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Abstract — This article presents a method to design a quad-
band band-pass filter. It is based on a frequency transforma-
tion function allowing the direct transformation of a low-pass
prototype in a quad-band band-pass filter. By defining the low
and high frequencies of each pass-band, all the parameters
of the frequency transformation (resonant angular frequencies
and susceptance slope parameters) can be retrieved analytically.
To validate the method, a third-order Chebyshev filter is
designed and fabricated using microstrip technologies. Very
good agreements are achieved between theoretical responses and
measurements.

Keywords — Quad-band band-pass filter, frequency transfor-
mation function, microstrip technologies

I. INTRODUCTION

Multi-band microwave filters are now an attractive solu-

tion in modern wireless communication systems for reducing

their volume and mass. Many recent works have proposed

synthesis methods for dual- or triple-band [1]–[8] or, less

often, quad-band or multi-band band-pass filters [9]–[11].

Most of them imposed the topology based on either stubs [5],

[9] or step-impedance resonators [1], [7], [11]. Nevertheless,

these latter for instance may require an important optimization

process to reach the required filter performance. Coupling

matrices are now also used to synthesize multi-band filters

[3], [8], but it may also require a lot of time to optimize the

matrix parameters and this is especially true with the increase

of the number of bands.

Another strategy consists in using frequency transforma-

tion techniques to switch from a low-pass prototype to a

multi-band band-pass filter. To do so, transmission zeros are

introduced in a band-pass filter to create the required bands.

This method was first presented in [2] for a dual-band case

and then in [4] for a triple-band one. A generalization of this

procedure for an arbitrary number of bands was proposed in

[10]. Nevertheless, the proposed procedure imposes the use

of frequency-invariant susceptances.

In this paper, we propose to extend the method presented

in [2] to the case of quad-band band-pass filters keeping

the synthesis fully analytic. Moreover, it offers great free-

dom on the bandwidths, i.e. same or very different values

can be defined. Our work differs from [10] by the use

of the slope parameters instead of coupling matrix and by

the fact that no frequency-invariant susceptance is imposed.

The paper is organized as follows. The first part introduces

the transform function. All equations and expressions for

Fig. 1. From a classical low-pass prototype to a quad-band band-pass filter

constructing the filter on a lumped-elements configuration are

given. The method is then applied to the design of a third-

order Chebyshev quad-band band-pass filter. An example

of implementation of this filter in microstrip technology is

provided in the second part which includes simulated and

measured results. Finally, we will give a summary of the

whole paper.

II. QUAD-BAND BAND-PASS FILTER SYNTHESIS

The quad-band band-pass filter’s response is shown in

Fig.1. The frequency transformation from a classical low-

pass filter prototype to the quad-band band-pass filter can

mathematically expressed by

Ω = T (ω) = b0

(
ω

ω0
− ω0

ω

)
−

3∑
k=1

1

bk

(
ω
ωk
− ωk

ω

) , (1)

where Ω is the normalized angular frequency (associated
to the normalized low-pass filter), T (ω) is the transformation
function, ω is the de-normalized angular frequency (asso-

ciated to the quad-band band-pass filter), ω0 and b0 are
respectively the resonant angular frequency and the suscep-

tance slope parameter of the band-pass resonators, ωk and bk
(k ∈ [1; 3]) are the ones of the stop-band resonators. These 8
parameters define the transformation and the objective of the

synthesis process is to link them to the input parameters that

are the low and high cut-off angular frequencies of the four

bands ωLi
and ωHi

(i ∈ [1; 4]) defined in Fig.1.
To do that, it can be assumed that the lower cut-off angular

frequencies for the 4 pass-bands ωLi
(i ∈ [1; 4]) map to -

1 in the normalized domain Ω, while the upper ones, ωHi
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(i ∈ [1; 4]), map to +1. Because of the odd symmetry of
T (ω), we can obtain:

T (−ωLi
) = T (ωHi

) = 1 (2)

The four high cut-off angular frequencies and the opposite of

the four low cut-off angular ones are therefore the zeros of

the function U(ω) defined as:

U(ω) = T (ω)− 1 (3)

In addition, using (1), U(ω) may be written as the ratio
of two polynomials :

U(ω) =

ω8 +
7∑

p=0
npω

p

−(n7ω7 + n5ω5 + n3ω3 + n1ω)
(4)

There are two ways to determine the value of np (p ∈
[0; 7]). The first one uses the fact that the high cut-off angular
frequencies and the opposite of the low cut-off ones are the

zeros of U(ω). The second one consists in using directly the
expression of T (ω) from (1) in (3). The expression of all the
np coefficients as a function of the cut-off angular frequencies

on the one hand and of the resonant angular frequencies and

the slope parameters on the other hand are given in appendix.

These 8 equations allow us to express analytically the 4

resonant angular frequencies ωk and the 4 slope parameters

bk (k ∈ [0; 3]) as a function of the input parameters:

ω0 =

√−n0n7

n1
(5)

ω1 =

√√√√−n5 +
√
A(cos

θ

3
−√3 cos

θ

3
)

3n7
(6)

ω2 =

√√√√−n5 +
√
A(cos

θ

3
+
√
3 cos

θ

3
)

3n7
(7)

ω3 =

√√√√−n5 − 2
√
A cos

θ

3
3n7

(8)

b0 =

√ −n0

n1n7
(9)

b1 =
ω1(ω

2
1 − ω2

2)(ω
2
1 − ω2

3)

Xω4
1 + Y ω2

1 + Z
(10)

b2 =
ω2(ω

2
2 − ω2

1)(ω
2
2 − ω2

3)

Xω4
2 + Y ω2

2 + Z
(11)

b3 =
ω3(ω

2
3 − ω2

1)(ω
2
3 − ω2

2)

Xω4
3 + Y ω2

3 + Z
(12)

Fig. 2. Low-pass capacitance transformed into quad-band band-pass res-
onators

Fig. 3. Ideal lumped-elements quad-band band-pass filter.

where:

A = n2
5 − 3n7n3 (13)

B = n5n3 − 9n7n1 (14)

C = n2
3 − 3n5n1 (15)

θ = arccos
2An5 − 3Bn7

2A3/2
(16)

X =
n6 − n0n7

n1
− n5

n7

n7
(17)

Y =
n4 − n0n5

n1
− n3

n7

n7
(18)

Z =
n2 − n0n3

n1
− n1

n7

n7
(19)

Since all the parameters for building the quad-band band-

pass filter are available, a unit capacitance in a classical low-

pass prototype can be transformed into a quad-band resonator

according to the structure presented in Fig.2.

An example of third-order Chebyshev filter using such

quad-band resonators and ideal J-inverters is presented in

Fig.3. The synthesis technique used here implies that the

three quad-band resonators are identical. Table 1 presents the

specification values (i.e the cut-off frequencies, fLi = ωLi/2π
and fHi = ωHi/2π, i ∈ [1; 4]), the resonant frequencies
(fk = ωk/2π, k ∈ [0; 3]), the slope parameters obtained
from the synthesis and finally, the components’ value of the

third-order lumped-elements Chebyshev filter. The admittance

inverters are J01 = J34 = 0.01287 S and J12 = J23 =
0.007271 S. The frequency response of this filter is reported
in Fig.4. If in this example, the 4 absolute bandwidths were

chosen equal for simplicity, this synthesis method allows to

obtain very different bandwidths for each band.
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Table 1. Application of the synthesis to a third-order quad-band filter:
specifications and output values.

Cut-off frequencies
Pass-band n◦ 1 2 3 4
fLi (GHz) 1.1 1.3 1.5 1.7
fHi (GHz) 1.15 1.35 1.55 1.75

Frequency transformation parameters
Resonator Band-pass Band-stop
n◦ 0 1 2 3

fk (GHz) 1.371 1.209 1.431 1.652
bk 6.857 3.763 4.270 5.980

Lumped-elements value
Resonator Band-pass Band-stop
n◦ 0 1 2 3

Ck (pF) 5.610 2.035 1.557 0.904
Lk (pH) 2.402 8.516 7.945 10.27

Fig. 4. Simulated frequency response of the lumped-elements quad-band
band-pass filter (cf. Fig.3).

III. EXAMPLE OF IMPLEMENTATION IN MICROSTRIP

TECHNOLOGY

An example of implementation of this quad-band band-

pass filter in microstrip technology is presented in this section.

The filter was fabricated on Rogers RO4033 substrate of

height h = 0.508mm, relative permittivity εr = 3.55 and
tan δ = 0.0027, associated with a double-sided copper layer
with thickness 17.5μm and conductivity 5.8×107S.m−1. For

each quad-band resonator, the band-pass part is implemented

using a quarter-wavelength short-circuited stub and ideally the

three stop-band ones using three quarter-wavelength open-

circuited stubs. Nevertheless, the line impedance of these

latter are too high (> 500Ω) to be made in the chosen
technology. So, the series resonators have been replaced by

the association of a admittance inverter and a shunt res-

onator implemented as a quarter-wavelength line and quarter-

wavelength short-circuited stub as also proposed in [2].

The quad-band band-pass filter was designed using ADS

2017 from Keysight Technologies ©. A picture of the realized

Fig. 5. Photograph of the completed quad-band band-pass filter (Size: 150×
139mm2 without 50Ω input and output lines).

Fig. 6. EM simulated (red dashed lines) and measured (blue continuous line)
frequency responses of the fabricated quad-band band-pass filter

quad-band band-pass filter is shown in Fig.5. Fig.6 presents

the EM simulated and measured frequency responses of the

designed quad-band band-pass filter. A very good correlation

is obtained, except in term of losses since a difference of

1.5dB can be observed in each band. This is mainly due to an

underestimate of the tan δ value of the substrate in simulation,
the latter being increased after laser engraving.

IV. CONCLUSION

A novel synthesis method based on frequency transfor-

mation has been presented in this paper. This transformation

based on the parallel association of one band-pass resonator

and three band-stop ones allows to obtain analytically all the

parameters of quad-band band-pass filter in a lumped-element

configuration. A 3-order Chebyshev quad-band band-pass fil-

ter has been synthesized using this technique and a prototype

in microstrip technology has been designed, fabricated and

tested. The filter’s response agrees well with the theory and

full wave simulation, which validate our synthesis technique.
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APPENDIX

This appendix presents the expressions of all the np

coefficients (np ∈ [0; 7]) as a function of the cut-off angular
frequencies firstly and then as a function of the resonant

angular frequencies and the susceptance slope parameters.

n7 =

4∑
i=1

ωLi −
4∑

i=1

ωHi = −ω0

b0
(20)

n6 =

4∑
i,j=1
i �=j

ωHiωHj +

4∑
i=j=1
i �=j

ωLiωLj −
4∑

i=1

ωLi ·
4∑

i=1

ωHi

= −
3∑

s=0

ω2
Ls −

ω0

b0
·

3∑
s=1

ωs

bs
(21)

n5 =

4∑
i,j,k=1
i �=j �=k

ωLiωLjωLk −
4∑

i,j,k=1
i �=j �=k

ωHiωHjωHk

+

4∑
i,j=1
i �=j

ωHiωHj ·
4∑

i=1

ωLi −
4∑

i,j=1
i �=j

ωLiωLj ·
4∑

i=1

ωHi

=
ω0

b0
·

3∑
s=1

ω2
s

(22)

n4 = −
4∑

i,j,k=1
i �=j �=k

ωHi · ωHj · ωHk ·
4∑

i=1

ωLi

−
4∑

i,j,k=1
i �=j �=k

ωLi · ωLj · ωLk ·
4∑

i=1

ωHi

+

4∑
i,j=1
i �=j

ωLi · ωLj ·
4∑

i,j=1
i �=j

ωHi · ωHj +

4∏
i=1

ωLi +

4∏
i=1

ωHi

=

3∑
s,p=0
s �=p

ω2
s · ω2

p +
ω0

b0
·

3∑
s=1

⎛
⎜⎜⎝ωs

bs
·

3∑
p,q=1
p �=q �=s

ω2
pω

2
q

⎞
⎟⎟⎠

(23)

n3 =

4∏
i=1

ωHi ·
4∑

i=1

ωLi −
4∏

i=1

ωLi ·
4∑

i=1

ωHi

+

4∑
i,j,k=1
i �=j �=k

ωLiωLjωLk ·
4∑

i,j=1
i �=j

ωHiωHj

−
4∑

i,j,k=1
i �=j �=k

ωHiωHjωHk ·
4∑

i,j=1
i �=j

ωLiωLj

= −ω0

b0
·

3∑
s,p=1
s �=p

ω2
sω

2
p

(24)

n2 =

4∏
i=1

ωHi ·
4∑

i,j=1
i �=j

ωLiωLj +

4∏
i=1

ωLi ·
4∑

i,j=1
i �=j

ωHiωHj

−
4∑

i,j,k=1
i �=j �=k

ωLiωLjωLk ·
4∑

i,j,k=1
i �=j �=k

ωHiωHjωHk

= −
3∑

s,p,q=0
s �=p �=q

ω2
sω

2
pω

2
q −

ω0

b0
·

3∑
s=1

⎛
⎜⎜⎝ωs

bs
·

3∏
p,q=1
p �=q �=s

ω2
pω

2
q

⎞
⎟⎟⎠
(25)

n1 =

4∏
i=1

ωHi ·
4∑

i,j,k=1
i �=j �=k

ωLiωLjωLk

−
4∏

i=1

ωLi ·
4∑

i,j,k=1
i �=j �=k

ωHiωHjωHk

=
ω0

b0
·

3∏
s=1

ω2
s

(26)

n0 =

4∏
i=1

ωLiωHi =

3∏
s=0

ω2
s (27)
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