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Abstract

This paper proposes a learning policy to improve the energy efficiency (EE) of
heterogeneous cellular networks. The combination of active and inactive base
stations (BS) that allows for maximizing EE is identified as a combinatorial
learning problem and requires high computational complexity as well as a large
signaling overhead. This paper aims at presenting a learning policy that
dynamically switches a BS to ON or OFF status in order to follow the traffic load
variation during the day. The network traffic load is represented as a Markov
decision process, and we propose a modified upper confidence bound algorithm
based on restless Markov multi-armed bandit framework for the BS switching
operation. Moreover, to cope with initial reward loss and to speed up the
convergence of the learning algorithm, the transfer learning concept is adapted to
our algorithm in order to benefit from the transferred knowledge observed in
historical periods from the same region. Moreover, based on our previous work, a
convergence theorem is provided for the proposed policy. Extensive simulations
demonstrate that the proposed algorithms follow the traffic load variation during
the day and contribute to a performance jump-start in EE improvement under
various practical traffic load profile. It also demonstrates that proposed schemes
can significantly reduce the total energy consumption of cellular network, e.g. up
to 70% potential energy savings based on a real traffic profile.

Keywords: Energy efficiency, green cellular networks, upper confidence bound,
reinforcement learning, transfer learning, multi-armed bandit.

1 Introduction
The increasing popularity of portable smart devices has flared up rising traffic de-

mand for radio access network and has been arousing massive energy consumption,

which leads to the exhaustion of energy resources and causes a potential increase

of CO2 emissions. Data centers, back-haul routers and cellular access networks

are the main source of energy consumption in the information and communication

technology industry, which is equivalent of 2% to 10% of the global overall power

consumption of human activity [2]. In cellular networks, the energy consumption of

base stations (BS) is about 60% to 80% of the overall power consumption of the

cellular network [3]. Besides, cellular network operators require to spend more than

10 billion dollars to meet current energy consumption of the cellular network [4, 5],

thus there exists both environmental and high economical pressures for cellular net-

work operators to take into account an energy efficiency aspect of the network. The

main reason for such high energy consumption is because BS, and more generally

cellular networks, are designed on a peak traffic load basis.
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In fact, due to the traffic load variation in time domain and dynamic distribution

of cellular users among cells in space domain, there are opportunities for some

BS to be put in sleep mode in order to achieve higher energy efficiency (EE).

The side BS components, controller, air-conditioner are the main sources of energy

consumption, rather than transmit power which consumes only 3.1% of the BS

power consumption [6]. Recent studies on the real temporal traffic have stated that

BS are largely underutilized, e.g. traffic load can be below 10% of peak load during

30% and 45% of the day during weekdays and weekends respectively [7]. Thus,

instead of just turning off radio transceivers, the BS operators may prefer to turn

off the underutilized BS and transfer the imposed traffic loads to neighbor active

BS during low traffic periods such as night time and/or weekend, which reduces the

energy consumption [4].

Recently, there has been a rising interest on the works dealing with switch ON

and OFF BS according to the traffic load, however, it is essential for network oper-

ators to guaranty radio coverage and quality of service (QoS) to the cellular users.

Dynamically switching the BS’ operation mode to ON and OFF with respect to

traffic load fluctuation is considered to be one of the effective methods to reduce

total energy consumption of cellular network while maintaining good QoS. More-

over, BS operation mode switching decision cannot be made individually at each

BS level, since it does not only depend on the load of the cell of interest but also

on the load of its neighbors. For instance, a BS may not be turned to sleep mode

while its neighboring BS are overloaded, even if its own traffic load is very low. The

problem of EE maximization with BS switching operation is a famous combinatorial

class of problem. In machine learning, combinatorial problems are mostly addressed

with centralized decision made by a central controller taking into account a global

information, i.e. channel state information and traffic load information.

In this work, the best BS deployment is learnt in order to maximize the network

EE under QoS constraints, by switching ON/OFF some BS. The EE maximization

problem is tackled under the multi-armed bandit (MAB) approach where arms are

represented by the deployment configurations. MAB is a class of sequential decision

making paradigm where, given a set of arms, a user selects an arm at each slot in

order to collect some reward. The most important property of MAB paradigm is

that a player does not need to know a prior information about each arms’ reward

distribution, making MAB an interesting solution for EE maximization problem.

In this paper, we focus on a restless upper confidence bound policy which has been

proven to be efficient for opportunistic spectrum access (OSA) problem [8, 9, 10],

where selecting an arm leads to two different rewards associated with it. In this

paper, the algorithm we proposed in [10], i.e. RQoS-UCB policy, is adapted to the

problem of finding the optimal BS configuration that maximizes the observed energy

efficiency in the long run. Moreover, the transfer learning (TL) concept [11, 12] is

applied in our context, where the temporal dependence in the traffic load between

two days is exploited in order to increase the convergence speed of the current

learning.

1.1 Related Work

Recently, there has been a substantial body of work on traffic load-aware BS adap-

tation, and the authors in [13, 14], have validated the possibility of improving EE
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and also showed the energy saving gains by simulations. In [15, 16, 17], authors

proposed to dynamically adjust the sleeping status of BS, depending on the learnt

and predicted traffic load of the network. The works in [18, 19] introduced some BS

switching strategies for dynamic BS operations depending on daily traffic variation.

However, reliable prediction of BS traffic load is still an important challenge for

network operators, which limits its usefulness in practical applications. An alterna-

tive energy-efficient procedure is the relay station switching technique employed in

[20], where certain BS being turned to sleep mode and switched on the low-powered

relay station mode during the low-traffic intervals. On the contrary, authors in [21]

introduced reinforcement learning (RL) algorithms as an application of dynamic

BS switching operation, however, these algorithms are highly dependent on the a

priori knowledge of the traffic load.

As stated in [22, 23, 12], the problem of EE maximization with BS switching oper-

ation is a combinatorial problem, and it has been proven to be NP-hard. Instead of

directly addressing this problem, the authors in [24, 25], adopted fixed BS switching

patterns and then evaluated the call blocking probability and the outage probability.

In [4, 26, 17], some greedy algorithms have been introduced to tackle BS switch-

ing operation without presenting sufficient theoretical guarantees of convergence to

optimal configuration. The authors in [26] have taken forward a greedy algorithm

to handle the trade-off between the energy consumption and the revenue in het-

erogeneous cellular networks. Then, [16, 12] used Markov decision process (MDP)

to model the traffic load prediction and used a RL approach, named actor-critic

algorithm [27], to predict the traffic load of the network without prior information

about it. Moreover, authors in [12] extended the actor-critic algorithm by including

the TL concept [11] leading to Transfer Actor CriTic (TACT) algorithm in order

to use the knowledge acquired in previous learning phases. Actor-critic based al-

gorithms provide good performance but are generally more complex than upper

confidence bound (UCB) algorithms. Moreover, the existing works for BS energy

saving problem often lack for theoretical analysis on the convergence. On the con-

trary, decentralized schemes for dynamic BS switching operation [28, 29, 30, 31] are

more beneficial as they do not require a central controller, but demand more infor-

mation exchanges. However, all the existing decentralized schemes do not present

theoretical analysis on the convergence, which makes them less appealing from the-

oretical point of view.

We assert that problems such as channel allocation in dynamic spectrum access

can be of the same nature than the problem of base station switching, i.e. restless

MAB. As a consequence, works dealing with learning strategies for OSA scenario

for instance can be related to our approach. In [32] authors tackled the problem of

MAB with Markovian rewards that can be applied to OSA or base station switching

for green networking. In OSA scenario, the most common addressed optimization

problem is to find the band with the highest probability to be vacant. In that

case, rewards are generally modeled as binary, but some works have also dealt with

continuous rewards rating the quality of the bands for instance. The authors of

[33, 34] considered the problem of finding the channel that gives the best data rate

when data rates on channels are drawn from a Markovian distribution. But in these

works, channel quality and availability have never been considered separately. In
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our previous works [8, 10], we proposed a new restless upper confidence bound for

Markovian settings in OSA problem. The proposed scheme, named restless quality

of service upper confidence bound (RQoS-UCB), allows the radio for learning about

the spectrum opportunities, i.e. bands that are less used by a primary network for

instance, and also on a quality indicator of the bands that have been identified as

unoccupied. The proposed scheme has been proven to have a logarithmic regret

which is the best behavior a learning policy may have, and its ability to converge

toward the best band, in terms of availability and quality as well, has been shown.

1.2 Contributions

This paper tackles the problem of EE maximization from the restless MAB frame-

work, considering varying traffic load. The paper includes the following contribu-

tions:

• This paper adapts the UCB policy in [10] to fit with the EE maximization

problem. In particular, the state reward is fed-back when the BS configuration

fulfils a set of constraints of the EE maximization problem. The soft reward

is matched with the energy efficiency of the network.

• The proposed algorithm includes a transfer learning stage in order to speed

up the convergence toward the best deployment configuration.

To the best or our knowledge, MAB-UCB has never been applied to the dynamic

configuration by switching ON and OFF BS in order to maximize the network EE.

Our algorithm that learns on the state of the network and on the energy efficiency,

is proven to be efficient to solve the green networking problem.

1.3 Paper Structure

The remainder of the paper is organized as follows. Section 2 introduces the sys-

tem description and EE maximization problem formulation. In Section 3, the traffic

load variation is formulated as an MDP and the EE maximization algorithm, en-

ergy efficiency maximization-upper confidence bound (EEM-UCB), is presented.

Moreover, the TL concept is embedded in the proposed EEM-UCB algorithm to

form the TLEEM-UCB algorithm. Section 4 numerically evaluates and compares

the proposed schemes with the state of the art methods and presents the validity

and effectiveness. Finally, Section 5 concludes this paper and presents future way

of researches.

2 Methods and Problem Formulation
Beforehand, Table 1 summarizes the notations in this paper.

2.1 Network Model

In this work, we consider a heterogeneous wireless cellular network comprising of a

mixture of macro and small cells, each governed by a macro or micro BS respectively,

where set of BS Y = {1, 2, · · · , Y } lies in a two dimensional area in R2. In addition,

we assume that there exists a central controller, which can timely know the traffic

load in the network at each instant and can predict the energy efficiency of BS at

next stage. Let us assume that all BS operate in an open access mode, i.e. any

MS is allowed to connect to any BS whatever it belongs to the micro or macro
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Table 1 List of the main symbols in the paper.

Symbol Meaning
Y Set of BS Y = {1, · · · , Y }

Yonn Set of active (ON) BS at the n−th iteration
Ik(n) Cell coverage of BS k at time n

xk Denote the locations of the MS in coverage Ik(n) of the k−th BS at time n
Λ(xk, n) Traffic arrival rate at location xk in BS k following a Poisson point process at the n−th iteration

1/h(xk, n) Average call duration (or file size) at n−th iteration at xk
Lk(n) Instantaneous traffic load served by the BS k ∈ Yonn

Θk(xk, n) Service rate at location xk from BS k at the n−th iteration
SINRk(xk, n) Received SINR at active MS location xk from BS k at the n−th iteration

ρk(n) System load of BS k at the n−th iteration
ρth System load threshold

P txk , Pkf and PkT Transmit, fixed and total operational power of BS k
EE(n) Network energy efficiency (EE) in bits per joule

Θmin Prescribed minimum data rate to continue data transmission
M =< S,K,P, R > MDP Tuple: state space, action space, transition probability and reward
Pi = {P ik,l, k, l ∈ S} state transition probabilities of the i−th action

A(n) ai(n) =
[
ai1(n), · · · , aiY (n)

]
the controller decides an action for all BS, i.e. ON or OFF

T i(n) total number of times action i has been selected up to iteration n
b(n) total number of completed blocks up to iteration n
n2 total number of iterations in SB2 block up to block b(n)
T i2 total number of times action i has been selected during SB2 block up to n2 iteration
h2 total number of iterations in historic period
Hi2 total number of times action i has been selected in SB2 block in historic period

Si(n) and Si,h(n) state observed due to action i at the n−th iteration, in the current and source task respectively

RiS(n) and Ri,hS (n) immediate EE reward with action i in state S at n−th iteration in the current and source task respectively

GiS(T i(n)) 1

Ti(n)

∑Ti(n)
k=1 RiS(k), the empirical mean of EE rewards

GSmax(n) maxi∈KG
i
S(T i(n)), maximum expected average EE

Mi(n, T i(n)) GSmax(n)−GiS(T i(n))

Bi(n, T i(n)) EEM-UCB policy index giving the BS configuration status to activate
α and β exploration coefficients with respect to state and reward, respectively

ζi state that determines regenerative cycles for action i

πiS stationary distribution for state S of the Markov chain associated with action i

µi
∑
S∈S

S
i
G
i
Sπ

i
S , global mean reward, i.e. taking into account the reward as well as the state of each action i

∆µi µ∗ − µi
π̂iS , π̂max, πimin, πmin max

{
πiS , 1− π

i
S

}
, maxS∈S,i∈K π̂

i
S , minS∈S π

i
S , mini∈K π

i
min

rmax maxS∈S,i∈K r
i
S

Smax maxi∈K |Si|, where
∣∣Si∣∣ stands for the cardinality of the state space of action i

Mmin(max) min(max resp.)i∈KM
i
(
n2, T

i
2(n2)

)
εi, εmin 1− λi2, being the eigenvalue gap of the i−th action, mini∈K ε

i

Ωik,l mean hitting time of state l starting from an initial state k for the ith action

Ωimax, Ωmax maxk,l∈S,k 6=l Ωik,l, maxi∈K Ωimax

tier [25]. We focus on the downlink communication as mostly considered for the

mobile Internet application. The network area is divided according to the Voronoi

tessellation with BS acting as seeds for each cell. Each cell coverage in wireless

cellular network is denoted as Ik(n), k = 0, 1, 2, · · · at time slot n. At a given time

slot, the set of active BS, denoted as Yon defines a partition of the space. Each MS

in the network connects to its nearest BS, as explained in Section 2.1.2. As the set

of active BS is changing from a time instant to another, MSs connect always to the

nearest BS, micro or macro. Each configuration of Yon leads to a certain rate and

energy consumption, whose computation is detailed in the following, and we aim

at finding the configuration maximizing the energy efficiency, while guaranteeing a

minimum data rate to all users.

2.1.1 Traffic Profile

Let xk ∈ Ik(n) be the two-dimensional Cartesian coordinates, denoting the loca-

tions of MS in the coverage of the k−th BS at time slot n. An MS is referred as

active when it is receiving a call. When the call ends, the MS becomes inactive

and is departed from the network. Traffic load of a BS is measured in terms of the

number of active MSs and their respective call duration.
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At each time slot n, new and handover call at xk follows a Poisson point process

with arrival rate per time-unit Λ(xk, n). The associated call duration (or file size)

is assumed to be exponentially distributed with mean 1/h(xk, n). Then the instan-

taneous traffic load at location xk can be expressed as L(xk, n) = Λ(xk,n)
h(xk,n) at time

slot n [29]. By setting different arrival rates or call holding time for MSs located in

different cells, this model can capture temporal and spatial traffic variability. Thus,

when the set of BS Yonn is switched ON at time slot n, the instantaneous traffic load

served by BS k ∈ Yonn can be expressed as:

Lk(n) =
∑

xk∈Ik(n)

Λ(xk, n)

h(xk, n)
.

On the contrary when BS k is turned OFF, the instantaneous traffic load served

by BS k is defined as zero, i.e. Lk(n) = 0. The total arrival rate of a BS k is the

composition of all Poisson arrivals at different locations in Ik, which again forms a

Poisson process [35]. Moreover, the daily traffic profile of the whole cellular network

repeats periodically as recorded by several works [7, 20]. This model will be useful

when considering the performance of the learning algorithms during the day.

2.1.2 BS Selection Rule

An MS is assumed to connect with the nearest BS, in order to suffer from the least

path loss during the wireless transmission. An active MS located at xk is connected

with and served by the BS k, k ∈ Yonn which presents the best received signal

strength at each time slot n[1], and where Yonn is the set of active BS at instant n.

2.1.3 Channel Model

The service rate of an active MS at location xk provided by the k-th BS at the n-th

time slot is assumed to be equal to the Shannon capacity:

Θk(xk, n) = Ba · log2 (1 + SINRk(xk, n)) (1)

where Ba denotes the system bandwidth, SINRk(xk, n) is the received signal to

interference plus noise ratio (SINR) at xk from BS k at the n−th time slot, and is

defined as

SINRk(xk, n) =
gk,xk(n)P txk

φgk,xk(n)P txk +
∑

m∈Yonn \{k}
gm,xk(n)P txm + σ2

(2)

where gk,xk(n) is the average channel gain from BS k to active MS at location xk

at the n−th time slot. The channel gain only comprises path loss in this paper,

but log-normal shadowing and fading can be taken into account easily without

changing the principle of the learning policy that will be introduced in the next

section. Moreover, P txk is the transmission power of BS k, σ2 is the noise power

[1]Denote that an other user association metric could also be used. The optimal user

association problems has been well addressed in [36, 37, 38], however, we focus on

the BS sleeping scheme rather than user association due to the space limitation.
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and
∑

m∈Yonn \{k}
gm,xk(n)P txm is the interference power experienced by MS xk from its

neighboring BS at the n−th time slot. The parameter φ is the orthogonality (or self

interference) factor, φ ∈ [0, 1], and φgk,xk(n)P txk models intra-cell interference [38].

2.1.4 System Load

In order to satisfy the QoS requirement of MSs, a BS should provide a certain

amount of resources (e.g., time or frequency) in order to absorb the MSs traffic load

and provide enough service rate to users. From the system’s perspective, the system

load of BS k at the n−th time slot is estimated as the fraction of resource to serve

the total traffic load in its coverage [29]

ρk(n) =
∑

xk∈Ik(n)

L(xk, n)

Θk(xk, n)
. (3)

The system load denotes the fraction of time required to serve the total traffic load

in the coverage of the k-th BS. Eventually, our main goal is to choose the set of

active BS that maximizes the global network energy efficiency without having a

prior on traffic load statistic. We will give the details in Section 3.

2.1.5 Power Consumption Model

The total power consumed P kT (n) by each BS k at the n−th time slot can be

expressed as [39]:

P kT (n) = akP
tx
k (n) + P kf (4)

where, P txk (n) denotes the transmission power of BS k at the n−th time slot and

P kf denotes the static power consumption independent of P txk (n) and includes all

electronic circuit power dissipation due to site cooling, signal processing hardware

as well as battery backup systems. ak is a BS power scaling factor which reflects

both amplifier and feeder losses.

2.2 Problem Formulation

The energy efficiency of a cell k in bits per joule at instant n, is the ratio between

the data sum-rate of the cell over the power used to run the cell. The network EE

is then the aggregate EE of each cell and can be expressed as [40]:

EE(n) =
∑
k∈Yonn

∑
xk∈Ik(n)

Θk(xk, n)

P kT (n)
(5)

EE maximization in the cellular network, without power allocation strategy, can

be reduced to find the set of active BS that maximizes (5). The problem can be
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formally written as

Yon
∗

n = arg max
Yonn

 ∑
k∈Yonn

∑
xk∈Ik(n)

Θk(xk, n)

P kT (n)

 (6a)

s.t. 0 ≤ ρk(n) ≤ ρth,∀k ∈ Yonn (6b)

Θk(xk, n) ≥ Θmin,∀xk ∈ Ik(n),∀k ∈ Yonn (6c)

Yonn 6= ∅ (6d)

Like in [29, 12], a system load threshold ρth ≤ 1 is introduced as a constraint, (6b),

in order to keep the system stable. Indeed, the service rate of a user, i.e. Θk (xk, n),

should be sufficient to absorb the traffic load at xk. If not, some transmissions may

be delayed and should be taken into account in the model, which is out of scope of

the paper. For instance, low threshold value ρth indicates that BS would operate in a

more conservative manner with low delay and low call dropping probability for MSs

since all calls can be routed to users. On the contrary, with a high threshold ρth value

close to 1, the data rate of users is just enough to avoid overflow implying a limited

power consumption but with an increasing call dropping probability. The constraint

(6c) guarantees a minimum data rate Θmin to each active user and constraint (6d)

states that there is at least one active BS.

The above problem can be proven to be NP-complete by reducing from a vertex

cover problem [22, 29]. Finding the set of active BS maximizing network EE by an

exhaustive search is very costly in computational resources since 2Y − 1 ON/OFF

combinations have to be tried, specifically when the number of BS is large. This

problem can rather be tackled under MAB approach where a specific combination

is tried at each iteration and a reward (EE of the system) is collected. In the next

section, we will show how this principle can lead to a good state.

3 RL for Energy Efficient Network
3.1 System Model

The dynamic BS switching problem is modeled as an MAB under Markovian set-

tings. Figure 1 illustrates the principle of the learning policy with MAB approach

where an arm represents different configuration of BS’ activity. We defined an MDP

for BS switching operation as a tuple M =< S,K,P, R >, where S denotes the

state space, K denotes the action space, P denotes a state transition probability

matrix, and finally R is a reward function associated with S, K and P. At each

iteration, the controller chooses an action i among |K| = 2Y − 1 possible actions,

i.e. ai(n) =
[
ai1(n), · · · , aiY (n)

]
where aik(n) = 1 if BS k is switched ON in action

number i at time n and 0 otherwise. This action leads the network to a given state

Si(n) ∈ {0, 1}, where Si(n) = 1 if all constraints from (6b) to (6d) are satisfied and

0 otherwise.

Due to the random process governing the time evolution of the traffic load, the

state Si(n) transforms into Si(n+ 1) at the next time instant according to a tran-

sition probability measure for arm i, i.e. Pi = {P ik,l, k, l ∈ S, i ∈ K}. Moreover, the
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Figure 1 Reinforcement learning (RL) framework for BS switching operation.

Markovian process is considered as stationary, on a short time period e.g. 1 hour,

and hence the distribution of this MDP is such as πiS(n) = πiS ,∀n. The reward

achieved in state Si from the BS switching operation i after n time slot is, without

loss of generality, equal to the value of the state, Si(n), i.e. 0 or 1. In addition,

we consider that the network EE achieved by switching BS status according to the

action number i is the second reward, i.e. RiS(n) = EE(n), computed from (5) for

a given environment state Si(n). The reward on EE and the state are fed back

to the controller in order to decide the next action to take. The mean reward µi

associated with BS switching operation i under stationary distribution πiS is given

by: µi =
∑
S∈S

SiGiSπ
i
S , where

GiS(T i(n)) =
1

T i(n)

T i(n)∑
p=1

RiS(p) (7)

where T i(n) refers to the number of times the BS switching operation i has been

performed by the controller up to time n. The policy A is a one-to-one mapping

such as at each time slot n, a BS switching operation i is selected:

A : N −→ K
n 7−→ i
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The goal of a RL policy is to minimize its regret on the long run, i.e.

ΦA(n) = nµ∗ − E

[
n∑
t=1

SA(t)(t)G
A(t)

SA(t)(t)

]
(8)

where the expectation E is taken over the states and observed reward. Let SA(t) be

the state observed by using the policy A at time slot t. Moreover, µ∗ is the optimal

mean reward obtained by always selecting the best action at each time t.

3.2 Restless Energy Efficiency Maximization Upper Confidence Bound (EEM-UCB)

In this section, we adopt the restless UCB policy, i.e. RQoS-UCB, that we proposed

in [10] for learning the best bands in OSA context based on their probability to be

free and the quality of the band. The principle of the algorithm is adapted to the

current problem, where the policy aims at finding an optimal set of active BS which

maximizes the energy efficiency of the network, and will be named EEM-UCB.

When dealing with an MAB problem, one should first ask if it belongs to rested or

restless category. In the former category, the state of the Markov chains correspond-

ing to arms that are not played does not evolve with time and only the Markov chain

of the selected arm does. In the later, states of all Markov chains continue to evolve

whatever they are selected or not. Our problem fits with the later category. Indeed,

the traffic request of users does not depend on selected BS however, the selected

configuration definitely influences the traffic load of the network by distributing the

data flow among BS. EEM-UCB algorithm operates in a block structure as repre-

sented in Fig. 2 which is based on regenerative cycle [41, 42]. Each block is divided

into three sub-blocks, SB1, SB2 and SB3. For each arm i, a regenerative state ζi is

defined, i.e. 0 or 1 in our case, and SB1 comprises all time slots from the selection

of configuration i to the first visit of the state ζi. SB2 contains all time slots from

the first visit to ζi up to, but excluded, the second visit to ζi. The last block is

only the second visit to the state ζi. The selection of the active BS set is based

on an index computation Bi(n) for configuration i and will be formally expressed

in the next section. The computation of the index occurs after the completion of

SB3. The reason of this structure lies on the restless nature of arms which evolve

even if they are not played. The distribution of the state reward obtained by play-

ing a given arm, is function of the time elapsed since the last time the same arm

has been played. In order to deal with an homogenous Markov chain, the stay in

a given arm should be sufficiently long in order to reconstruct a sample path with

the same statistical characteristic of the Markov chain governing the arm [42]. It is

worth noting, however, that this structure does not prevent to collect rewards, state

and EE, in any blocks. This sub-division just comes for mathematical convergence

proof.

At a given time slot n, policy A selects the BS switching operation that has the

highest policy index Bi(n, T i(n)) at time n. This action may transform the current

state Si(n) of the network to another state Si(n + 1) with certain probability P.

The new reward RiS(n), i.e. energy efficiency, is fed back to the controller. Then, the

policy A updates the policy index Bi(n+ 1, T i(n+ 1)) with the empirical average

on the state Si and the empirical mean of the energy efficiency experienced so
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far. The algorithm repeats the above procedure until convergence to optimal BS

switching operation during each hour of operation. The formal description of the

index computation is given in Section 3.3.

Figure 2 Regenerative sample path for EEM-UCB

3.3 Transfer Learning EEM-UCB (TLEEM-UCB) Policy

The previous strategy may suffer from traffic load variation from one day to another

at a given period of time due to the variation of Poisson arrival rate between two

consecutive days. This rather advocates for learning from scratch at each new day

with the new, unknown, statistic characterizing the underlying Markovian process.

In that case, the network would loose time to re-learn the best deployment config-

uration it learnt the day before at the same hour. Another strategy would consist

in using the previous knowledge the controller learnt during some historical peri-

ods to find the current optimal BS switching operation. This strategy would make

even more sense as per Poisson arrival rate does not change too much between two

consecutive days as we will see in Section 4.

The motivation for transfer learning is to utilize previous learnt features on a

given task (source task) in order to speed up the learning phase of different features

on a target task as illustrated in Fig. 3. In other words, the controller uses the

BS deployment learnt in previous time period for the current task with its own

statistical characteristics. We hence propose a new policy update method, named

Transfer Learning EEM-UCB (TLEEM-UCB) policy that is detailed in Algorithm

1. In the source policy, the reward achieved in state Si,h from a BS switching

operation i ∈ K during Hi
2 time slots is Si,h(Hi

2), where Hi
2 is the number of time

slots the BS switching operation i has been selected in SB2 block in the source task

as reminded in Table 1. Meanwhile, the observed reward associated with energy

efficiency by selecting a BS switching operation i is Ri,hS (Hi
2) during Hi

2 source task

observations in SB2.

At the end of each block b, Algorithm 1 returns a BS switching operation index

maximizing the policy index, Bi,h(n2, T
i) ∀ i ∈ K, which has to be selected for the

next block of operation, i.e. steps 2 and 3. The index computation is done according

to three terms:

Bi,h(n2, T
i
2) = S̄i,h(T i2)−Qi,h(n2, T

i
2) +Ai,h(n2, T

i
2), ∀i (9)
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Figure 3 Transfer learning for Transfer EEM-UCB (TLEEM-UCB) policy.

where S̄i,h(T i2) is the empirical mean of the observed states obtained with action i

considering the time period in the source task and in the current task. As reminded

in Table 1, T i2 is the number of times action i has been selected in SB2 block up to

time n2 in the current task. The empirical mean is expressed as

S̄i,h(T i2) =

T i2∑
t=1

Si(t) +
Hi2∑
t=1

Si,h(t)

T i2 +Hi
2

,∀i. (10)

The second term, i.e. Qi,h(n2, T
i
2), is computed similarly than in RQoS-UCB pol-

icy [10] but including source task observations:

Qi,h(n2, T
i
2) =

βM i,h(n2, T
i
2) ln(n2 +Hi

2)

T i2 +Hi
2

,∀i, (11)

where,

M i,h(n2, T
i
2) = GSmax −G

i,h
S (T i2), ∀i,

and Gi,hS (T i2) = 1
T i2

∑T i2
k=1R

i
S(k) + 1

Hi2

∑Hi2
k=1R

i,h
S (k) denotes the empirical mean of

EE reward, i.e. RiS , collected in the current task in SB2 block by applying action

i in state S plus the total mean EE reward gathered in source task. Moreover,

GSmax = maxi∈KG
i,h
S (T i2) is the maximum reward within the set of BS switching

operations from current and historical observations in state S. Finally, the bias term

Ai,h(n2, T
i
2), is defined as

Ai,h(n2, T
i
2) =

√
α ln(n2 +Hi

2)

T i2 +Hi
2

, ∀i. (12)
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Algorithm 1 TLEEM-UCB policy
Require: Transferred Observations : h : total historic time, h2 : total historic time in SB2 block,

Hi
2 : total historic time action i has been selected, bh : total blocks in historical observations

Ri,h
S (t), Si,h(t) ∀i ∈ K, 1 ≤ t ≤ Hi

2: Reward and state observed in historic data,

Current policy initialization: b = 0, n = 0, n2 = 0, T i
2 = 0, α, β, ζi Ri

S(0) and Si(0).
Ensure: A(n+ 1)
1: while (1) do
2: Bi,h(n2, T i

2) = S̄i,h(T i
2)−Qi,h(n2, T i

2) +Ai,h(n2, T i
2), ∀i

3: A(n) = arg maxiB
i,h(n2, T i)

4: while Si(n2) 6= ζi do
5: n = n+ 1 and A(n) = i // Start SB1 sub-block
6: Activate configuration i and Observe Si(n2)
7: end while
8: n = n+ 1, n2 = n2 + 1, T i

2 = T i
2 + 1 and A(n) = i; // End of SB1, start SB2

9: Observe current state Si(n2) and update Ri
S(n2)

10: Update S̄i,h(T i
2), Qi,h(n2, T i

2) and Ai,h(n2, T i
2) as of (10), (11) and (12), respectively

11: while Si(n2) 6= ζi do
12: n = n+ 1, n2 = n2 + 1, T i

2 = T i
2 + 1 and A(n) = i; // Start SB2 sub-block

13: Observe current state Si(n2) and update Ri
S(n2)

14: Update S̄i,h(T i
2), Qi,h(n2, T i

2) and Ai,h(n2, T i
2) as of (10), (11) and (12), respectively

15: end while
16: b = b+ 1, n = n+ 1 and A(n) = i // Start of SB3 sub-block
17: end while

It is worth noting that it exists a class of bandit algorithms that uses side infor-

mation. This kind of bandits is sometimes called contextual bandit or bandit with

feedback [43]. Expert systems described in [44] can also be seen as a generalization

of learning with side observations. The main idea of bandits with side information

is that at each time instant, and before taking a decision, the player is able to

observe a realization of a random variable, or a linear function of it, that is called

side information, in order to produce a next estimate closer to the real value that

is searched. On the other hand, transfer learning aims at using the index Bi of

each arm i, computed previously, to initialize the algorithm in order to achieve a

jump-start in the convergence rate, that makes transfer learning a quite different

approach than bandits with side information.

3.4 Convergence Analysis of TLEEM-UCB

In this section, the total number of suboptimal plays is upper-bounded and estab-

lished under the following condition 1 on the arms.

Condition 1 All arms are finite-state, irreducible, aperiodic Markov chains whose

transition probability matrices have irreducible multiplicative symmetrization, and

the state of non-played arms may evolve.

Let us consider Giq ≥ 1
π̂max+πiq

and β ≥ 84S2
maxr

2
maxG

2
maxπ̂

2
max/

(
εmin∆µRi Mmin

)
.

We present an upper bound on the total expected number of plays of suboptimal

arms in Theorem 1.

Theorem 1 Assume all arms follow condition 1. Let πmin, π̂max, Smax, rmax ,

εmin, Mmin, ∆µi and Ωimax defined as in Table 1. The total expected number of plays

of suboptimal BS configuration is upper-bounded by:

E[T i,h(n)] ≤
(

1

πimin

+ Ωimax + 1

)(
l+ +

4

πmin

∞∑
t=1

(t+H∗2 )
−2

)
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where,

l+ = max

(
0,

4α ln
(
n2 +Hi

2

)
(∆µi)2

−Hi
2

)
(13)

Proof A sketch of proof of Theorem 1 is provided in Appendix A and follows the

same steps as in [10, Th. 1] considering transferred observations.

Note that the above bound reduces to the bound of EEM-UCB policy, which is

the bound of RQoS-UCB policy [10, Th. 1], when the transferred knowledge is not

available (i.e. Hi
2 = 0,∀i).

3.5 Complexity and scalability issues

TLEEM-UCB is an index based algorithm. The complexity of the index compu-

tation is small. At each iteration in SB2, it requires the evaluation of (10), (11)

and (12). (10) is nothing but a moving average that only requires one addition and

one division at each iteration since other values have been recorded during previ-

ous iterations. (11) requires a log operation, two multiplications (but one with a

constant which is less complex than a multiplication between two varying terms),

one division and a moving average for evaluating M at each iteration. Finally, the

bias term (12) requires a multiplication (with a constant) of the log term already

computed once, a division and a square root evaluation at each iteration. The low

amount of computation and the long period between two iterations makes it negli-

gible compared to the simplest signal processing operation to be done at PHY layer

for instance.

The algorithm complexity of TLEEM-UCB is linear with the number of combina-

tions, but the later is exponential with the number of base stations, i.e. 2Y −1. But

this complexity is entirely concentrated in the first initialization phase where the

algorithm explores all combinations once in order to give an index to each configu-

ration. Once this has been done, only one BS configuration is tested for the index

computation at a given time, hence with the computational complexity mentioned

above. Moreover and thanks to transfer learning, initialization phase does not need

to be repeated each day, since algorithm uses the best indexes previously learnt in

historical periods, to start the new learning phase. A large network will impact the

convergence time of the algorithm, since the best configuration needs to be found

in a larger set cardinality, but it does not increase the computational complexity.

The convergence time would be far too long for a network with 50 base stations

for instance. However, one can imagine to have a learning algorithm to control a

cluster of few base stations and not the entire network. Coordination among clus-

ters could be done in a higher level in the network, but this is beyond the scope

of the paper. Finally, it is worth noting that actor-critic algorithm in [12] and de-

centralized greedy in [28] belong to the larger class of Q-learning algorithms whose

algorithmic complexity is significantly larger than the computation of an index in

an UCB policy.

The algorithm relies on the feedback of energy consumption metric of each cell

at the central entity. However, base stations already record the data rate and the
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transmit power allocated to each user. By monitoring also its own power consump-

tion, an estimation of energy efficiency can be computed. Computed EE only needs

to be transmitted over a certain number of bytes, to the central controller leading

to a negligible amount of overhead added on fronthaul links. However, the time

needed to put decision into action is not equal to zero. The exact evaluation of the

time needed to collect measurements, providing a reward, switch on/off a set of

BS, would take a certain amount of time that depends on the data used to build a

statistic, e.g. average consumed power, and other technological constraints. These

features are, of course, of great importance in a real deployment experiment but re-

quire much more investigations including implementation in a real platform and are

left for further works. We will see in the next section that the proposed algorithms

converge around 3000 iterations. If the time lag between the collection of data and

the configuration change is 1 second, convergence occurs after 1 hour. However, the

algorithm continuously performs the index computation according to the received

frames in the network and never stops running such that the base station configu-

ration is continuously changed during the day according to the traffic measured in

the network.

4 Results and Discussion
In this section, the performance of our proposed energy efficient dynamic BS oper-

ation algorithm is investigated through extensive simulations under practical con-

figurations similar to [4, 12, 29]. We consider an heterogeneous cellular network

topology consisting of 5 macro and 5 micro BS arbitrarily deployed in an area of

5× 5 km2. Furthermore, the call arrival rate at location xk follows a Poisson point

process with intensity Λ(xk, n) which may vary between source and target task as

summarized in Table 2 and the average file size of each call is 1/h(xk, n) = 100

Kbyte.

Table 2 Simulation parameters

Parameter description Value
Simulation area 5km × 5km

Maximum transmission power Macro BS: 20W, Micro BS: 1W
Maximum operational power Macro BS: 865W, Micro BS: 38W

BS Height Macro BS: 32m, Micro BS: 12.5m
Intra-cell interference factor 0.01

Channel bandwidth 1.25MHz
Path loss model COST 231

Arrival rate Λ(xk) in source task 0.05× 10−4

Arrival rate Λ(xk) in target task 0.05× 10−4 to 2× 10−4

MSs call holding time 1/[h(xk)] 100Kbyte
System load threshold ρth 0.6

Minimum bit rate requirement Θmin 122kbps
Exploration parameters of RQoS-UCB α = 0.25 and β = 0.32

Maximal macro and micro BS transmission powers are set to 20 and 1 W respec-

tively, while the maximum operational power consumption for macro and micro BS

are 865 W and 38 W, respectively. The COST 231 modified path loss model is used

for radio propagation environment, with macro and micro BS heights are set to 32

m and 12.5 m, respectively similar than in [4, 29, 12]. In order to guarantee system

reliability, system load threshold ρth = 0.6 is considered for all BS [29] and the

minimum bit rate Θmin is set to 122 kbps [40] for each active user. The intra-cell
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interference factor φ is set to 0.01 and the exploration parameters for EEM-UCB

and TLEEM-UCB policies are α = 0.25 and β = 0.32. As per [4], a homogeneous

user distribution with intensity Λ = 10−4 corresponds to 10% of BS utilizations in

a case where all BS are switched ON, this value is taken as reference in the analysis

on the influence of traffic load variation on the performance of proposed policy.

Table 2 summarizes all the parameters used for the simulations.

4.1 Convergence Analysis

Fig. 4 compares the convergence behaviors of the proposed EEM-UCB and TLEEM-

UCB algorithms w.r.t. the Actor CriTic (ACT) [45], decentralized greedy [28] and

Transfer Actor CriTic (TACT) [12] policies. The cumulative energy efficiency ratio

(CEER) is presented for all policies in Fig. 4 which is defined as

CEERπ =
EE policy π

EE when all BS are ON

Moreover, the global optimal solution achieved by an exhaustive search, and referred

as ideal policy, is also shown in Fig. 4. The figure shows the behaviors of the policies

in terms of CEER after 3000 iterations for 4 configurations of arrival rates in source,

i.e. Λsource, and current tasks i.e. Λtarget. These curves can be seen as the evolution

of the network EE at a given hour of a day with a given arrival rate.

As depicted in Fig. 4, the network utilities of all algorithms tends to increase with

time since their confidence on the best deployment strategy increases as the time

elapses. However, the performance of all algorithms largely depends on the differ-

ence between the source and target task arrival rates. Our policies, EEM-UCB and

TLEEM-UCB, converge towards the ideal policy, while ACT, TACT and decentral-

ized greedy algorithms achieve a far suboptimal solution after 3000 iterations. The

lower convergence rate of ACT and TACT algorithms is clear regarding these re-

sults. Our policy TLEEM-UCB generally performs better than all the others except

when the source and target arrival rates are quite different, i.e. Fig. 4(d). From Fig.

4(a) to Fig. 4(d), the source arrival rate is fixed to Λsource = 0.05 × 10−4 and the

target arrival rate varies from Λtarget = 0.05 × 10−4 to Λtarget = 2 × 10−4. The

transfer learning procedure is the most beneficial when Λsource = Λtarget, Fig. 4(a)

since TLEEM-UCB achieves performance jump start in the beginning and quickly

converge towards the best configuration. On the contrary on Fig. 4(d), when the

source and target arrival rates are significantly different, i.e. Λsource = 0.05× 10−4

and Λtarget = 2 × 10−4, transferred knowledge impacts the learning in a negative

way and thus TLEEM-UCB performs worse than EEM-UCB. In that case, it is

more beneficial to learn from scratch since the previously computed indexes Bi

∀i has to be forgotten to learn a better configuration. From these results, we can

state that temporal knowledge transfer improves the convergence speed of classical

MAB approaches, but it also affects in a negative manner if traffic loads in a source

and target environments are significantly different. The execution time needed for

convergence does not exceed few minutes in a standard simulation platform using

Matlab, since one iteration basically consists in the computation of the index Bi,h,

which does not exceed few milliseconds.
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0.05× 10−4

Iterations
0 500 1000 1500 2000 2500 3000

C
E

E
R

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Cumulative Energy Efficiency Ratio (CEER)

Ideal Policy
EEM-UCB
ACT
TLEEM-UCB
TACT
Decentralized Greedy
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Figure 4 Performance comparison under various homogeneous Poisson point process traffic
intensity with transferred knowledge estimated from a source task with traffic intensity
Λsource = 0.05× 10−4.

Fig. 5 presents the improvement in CEER of our algorithm when using TL concept

compared to non transferred knowledge, i.e.

CEER performance of improvement =
CEERTLEEM−UCB − CEEREEM−UCB

CEEREEM−UCB

On can observe that the TL concept allows a performance jump-start at the early

iterations compared to the simple EEM-UCB. The maximum rate of improvement is

around 500 iterations and is as much better than the source and target arrival rates

are similar. For instance, a gain about 28% is achieved after 500 iterations when

Λsource = Λtarget = 0.05 ·10−4 but reduces to only 5% when Λtarget = 2×10−4. For

this setting, the improvement of TLEEM-UCB w.r.t. EEM-UCB is even negative

after 3000 iterations, i.e. -5%, meaning that TL has a negative impact on the long-

run on the network EE compared to EEM-UCB.

Finally, Fig. 6 shows how the network energy efficiency decreases when the number

of BS increases. In that figure, the percentages of macro and micro BS are 50-50%,

and the same settings than on Table 2 are used. Network EE reduces because the

optimal configuration is not necessarily achieved after 3000 iterations, specially for

high number of BS. Hence the selected configuration is not the optimal one and

the gap increases as the number of BS increases as it can be inferred with the
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Figure 5 Improvement gain of TLEEM-UCB policy w.r.t. EEM-UCB policy for different target
arrival rate. The bars corresponding to the left Y-axis reflect the gain in CEER while the right
Y-axis represents the difference Λtarget − Λsource.

ideal policy. The larger the number of base stations, the larger the exploration

space cardinality making the convergence to the optimal configuration longer. EE

achieved with the ideal policy always increases or remains constant w.r.t. the number

of BS. Indeed, the larger the BS density, the larger the data rate, at least up to a

limit where the interference generated by co-channel transmissions prevents from

increasing the spectral efficiency. Hence, always selecting the best configuration of

active BS increases the data rate and hence EE, in this configuration. We can also

note the gain of learning policies compared to a scenario where all BS are always

ON. It is also worth mentioning that the achieved EE with Decentralized Greedy

finishes to outperform TLEEM-UCB when the number of BS is larger than 15 in this

configuration, due to a more efficient search of a local optimum when the problem

dimension begins to be high. However, Decentralized Greedy requires to exchange

informations between nodes and hence the traffic overhead increases as the number

of BS increases.

4.2 Performance under Periodic Traffic Load

We also investigate the effectiveness of the proposed learning framework when traf-

fic loads periodically fluctuates. As stated in Section 2, real traffic load follows a

periodical pattern that can be approximated by a sinusoidal function as in [29].

Fig. 7 compares the network EE achieved with our policies, i.e. EEM-UCB and

TLEEM-UCB, with the previously introduced state-of-the-art algorithms, i.e. ACT,

TACT and Decentralized Greedy, when traffic load is fluctuating during the day.

On can first remark that all policies behave the same, except Decentralized Greedy

which is inferior, at high traffic load from noon to 22h. Indeed, in high traffic

load all BS need to be switched ON in order to satisfy the demand and hence all

learning policies logically converge to the full deployment. Decentralized Greedy

tends to switch OFF some BS, even in high traffic load, in order to save energy

leading to a loss in EE. On the other hand, in lower traffic period, i.e. night time,

less BS need to be switched ON to meet the QoS requirements and hence learning

strategies make sense to optimize the network EE. In these time slots (1am to
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after 3000 iterations.
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Figure 7 Network EE obtained with several learning algorithms with respect to time

8am), TLEEM-UCB achieves significantly higher EE compared to other algorithms

from literature and reaches 95% of the maximum achievable EE, i.e. ideal policy.

Moreover, TLEEM-UCB outperforms its counterpart, i.e. TACT, of about 34%. It

also confirms that transferred learning improves the performance compared to non

transferred knowledge policy, i.e. EEM-UCB, of about 23%.

Fig. 8 depicts the average percentage of energy savings achieved by the learning

algorithms and the ideal policy during one day. The energy saving percentage is

measured w.r.t. to the energy expenditure of a full deployment. As shown in Fig. 8,

a large amount of energy saving is achieved by the proposed TLEEM-UCB policy,

e.g. about 70% during low traffic load period (night time). Moreover, the difference

between the ideal policy and TLEEM-UCB policy is less than 5%. On the contrary,

ACT, TACT and EEM-UCB algorithms achieve only about 60% of energy saving.

Decentralized Greedy procedure allows the most important energy saving gain which

nearly equals the ideal policy performance in the night time. On can also remark

that the later policy allows 20% of energy saving during high traffic period by
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Figure 8 Average percentage of energy saving achieved by several learning algorithms with
respect to time of day.

putting more BS into sleep mode, since the energy consumption is privileged. This

improvement comes at the cost of user experience and comparatively less network

EE as it has been observed in Fig. 7.

The impact of learning algorithms on the actual deployment of the network is also

of great interest for operators. Figs. 9 and 10 represent the average number of active

BS and the average number of switches that are performed at each time of the day,

respectively. Fig. 9 gives insight on the average number of BS that is needed to

be switched ON in order to meet the traffic variation along the day. As expected,

the average number of BS needed at the night time is less than the one required

at the peak period, leading to an increase of network EE and a decrease of energy

consumption in night time as corroborated by Figs. 7 and 8 respectively. During the

night time, Decentralized Greedy, TACT and ACT are the policies activating the

less number of BS in that order. Our policies come after with an average of 5 BS

switched ON, close to the optimal average number around 5.5, allowing higher EE

than their counterparts. During the peak load in the afternoon, almost all policies

activate the whole set of BS. Decentralized Greedy fluctuates around 8.5 BS in

average allowing larger energy saving gain but lower EE. It is worth noting that

the proposed policies, i.e. EEM-UCB and TLEEM-UCB, activate more micro BS

than macro BS to cope with the varying traffic load and to save energy in the same

time.

The results presented in Fig. 10 are important because of some practical con-

straints, i.e. time needed to turn ON/OFF the power amplifier (PA), lifetime of the

PA. Indeed, if a learning policy requires to switch PA too often in each time slot,

then it will significantly reduce the lifetime of PA and may cause additional power

loss due to the initial burst of power consumption when an equipment is switched

ON (non taken into account in this work). Our proposed policy, TLEEM-UCB,

requires an average about 2 BS mode switches at each time slot in low load period

(night time) which is significantly less compared to 5 mode switches with ACT

and TACT algorithms in the same period while a little more than 3 switches are

needed without TL, i.e. EEM-UCB. All algorithms but Decentralized Greedy do

not require BS switches during high traffic periods. Whereas Decentralized Greedy,

requires between 1 and 2 BS switches all along the day, irrespective of the traffic

load.
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Figure 9 Average number of active BS suggested by several learning algorithms with respect to
time of day.
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Figure 10 Average number of BS mode switch required at each time slot during one hour with
respect to time of day.

To conclude this part and to shed the light on the transfer learning feature, let us

assume that the average traffic load variation is very small from one day to another

at the same day-time, i.e. Λsource ≈ Λtarget, which is a reasonable assumption,

excepted between a week-day and a week-end day or between two consecutive days

with occasional and exceptional events as it has been reported in [29]. As mentioned

in Section 3.5, if one second is taken between two configuration switches, stable

configuration is roughly achieved after one hour, which may appear relatively high.

However, the applicability of TLEEM-UCB has to be thought on the long run,

e.g. one week. Indeed, let us consider the particular time-range 10:00-11:00 am

during the week. On Monday, the algorithm runs during one hour and saves the

configuration achieved at 11:00 am. The next day at 10:00 am, the network just

applies the configuration learned the day before and keeps like it is all along the week

on the range 10:00-11:00 am without running again the algorithm. This strategy

could be applied for each one hour-slot of the day during the first or two first days of

the week and network just applies the computed configurations at each time slot for

the rest of the week. Of course, this strategy does not work if important variations

of the average traffic at a given time and between two days are observed, as it can

be inferred in Fig. 4(d).
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5 Conclusion
In this paper, the problem of BS switching operation for EE maximization in hetero-

geneous wireless cellular network has been tackled under the restless MAB frame-

work. A reinforcement learning algorithm originally proposed in OSA scenario, has

been adapted to deal with the optimal BS deployment in order to increase the

global network EE. Furthermore and in order to increase the convergence rate of

our EEM-UCB algorithm, we proposed to use the learnt knowledge acquired in

previous time periods, leading to TLEEM-UCB policy. Our proposed algorithm has

been proven to converge to an optimal solution as long as Markov chains governing

the arms obey to certain conditions. Extensive numerical analysis shown the abil-

ity of our proposed policy to converge to the optimal deployment, maximizing EE.

Transfer learning has been shown to be an effective solution to increase the conver-

gence rate of our UCB algorithm when source and target arrival rates are not too

different. Moreover, our policies have been shown to be able to follow a practical

periodic traffic fluctuation. TLEEM-UCB can achieve 95% of EE achieved by the

optimal BS configuration and up to 70% energy saving gain when traffic load is low

(night time). Future work may include other index-based policies, such as Thomson

sampling or Bayesian-UCB, that are known for their high performance in terms of

regret in other scenarios. Moreover, spatial knowledge transfer between cells may

also be of great interest for operators in a dynamic environment.

Appendix A: Sketch of Proof of Theorem 1
The regret of TLEEM-UCB policy is governed by the expected number of plays,

E[T i,h(n)], for any suboptimal BS switching operation i. Let l be a positive integer.

Let us remind that µi =
∑
S∈S

SiGiSπ
i
S . Following the steps as in [10] and including

the historic time, the number of blocks a BS switching operation (action) i has been

selected up to block b(n) can be expressed as

F i,h(b) = 1 +

b∑
t=2Y

1{a(t) = i} (14)

F i,h(b) = l +

b∑
t=2Y

1{a(t) = i, T i2(t− 1) ≥ l} (15)

= l +

b∑
t=2Y

1{B∗,h (t− 1, T ∗2 (t− 1)) ≤ Bi,h
(
t− 1, T i2(t− 1)

)
, T i2(t− 1) ≥ l}

(16)

≤ l +

b∑
t=2Y

1{∃ωi : l ≤ ωi ≤ t− 1, Bi,h(ωi, t) > µ∗}

+ 1{∃ω∗ : 1 ≤ ω∗ ≤ t− 1, B∗,h(ω∗, t) ≤ µ∗} (17)

where the lower bound in the summation in (14) comes from the fact that each

BS configuration are tried at least once, (15) comes from the fact that each action

has been sensed at least l blocks up to block b. (16) comes from the reason why

suboptimal action i is chosen, i.e. the index of the optimal action at block t − 1,
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B∗,h (T ∗2 (t− 1), t− 1), is below the index of the suboptimal action i. Moreover (16)

is upper bounded by (17) because these two conditions are not exclusive. Taking

the expectation on both sides and using union bound we get:

E[F i,h(b)] ≤ l +

∞∑
t=1

t−1∑
ωi=l

P(Bi,h(ωi, t) > µ∗) +

∞∑
t=1

t−1∑
ω∗=1

P(B∗,h(ω∗, t) ≤ µ∗) (18)

The summation over t starts from 1 instead of 2Y because it does not change

the validity of the upper bound. Let remind that Gi,hS (T i2) = 1
T i2

∑T i2
k=1R

i
S(k) +

1
Hi2

∑Hi2
k=1R

i,h
S (k) denotes the empirical mean of quality observations RiS for action

i in state S, GSmax = maxi∈KG
i,h
S (T i2) is the maximum empirical reward and G∗ is

the empirical mean of the reward of the optimal action ∗, optimal in terms of both

state and EE reward µ∗. it does not necessarily mean that G∗ = GSmax. Moreover,

let’s remind that ∆µi = µ∗ − µi. let’s choose l =
⌈

4α ln (n2+Hi2)
(∆µi)2

⌉
and proceed from

(18):

E[F i,h(b)] ≤

⌈
4α ln

(
n2 +Hi

2

)
(∆µi)2

⌉
+

∞∑
t=1

t−1∑
ωi=

⌈
4α ln (n2+Hi2)

(∆µi)2

⌉P(Bi,h(ωi, t) > µ∗)

+

∞∑
t=1

t−1∑
ω∗=1

P(B∗,h(ω∗, t) ≤ µ∗) (19)

We first start bounding the first part of (19), i.e. P(Bi,h(ωi, t) > µ∗). Substituting

Bi,h(ωi, t) by its expression, and following the same steps than in [10, Appendix A]

but using the number of times action i has been selected in SB2 block, i.e. Hi
2, we

end up with

P(Bi,h(ωi, t) > µ∗) ≤
∑
S∈S

Nhi exp

−
(
ωi +Hi

2

)( ∆µi

2 +Di,h(ωi,t)

riS |S|G
i,h
S π̂iS

)2

εi

28

 (20)

where π̂iS = max
{
πiS , 1− πiS

}
, π̂max = maxi∈K π̂

i
S and εi = 1− λi2 is the eigenvalue

gap of action i, defined as the difference between 1 and the second largest eigenvalue

of the i-th Markov chain. Moreover, (20) follows from [46, Th. 3.3] and from [47,

Lem. 2.1] by considering n = ωi, f(Xi
t) =

1{Sit=S}−G
i,h
S πiS

Gi,hS π̂iS
. The conditions of [46,

Th. 3.3] are fulfilled if Gi,hS ≥
1

π̂max+πiS
. Consider an initial distribution hi as defined

in [41], Nhi can be upper-bounded by 1/πmin where πmin = minS∈S π
i
S . By following

the same steps than in [10, Appendix A] we get from (20),

P(Bi,h(ωi, t) > µ∗) ≤
∣∣Si∣∣
πmin

(
t+Hi

2

)− ∆µiβMminεmin
28S2

maxr
2
maxG

2
maxπ̂

2
max (21)

where Gmax ≡ GSmax, rmax = maxS∈S,i∈K r
i
S , Mmin = mini∈KM

i,h
(
ωi
)
, Smax =

maxi∈K
∣∣Si∣∣ and εmin = mini∈K ε

i. Inserting (21) into first part of (19), and following
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the same steps than in [10] we end up with

∞∑
t=1

t−1∑
ωi=l

P(Bi,h(ωi, t) ≥ µ∗) ≤ |S
i|

πmin

∞∑
t=1

(
t+Hi

2

)−2
(22)

where (22) is obtained for of β ≥ 84S2
maxr

2
maxG

2
maxπ̂

2
max/

(
εmin∆µRi Mmin

)
.

Similarly, one can bound the second part of (19) by following the same ideas than

previously and applying the same steps than in [10, Appendix A] but introducing

H∗2 , i.e. the number of times the best action has been chosen in historical period in

SB2 block, we get

P(B∗,h(ω∗, t) ≤ µ∗) ≤ |S
∗|

πmin
(t+H∗2 )

− εmin(α−2
√
αβMmax)

28(SmaxGmaxrmaxπ̂max)2 (23)

where Mmax = maxi∈KM
i,h
(
ωi
)
. By choosing α such that

εmin(α−2
√
αβMmax)

28(SmaxGmaxrmaxπ̂max)2 ≥
3 we obtain

P(B∗,h(ω∗, t) ≤ µ∗) ≤ |S
∗|

πmin
(t+H∗2 )

−3
(24)

Substituting (24) into the second part of (19), we get

∞∑
t=1

t−1∑
ω∗=1

P(B∗,h(ω∗, t) ≤ µ∗) ≤ |S
∗|

πmin

∞∑
t=1

(t+H∗2 )
−2

(25)

Furthermore, due to presence of transferred knowledge, we consider l+ =

max

(
0,

4α ln (n2+Hi2)
(∆µi)2 −Hi

2

)
instead of l and the following bound follows from com-

bining (22) and (25). Then, from (18):

E[F i,h(b)] ≤ l+ +
|S∗|
πmin

∞∑
t=1

(t+H∗2 )
−2

+
|Si|
πmin

∞∑
t=1

(
t+Hi

2

)−2
(26)

Note that all observations in calculating the EEM-UCB indices come from the

SB2 block. Let, SB2 block begin with observing regenerative state ζi and end with

a return to the same ζi. The total number of time of sub-optimal action i is selected

at the end of block b(n) is estimated by considering the observations acquired in: i)

the total number of plays of sub-optimal action i during SB2 block (upper-bounded

by 1/πimin), ii) the total number of selections in SB1 before entering the SB2 block

(upper-bounded by Γimax) and iii) Finally, one more selection resulting from the

SB3 block which is state ζi. Thus, we have

E
[
T i,h(n)

]
≤
(

1

πimin

+ Ωimax + 1

)
E
[
F i(b(n))

]
Moreover, since |S∗| =

∣∣Si∣∣ = 2 and Smax = 2, rmax = 1 in our case, Theorem 1

follows.
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Appendix B: Abbreviations
ACT Actor-Critic

BS Base Station

CEER Cumulative Energy Efficiency Ratio

EE Energy Efficiency

EEM-UCB Energy Efficiency Maximization - Upper Confidence Bound

MAB Multi-Armed Bandit

MDP Markov Decision Process

MS Mobile Station

OSA Opportunistic Spectrum Access

PA Power Amplifier

RL Reinforcement Learning

SB Sub-Block

SINR Signal to Interference and Noise Ratio

TACT Transfer Actor-Critic

TLEEM-UCB Transfer Learning Energy Efficiency Maximization - Upper Con-

fidence Bound

QoS Quality of Service

RQoS-UCB Restless Quality of Service - Upper Confidence Bound

UCB Upper Confidence Bound
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