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Systematic interrogation of the Conus marmoreus
venom duct transcriptome with ConoSorter
reveals 158 novel conotoxins and 13 new gene
superfamilies
Vincent Lavergne1, Sébastien Dutertre1, Ai-hua Jin1, Richard J Lewis1, Ryan J Taft2* and Paul F Alewood1*
Abstract

Background: Conopeptides, often generically referred to as conotoxins, are small neurotoxins found in the venom
of predatory marine cone snails. These molecules are highly stable and are able to efficiently and selectively interact
with a wide variety of heterologous receptors and channels, making them valuable pharmacological probes and
potential drug leads. Recent advances in next-generation RNA sequencing and high-throughput proteomics have
led to the generation of large data sets that require purpose-built and dedicated bioinformatics tools for efficient
data mining.

Results: Here we describe ConoSorter, an algorithm that categorizes cDNA or protein sequences into conopeptide
superfamilies and classes based on their signal, pro- and mature region sequence composition. ConoSorter also
catalogues key sequence characteristics (including relative sequence frequency, length, number of cysteines, N-
terminal hydrophobicity, sequence similarity score) and automatically searches the ConoServer database for known
precursor sequences, facilitating identification of known and novel conopeptides. When applied to ConoServer and
UniProtKB/Swiss-Prot databases, ConoSorter is able to recognize 100% of known conotoxin superfamilies and
classes with a minimum species specificity of 99%. As a proof of concept, we performed a reanalysis of Conus
marmoreus venom duct transcriptome and (i) correctly classified all sequences previously annotated, (ii) identified
158 novel precursor conopeptide transcripts, 106 of which were confirmed by protein mass spectrometry, and (iii)
identified another 13 novel conotoxin gene superfamilies.

Conclusions: Taken together, these findings indicate that ConoSorter is not only capable of robust classification of
known conopeptides from large RNA data sets, but can also facilitate de novo identification of conopeptides which
may have pharmaceutical importance.
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Background
Venomous marine cone snails have evolved a broad array
of peptide toxins, called conopeptides, for prey capture and
defense. These small bioactive compounds selectively act
on a wide variety of receptors and channels in the central
and peripheral nervous systems [1-4]. These vast, mostly
untapped, natural toxin libraries provide potent tools for
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studying the properties of these targets and have become a
platform for the discovery of new pharmaceuticals [5-8].
Only ~2% of the estimated >70,000 venom peptides
expressed by the genus Conus have been sequenced to
date [9].
In the apical secretory cells lining the long convoluted

venom duct [10,11] (and likely to a much lesser extent the
salivary glands [12]), mature mRNA is translated to precur-
sor conopeptides which are generally composed of three
distinct regions: a N-terminal endoplasmic reticulum (ER)
signal sequence, a central pro-peptide region, and the C-
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terminal mature toxin. Based on the conservation of their
signal sequence, conopeptides are currently classified into
16 empirical gene superfamilies (A, D, I1, I2, I3, J, L, M,
O1, O2, O3, P, S, T, V, Y), and 13 minor families for those
identified in early divergent clade species [13-16]. In
addition, 10 new superfamilies have been discovered in the
past two years - B1 [17], B2 [18], B3 [19], C [17], E [18], F
[18], G [20], H [18], K [21], N [18]. Conopeptides can also
be further divided into secondary classes based on the
number of disulfide bonds they can contain - disulfide-rich
conopeptides containing at least 2 disulfide bonds are col-
loquially known as conotoxins, whereas those with none or
one disulfide bond are called disulfide-poor conopeptides
[22] - or the cysteine patterns in the mature region of
disulfide-rich conopeptides [14]. Although amino acid con-
servation in the pro- and mature regions of conopeptides
from the same superfamily is much lower than for the ER
signal sequence (Figure 1 and Additional file 1: Figure S1),
consensus cysteine patterns and connectivities are often
highly conserved (although not always specific to a gene
superfamily) and may be linked to particular pharmaco-
logical families [14].
Recent studies have reported the existence of new

conopeptides, which do not clearly belong to any of the
previous annotated superfamilies but share common
pharmacological targets. Although some show conserved
signal regions, cysteine motifs or specific post-translational
modifications, these conotoxins have been incorporated
into 14 additional classes [14] called conantokin [23],
conodipine [24], conohyal [25], conolysin [26], conomap
[27], conomarphin [28], conopeptide Y [29], conophan
[30], conoporin [31], conopressin [32], conorfamide [33],
conotoxin-like [12], contryphan [34] and contulakin [35].
Advances in high-throughput sequencing technologies,

combined with directed studies of venom producing cells
[36-39], have resulted in a data deluge which requires ded-
icated tools for the analysis and classification of cono-
peptide sequences. ConoServer, a specialized database
dedicated to conopeptides [22], implemented a web-based
tool (ConoPrec) that guides gene superfamily assignment
of precursor toxins by the recognition of a limited number
of known cleavage sites (or protease specificities) and a
sequence similarity search based on existing conopeptide
superfamilies [16]. However, the limitations of this program
include the restriction to known conopeptide motifs, as
well as a requirement that the query precursor sequences
contain the signal region, which is rarely the case as most
conopeptide screening is conducted on milked venom or
dissected venom gland that almost exclusively contains
mature protein products. Another web-based program,
ConoDictor, overcomes the issue of missing signal regions
by using three independent sets of models built from sig-
nal, pro- and mature regions of conopeptides respectively
[40,41]. However, this tool only accepts selected amino
acid sequences as input, only classifies conopeptides into
the main superfamilies, does not provide any data quanti-
tation, and perhaps most importantly, cannot facilitate the
discovery of new conopeptide families. Both ConoPrec and
ConoDictor are limited in their ability to handle large
transcriptomic or proteomic datasets, and therefore are
unlikely to fill the need for large-scale analysis of cone
snail transcriptomes or proteomes.
Here we describe ConoSorter, a program able to classify

conopeptides into superfamilies and classes from either
protein sequences or RNA sequencing data. ConoSorter
has been designed to recognize all currently annotated
gene superfamilies and classes. Regular expression sequen-
ce searches are complemented by a profile Hidden Markov
Model (pHMM) analysis allowing the classification of
conotoxins that may be only distantly related to well-
established conopeptide groups. ConoSorter also reports
key sequence characteristics (including relative sequence
frequency, length, number of cysteine residues, N-terminal
hydrophobicity, sequence similarity score) and automatic-
ally searches the ConoServer database for known precursor
sequences, which facilitates clear and precise identification
of known and novel conopeptides and their associated
families. ConoSorter allows an investigator to efficiently
deal with the thousands of sequences produced by high-
throughput sequencing methods in a rapid and accurate
manner.

Results
Identification and classification of known conopeptides
To assess if ConoSorter can accurately classify conopeptides
into superfamilies and classes we performed two initial con-
trol experiments - analysis of the ConoServer cone snail
toxin database and an analysis of the universal UniProtKB/
Swiss-Prot protein database [22,42].
The ConoServer database contains 5,449 entries of

complete or partial conopeptide sequences. We emplo-
yed 36.85% (2,008 sequences) of the ConoServer entries
in the development of our training set, and here sought
to assess the accuracy of both the regular expression and
pHMM approaches described above to hierarchically
classify the entire suite of ConoServer sequences into
superfamily and class. We found that the regular expres-
sion analysis was able to classify 100% of well-defined
ConoServer sequence regions (i.e. those that do not dis-
play undetermined amino acids) for which the gene
superfamily or class have been previously assigned. This
approach also assigned a superfamily to 1,228 sequences,
and a class to 42 others, which were not previously
classified. ConoSorter failed to confidently classify a total
of only ~440 sequences, all of which are derived from
patents and synthetic constructs that contain one or
more undetermined amino acids, or are sequences for
which supportive data regarding their classification are
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Amino acid diversity in conopeptides. The position-specific diversity of amino acid for each conopeptide regions (ER signal in red,
pro- in green, and mature region in purple) belonging to the 4 largest gene superfamilies A, M, O1 and T (the remaining superfamilies are
presented in Additional file 1: Figure S1). The true diversity of order 2 (or inverse Simpson index, 1/λ) have been calculated according to the
following equation in order to take into account the amino acid richness R, their average proportional abundance pi, as well as the variability of

sequence lengths for each regions: 1=λ ¼ 1=
XR

i¼1

p2i . For each amino acid position, a color gradient applies to the diversity index (from 0 in light

to higher values in darker color).
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unavailable or have been predicted with an unknown
level of accuracy.
Analysis of the ConoServer entries with pHMMs showed

true positive recognition rates of 99.25% for superfamily (9
instances of conopeptide region annotation conflict, plus 3
false positives out of 1,609 complete sequences with anno-
tated superfamilies), and 99.60% for class (7 conflicts, plus 4
patent sequences with undetermined amino acids counted
as false positives out of 2,750 sequences with known classes)
using the HMMER hmmscan script with the default E-value
cutoff at 10. This approach was also able to confidently as-
sign 1,153 sequences into superfamilies and 32 into classes,
which had previously lacked annotation.
In the second experiment, the ability of ConoSorter to

distinguish between Conus peptide toxins and other pro-
teins from various organisms has been assessed by
screening the entire UniProtKB/Swiss-Prot database.
Using the version released on June 2013 we examined a
total of 540,261 protein sequences isolated from 12,988
cellular and non-cellular species. Table 1 reports the
specificity S calculated at 7 E-value cutoffs (10 – default
threshold, 1, 0.1, 0.01, 10-3, 10-4 and 10-5) according to
the following equation:

S ¼ True Negatives
True Negativesþ False Positivesð Þ

where True Negatives = N – True Positives (with N = total
number of input sequences, and True Positives = number
Table 1 Species specificity of conopeptide models

E-value cutoff Superfamily Class

S (%) False + (%) S (%) False + (%)

≤10 99.19 0.81 99.25 0.75

≤1 99.31 0.69 99.35 0.66

≤0.1 99.42 0.58 99.46 0.55

≤0.01 99.56 0.44 99.57 0.43

≤10-3 99.81 0.19 99.81 0.19

≤10-4 99.90 0.10 99.90 0.10

≤10-5 99.94 0.06 99.93 0.07

The species specificity, S (expressed in %), of the conopeptide models has
been assessed on UniProtKB/Swiss-Prot database (540,261 sequences in total
spread over 12,988 species) at different total E-value thresholds. Percentages
of specificity and false positive rates (“False +”, expressed in %) are reported
for the classification by gene superfamily, and by class.
of conopeptide matches), and False Positives = the number
of non-Conus species matches plus the number of non-
conopeptides Conus matches.
At all E-value thresholds ConoSorter was able to confi-

dently identify and classify conopeptides (Table 1). Of the
540,261 amino acid sequences referenced in the UniProtKB/
Swiss-Prot database, ConoSorter, using an E-value of 10-5,
was able to classify 879 peptide toxins from the genus Conus
with an annotated superfamily (specificity of 99.94%) with
only 345 false positives (p-value = 0.06%) isolated from other
organisms. Similarly, ConoSorter was able to classify 894
conopeptides with an annotated class (specificity of 99.93%)
with only 393 false positives (p-value = 0.07%).

Analysis of Conus marmoreus venom duct transcriptome
The results presented above indicate that ConoSorter is
capable of identifying conopeptides at high specificity and
sensitivity, and, even when the dataset being analyzed os-
tensibly includes all known proteins, accurately assigning
the appropriate superfamily and class. We next sought to
use ConoSorter’s regular expression and pHMMs searches
to ascertain if it was possible to identify novel conopeptides,
superfamilies and classes in a previously interrogated RNA-
seq dataset.
Dutertre et al. have recently performed an analysis of the

C. marmoreus venom duct transcriptome, which principally
relied on serial BLAST homology searches [18]. They
reported 30 full conopeptides precursor sequences (i.e.
those beginning with a methionine residue and finishing by
a stop codon) that had been previously characterized in this
species. A total of 75 novel conopeptides were also identi-
fied which were assigned to 8 known gene superfamilies.
Thirteen of these were classified, based on the high conser-
vation of their signal sequences, into 5 new superfamilies
dubbed B2, E, F, H, and N.
We re-examined this medium-throughput 454 sequen-

cing data (179,843 cDNA sequences) with ConoSorter,
and identified 4,307,681 putative precursor protein se-
quences derived from all possible translations of these
sequences into six reading frames (see ConoSorter pipeline
in Methods), which were analyzed hierarchically using the
regular expressions and pHMMs described above to assign
sequences to superfamily, class or ‘unknown’. This led to
the identification of 72% (106/146) of annotated complete
Conus marmoreus precursor conopeptides, including all
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but two of the sequences found in the previous manual
analysis (two incomplete conotoxins, named Mr8.1 and
Mr11.3 precursors, did not encode a methionine and thus
were discarded). Moreover, 17 novel isoforms of known
Conus marmoreus precursor conopeptides (Mr1.1, con-
omarphin Mr1, conomarphin Mr2, contryphan M, cMrVIA,
CMrX, and MrIA precursors) were identified and assigned
the correct superfamily or class based on the signal, pro-,
and mature regions. These conopeptides were confirmed by
a tandem mass spectrometry (MS/MS) analysis of the
milked venom, in which we were able to identify their corre-
sponding mature sequences (Additional file 2: Table S1).
ConoSorter was also able to assign known gene super-

families to 125 novel full-length precursor conopeptides
(Figure 2, Additional file 3: Figure S2, Additional file 4:
Table S2). Using the C. marmoreus milked venom mass
spectrometry data, and employing the methods Dutertre
et al. used to match the MS data to putative novel
conopeptides (e.g. restricting ProteinPilot results to
those with a confidence threshold of at least 99%)
[18], we were able to validate protein fragments of
Figure 2 New conopeptide precursors isolated from the venom duct
full-length precursor conopeptides inferred from mRNA data, and detected
regions without conflict (isoforms of these sequences can be found in Add
alignment shows the amino acid conservation specifically in the N-termina
are). Partial sequences in bold characters correspond to the peptide fragme
Numbers listed after conopeptide names indicate the sequence frequency
of full-length precursors, as well as post-translational modifications (PTMs) c
86 of the novel conopeptide precursors (Figure 2,
Additional file 3: Figure S2, Additional file 4: Table S2).
Milked venom almost exclusively contains mature peptide
toxins, which was reflected in the coverage of the mature
peptide fragments compared to the full-length precursor
conopeptide sequences (Figure 2).
ConoSorter also identified 33 additional precursor cono-

peptides which, despite showing conserved amino acids and
high hydrophobicity in the signal region, could not be classi-
fied into known superfamilies (Figure 3, Additional file 4:
Table S2, Additional file 5: Table S3). Among these new pre-
cursors, 20 peptide fragments were identified in milked
venom MS data (validation rate of ~60%). Based on their
conservation, and their similarities with known superfamilies,
we propose classifying these 33 precursor conopeptides into
13 new gene superfamilies - H2, I4, M2, N2, O4, Q, R, U, W,
X, Y2, Y3, and Z. The names of these new groups have been
taken from (i) the 6 available letters of the alphabet used to
name the currently known superfamilies – Q, R, U, W, X, Z,
or (ii) the names of the superfamily which they are the most
similar to, and from which a number has been appended.
transcriptome of Conus marmoreus and MS/MS coverage. New
with ConoSorter simultaneously in the signal, pro-, and mature
itional file 3: Figure S2). For each known superfamily, the sequence
l signal region (the deeper color the more conserved the amino acids
nts isolated by MS/MS analysis of C. marmoreus milked venom.
in the input data. DNA Data Bank of Japan (DDBJ) accession numbers
alculated by ProteinPilot 4.0 are provided in Additional file 4: Table S2.



Figure 3 (See legend on next page.)
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Figure 3 New superfamilies of conopeptides. Top panel shows an identity cladogram in which signal sequences of conopeptides matching
only pro- and mature regions (in grey) have been aligned with consensus signal regions of known superfamilies (in red). Percentage value
between brackets following the superfamily name measures the intraspecific conservation of members populating this family (the “*” symbol
means that only one sequence is part of the family). Bottom panel shows the 33 new precursor sequences spread over the 13 new superfamilies.
Red rectangles enclose the signal sequences determined with SignalP 4.0. The number following the precursor name is the precursor sequence
frequency among the input data set. Bold partial sequences represent the peptide fragments retrieved by MS/MS sequencing of milked venom.
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For example, H2 is 40% similar to superfamily H (Figure 3,
Additional file 5: Table S3). The signal sequences of these 13
new groups of conopeptides show high intrinsic identity
rates from 82.6% to 100% (as a comparison, the lowest intra-
specific conservation percentages known are 58.1%, 65.0% or
69.1% between members of the well established I2, L and P
superfamilies). In addition, we find that the integration of
these new distinct and well-defined superfamilies in the
current classification does not interfere with the established
superfamily classifications - for example, identity rates are as
low as 0.2% between the new W group and the empirical I3
superfamily (Additional file 5: Table S3). ConoSorter also
assigned non-conotoxin classes to 4 conomarphin and 2
contryphan precursor sequences (data not shown).

Discussion
Many studies have reported the existence of intraspecific
variations in the venom content of distinct Conus individ-
uals belonging to the same species [43-46]. Reanalysis of
the venom gland transcriptome of one Conus marmoreus
individual revealed that ConoSorter was able to identify
72% of the annotated and complete known precursor
conopeptides previously isolated in this species, and also
led to the discovery of 158 new precursor conopeptides,
67.1% of which were validated in a matched MS/MS
dataset. Interestingly, we observed that the overall number
of C. marmoreus precursor conopeptides found to date is
comparable to the number Conus species can theoretically
produce [9]. Further investigation of the novel sequences
identified by ConoSorter also allowed us to define 13 new
superfamilies of conopeptides, which we have classified as
H2, I4, M2, N2, O4, Q, R, U, W, X, Y2, Y3, and Z based
on their intraspecific conservation rates and identity to
established superfamilies. We note that in all new precur-
sor sequences we were able to detect putative pro-peptide
cleavage sites (usually positively charged amino acids like
KR, LR or QR for instance), located just before the mature
regions, an observation that is consistent with mass spec-
trometry data and supports the reliability of the matching
between the venom duct transcriptome and the proteome
of milked venom.
In this reanalysis we were able to retrieve 106 of the 146

known Conus marmoreus precursor sequences. A manual
investigation of the 40 conopeptide sequences ConoSorter
failed to identify in this analysis and the 454 RNA-seq data,
revealed two likely sources of error: (i) 454 sequencing
errors, particularly those associated with homopolymers
(which has been extensively documented [47]), and (ii) lack
of congruence between the RNA-seq data read length and
the length of the encoded conopeptides. Indeed, although
conopeptide precursors are relatively short polypeptides,
their average length is nonetheless ~70 amino acids (~210
nucleotides), there are those, including CalMKLL-1 and −2
conotoxin precursors from Conus californicus, that are 131
amino acids in length. The average length of a high quality
RNA-seq read in this dataset was 317.93 bases, indicating
that failure to detect known conotoxins could be improved
with longer reads. We suspect that further work in this
field will take advantage of platforms offering up to 2 ×
300 bp nucleotide reads, which not only allow for impro-
ved detection of conotoxins but may also facilitate de novo
assembly of the Conus transcriptome.

Conclusions
In this article we present ConoSorter, a high-throughput
standalone program that implements regular expressions
and pHMMs for large-scale identification and classifica-
tion of precursor conopeptides into gene superfamilies
and classes based on the ER signal, pro-, and mature
conopeptide regions generated from raw next-generation
transcriptomic or proteomic data. ConoSorter also gener-
ates a set of relevant additional information - frequency of
protein sequences, length, number of cysteine residues,
hydrophobicity rate of N-terminal region, similarity to
known conopeptides - that allows the user to assess the
reliability and relevance of the results and aids the identifi-
cation of new conopeptide superfamilies and classes.
When applied to ConoServer and UniProtKB/Swiss-Prot

databases, ConoSorter is able to recognize 100% of known
conotoxin superfamilies and classes with a minimum spe-
cies specificity of 99%. We also performed a reanalysis of
Conus marmoreus venom duct transcriptome and (i) cor-
rectly classified all sequences previously annotated, (ii) re-
trieved 106 of the 146 precursor conopeptides known in
this species, (iii) assigned the correct classification to 17
novel precursor toxin isoforms, (iv) identified 158 novel
precursor conopeptide transcripts, 106 of which were con-
firmed by protein mass spectrometry, and (v) identified an-
other 13 novel conotoxin gene superfamilies called here
H2, I4, M2, N2, O4, Q, R, U, W, X, Y2, Y3, and Z.
Overall, ConoSorter provides a fully automated, accur-

ate and easy-to-use tool for the analysis of large quantities
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of transcriptomic or proteomic data of conopeptide se-
quences, which could contribute to the acceleration of the
discovery of new bioactive molecules.

Methods
Training set
Query data are compared to known conopeptide se-
quences using regular expressions and pHMMs. The
conopeptides sequences used to build these reference
models were obtained from the latest updates of the
ConoServer (27/05/2013) and UniProtKB (06/2013)
databases. These databases contain complete or partial
wild type precursor and mature toxin sequences, isolated
either as conotoxin genes, transcripts, or proteins, as
well as artificially synthesized peptides. For the training
set, only full-length endogenous precursor and mature
conopeptides isolated at the protein level, or sequences
from a superfamily where all members were annotated
at the gene/DNA level, were used. Synthetic constructs
and patented sequences with undetermined amino acids
have not been included in the training set. A total of
2,008 sequences were used – 1,390 conopeptide super-
family sequences and 1,931 for their classes (a high pro-
portion of which overlap). For each superfamily and
class the signal, pro- and mature regions, which are used
for the region-specific queries described below, were
identified (Table 2). A total of 1,435 signal, 2,391 pro-,
and 3,187 mature fragments were retrieved after discar-
ding sequences with undetermined amino acids and
duplicate regions coming from both the precursor and
mature forms of the same conopeptide.
Each conopeptide region was aligned using ClustalW

(BLOSUM cost matrix; gap open and extension penalties
of 10 and 0.1 respectively) in order to generate clusters of
closely related sequences and establish consensus subsets
that best describe each superfamily and class. Signal
conopeptide regions showed high conservation rates
(from 61.4% to 100% identity). Sequence variability was
higher in pro-region groups, and CD-hit [48], MEME
[49], or BLASTCLUST [50] failed to produce reliable se-
quence clusters. Sequences were therefore manually cu-
rated until at least 40% pairwise identity was reached.
Mature region sequence clusters were initially generated
by analysis of the cysteine frameworks using a previously
published in-house algorithm [51], which resulted in over-
all sequence conservation comparable to pro-regions.
These clusters of sequences sorted by (i) superfamily, (ii)
class, (iii) conopeptide signal, pro-, and mature regions
and (iv) similarity were then used as templates for the cre-
ation of regular expressions. We produced 436 distinct
models for superfamily classification (75, 165 and 196 for
signal, pro-, and mature regions respectively) and 341
class models (40, 91, and 210 for signal, pro, and mature
regions respectively). The number of clusters containing
sequences with the highest rate of similarity and/or groups
with unique sequence for each superfamily and class are
summarized in Table 2.
The second sequence analysis approach implemented by

ConoSorter is based on pHMMs. The sequence clusters
described above used to create the regular expressions for
each conopeptide superfamily / class have been used to
build these models. Aligned clusters of sequences were
converted to Stockholm format and the pHMMs were gen-
erated with hmmbuild from HMMER 3.0 package [52-54].
These conopeptide-specific profiles have then been conca-
tenated to one single HMM database flat file, which has
been subsequently compressed and indexed by using
hmmpress from the same package.

ConoSorter pipeline
The ConoSorter algorithm treats either cDNA or protein
sequences according to a hierarchical step-wise process
outlined in Figure 4. First, raw cDNA sequences are trans-
lated into all 6 reading frames. In order to obtain full-
length precursor proteins, amino acid sequences delimited
by a methionine and a stop codon are trimmed from the
rest of the string and analysed. These sequences are
submitted to a “rigid” Boolean search for signal / pro- /
mature regions with high identity to known conopeptide
superfamilies and classes using the regular expressions de-
scribed above. The sequences are classified into (i) known
superfamilies and/or classes, or (ii) sequences that did not
return a match. For the first group, a score is given for
each of the 3 regions independently - 1 if there is a match,
0 otherwise. Total scores for superfamilies and classes are
then generated by simple addition of each region’s score.
Instances in which there is conflict in the identification
between distinct regions of the same sequence (i.e. the sig-
nal, pro- and/or mature regions have matches to different
superfamilies) are also identified. The group of sequences
that did not return matches to known superfamilies and
classes is submitted to a more flexible stochastic search
using the conopeptide-specific pHMMs described above
and hmmscan script from the HMMER 3.0 package
(hmmscan, like many other matching programs, use a de-
fault E-value threshold of 10). Total scores for superfam-
ilies and classes are then calculated as the product of the
E-values of the 3 independent regions.
Two separate sets of results are thus obtained, one for

those with clear similarity to known superfamilies and
classes and one for those that are potentially novel,
which are stored in tabulated files called “Regex.tab” and
“pHMM.tab”, respectively. We note that if a sequence
has been assigned to a superfamily and/or a class based
on the ER signal region, the amino acids before its spe-
cific signal motif are trimmed. The number of sequence
(s) identical to a hit in the original input data set is
reported, as well as the hit length, its cysteine content,



Table 2 Training set used to build regular expression and pHMMs models

Signal Pro-region Mature

Total clusters Unique seq. Total seq. Total clusters Unique seq. Total seq. Total clusters Unique seq. Total seq.

A 3 - 77 21 6 136 23 6 195

B1 2 1 8 2 - 13 7 3 13

B2 1 1 1 1 1 1 1 1 1

B3 1 1 1 - - - 1 1 1

C 1 - 3 2 - 4 2 - 4

D 1 - 10 3 1 21 5 1 30

E 1 1 1 - - - 1 1 1

F 1 1 1 1 1 1 1 1 1

G 1 1 1 1 1 1 1 1 1

H 1 - 2 3 2 5 4 2 7

I1 3 1 12 5 4 13 8 2 48

I2 2 - 31 14 6 32 12 5 50

I3 1 - 4 3 2 7 2 - 8

J 1 - 8 2 1 5 2 - 11

K 1 1 1 1 1 1 1 - 3

L 4 2 10 5 2 10 5 2 11

M 6 2 152 16 5 263 34 16 267

N 1 - 2 1 - 3 1 - 3

O1 14 3 198 20 7 292 32 4 437

O2 4 1 50 15 6 75 12 6 81

O3 1 - 16 7 5 21 3 1 26

P 2 1 6 5 3 7 3 1 12

S 4 3 7 3 - 9 5 1 14

T 3 - 79 18 10 112 12 6 138

V 1 - 2 1 - 2 1 - 2

Y 1 1 1 1 1 1 1 1 1

M—L-LTVA 1 - 5 2 1 8 4 2 8

MKFPLLFISL 1 1 1 1 1 1 1 1 1

MKLCVVIVLL 1 - 2 1 1 1 1 - 3

MKLLLTLLLG 1 1 1 - - - - - -

MKVAVVLLVS 1 1 1 - - - - - -

MRCLSIFVLL 1 - 2 1 1 1 1 1 1

MRFLHFLIVA 1 1 1 1 1 1 1 1 1

MRFYIGLMAA 1 - 2 1 - 3 1 - 4

MSKLVILAVL 1 1 1 1 1 1 1 1 1

MSTLGMTLL- 1 - 5 3 2 5 3 1 5

MTAKATLLVL 1 1 1 1 1 1 1 1 1

MTFLLLLVSV 1 1 1 1 1 1 1 1 1

MTLTFLLVVA 1 1 1 1 1 1 1 1 1

Conantokin 2 1 8 2 - 13 4 1 19

Conodipine - - - - - - 2 2 2

Conohyal 1 - 2 - - - 2 2 2

Conolysin - - - - - - 1 - 2
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Table 2 Training set used to build regular expression and pHMMs models (Continued)

Conomap - - - - - - 1 1 1

Conomarphin 1 - 2 1 - 2 1 - 4

Conopeptide Y 1 1 1 1 1 1 1 - 2

Conophan - - - - - - 1 - 2

Conoporin 1 1 1 - - - 1 1 1

Conopressin 1 1 1 - - - 1 - 6

Conorfamide - - - - - - 1 - 2

Conotoxin 29 4 697 84 14 1,299 189 87 1,730

Conotoxin-like 1 - 2 1 1 1 1 - 2

Contryphan 2 1 10 1 - 13 2 1 15

Contulakin 1 - 3 1 - 3 2 1 4

For each gene superfamilies and classes the table shows the total number of clusters (containing conopeptides with high sequence similarities), unique
sequences, and total sequences in the ER signal, pro- and mature regions.
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and the percentage of hydrophobic residue in the N-
terminal region of the sequence which is a hallmark for
most newly synthesized proteins likely destined toward the
secretory pathway. Finally, ConoSorter searches ConoServer
database for previously described precursor conopeptide
sequences.

Analysis of the mRNA pool isolated from Conus
marmoreus venom gland
The analysis of Conus marmoreus venom duct RNA se-
quencing data has recently been performed [18]. Briefly,
Figure 4 Program pipeline. The approach used in ConoSorter is
divided into 4 steps: 1) translation of raw cDNA into amino acid
sequences and formatting (input protein sequences can also be
used directly with the corresponding command line argument); 2)
independent searching for conopeptides superfamilies and classes
using regular expressions; 3) matching pHMMs with unclassified
sequence data set that didn’t provide hits with regular expressions;
4) calculation of additional sequence information (for details see
“Methods” section).
mRNAs were sequenced with a Roche 454 pyrosequencer,
and corresponding conopeptide sequences were identified
by a BLAST homology search. To confirm the existence of
new conopeptides, peptides isolated from C. marmoreus
milked venom were sequenced by MS and matched to the
conopeptide transcripts.
Here, we perform a reanalysis of this data using

ConoSorter, as described above, with the addition of a
number of computational steps to confidently identify
novel conotoxin superfamilies and classes. Specifically,
ConoSorter hits displaying matches only for the pro-
and mature regions, as well as containing at least 60%
hydrophobic amino acid in their N-terminal region
were selected. This cutoff was chosen based on an ana-
lysis of all ConoServer conopeptide sequences with
unique and complete signal regions - 644 in total, with
a length and number of hydrophobic amino acids being
21.28 and 15.83 on average respectively (74.56% hydro-
phobicity with a standard deviation σ=6.59, and a mini-
mum of 52.00%). These selected sequences were
submitted to SignalP 4.0 in order to select sequences
with a defined signal region [55]. Using these signal
peptides, and those from annotated superfamilies, we
then built a similarity matrix to ascertain the minimal
intraspecific and maximal interspecific identity rates
within and between known superfamilies (Additional
file 5: Table S3). We submitted the isolated signal re-
gions to the CD-hit clustering program by applying an
identity cut-off of 75.00%. Signal sequences of the se-
lected hits showing a similarity rate ≥75.00% were clus-
tered. As an internal control we queried all empirical
superfamilies and found that I2, L, P, M, I1, O1 families
have an intraspecific conservation rate well below this
threshold with 58.10%, 65.00%, 69.10%, 69.30%, 73.60%
and 73.70% identity, respectively (Additional file 5:
Table S3). Clusters displaying a maximum of 53.3%
identity with any known superfamily were considered a
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putative novel superfamily. Signal regions of members
of known and newly defined superfamilies were aligned
using ClustalW in order to create a consensus identity
cladogram. This analysis was also performed using
MUSCLE algorithm, and showed a deviation of ±0.17%
from the ClustalW results. Validation of novel cono-
peptides was performed using the previously published
MS/MS data [18].
Availability of supporting data
ConoSorter is licensed under the GNU General Public
License version 3 (GPLv3) and freely available at http://
sourceforge.net/p/conosorter.
Additional files

Additional file 1: Figure S1. Amino acid diversity in conopeptides. The
position-specific inverse Simpson index, 1/λ, of amino acid for the ER
signal (red), pro- (green), and mature (purple) conopeptide regions of the
remaining gene superfamilie. For each amino acid position, a color
gradient applies to the diversity index (from 0 in light to higher values in
darker color).

Additional file 2: Table S1. New isoforms of known Conus marmoreus
precursor conopeptides. New isoforms of conopeptide precursors
previously discovered in Conus marmoreus inferred from their known
mature region (in blue). Peptide fragment coverage obtained by mass
spectrometry analysis of the milked venom is represented in bold. The
frequency of the sequence present in the mRNA pool, as well as the
superfamily of the precursor conopeptide are also indicated in the table.

Additional file 3: Figure S2. Isoforms of new precursor conopeptides
classified into known superfamilies

Additional file 4: Table S2. New precursor sequences found in Conus
marmoreus. Their names, DDBJ accession numbers, and post-translational
modifications of the peptide fragments (bold) generated by ProteinPilot
4.0 are mentioned in the above table.

Additional file 5: Table S3. Similarity matrix of known and new
conopeptide gene superfamilies. Known and new superfamilies are
highlighted in red and grey respectively. Number between brackets
following the superfamily name represents the conservation index of its
members.

Abbreviations
ER: Endoplasmic reticulum; pHMM: profile hidden Markov model; MS: Mass
spectrometry; RNA-seq: RNA sequencing; Bp: Base pair; ORF: Open reading
frame.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VL carried out the design and conception of ConoSorter program, analysed
and interpreted Conus marmoreus transcriptomic and proteomic data,
conceived the figures and drafted the manuscript. SD participated in the
design of ConoSorter program, has been involved in Conus marmoreus
transcriptomic and proteomic data acquisition, and in revising the
manuscript. AJ has performed Conus marmoreus proteomic data acquisition.
RJL has provided Conus marmoreus transcriptomic sequencing data, and
participated in revising the manuscript. RJT has participated in ConoSorter
design, and has contributed in drafting the manuscript and revising it
critically for important intellectual content. PFA has revised the manuscript
and has given final approval of the version to be published. All authors read
and approved the final manuscript.
Acknowledgements
V.L acknowledges the provision of an Institute for Molecular Bioscience (IMB)
Postgraduate Award and support from a National Health and Medical
Research Council (NHMRC) Program grant [569927]. RJT is supported by an
ARC Discovery Early Career Researcher Award.

Received: 12 August 2013 Accepted: 11 October 2013
Published: 16 October 2013
References
1. Olivera BM, Cruz LJ: Conotoxins, in retrospect. Toxicon 2001, 39(1):7–14.
2. Terlau H, Olivera BM: Conus venoms: a rich source of novel ion channel-

targeted peptides. Physiol Rev 2004, 84(1):41–68.
3. Norton RS, Olivera BM: Conotoxins down under. Toxicon 2006,

48(7):780–798.
4. Lewis RJ, Dutertre S, Vetter I, Christie MJ: Conus venom peptide

pharmacology. Pharmacol Rev 2012, 64(2):259–298.
5. Jones RM, Bulaj G: Conotoxins - new vistas for peptide therapeutics.

Curr Pharm Des 2000, 6(12):1249–1285.
6. Lewis RJ, Garcia ML: Therapeutic potential of venom peptides. Nat Rev

Drug Discov 2003, 2(10):790–802.
7. Layer R, McIntosh J: Conotoxins: therapeutic potential and application.

Marine drugs 2006, 4(3):119–142.
8. Carstens BB, Clark RJ, Daly NL, Harvey PJ, Kaas Q, Craik DJ: Engineering

of conotoxins for the treatment of pain. Curr Pharm Des 2011,
17(38):4242–4253.

9. Olivera BM: Conus peptides: biodiversity-based discovery and exogenomics.
The Journal of biological chemistry 2006, 281(42):31173–31177.

10. Marshall J, Kelley WP, Rubakhin SS, Bingham JP, Sweedler JV, Gilly WF:
Anatomical correlates of venom production in Conus californicus. Biol Bull
2002, 203(1):27–41.

11. Safavi-Hemami H, Young ND, Williamson NA, Purcell AW: Proteomic
interrogation of venom delivery in marine cone snails: novel
insights into the role of the venom bulb. J Proteome Res 2010,
9(11):5610–5619.

12. Biggs JS, Olivera BM, Kantor YI: Alpha-conopeptides specifically expressed
in the salivary gland of Conus pulicarius. Toxicon 2008, 52(1):101–105.

13. Espiritu DJ, Watkins M, Dia-Monje V, Cartier GE, Cruz LJ, Olivera BM:
Venomous cone snails: molecular phylogeny and the generation of toxin
diversity. Toxicon 2001, 39(12):1899–1916.

14. Kaas Q, Westermann JC, Craik DJ: Conopeptide characterization and
classifications: an analysis using ConoServer. Toxicon 2010,
55(8):1491–1509.

15. Biggs JS, Watkins M, Puillandre N, Ownby JP, Lopez-Vera E, Christensen S,
Moreno KJ, Bernaldez J, Licea-Navarro A, Corneli PS, et al: Evolution of
Conus peptide toxins: analysis of Conus californicus Reeve, 1844.
Mol Phylogenet Evol 2010, 56(1):1–12.

16. Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ: ConoServer: updated content,
knowledge, and discovery tools in the conopeptide database.
Nucleic acids research 2012, 40:D325–330.

17. Puillandre N, Koua D, Favreau P, Olivera BM, Stocklin R: Molecular
phylogeny, classification and evolution of conopeptides. Journal of
molecular evolution 2012, 74(5–6):297–309.

18. Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ: Deep venomics
reveals the mechanism for expanded peptide diversity in cone snail
venom. Molecular & cellular proteomics: MCP 2013, 12(2):312–329.

19. Luo S, Christensen S, Zhangsun D, Wu Y, Hu Y, Zhu X, Chhabra S, Norton
RS, McIntosh JM: A novel inhibitor of alpha9alpha10 nicotinic
acetylcholine receptors from Conus vexillum delineates a new conotoxin
superfamily. PloS one 2013, 8(1):e54648.

20. Aguilar MB, Ortiz E, Kaas Q, Lopez-Vera E, Becerril B, Possani LD, de la Cotera
EP: Precursor De13.1 from Conus delessertii defines the novel G gene
superfamily. Peptides 2013, 41:17–20.

21. Ye M, Khoo KK, Xu S, Zhou M, Boonyalai N, Perugini MA, Shao X, Chi C,
Galea CA, Wang C, et al: A helical conotoxin from Conus imperialis has a
novel cysteine framework and defines a new superfamily. The Journal of
biological chemistry 2012, 287(18):14973–14983.

22. Kaas Q, Westermann JC, Halai R, Wang CK, Craik DJ: ConoServer, a
database for conopeptide sequences and structures. Bioinformatics
(Oxford, England) 2008, 24(3):445–446.

http://sourceforge.net/p/conosorter
http://sourceforge.net/p/conosorter
http://www.biomedcentral.com/content/supplementary/1471-2164-14-708-S1.eps
http://www.biomedcentral.com/content/supplementary/1471-2164-14-708-S2.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-708-S3.eps
http://www.biomedcentral.com/content/supplementary/1471-2164-14-708-S4.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-708-S5.pdf


Lavergne et al. BMC Genomics 2013, 14:708 Page 12 of 12
http://www.biomedcentral.com/1471-2164/14/708
23. Haack JA, Rivier J, Parks TN, Mena EE, Cruz LJ, Olivera BM: Conantokin-T: A
gamma-carboxyglutamate containing peptide with N-methyl-d-aspartate
antagonist activity. The Journal of biological chemistry 1990, 265(11):6025–6029.

24. McIntosh JM, Ghomashchi F, Gelb MH, Dooley DJ, Stoehr SJ, Giordani AB,
Naisbitt SR, Olivera BM: Conodipine-M, a novel phospholipase A2 isolated
from the venom of the marine snail Conus magus. The Journal of
biological chemistry 1995, 270(8):3518–3526.

25. Violette A, Leonardi A, Piquemal D, Terrat Y, Biass D, Dutertre S, Noguier F,
Ducancel F, Stocklin R, Krizaj I, et al: Recruitment of glycosyl hydrolase
proteins in a cone snail venomous arsenal: further insights into
biomolecular features of Conus venoms. Marine drugs 2012, 10(2):258–280.

26. Biggs JS, Rosenfeld Y, Shai Y, Olivera BM: Conolysin-Mt: a Conus peptide
that disrupts cellular membranes. Biochemistry 2007, 46(44):12586–12593.

27. Dutertre S, Lumsden NG, Alewood PF, Lewis RJ: Isolation and
characterisation of conomap-Vt, a D-amino acid containing excitatory
peptide from the venom of a vermivorous cone snail. FEBS Lett 2006,
580(16):3860–3866.

28. Chen P, Dendorfer A, Finol-Urdaneta RK, Terlau H, Olivera BM: Biochemical
characterization of kappaM-RIIIJ, a Kv1.2 channel blocker: evaluation of
cardioprotective effects of kappaM-conotoxins. The Journal of biological
chemistry 2010, 285(20):14882–14889.

29. Imperial JS, Chen P, Sporning A, Terlau H, Daly NL, Craik DJ, Alewood PF,
Olivera BM: Tyrosine-rich conopeptides affect voltage-gated K+ channels.
The Journal of biological chemistry 2008, 283(34):23026–23032.

30. Pisarewicz K, Mora D, Pflueger FC, Fields GB, Mari F: Polypeptide chains containing
D-gamma-hydroxyvaline. J Am Chem Soc 2005, 127(17):6207–6215.

31. Violette A, Biass D, Dutertre S, Koua D, Piquemal D, Pierrat F, Stocklin R, Favreau
P: Large-scale discovery of conopeptides and conoproteins in the
injectable venom of a fish-hunting cone snail using a combined proteomic
and transcriptomic approach. Journal of proteomics 2012, 75(17):5215–5225.

32. Cruz LJ, de Santos V, Zafaralla GC, Ramilo CA, Zeikus R, Gray WR, Olivera BM:
Invertebrate vasopressin/oxytocin homologs: characterization of
peptides from Conus geographus and Conus striatus venoms. The Journal
of biological chemistry 1987, 262(33):15821–15824.

33. Maillo M, Aguilar MB, Lopez-Vera E, Craig AG, Bulaj G, Olivera BM, de la
Cotera EP H: Conorfamide, a Conus venom peptide belonging to the
RFamide family of neuropeptides. Toxicon 2002, 40(4):401–407.

34. Jimenez EC, Olivera BM, Gray WR, Cruz LJ: Contryphan is a D-tryptophan-
containing Conus peptide. The Journal of biological chemistry 1996,
271(45):28002–28005.

35. Craig AG, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W,
Dykert J, Richelson E, Navarro V, et al: Contulakin-G, an O-glycosylated
invertebrate neurotensin. The Journal of biological chemistry 1999,
274(20):13752–13759.

36. Hu H, Bandyopadhyay PK, Olivera BM, Yandell M: Characterization of the
Conus bullatus genome and its venom-duct transcriptome. BMC
Genomics 2011, 12:60.

37. Terrat Y, Biass D, Dutertre S, Favreau P, Remm M, Stocklin R, Piquemal D,
Ducancel F: High-resolution picture of a venom gland transcriptome:
case study with the marine snail Conus consors. Toxicon 2012, 59(1):34–46.

38. Lluisma AO, Milash BA, Moore B, Olivera BM, Bandyopadhyay PK: Novel
venom peptides from the cone snail Conus pulicarius discovered
through next-generation sequencing of its venom duct transcriptome.
Mar Genomics 2012, 5:43–51.

39. Hu H, Bandyopadhyay PK, Olivera BM, Yandell M: Elucidation of the molecular
envenomation strategy of the cone snail Conus geographus through
transcriptome sequencing of its venom duct. BMC Genomics 2012, 13(1):284.

40. Koua D, Brauer A, Laht S, Kaplinski L, Favreau P, Remm M, Lisacek F, Stocklin
R: ConoDictor: a tool for prediction of conopeptide superfamilies. Nucleic
acids research 2012, 40:W238–241.

41. Laht S, Koua D, Kaplinski L, Lisacek F, Stocklin R, Remm M: Identification
and classification of conopeptides using profile Hidden Markov Models.
Biochim Biophys Acta 2012, 1824(3):488–492.

42. Update on activities at the universal protein resource (UniProt) in 2013.
Nucleic acids research 2013, 41:D43–47.

43. Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR: Intraspecific
variation of venom injected by fish-hunting Conus snails. The Journal of
experimental biology 2005, 208(Pt 15):2873–2883.

44. Dutertre S, Biass D, Stocklin R, Favreau P: Dramatic intraspecimen
variations within the injected venom of Conus consors: an unsuspected
contribution to venom diversity. Toxicon 2010, 55(8):1453–1462.
45. Abdel-Rahman MA, Abdel-Nabi IM, El-Naggar MS, Abbas OA, Strong PN:
Intraspecific variation in the venom of the vermivorous cone snail Conus
vexillum. Comparative biochemistry and physiology Toxicology &
pharmacology: CBP 2011, 154(4):318–325.

46. Rivera-Ortiz JA, Cano H, Mari F: Intraspecies variability and conopeptide profiling
of the injected venom of Conus ermineus. Peptides 2011, 32(2):306–316.

47. Balzer S, Malde K, Jonassen I: Systematic exploration of error sources in
pyrosequencing flowgram data. Bioinformatics (Oxford, England) 2011,
27(13):i304–309.

48. Huang Y, Niu B, Gao Y, Fu L, Li W: CD-HIT Suite: a web server for
clustering and comparing biological sequences. Bioinformatics (Oxford,
England) 2010, 26(5):680–682.

49. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW,
Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic
acids research 2009, 37:W202–208.

50. National Center for Biotechnology Information (NCBI) Documentation of the
BLASTCLUST-algorithm. http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/
blastlab.html.

51. Lavergne V, Taft RJ, Alewood PF: Cysteine-rich mini-proteins in human
biology. Current topics in medicinal chemistry 2012, 12(14):1514–1533.

52. Eddy SR: A new generation of homology search tools based on
probabilistic inference. Genome Inform 2009, 23(1):205–211.

53. Eddy SR: Accelerated profile HMM searches. PLoS Comput Biol 2011,
7(10):e1002195.

54. Johnson LS, Eddy SR, Portugaly E: Hidden Markov model speed heuristic
and iterative HMM search procedure. BMC Bioinforma 2010, 11:431.

55. Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal
peptides from transmembrane regions. Nature methods 2011, 8(10):785–786.

doi:10.1186/1471-2164-14-708
Cite this article as: Lavergne et al.: Systematic interrogation of the Conus
marmoreus venom duct transcriptome with ConoSorter reveals 158
novel conotoxins and 13 new gene superfamilies. BMC Genomics
2013 14:708.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Identification and classification of known conopeptides
	Analysis of Conus marmoreus venom duct transcriptome

	Discussion
	Conclusions
	Methods
	Training set
	ConoSorter pipeline
	Analysis of the mRNA pool isolated from Conus marmoreus venom gland

	Availability of supporting data
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


