+1 − ρk
2

)

‖Axk+1 − b‖2 ,

and, moreover,
(

γk ‖Ax̃k − b‖2
)

k∈N
∈ ℓ1+,

(

γk ‖A (xk − x̃k)‖2
)

k∈N
∈ ℓ1+, and

(

γk ‖Axk − b‖2
)

k∈N
∈ ℓ1+.

Proof. First notice that the quantity ∆p
k ≥ 0 and can be seen as a primal gap at iteration k while ∆d

k may be

negative but is bounded from below by our assumptions. Indeed, in view of (A.1), (A.6) and Remark 3.1(iv),

L̃k (µk) is bounded from above since

L̃k (µk) ≤ Lk (x⋆, µk)

= f (x⋆) + gβk (Tx⋆) + h (x⋆) + 〈µk, Ax
⋆ − b〉 + ρk

2
‖Ax⋆ − b‖2

= f (x⋆) + gβk (Tx⋆) + h (x⋆)

≤ f (x⋆) + g (Tx⋆) + h (x⋆) < +∞,

where we used Proposition 2.1(v) in the last inequality.
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We denote a minimizer of Lk (x, µk) by x̃k ∈ Argmin
x∈Hp

Lk (x, µk), which exists and belongs to C by

(A.1)-(A.3). Then, we have

∆d
k+1 −∆d

k = Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1) . (4.11)

Since x̃k is a minimizer of Lk (x, µk) we have that Lk (x̃k, µk) ≤ Lk (x̃k+1, µk) which leads to,

Lk (x̃k+1, µk) = Lk+1 (x̃k+1, µk) + gβk (T x̃k+1)− gβk+1 (T x̃k+1) +
ρk−ρk+1

2 ‖Ax̃k+1 − b‖2

≤ Lk+1 (x̃k+1, µk) ,

where the last inequality comes from Proposition 2.1(v) and the assumptions (P.3) and (P.4). Combining this

with (4.11),

∆d
k+1 −∆d

k ≤ Lk+1 (x̃k+1, µk)− Lk+1 (x̃k+1, µk+1)

= 〈µk − µk+1, Ax̃k+1 − b〉
= −θk 〈Axk+1 − b,Ax̃k+1 − b〉 ,

(4.12)

where in the last equality we used the definition of µk+1. Meanwhile, for the primal gap we have

∆p
k+1 −∆p

k = (Lk+1 (xk+2, µk+1)− Lk (xk+1, µk)) + (Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1)) .

Note that

Lk (xk+1, µk) = Lk (xk+1, µk+1)− θk ‖Axk+1 − b‖2

and estimate Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1) as in (4.12), to get

∆p
k+1 −∆p

k ≤ Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

− θk 〈Axk+1 − b,Ax̃k+1 − b〉 . (4.13)

Using (4.12) and (4.13), we then have

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

− 2θk 〈Axk+1 − b,Ax̃k+1 − b〉 .

Note that

Lk (xk+1, µk+1) = Lk+1 (xk+1, µk+1)−
[

gβk+1 − gβk

]

(Txk+1)−
(

ρk+1 − ρk
2

)

‖Axk+1 − b‖2 .

Then

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk+1 (xk+1, µk+1) + gβk+1 (Txk+1)− gβk (Txk+1)

+

(

ρk+1 − ρk
2

)

‖Axk+1 − b‖2 + θk ‖Axk+1 − b‖2 − 2θk 〈Axk+1 − b,Ax̃k+1 − b〉 .
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We denote by T1 = Lk+1 (xk+2, µk+1)− Lk+1 (xk+1, µk+1) and the remaining part of the right-hand side

by T2. For the moment, we focus our attention on T1. Recall that Lk (x, µk) = Ek (x, µk)+h (x) and apply

Lemma 4.5 between points xk+2 and xk+1, to get

T1 ≤ h (xk+2)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+2 − xk+1〉

+K(F,ζ,C)ζ (γk+1) +
Lk+1

2
‖xk+2 − xk+1‖2 .

By (A.1) we have that h is convex and thus, since xk+2 is a convex combination of xk+1 and sk+1, we get

T1 ≤ −γk+1 (h (xk+1)− h (sk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+1 − sk+1〉)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1) .

Applying the definition of sk as the minimizer of the linear minimization oracle and Lemma 4.6 at the points

x̃k+1, xk+1, and µk+1 gives,

T1 ≤ −γk+1 (h (xk+1)− h (x̃k+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+1 − x̃k+1〉)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1)

≤ −γk+1

(

h (xk+1)− h (x̃k+1) + Ek+1 (xk+1, µk+1)− Ek+1 (x̃k+1, µk+1)

+
ρk+1

2
‖A (xk+1 − x̃k+1)‖2

)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1)

= −γk+1

(

Lk+1 (xk+1, µk+1)− Lk+1 (x̃k+1, µk+1) +
ρk+1

2
‖A (xk+1 − x̃k+1)‖2

)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1)

≤ −γk+1ρk+1

2
‖A (xk+1 − x̃k+1)‖2 +

Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1) ,

where we used that x̃k+1 is a minimizer of Lk+1 (·, µk+1) in the last inequality. Now, combining T1 and T2

and using the Pythagoras identity we have

∆k+1 −∆k ≤ −θk ‖Ax̃k+1 − b‖2 +
(

θk − γk+1
ρk+1

2

)

‖A (xk+1 − x̃k+1)‖2

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1) +

[

gβk+1 − gβk

]

(Txk+1)

+
ρk+1 − ρk

2
‖Axk+1 − b‖2 . (4.14)

Under (P.6) we have θk = γk
c for some c > 0 such that

∃δ > 0,
M

c
−

ρ

2
= −δ < 0,

where M is the constant such that γk ≤ Mγk+1 (see Assumption (P.5)). Then, using (P.5) and the above

inequality,

θk − γk+1
ρk+1

2
≤
(

M

c
− ρk+1

2

)

γk+1 ≤
(

M

c
−

ρ

2

)

γk+1 = −δγk+1 and θk ≥ Mγk+1

c . (4.15)
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Now use the fact that xk+2 = xk+1 + γk+1 (sk+1 − xk+1) to estimate

‖xk+2 − xk+1‖2 ≤ γ2k+1d
2
C . (4.16)

Moreover, by the two assumptions (P.3), (A.4) and Proposition 2.1(v), (3.7) holds with a constant M > 0 ,

and thus with Proposition 2.1(iv) we obtain

[

gβk+1 − gβk

]

(Txk+1) ≤
βk − βk+1

2

∥

∥

∥

[

∂g (Txk+1)
]0
∥

∥

∥

2
≤ βk − βk+1

2
M. (4.17)

Plugging (4.15), (4.16) and (4.17) into (4.14), we get

∆k+1 −∆k ≤ −
M

c
γk+1 ‖Ax̃k+1 − b‖2 − δγk+1 ‖A (xk+1 − x̃k+1)‖2 +

Lk+1

2
γ2k+1d

2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M +

(

ρk+1 − ρk
2

)

‖Axk+1 − b‖2 .
(4.18)

Because of the assumptions (P.1) and (P.4), and in view of the definition of Lk in (4.7), we have the following,

Lk

2
γ2kd

2
C =

1

2

(

‖T‖2
βk

+ ‖A‖2 ρk
)

γ2kd
2
C ∈ ℓ1+.

For the telescopic terms from the right hand side of (4.18) we have

βk − βk+1

2
∈ ℓ1+ and

(

ρk+1 − ρk
2

)

‖Axk+1 − b‖2 ≤ (ρk+1 − ρk)
(

‖A‖2 R2 + ‖b‖2
)

∈ ℓ1+,

where R is the constant arising from (A.3). Under (P.1) we also have that

K(F,ζ,C)ζ (γk+1) ∈ ℓ1+.

Using the notation of Lemma 2.14, we set

rk = ∆k, pk = γk+1, wk =

(

M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)

,

zk =
Lk+1

2
γ2k+1d

2
C +K(F,ζ,C)ζ (γk+1) +

βk − βk+1

2
M +

(

ρk+1 − ρk
2

)

‖Axk+1 − b‖2 .

We have shown above that

rk+1 ≤ rk − pkwk + zk,

where (zk)k∈N ∈ ℓ1+, and rk is bounded from below. We then deduce using Lemma 2.14(i) that (rk)k∈N is

convergent and
(

γk ‖Ax̃k − b‖2
)

k∈N
∈ ℓ1+,

(

γk ‖A (xk − x̃k)‖2
)

k∈N
∈ ℓ1+. (4.19)

Consequently,
(

γk ‖Axk − b‖2
)

k∈N
∈ ℓ1+, (4.20)

since, by Jensen’s inequality,

∞
∑

k=1

γk ‖Axk − b‖2 ≤ 2

∞
∑

k=1

γk

(

‖A (xk − x̃k)‖2 + ‖Ax̃k − b‖2
)

< +∞.
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We are now ready to prove Theorem 4.1, i.e., to show that the sequence of iterates (xk)k∈N is asymptoti-

cally feasible.

Proof. (i) By Lemma 4.8 with ρk ≡ ρk+1 ≡ 2, we have

‖Axk − b‖2 − ‖Axk+1 − b‖2 ≤ 2γkdC ‖A‖ (‖A‖R+ ‖b‖) .

Using this together with Lemma 4.9 and Assumption (P.2), we are in position to apply Lemma 2.14(ii)

to conclude that limk→∞ ‖Axk − b‖ = 0.

(ii) The rates in (4.1) follow respectively from Lemma 2.14(iii) and Lemma 2.14(iv).

(iii) We have, by Jensen’s inequality and Lemma 4.9, that

‖Ax̄k − b‖2 ≤ 1

Γk

k
∑

i=0

γi ‖Axi − b‖2 ≤ 1

Γk

+∞
∑

i=0

γi ‖Axi − b‖2 = O

(

1

Γk

)

.

4.4 Dual multiplier boundedness

In this part we provide a lemma that shows the sequence of dual variables (µk)k∈N generated by Algorithm

1 is bounded.

We start by studying coercivity of ϕ̄.

Lemma 4.10. Suppose that Assumptions (A.1)-(A.3) and (A.6)-(A.8) hold. Then ϕ̄ is coercive on ran (A).

Proof. From (3.4), we have, for any c ∈ A−1(b), that

ϕ̄(µ) =
(

Φ̄∗ + 〈−c, ·〉
)

(−A∗µ) .

Moreover, Assumptions (A.1) and (A.7) entail that Φ̄ ∈ Γ0(Hp). We now consider separately the two as-

sumptions.

(a) Case of (A.8)(a): If follows from the Fenchel-Moreau theorem ([4, Theorem 13.32]) that
(

Φ̄∗ − 〈c, ·〉
)∗

= Φ̄∗∗ (·+ c) = Φ̄ (·+ c) .

Using this, together with Proposition 2.10 and (A.2), we can assert that Φ̄∗ − 〈c, ·〉 is coercive if and

only if

0 ∈ int
(

dom
(

Φ̄ (·+ c)
))

= int (dom (Φ))− c = int (dom (g ◦ T ) ∩ C)− c

= int (dom (g ◦ T )) ∩ int (C)− c.

But this is precisely what (A.8)(a) guarantees. In turn, using [4, Proposition 14.15], (A.8)(a) is equiv-

alent to

∃(a > 0, β ∈ R), Φ̄∗ − 〈c, ·〉 ≥ a ‖·‖ + β.

Using standard results on linear operators in Hilbert spaces [4, Facts 2.18 and 2.19], we have

(A.7) ⇐⇒ (∃α > 0), (∀µ ∈ ran(A)), ‖A∗µ‖ ≥ α ‖µ‖.
Combining the last two inequalities, we deduce that under (A.8)(a),

∃(a > 0, α > 0, β ∈ R), (∀µ ∈ ran(A)), ϕ̄(µ) ≥ a ‖A∗µ‖ + β ≥ aα ‖µ‖ + β,

which in turn is equivalent to coercivity of ϕ̄ on ran(A) by [4, Proposition 14.15].
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(b) Case of (A.8)(b): SinceHd is finite dimensional, We have, ∀u ∈ Hd,

ϕ̄∞ (u) =
((

Φ̄∗ + 〈−c, ·〉
)

◦ (−A∗)
)∞

(u)

(Proposition 2.11(iii)) =
(

Φ̄∗ + 〈−c, ·〉
)∞

(−A∗u)

(Proposition 2.11(ii)) = σdom(Φ̄∗+〈−c,·〉)∗ (−A
∗u)

= σdom(Φ̄(·+c)) (−A
∗u)

= σdom(Φ̄)−c (−A∗u)

(by (A.2)) = σdom(g◦T )∩C−c (−A∗u) .

Notice that, by Assumption (A.4), we have dom(g ◦ T )∩ C = C. Thus, using Proposition 2.11(i), we

have the following chain of equivalences

ϕ̄ is coercive on ran (A) ⇐⇒ ϕ̄∞ (u) > 0, ∀u ∈ ran (A) \ {0}
⇐⇒ σC−c(−A∗u) > 0, ∀u ∈ ran (A) \ {0} .

For this to hold, and since ran (A) = ker (A∗)⊥, a sufficient condition is that

σC−c(x) > 0, ∀x ∈ ran (A∗) \ {0} . (4.21)

It remains to check that the latter condition holds under (A.8)(b). First, observe that C is a nonempty

bounded convex set thanks to (A.1) and (A.3). The first condition in (A.8)(b) is equivalent to 0 ∈
ri(C − c) for some c ∈ A−1(b). It then follows from Proposition 2.9 that

σC−c(x) > 0,∀x 6∈ par(C − c)⊥ = par(C)⊥,

which then implies (4.21) thanks to the second condition in (A.8)(b).

Lemma 4.11. Suppose that assumptions (A.1)-(A.3) and (A.6)-(A.8) and (P.1)-(P.6) hold. Then the sequence

of dual iterates (µk)k∈N generated by Algorithm 1 is bounded.

Proof. Using the notation in (3.4), the primal problem:

min
x∈Hp

{Φ(x) : Ax = b} = min
x∈Hp

sup
µ∈Hd

L (x, µ) ,

is obviously equivalent to

min
x∈Hp

{

Φ(x) +
ρk
2
‖Ax− b‖2 : Ax = b

}

= min
x∈Hp

sup
µ∈Hd

{

L (x, µ) + ρk
2
‖Ax− b‖2

}

.

We associate to the previous the following regularized primal problem:

min
x∈Hp

{Φk(x) : Ax = b} = min
x∈Hp

sup
µ∈Hd

Lk (x, µ)

and its Lagrangian dual, namely:

sup
µ∈Hd

inf
x∈Hp

Lk (x, µ) = − inf
µ∈Hd

sup
x∈Hp

−Lk (x, µ) .
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Now consider the dual function in the latter, namely ϕk(µ)
def
= − infx∈Hp Lk (x, µ). Observe that the min-

imum is actually attained owing to (A.1) and (A.3). Now we claim that ϕk is continuously differentiable

with L∇ϕk
-Lipschitz gradient, and 1/ρ (see (P.4)) is an upper-bound for (L∇ϕk

)k∈N. In order to show it,

introduce the notation

Fk(x)
def
= f(x) + gβk(Tx) + h(x);

Gk(v)
def
=

ρk
2
‖v − b‖2.

By definition, we have

ϕk(µ) = − min
x∈Hp

{

f(x) + gβk(Tx) + h(x) + 〈µ, Ax− b〉+ ρk
2
‖Ax− b‖2

}

= − min
x∈Hp

{Fk(x) + 〈A∗µ, x〉+Gk(Ax)} + 〈µ, b〉.
(4.22)

Using Fenchel-Rockafellar duality and strong duality, which holds by (P.4) and continuity of Gk (see, for

instance, [30, Theorem 3.51]), we have the following equality,

min
x∈Hp

{Fk (x) + 〈A∗µ, x〉 +Gk (Ax)} = − min
v∈Hd

{(Fk (·) + 〈A∗µ, ·〉)∗ (−A∗v) +G∗
k (v)}

= − min
v∈Hd

{F ∗
k (−A∗v −A∗µ) +G∗

k (v)}

where we have used the fact that the conjugate of a linear perturbation is the translation of the conjugate in

the last line. Substituting the above into (4.22) we find

ϕk(µ) = min
v∈Hd

{

F ∗
k (−A∗(v + µ)) +

1

2ρk
‖v‖2 + 〈v, b〉

}

+ 〈µ, b〉

= min
v∈Hd

{

F ∗
k (−A∗(v + µ)) +

1

2ρk
‖v + ρkb‖2

}

+ 〈µ, b〉 − ρk
2
‖b‖2

Moreover, from the primal-dual extremality relationships [30, Theorem 3.51(i)], we have

− ṽ = ∇Gk(Ax̃) = ρk (Ax̃− b) , (4.23)

where x̃ is a minimizer (which exists and belongs to C) of the primal objective Lk (·, µ) and ṽ is the unique

minimizer to the associated dual objective. Now, using the change of variable u = v + µ, we get

ϕk(µ) = inf
u∈Hd

{

F ∗
k (−A∗u) +

1

2ρk
‖u− µ+ ρkb‖2

}

+ 〈µ, b〉 − ρk
2
‖b‖2

= [F ∗
k ◦ (−A∗)]ρk (µ− ρkb) + 〈µ, b〉 −

ρk
2
‖b‖2,

where the notation [·]ρk denotes the Moreau envelope with parameter ρk as defined in (2.2). It follows from

Proposition 2.1(i) and (iii), that ϕk is convex, real-valued and its gradient, given by

∇ϕk(µ) = ρ−1
k (µ− ρkb− ũ) + b = ρ−1

k (µ− ũ) , where ũ = proxρkF ∗
k
◦(−A∗)(µ− ρkb), (4.24)

is 1/ρk-Lipschitz continuous since the gradient of a Moreau envelope with parameter ρk is 1/ρk-Lipschitz

continuous (see Proposition 2.1(iii)). As ρk is non-decreasing, 1/ρk ≤ 1/ρ and the sequence of functions
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(∇ϕk)k∈N is uniformly Lipschitz-continuous with constant 1/ρ. In addition, combining (4.23) and (4.24),

and recalling the change of variable ũ = ṽ + µ, we get that

∇ϕk(µ) = ρ−1
k (µ− ũ) = −ρ−1

k ṽ = Ax̃− b. (4.25)

As in Lemma 4.9, we are going to denote x̃k a minimizer of Lk (x, µk). Then, from the Descent Lemma (see

Proposition 2.4 and inequality (2.7)), we have

ϕk(µk+1) ≤ ϕk(µk) + 〈∇ϕk(µk), µk+1 − µk〉+
1

2ρ
‖µk+1 − µk‖2.

Now substitute in the right-hand-side the expression ∇ϕk(µk) = Ax̃k − b in (4.25) and the update µk+1 =
µk + θk (Axk+1 − b) from the algorithm, to obtain

ϕk(µk+1) ≤ ϕk(µk) + θk〈Ax̃k − b, Axk+1 − b〉+ θ2k
2ρ
‖Axk+1 − b‖2

≤ ϕk(µk) +
θk
2
‖Ax̃k − b‖2 + θk

2

(

θk
ρ

+ 1

)

‖Axk+1 − b‖2,
(4.26)

where we estimated the scalar product by Cauchy-Schwartz and Young inequality. Moreover, by definition,

ϕk+1(µk+1) = − inf
x∈Hp

{

f(x) + gβk+1(Tx) + h(x) + 〈µk+1, Ax− b〉+ ρk+1

2
‖Ax− b‖2

}

= sup
x∈Hp

{

−Lk (x, µk+1) +
[

gβk − gβk+1

]

(Tx) +
1

2
(ρk − ρk+1) ‖Ax− b‖2

}

.
(4.27)

Now recall assumptions (P.3) and (P.4): for βk non-increasing,
[

gβk − gβk+1
]

(Tx) ≤ 0 for every x ∈ Hp

by Proposition 2.1(v) and, for ρk non-decreasing, ρk − ρk+1 ≤ 0. Then we can estimate the right-hand-side

of (4.27) to obtain

ϕk+1(µk+1) ≤ sup
x∈Hp

−Lk (x, µk+1) = ϕk(µk+1).

Sum (4.26) with the latter, to obtain

ϕk+1 (µk+1)− ϕk (µk) ≤
θk
2
‖Ax̃k − b‖2 + θk

2

(

θk
ρ

+ 1

)

‖Axk+1 − b‖2.

By Assumption (P.6), θk = γk/c where γk ≤ 1. Moreover, by assumption (P.5), γk ≤Mγk+1. Then,

ϕk+1 (µk+1)− ϕk (µk) ≤
γk
2c
‖Ax̃k − b‖2 + M

2c

(

1

ρc
+ 1

)

γk+1‖Axk+1 − b‖2. (4.28)

Notice that the right-hand-side is in ℓ1+, because both
(

γk ‖Axk − b‖2
)

k∈N
and

(

γk ‖Ax̃k − b‖2
)

k∈N
are in ℓ1+ by Lemma 4.9. Additionally, (ϕk(µk))k∈N is bounded from below. Indeed,

by virtue of (A.6) and Remark 3.1(iv), we have

ϕk(µk) ≥ −Lk (x⋆, µk)

≥ − [f(x⋆) + g(Tx⋆) + h(x⋆)] > −∞.
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Then we can use Lemma 2.14(i) on inequality (4.28) to conclude that (ϕk (µk))k∈N is convergent and, in

particular, bounded. Now recall Φk, Φ̄ and ϕ̄ from (3.4). Notice that

ϕk(µ) = sup
x∈Hp

{〈µ, b−Ax〉 − Φk(x)}

= sup
x∈Hp

{〈−A∗µ, x〉 − Φk(x)}+ 〈b, µ〉

= Φ∗
k (−A∗µ) + 〈b, µ〉.

It then follows that

gβk ≤ g =⇒ Φk ≤ Φ̄ ⇐⇒ Φ̄∗ ≤ Φ∗
k =⇒ ϕ̄ ≤ ϕk, (4.29)

where we used Proposition 2.1(v) and the fact in (2.1). We are now in position to invoke Lemma 4.10 which

shows that ϕ̄ is coercive on ran(A), and thus, by (4.29), (ϕk)k∈N is coercive uniformly in k on ran(A). In

turn, since ran(A) is closed and (µk)k∈N ⊂ ran(A) = ker(A∗)⊥, we have from (4.29) and the proof of

Lemma 4.10 that

∃(a > 0, α > 0, β ∈ R), (∀k ∈ N), ϕk(µk) ≥ ϕ̄(µk) ≥ a ‖A∗µk‖ + β ≥ aα ‖µk‖ + β,

which shows that (µk)k∈N is indeed bounded by boundedness of (ϕk (µk))k∈N.

4.5 Optimality

In this section we prove Theorem 4.2 by establishing convergence of the Lagrangian values to the optimum

(i.e., the value at the saddle-point).

We start by showing some boundedness claims that will be important in our proof.

Lemma 4.12. Under assumptions (A.1)-(A.8) and (P.1)-(P.6), the objective Φ is bounded on C, and thus

M̃
def
= sup

x∈C
|Φ(x)|+ sup

k∈N
‖µk‖ (‖A‖ R+ ‖b‖) < +∞, (4.30)

where we recall the radius R from assumption (A.3).

Proof. By assumption (A.4), g is subdifferentiable at Tx for any x ∈ C. Thus convexity of g implies that for

any x ∈ C

g(Tx) ≤ g(Tx⋆) +
〈

[∂g (Tx)]0 , Tx− Tx⋆
〉

≤ g(Tx⋆) +
∥

∥

∥[∂g (Tx)]
0
∥

∥

∥ ‖T‖dC

g(Tx) ≥ g(Tx⋆) +
〈

[∂g (Tx⋆)]0 , Tx− Tx⋆
〉

≥ g(Tx⋆)−
∥

∥

∥[∂g (Tx⋆)]
0
∥

∥

∥ ‖T‖dC .
(4.31)

From assumptions (A.1) and (A.2), f belongs to Γ0 (Hp) and is differentiable on an open set C0 that con-

tains C ⊂ dom(f) (see Definition 2.6). Thus the continuity set of f contains C, and it follows from [4,

Corollary 8.30(ii)] that C ⊂ int (dom(f)). Consequently, arguing as in the proof of Lemma 3.2, we deduce

that

sup
x∈C
‖∇f (x)‖ < +∞. (4.32)
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In turn, convexity entails that for any x ∈ C

f(x) ≤ f(x⋆) + 〈∇f (x) , x− x⋆〉 ≤ f(x⋆) + ‖∇f (x)‖ dC ,
f(x) ≥ f(x⋆) + 〈∇f (x⋆) , x− x⋆〉 ≥ f(x⋆)− ‖∇f (x⋆)‖ dC .

(4.33)

From assumption (A.5), we also have for any x ∈ C

h(x⋆)− LhdC ≤ h(x) ≤ h(x⋆) + LhdC . (4.34)

Summing (4.31), (4.33) and (4.34), using (4.32) and assumption (A.4), we get

|Φ(x)| ≤ |Φ(x⋆)|+
(

Lh + ‖T‖ sup
x∈C

∥

∥

∥
[∂g (Tx)]0

∥

∥

∥
+ sup

x∈C
‖∇f (x)‖

)

.

From Lemma 4.11, we know that the sequence of dual variables (µk)k∈N is bounded which concludes the

proof.

Define Ck
def
= Lk

2 d2C + dC (D +M‖T‖+ Lh + ‖A‖ ‖µ⋆‖), where Lk is given in (4.7) and the constants

D, M , and Lh are as in Lemma 4.7. We then have the following lemma, in which we state the main energy

estimation.

Lemma 4.13. Suppose that assumptions (A.1)-(A.8) and (P.1)-(P.6) hold, with M ≥ 1. Consider the se-

quence of primal-dual iterates ((xk, µk))k∈N generated by Algorithm 1 and (x⋆, µ⋆) a saddle-point point of

the Lagrangian as in (3.5). Let

rk
def
= (1− γk)Lk (xk, µk) +

c

2
‖µk − µ⋆‖2 + βk

2
M2 + γkM̃. (4.35)

Then, we have the following energy estimate

rk+1 − rk + γk

[

L (xk, µ⋆)− L (x⋆, µ⋆) +
ρk
2
‖Axk − b‖2

]

≤
1

2

[

ρk+1 − ρk − γk+1ρk+1 +
2

c
γk −

γ2k
c

]

‖Axk+1 − b‖2 + γkβk
2

M2 +K(F,ζ,C)ζ (γk) + Ckγ
2
k.

(4.36)

Proof. Notice that the dual update µk+1 = µk + θk (Axk+1 − b) can be re-written as

{µk+1} = Argmin
µ∈Hd

{

−Lk (xk+1, µ) +
1

2θk
‖µ− µk‖2

}

.

Then, from firm nonexpansiveness of the proximal mapping (see (2.3)),

0 ≥ θk [Lk (xk+1, µ
⋆)− Lk (xk+1, µk+1)] +

1

2

[

‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

+ ‖µk+1 − µk‖2
]

= θk [Lk (xk+1, µ
⋆)− Lk (xk+1, µk+1)] +

1

2

[

‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2
]

+
θ2k
2
‖Axk+1 − b‖2.

(4.37)
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Notice that

Lk (xk+1, µk)− Lk (xk, µk) = [Ek (xk+1, µk) + h(xk+1)]− [Ek (xk, µk) + h(xk)]

and that, by the definition of xk+1 in the algorithm and by convexity of function h,

h(xk+1)− h(xk) = h((1− γk)xk + γksk)− h(xk)

≤ γk (h(sk)− h(xk)) .

Then,

Lk (xk+1, µk)−Lk (xk, µk) ≤ Ek (xk+1, µk)− Ek (xk, µk) + γk (h(sk)− h(xk)) . (4.38)

Now apply Lemma 4.6 at the points x⋆, xk, and µk to affirm that

Ek (x⋆, µk) ≥ Ek (xk, µk) + 〈∇xEk (xk, µk) , x
⋆ − xk〉+

ρk
2
‖A(x⋆ − xk)‖2.

From the latter, by the alternative definition of sk in the algorithm (see (3.3)), we obtain

Ek (x⋆, µk) ≥ Ek (xk, µk)− h(x⋆) + h(sk) + 〈∇xEk (xk, µk) , sk − xk〉+
ρk
2
‖Axk − b‖2. (4.39)

From Lemma 4.5, we have also that

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+K(F,ζ,C)ζ (γk) +
Lk

2
‖xk+1 − xk‖2.

Recall that, from the algorithm, xk+1 = xk + γk (sk − xk). Then,

Ek (xk+1, µk) ≤ Ek (xk, µk) + γk〈∇xEk (xk, µk) , sk − xk〉+K(F,ζ,C)ζ (γk) +
Lkγ

2
k

2
‖sk − xk‖2

≤ Ek (xk, µk) + γk

[

Ek (x⋆, µk) + h(x⋆)− Ek (xk, µk)− h(sk)−
ρk
2
‖Axk − b‖2

]

+K(F,ζ,C)ζ (γk) +
Lk

2
d2Cγ

2
k,

where in the last inequality we used (4.39). Using the latter in (4.38), we obtain

Lk (xk+1, µk)− Lk (xk, µk) ≤γk
[

Lk (x⋆, µk)− Lk (xk, µk)−
ρk
2
‖Axk − b‖2

]

+K(F,ζ,C)ζ (γk) +
Lk

2
d2Cγ

2
k .

(4.40)

Notice also that, from the definitions of Lk (xk+1, ·) and µk+1 as µk+1 = µk + θk (Axk+1 − b),

Lk (xk+1, µk+1)− Lk (xk+1, µk) = 〈µk+1 − µk, Axk+1 − b〉 = θk‖Axk+1 − b‖2.

So, from the latter and (4.40),

Lk (xk+1, µk+1)− Lk (xk, µk) ≤ θk‖Axk+1 − b‖2 + γk [Lk (x⋆, µk)− Lk (xk, µk)]

− ρkγk
2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk

2
d2Cγ

2
k .
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Now recall that, by assumption (P.6), θk = γk/c. Multiply (4.37) by c and sum with the latter, to obtain

(1− cθk)Lk (xk+1, µk+1)− (1− cθk)Lk (xk, µk) +
c
2

[

‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2
]

≤
(

θk − cθ2
k

2

)

‖Axk+1 − b‖2 + γk [Lk (x⋆, µk)− Lk (xk, µk)]− cθk [Lk (xk+1, µ
⋆)− Lk (xk, µk)]

−ρkγk
2 ‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk

2 d2Cγ
2
k.

The previous inequality can be re-written, by trivial manipulations, as

(1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk, µk) +
c

2

[

‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2
]

≤ (1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk+1, µk+1) +

(

θk −
cθ2k
2

)

‖Axk+1 − b‖2

+ γk [Lk (x⋆, µk)− Lk (xk, µk)]− cθk [Lk (xk+1, µ
⋆)− Lk (xk, µk)]−

ρkγk
2
‖Axk − b‖2

+K(F,ζ,C)ζ (γk) +
Lk

2
d2Cγ

2
k

= c (θk − θk+1) [f + h+ 〈µk+1, A · −b〉] (xk+1) +
[

(1− cθk+1) g
βk+1 − (1− cθk) g

βk

]

(Txk+1)

+
1

2

[

(1− cθk+1) ρk+1 − (1− cθk) ρk + 2θk − cθ2k
]

‖Axk+1 − b‖2

+ γk [Lk (x⋆, µk)− Lk (xk, µk)]− cθk [Lk (xk+1, µ
⋆)− Lk (xk, µk)]−

ρkγk
2
‖Axk − b‖2

+K(F,ζ,C)ζ (γk) +
Lk

2
d2Cγ

2
k.

(4.41)

By (P.5) and (P.6), and the assumption that M ≥ 1, we have θk+1 ≤M−1θk ≤ θk. In view of (P.3), we also

have βk+1 ≤ βk by (P.3). In particular, gβk ≤ gβk+1 ≤ g. Now, by Proposition 2.1(iv) and the definition of

the constant M in (3.7), we are able to estimate the quantity

[

(1− cθk+1) g
βk+1 − (1− cθk) g

βk

]

(Txk+1)

=
[

gβk+1 − gβk

]

(Txk+1) + c
[

θkg
βk − θk+1g

βk+1

]

(Txk+1)

≤ 1

2
(βk − βk+1) ‖ [∂g(Txk+1)]

0 ‖2 + c
[

θkg
βk − θk+1g

βk

]

(Txk+1)

≤ 1

2
(βk − βk+1)M

2 + c (θk − θk+1) g(Txk+1).

Then,

c (θk − θk+1) [f + h+ 〈µk+1, A · −b〉] (xk+1) +
[

(1− cθk+1) g
βk+1 − (1− cθk) g

βk

]

(Txk+1)

≤ c (θk − θk+1)L (xk+1, µk+1) +
1

2
(βk − βk+1)M

2.

(4.42)

Recall that, by assumption (A.3), C is convex and bounded and that, by the update xk+1 = xk+γk (sk − xk)
with sk ∈ C and γk ∈]0, 1] by (P.1), xk always belongs to C. From the assumptions, the functions f, h and
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g ◦ T are bounded on C and, from the algorithm and convexity, (xk)k∈N ⊂ C. By Lemma 4.11, also the

sequence (µk)k∈N is bounded. Then, recalling M̃ from Lemma 4.12, we can use the Cauchy-Schwartz and

the triangular inequality to affirm that

L (xk, µk) = Φ(xk) + 〈µk, Axk − b〉 ≤ M̃. (4.43)

Recall the definition of rk in (4.35). Coming back to (4.41) and using both (4.42) and (4.43), we obtain

rk+1 − rk ≤
1

2

[

(1− γk+1) ρk+1 − (1− γk) ρk +
2

c
γk −

γ2k
c

]

‖Axk+1 − b‖2

+ γk [Lk (x⋆, µk)− Lk (xk+1, µ
⋆)]− ρkγk

2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk

2
d2Cγ

2
k .

(4.44)

Recall that, by feasibility of x⋆, L (x⋆, µk) = L (x⋆, µ⋆). Now compute

Lk (x⋆, µk)− Lk (xk+1, µ
⋆) = L (x⋆, µk)− L (xk+1, µ

⋆) +
[

gβk − g
]

(Tx⋆) +
[

g − gβk

]

(Txk+1)

− ρk
2
‖Axk+1 − b‖2

≤ L (x⋆, µ⋆)− L (xk+1, µ
⋆) +

βk
2
M2 − ρk

2
‖Axk+1 − b‖2,

where in the inequality we used the facts that gβk ≤ g and that, by Proposition 2.1(v) and (3.7),

[

g − gβk

]

(Txk+1) ≤
βk
2
‖ [∂g(Txk+1)]

0 ‖2 ≤ βk
2
M2.

Then, using the latter in (4.44), we obtain

rk+1 − rk ≤
1

2

[

ρk+1 − ρk − γk+1ρk+1 +
2

c
γk −

γ2k
c

]

‖Axk+1 − b‖2 + γk [L (x⋆, µ⋆)− L (xk+1, µ
⋆)]

+
γkβk
2

M2 − ρkγk
2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk

2
d2Cγ

2
k .

We replace the term [L (x⋆, µ⋆)−L (xk+1, µ
⋆)]with [L (x⋆, µ⋆)− L (xk, µ⋆)]+[L (xk, µ⋆)− L (xk+1, µ

⋆)]
and estimate using Lemma 4.7 to get the following,

rk+1 − rk ≤
1

2

[

ρk+1 − ρk − γk+1ρk+1 +
2

c
γk −

γ2k
c

]

‖Axk+1 − b‖2 + γk [L (x⋆, µ⋆)− L (xk, µ⋆)]

+
γkβk
2

M2 − ρkγk
2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) + Ckγ

2
k .

We conclude by trivial manipulations.

We are now ready to prove Theorem 4.2.

Proof. Our starting point is the main energy estimate (4.36). Let us focus on its right-hand-side. Under

assumption (P.7),

1

2

[

ρk+1 − ρk − γk+1ρk+1 +
2

c
γk −

γ2k
c

]

‖Axk+1 − b‖2 ≤ γk+1‖Axk+1 − b‖2,
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where the right hand side is in ℓ1+ by Lemma 4.9. Now remember thatCk = Lk

2 d2C+dC (D +M‖T‖+ Lh + ‖A‖ ‖µ⋆‖),
where Lk = ‖T‖2/βk + ‖A‖2ρk. Then we have

γkβkM
2/2+K(F,ζ,C)ζ (γk)+Ckγ

2
k = γkβkM

2/2+K(F,ζ,C)ζ (γk)+‖T‖2γ2kdC/ (2βk)+‖A‖2ρkγ2kdC/2
+ dC (D +M‖T‖+ Lh + ‖A‖ ‖µ⋆‖) γ2k ∈ ℓ1+.

Indeed, under assumption (P.1), the sequences (γkβk)k∈N , (ζ (γk))k∈N, and
(

γ2k/βk
)

k∈N belong to ℓ1+.

Moreover, we have by assumptions (P.3) and (P.4) that ργ2k ≤ ρkγ
2
k ≤ β0ργ

2
k/βk , whence we get that

(

ρkγ
2
k

)

k∈N ∈ ℓ1+ and
(

γ2k
)

k∈N ∈ ℓ1+ after invoking assumption (P.1). Thus all terms on the right hand side

are summable. Let

wk
def
= [L (xk, µ⋆)− L (x⋆, µ⋆)] +

ρk
2
‖Axk − b‖2

zk
def
= γk+1‖Axk+1 − b‖2 + γkβkM

2/2 +K(F,ζ,C)ζ (γk) + Ckγ
2
k.

So far, we have shown that

rk+1 ≤ rk − γkwk + zk, (4.45)

where rk is bounded from below, and (zk)k∈N ∈ ℓ1+. The rest of the proof consists of invoking properly

Lemma 2.14.

(i) In order to use Lemma 2.14(ii), we need to show that for some positive constant α,

wk − wk+1 ≤ αγk.

Notice that the term L (xk, µ⋆)−L (x⋆, µ⋆) is proportional to γk by Lemma 4.7. For the second term

of wk, we have by Lemma 4.8 that ρk
2 ‖Axk − b‖2 − ρk+1

2 ‖Axk+1 − b‖2 is proportional to γk. The

desired claim then follows from Lemma 2.14(ii).

(ii) By [4, Lemma 2.37], we can assert that (xk)k∈N possesses a weakly convergent subsequence, say
(

xkj
)

j∈N, with cluster point x̄ ∈ C. Since ‖A · −b‖ ∈ Γ0(Hp) and in view of [4, Theorem 9.1], we

have

‖Ax̄− b‖ ≤ lim inf
j

∥

∥Axkj − b
∥

∥ = lim
k
‖Axk − b‖ = 0,

where we used lower semicontinuity of the norm and Theorem 4.2. Thus Ax̄ = 0, meaning that x̄ is

a feasible point of (P). In turn, L (x̄, µ⋆) = Φ(x̄). The function L (·, µ⋆) is lower semicontinuous by

(A.1) and (A.6). Thus, using [4, Theorem 9.1] and by virtue of claim (i), we have

Φ(x̄) = L (x̄, µ⋆) ≤ lim inf
j
L
(

xkj , µ
⋆
)

= lim
k
L (xk, µ⋆) = L (x⋆, µ⋆) ≤ L (x, µ⋆)

for all x ∈ Hp, and in particular for all x ∈ A−1(b). Thus, for every x ∈ A−1(b), we deduce that

Φ(x̄) ≤ L (x, µ⋆) = Φ(x),

meaning that x̄ is a solution for problem (P).
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Meanwhile, as the sequence (µk)k∈N is bounded by Lemma 4.11, we can again invoke [4, Lemma 2.37]

to extract a weakly convergent subsequence
(

µkj

)

j∈N with cluster point µ̄. By Fermat’s rule ([4,

Theorem 16.2]), the weak sequential cluster point µ̄ is a solution to (D) if and only if

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄) + b.

Since the proximal operator is the resolvent of the subdifferential, it follows that (4.24) is equivalent to

∇ϕkj

(

µkj

)

− b ∈ ∂
(

Φ∗
kj ◦ (−A∗)

)

(

µkj − ρkj∇ϕkj

(

µkj

))

. (4.46)

By Lemma 4.9 it follows that Ax̃k converges strongly to b and, combined with (4.25), thus∇ϕkj

(

µkj

)

converges strongly to 0. On the other hand, µkj − ρkj∇ϕkj

(

µkj

)

converges weakly to µ̄. We now

argue that we can pass to the limit in (4.46) by showing sequential closedness.

When g ≡ 0, we have, for all j ∈ N, Φkj ≡ f + h and the rest of the argument relies on sequential

closedness of the graph of the subdifferential of Φ∗ ◦ (−A∗) ∈ Γ0(Hd) in the weak-strong topology.

For the general case, our argument will rely on the fundamental concept of Mosco convergence of

functions, which is epigraphical convergence for both the weak and strong topology (see [9] and [2,

Definition 3.7]).

By Proposition 2.1(v) and assumptions (A.1)-(A.2),
(

Φkj

)

j∈N is an increasing sequence of functions in

Γ0 (Hd). It follows from [2, Theorem 3.20(i)] that Φkj Mosco-converges to supj∈NΦkj = supj∈N f+

g
βkj ◦T +h = f+g◦T +h = Φ since βkj → 0 by (P.3). Bicontinuity of the Legendre-Fenchel conju-

gation for the Mosco convergence (see [2, Theorem 3.18]) entails that Φ∗
kj
◦ −(A∗) Mosco-converges

to (f + g ◦ T + h)∗ ◦ (−A∗) = Φ∗ ◦ (−A∗). This implies, via [2, Theorem 3.66], that ∂Φ∗
kj
◦ (−A∗)

graph-converges to ∂Φ∗ ◦ (−A∗), and [2, Proposition 3.59] shows that
(

∂Φkj ◦ (−A∗)
)

j∈N is sequen-

tially closed for graph-convergence in the weak-strong topology onHd, i.e., for any sequence (vkj , ηkj )
in the graph of ∂Φ∗

kj
◦ (−A∗) such that vkj converges weakly to v̄ and ηkj converges strongly to η̄,

we have η̄ ∈ ∂Φ∗ ◦ (−A∗)(v̄). Taking vkj = ∇ϕkj

(

µkj

)

− b and ηkj = µkj − ρkj∇ϕkj

(

µkj

)

, we

conclude that

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄) + b,

i.e., µ̄ is a solution of the dual problem (D).

Recall rk from (4.35) which verifies (4.45). From Lemma 2.14(i), (rk)k∈N is convergent. By (P.1) and

(P.3), γk and βk both converge to 0. We also have that

−Lk (xk, µk) = (L(xk, µ⋆)− Lk (xk, µk))− L(xk, µ⋆)

= g(Txk)− gβk(Txk) + 〈µ⋆ − µk, Axk − b〉 − ρk
2
‖Axk − b‖2

− L(xk, µ⋆).

We have from Theorem 4.1(i) that ρk
2 ‖Axk − b‖2 → 0. In turn, 〈µ⋆ − µk, Axk − b〉 → 0 since

(µk)k∈N is bounded (Lemma 4.11). We also have L(xk, µ⋆) → L(x⋆, µ⋆) by claim (i) above. By

Proposition 2.1(v) and (3.7), we get that

0 ≤
(

g(Txk)− gβk(Txk)
)

≤ βk
2
M2.
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Passing to the limit and in view of (P.3), we conclude that g(Txk)− gβk(Txk)→ 0. Altogether, this

shows that Lk (xk, µk)→ L(x⋆, µ⋆). In turn, we conclude that the limit

lim
k→∞

‖µk − µ⋆‖2 = 2/c

(

lim
k→∞

rk − L(x⋆, µ⋆)

)

exists. Since µ⋆ was an arbitray optimal dual point, and we have shown above that each subsequence of

(µk)k∈N converges weakly to an optimal dual point, we are in position to invoke Opial’s lemma [29] to

conclude that the whole dual multiplier sequence weakly converges to a solution of the dual problem.

(iii) Recalling that (γk)k∈N 6∈ ℓ1+ (see assumption (P.2)), the rates in (4.4) follow by applying Lemma

2.14(iii)-(iv) to (4.45). Notice that both terms in wk are positive and that ρk ≥ ρ > 0 (see again

assumption (P.4)). Therefore we have that, for the same subsequence
(

xkj
)

j∈N, (4.6) holds.

(iv) The ergodic rate (4.2) follows by applying the Jensen’s inequality to the convex function L (·, µ⋆).

5 Applications

5.1 Sum of several nonsmooth functions

In this section we explore the applications of Algorithm 1 to splitting in composite optimization problems,

where we allow the presence of more than one nonsmooth function g or h in the objective:

min
x∈Hp

{

f (x) +

n
∑

i=1

gi (Tix) +

n
∑

i=1

hi (x)

}

. (5.1)

First, we denote the product space byHp
def
= Hn

p endowed with the scalar product 〈〈x,y〉〉 = 1
n

∑n
i=1

〈

x(i), y(i)
〉

,

where x and y are vectors in Hp with x
def
=
(

x(1), . . . , x(n)
)⊤

. We define also V as the diagonal subspace of

Hp, i.e. V def
= {x ∈ Hp : x(1) = . . . = x(n)}, V⊥ the orthogonal subspace to V , and ΠV ,ΠV⊥ the orthogonal

projections onto V , V⊥ - respectively. We finally introduce the (diagonal) linear operator T : Hp → Hp

defined by

[T (x)](i) = Tix
(i)

and the functions

F (x)
def
=

1

n

n
∑

i=1

f
(

x(i)
)

; G (Tx)
def
=

n
∑

i=1

gi

(

Tix
(i)
)

; H (x)
def
=

n
∑

i=1

hi

(

x(i)
)

.

Then problem (5.1) is obviously equivalent to

min
x∈Hp

{F (x) +G(Tx) +H (x) : ΠV⊥x = 0} , (5.2)

which fits in the setting of our main problem (P). In order to make more clear the presentation, we separate

the two cases of multiple g and multiple h, that can be trivially combined. Moreover, we focus on the main

case hi = ιCi .
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5.2 Sum of several simple functions over a compact set

Consider the following composite minimization problem,

min
x∈C

{

f (x) +

n
∑

i=1

gi (Tix)

}

. (5.3)

We can reformulate the problem in the product space Hp using the above notation to get,

min
x∈Cn∩V

{F (x) +G (Tx)} .

Applying Algorithm 1 to this problem gives a completely separable scheme; we first compute the direction,

sk ∈ Argmin
s∈Cn∩V

〈〈∇
(

F (xk) +Gβk (Txk)
)

, s〉〉,

which reduces to the following computation since sk =







sk
...

sk






has identical components,

sk ∈ Argmin
s∈C

〈

n
∑

i=1

(

1

n
∇f

(

x
(i)
k

)

+∇gβk

i

(

Tix
(i)
k

)

)

, s

〉

.

The term ∇gβk

i has a closed form given in Proposition 2.1 which can be used to get the following formula

for the direction,

sk ∈ Argmin
s∈C

〈

n
∑

i=1

(

1

n
∇f

(

x
(i)
k

)

+
1

βk
T ∗
i

(

Tix
(i)
k − proxβg

(

Tix
(i)
k

))

)

, s

〉

.

5.3 Minimizing over intersection of compact sets

A classical problem found in machine learning is to minimize a Lipschitz-smooth function f over the inter-

section of convex, compact sets Ci in some real Hilbert space H,

min
x∈

n⋂

i=1
Ci
f (x) = min

x∈H

{

f (x) +

n
∑

i=1

hi (x)

}

,

where hi ≡ ιCi . Reformulating the problem in the product space Hp gives,

min
x∈Hp

Π
V⊥x=0

{F (x) +H (x)} .

Then, we can apply Algorithm 1 and compute the step direction

sk ∈ Argmin
s∈C1×...×Cn

〈〈s,∇
[

F (x) + 〈µk,ΠV⊥xk〉+
ρk
2
‖ΠV⊥xk‖2

]

〉〉
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which gives a separable scheme for each component of sk =







s
(1)
k
...

s
(n)
k






,

s
(i)
k ∈ Argmin

s∈Ci

〈

s,
1

n
∇f

(

x
(i)
k

)

+ (ΠV⊥µk)
(i) + ρk (ΠV⊥xk)

(i)

〉

= Argmin
s∈Ci

〈

s,
1

n
∇f

(

x
(i)
k

)

+ µ
(i)
k −

1

n

n
∑

j=1

µ
(j)
k + ρk



x
(i)
k −

1

n

n
∑

j=1

x
(j)
k





〉

.

(5.4)

6 Comparison

6.1 Conditional Gradient Framework

In [37] the following problem was analyzed in the finite-dimensional setting,

min
x∈C
{f (x) + g (Tx)} (6.1)

where f ∈ C1,1 (Rn) ∩ Γ0 (R
n), T ∈ R

d×n is a linear operator, g ◦ T ∈ Γ0 (R
n), and C is a compact,

convex subset of Rn. They develop an algorithm which avoids projecting onto the set C, instead utilizing

a linear minimization oracle lmoC (v) = Argmin
x∈C

〈x, v〉, and replaces the function g ◦ T with the smooth

function gβk ◦ T . They consider only functions f which are Lipschitz-smooth and finite dimensional spaces,

i.e. R
n, compared to CGALP which weakens the assumptions on f to be differentiable and (F, ζ)-smooth

(see Definition 2.6) with an arbitrary real Hilbert space Hp (possibly infinite dimensional). Furthermore,

the analysis in [37] is restricted to the parameter choices γk = 2
k+1 and βk = β0√

k+1
exclusively, although

they do include a section in which they consider two variants of an inexact linear minimization oracle: one

with additive noise and one with multiplicative noise. In contrast, the results we present in Section 3 show

optimality and feasibility for a wider choice for both the sequence of stepsizes (γk)k∈N and the sequence

of smoothing parameters (βk)k∈N, although we only consider exact linear perturbation oracles of the form

Argmin
s∈Hp

{h (s) + 〈x, s〉}. Finally, for solving (6.1) with an exact linear minimization oracle, our algorithm

encompasses the algorithm in [37] by choosing h (x) = ιC (x), A ≡ 0, and restricting f to be in C1,1 (H)
withH = R

n.

In [37, Section 5] there is a discussion on splitting and affine constraints using the conditonal gradient

framework presented. In this setting, i.e. assuming exact oracles, the primary difference between CGALP and

the conditional gradient framework is the approach each algorithm takes to handle affine constraints. In

CGALP , the augmented Lagrangian formulation is used to account for the affine constraints, introducing

a dual variable µ and both a linear and quadratic term for the constraint Ax − b = 0. In contrast, in [37]

the affine constraint is treated the same as the nonsmooth term g ◦ T and thus handled by quadratic pe-

nalization/smoothing alone. The consequence of smoothing for the affine constraint Ax = b comes from

calculating the gradient of the squared-distance to the constraint. This will involve solving a least squares

problem at each iteration which can be computationally expensive. Our algorithm does not need to solve

such a linear system.

The difference in the approaches is highlighted when both methods are applied to problem presented in

Section 5.3 withn = 2 since this problem necessitates an affine constraint ΠV⊥x = 0 for splitting. According
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to [37, Section 5], we reformulate the problem to be

min
x(1)∈C1
x(2)∈C2

{

1

2

(

f
(

x(1)
)

+ f
(

x(2)
))

+ ι{x(1)}
(

x(2)
)

}

.

Note that the inclusion of the function ι{x(1)}
(

x(2)
)

in the objective is equivalent to the affine constraint

ΠV⊥x = 0 in the n = 2 case. Apply the conditional gradient framework on the variable
(

x(1), x(2)
)

to get

sk ∈ Argmin
s(1)∈C1
s(2)∈C2















〈

(

s(1)

s(2)

)

,









∇x(1)

[

1
2f
(

x
(1)
k

)

+ ιβk

x
(2)
k

(

x
(1)
k

)

]

∇x(2)

[

1
2f
(

x
(2)
k

)

+ ιβk

x
(1)
k

(

x
(2)
k

)

]









〉















,

which leads to a separable scheme that can be computed component-wise,

s
(1)
k ∈ Argmin

s∈C1

〈

s,
1

2
∇f

(

x
(1)
k

)

+
x
(1)
k − x

(2)
k

βk

〉

s
(2)
k ∈ Argmin

s∈C2

〈

s,
1

2
∇f

(

x
(2)
k

)

+
x
(2)
k − x

(1)
k

βk

〉

.

(6.2)

Compare the direction obtained in (6.2) to the one obtained in (5.4), the components of which we rewrite

below for n = 2,

s
(1)
k ∈ Argmin

s∈C1

〈

s,
1

2
∇f

(

x
(1)
k

)

+
1

2

(

µ
(1)
k − µ

(2)
k

)

+
ρk
2

(

x
(1)
k − x

(2)
k

)

〉

s
(2)
k ∈ Argmin

s∈C2

〈

s,
1

2
∇f

(

x
(2)
k

)

+
1

2

(

µ
(2)
k − µ

(1)
k

)

+
ρk
2

(

x
(2)
k − x

(1)
k

)

〉

.

(6.3)

Due to affine constraint, the computation of the direction in (6.2) necessitates smoothing and, as a conse-

quence, the parameter βk, which is necessarily going to 0. In CGALP , the introduction of the dual variable

µk in place of smoothing the affine constraint avoids the parameter βk. Instead, we have the parameter ρk
but ρk can be picked to be constant without issue.

6.2 FW-AL Algorithm

In [16] the following problem was analyzed,

min
x∈

n⋂

i=1
Ci

Ax=0

f (x)

using a combination of the Frank-Wolfe algorithm with the augmented Lagrangian to account for the con-

straint Ax = 0. The function f is assumed to be Lipschitz-smooth, in contrast to our approach. The perspec-

tive used in their paper is to modify the classic ADMM algorithm, replacing the marginal minimization with

respect to the primal variable by a Frank-Wolfe step instead, although their analysis is not restricted only to

Frank-Wolfe steps. Indeed, in all the scenarios where one can apply FW-AL using a Frank-Wolfe step our
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algorithm encompasses FW-AL as a special case, discussed in Section 5.3. The primary differences between

CGALP and FW-AL are in the convergence results and the generality of CGALP . The results in [16] prove

convergence of the objective in the case where the sets Ci are polytopes and convergence of the iterates in the

case where the sets Ci are polytopes and f is strongly convex, but they do not prove convergence of the objec-

tive, weak convergence of the dual variable, or asymptotic feasibility of the iterates in the general case where

each Ci is a compact, convex set. Instead, they prove two theorems which imply subsequential convergence of

the objective and subsequential asymptotic feasibility in the general case and subsequential convergence of

the iterates to the optimum in the strongly convex case in [16, Theorem 2] and [16, Corollary 2] respectively.

Unfortunately, each of these results is obtained separately and so the subsequences that produce each result

are not guaranteed to coincide with one another.

Interestingly, the results they obtain are not unique to Frank-Wolfe style algorithms as their analysis is

from the perspective of a modified ADMM algorithm; they only require that the algorithm used to replace

the marginal minimization on the primal variable in ADMM produces sublinear decrease in the objective.

Finally, they do not provide conditions for the dual multiplier sequence, µk in our notation, to be bounded

as they discuss in their analysis of issues with similar proofs, e.g. in GDMM. This is a crucial issue as the

constants in their bounds depend on the norm of these dual multipliers.

7 Numerical Experiments

In this section we present some numerical experiments comparing the performance of Algorithm 1 and a

proximal algorithm applied to splitting in composite optimization problems.

7.1 Projection problem

First, we consider a simple projection problem,

min
x∈R2

{

1

2
‖x− y‖22 : ‖x‖1 ≤ 1, Ax = 0

}

, (7.1)

where y ∈ R
2 is the vector to be projected and A : R

2 → R
2 is a rank-one matrix. To exclude trivial

projections, we choose randomly y /∈ B
1
1 ∩ ker(A), where B

1
1 is the unit ℓ1 ball centered at the origin. Then

Problem (7.1) is nothing but Problem (P) with f (x) = 1
2 ‖x− y‖22, g ≡ 0, h ≡ ιB1

1
and C = B

1
1.

The assumptions mentioned previously, i.e. (A.1)-(A.8), all hold in this finite-dimensional case as f ,

g, and h are all in Γ0

(

R
2
)

, f is Lipschitz-smooth, h is the indicator function for a compact convex set, g
has full domain and 0 ∈ ker(A) ∩ int(C). Regarding the parameters and the associated assumptions, we

choose γk according to Example 3.4 with (a, b) ∈ {(0, 0), (0, 1/3 − 0.01), (1, 1/3 − 0.01)}, θk = γk, and

ρ = 22−b + 1. The ergodic convergence profiles of the Lagrangian are displayed in Figure 1 along with the

theoretical rates (see Theorem 4.2 and Example 4.4). The observed rates agree with the predicted ones of

O
(

1
log(k+2)

)

, O
(

1
(k+2)b

)

and o
(

1
(k+2)b

)

for the respective choices of (a, b).

7.2 Matrix completion problem

We also consider the following, more complicated matrix completion problem,

min
X∈RN×N

{

‖ΩX − y‖1 : ‖X‖∗ ≤ δ1, ‖X‖1 ≤ δ2
}

, (7.2)
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Figure 1: Ergodic convergence profiles for CGALPapplied to the simple projection problem.

where δ1 and δ2 are positive constants, Ω : RN×N → R
p is a masking operator, y ∈ R

p is a vector of

observations, and ‖·‖∗ and ‖·‖1 are respectively the nuclear and ℓ1 norms. The mask operator Ω is generated

randomly by specifying a sampling density, in our case 0.8. We generate the vector y randomly in the

following way. We first generate a sparse vector ỹ ∈ R
N with N/5 non-zero entries independently uniformly

distributed in [−1, 1]. We take the exterior product ỹỹ⊤ = X0 to get a rank-1 sparse matrix which we then

mask to get ΩX0. The radii of the contraints in (7.2) are chosen according to the nuclear norm and ℓ1 norm

of X0, δ1 =
‖X0‖∗

2 and δ2 =
‖X0‖1

2 .

7.2.1 CGALP

Problem (7.2) is a special instance of (5.1) with n = 2, f ≡ 0, gi = ‖· − y‖1 /2, Ti = Ω, h1 = ι
B
δ1
∗

,

h2 = ι
B
δ2
1

, where B
δ1∗ and B

δ2
1 are the nuclear and ℓ1 balls of radii δ1 and δ2. We then follow the same

steps as in Section 5.1. Let Hp = R
N×N , Hp = H2

p, X =

(

X(1)

X(2)

)

∈ Hp. We then have G (ΩX) =

1
2

(∥

∥ΩX(1) − y
∥

∥

1
+
∥

∥ΩX(2) − y
∥

∥

1

)

, and H(X) = ι
B
δ1
∗
(X(1)) + ι

B
δ2
1
(X(2)). Then problem (7.2) is obvi-

ously equivalent to

min
X∈Hp

{

G (ΩX) +H(X) : ΠV⊥X = 0
}

, (7.3)

which is a special case of (5.2) with F ≡ 0. It is immediate to check that our assumptions (A.1)-(A.8) hold.

Indeed, all functions are in Γ0(Hp) and F ≡ 0, and thus (A.1) and (A.2) are verified. C = B
δ1∗ × B

δ2
1 which

is a non-mepty convex compact set. We also have ΩC ⊂ dom(∂G) = R
p × R

p, and for any z ∈ R
p × R

p,
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∂G(z) ⊂ B
1/2
∞ × B

1/2
∞ and thus (A.4) is verified. (A.5) also holds with Lh = 0. V is closed as we are in

finite dimension, and thus (A.7) is fulfilled. We also have, since dom(G ◦Ω) = Hp,

0 ∈ V ∩ int (dom(G ◦Ω)) ∩ int (C) = V ∩ int(Bδ1
∗ )× int(Bδ2

1 ),

which shows that (A.8) is verified. The latter is nothing but the condition in [4, Fact 15.25(i)]. It then follows

from the discussion in Remark 3.1(iv) that (A.6) holds true.

We use Algorithm 1 by choosing the sequence of parameters γk = 1
k+1 , βk = 1√

k+1
, θk = γk, and

ρk ≡ 15, which verify all our assumptions (P.1)-(P.7) in view of Example 3.4. Our choice of γk is the most

common in the literature, and it can be improved according to our discussion in the previous section.
Finding the direction Sk by solving the linear minimization oracle is a separable problem, and thus each

component is given by,

S
(1)
k ∈ Argmin

S(1)∈B
δ1
‖·‖∗

〈

Ω∗
(

ΩX
(1)
k − y − proxβk

2 ‖·‖1

(

ΩX
(1)
k − y

))

βk

+
1

2

(

µ
(1)
k − µ

(2)
k + ρk

(

X
(1)
k −X

(2)
k

))

, S(1)

〉

,

S
(2)
k ∈ Argmin

S(2)∈B
δ2
‖·‖1

〈

Ω∗
(

ΩX
(2)
k − y − proxβk

2 ‖·‖1

(

ΩX
(2)
k − y

))

βk

+
1

2

(

µ
(2)
k − µ

(1)
k + ρk

(

X
(2)
k −X

(1)
k

))

, S(2)

〉

.

(7.4)

Because of the structure of the sets Bδ1
‖·‖∗

and B
δ2
‖·‖1

, finding the first component of Sk reduces to computing

the leading right and left singular vectors of

Ω∗
(

ΩX
(1)
k − y − proxβk

2
‖·‖1

(

ΩX
(1)
k − y

))

βk
+

1

2

(

µ
(1)
k − µ

(2)
k + ρk

(

X
(1)
k −X

(2)
k

))

while finding the second component reduces to computing the largest entry of
∣

∣

∣

∣

∣

∣

∣





Ω∗
(

ΩX
(2)
k − y − proxβk

2 ‖·‖1

(

ΩX
(2)
k − y

))

βk

+
1

2

(

µ
(2)
k − µ

(1)
k + ρk

(

X
(2)
k −X

(1)
k

))





(i,j)

∣

∣

∣

∣

∣

∣

∣

over all the entries (i, j). The dual variable update is given by,

µk+1
def
=

(

µ
(1)
k+1

µ
(2)
k+1

)

=

(

µ
(1)
k

µ
(2)
k

)

+
γk
2

(

X
(1)
k+1 −X

(2)
k+1

X
(2)
k+1 −X

(1)
k+1

)

7.2.2 GFB

Let Hp = R
N×N , Hp = H3

p, W =





W (1)

W (2)

W (3)



 ∈ Hp, Q (W ) =
∥

∥ΩW (1) − y
∥

∥

1
+ ι

B
δ1
‖·‖∗

(

W (2)
)

+

ι
B
δ2
‖·‖1

(

W (3)
)

. Then we reformulate problem (7.2) as

min
W∈Hp

{

Q (W ) : W ∈ V
}

, (7.5)
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which fits the framework to apply the GFB algorithm proposed in [32] (in fact Douglas-Rachford since the

smooth part vanishes).
The algorithm has three steps, each of which is separable in the components. We choose the step sizes

λk = γ = 1 in the GFB to get,


























































Uk+1 =











2W
(1)
k − Z

(1)
k +Ω∗

(

y − Ω
(

2W
(1)
k − Z

(1)
k

)

+ prox‖·‖1

(

Ω
(

2W
(1)
k − Z

(1)
k

)

− y
))

Π
B
δ1
‖·‖∗

(

2W
(2)
k − Z

(2)
k

)

Π
B
δ2
‖·‖1

(

2W
(3)
k − Z

(3)
k

)











Zk+1 = Zk +Uk+1 −W k

W k+1 =







∑3
i=1 Z

(i)
k+1/3

∑3
i=1 Z

(i)
k+1/3

∑3
i=1 Z

(i)
k+1/3







(7.6)

We know from [32] that Zk converges to Z⋆, and W k and Uk both converge to W ⋆ = ΠV(Z
⋆) =

(X⋆,X⋆,X⋆), where X⋆ is a minimizer of (7.2).

7.2.3 Results

We compare the performance of CGALP with GFB for varying dimension, N , using their respective ergodic

convergence criteria. For CGALP this is the quantity L
(

X̄k, µ
∗)−L (X⋆,µ⋆) where X̄k =

k
∑

i=0
γiXi/Γk.

Meanwhile, for GFB, we know from [25] that the Bregman divergence Dv⋆

Q

(

Ūk

)

= Q(Ū k) − Q(W ⋆) −
〈

v⋆, Ū k −W ⋆
〉

, with Ūk =
k
∑

i=0
U i/(k+1) and v⋆ = (W ⋆−Z⋆)/γ, converges at the rate O(1/(k+1)).

To compute the convergence criteria, we first run each algorithm for 105 iterations to approximate the optimal

variables (X⋆ and µ⋆ for CGALP , and Z⋆ and W ⋆ for GFB). Then, we run each algorithm again for 105

iterations, this time recording the convergence criteria at each iteration. The results are displayed in Figure 2.
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Figure 2: Convergence profiles for CGALP (left) and GFB (right) for N = 32, N = 64, and N = 128.

It can be observed that our theoretically predicted rate (which is O (1/ log(k + 2)) for CGALP according

to Theorem 4.2 and Example 4.4) is in close agreement with the observed one. On the other hand, as is very
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well-known, employing a proximal step for the nuclear ball constraint will necessitate to compute an SVD

which is much more time consuming than computing the linear minimization oracle for large N . For this

reason, even though the rates of convergence guaranteed for CGALP are slower than for GFB, one can expect

CGALP to be a more time computationally efficient algorithm for large N .
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