
HAL Id: hal-02306930
https://hal.science/hal-02306930

Submitted on 7 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Involvement of the cysteine-rich head domain in
activation and desensitization of the P2X1 receptor
Éva Lörinczi, Yogesh Bhargava, Stephen Marino, Antoine Taly, Karina
Kaczmarek-Hájek, Alonso Barrantes-Freer, Sébastien Dutertre, Thomas

Grutter, Jürgen Rettinger, Annette Nicke

To cite this version:
Éva Lörinczi, Yogesh Bhargava, Stephen Marino, Antoine Taly, Karina Kaczmarek-Hájek, et al..
Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor.
Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (28),
pp.11396-11401. �10.1073/pnas.1118759109�. �hal-02306930�

https://hal.science/hal-02306930
https://hal.archives-ouvertes.fr


Involvement of the cysteine-rich head domain in
activation and desensitization of the P2X1 receptor
Éva Lörinczia,1, Yogesh Bhargavab,2, Stephen F. Marinob,c,2,3, Antoine Talyd,2, Karina Kaczmarek-Hájeka,
Alonso Barrantes-Freera, Sébastien Dutertree, Thomas Grutterd, Jürgen Rettingerb, and Annette Nickea,c,4

aDepartment of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany; bDepartment of
Biophysical Chemistry, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; cDepartment of Neurochemistry, Max Planck Institute for Brain
Research, 60528 Frankfurt, Germany; dLaboratoire de Biophysicochimie des Récepteurs Canaux, Unité Mixte de Recherche 7199 Faculté de Pharmacie—
Université de Strasbourg, 67401 Illkirch, France; and eInstitute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia

Edited by Eric Gouaux, Oregon Health & Science University, Portland, OR, and approved May 18, 2012 (received for review November 28, 2011)

P2X receptors (P2XRs) are ligand-gated ion channels activated by
extracellular ATP. Although the crystal structure of the zebrafish
P2X4R has been solved, the exact mode of ATP binding and the
conformational changes governing channel opening and desensiti-
zation remain unknown. Here, we used voltage clamp fluorometry
to investigate movements in the cysteine-rich head domain of the
rat P2X1R (A118-I125) that projects over the proposed ATP binding
site. On substitution with cysteine residues, six of these residues
(N120–I125) were specifically labeled by tetramethyl-rhodamine-
maleimide and showed significant changes in the emission of the
fluorescence probe on application of the agonists ATP and benzoyl-
benzoyl-ATP. Mutants N120C and G123C showed fast fluorescence
decreases with similar kinetics as the current increases. In contrast,
mutants P121C and I125C showed slow fluorescence increases that
seemed to correlate with the current decline during desensitiza-
tion. Mutant E122C showed a slow fluorescence increase and fast
decreasewith ATP and benzoyl-benzoyl-ATP, respectively. Applica-
tion of the competitive antagonist 2′,3′-O-(2,4,6-trinitrophenyl)-
ATP (TNP-ATP) resulted in large fluorescence changes with the
N120C, E122C, and G123C mutants and minor or no changes with
the other mutants. Likewise, TNP-ATP–induced changes in control
mutants distant from the proposed ATP binding site were compara-
bly small or absent. Combined with molecular modeling studies, our
data confirm the proposed ATP binding site and provide evidence
that ATP orients in its binding site with the ribose moiety facing the
solution. We also conclude that P2XR activation and desensitization
involve movements of the cysteine-rich head domain.

P2X receptors (P2XRs) represent a family of nonselective cat-
ion channels gated by extracellular ATP. They are widely dis-

tributed inmammalian tissues and have been shown to be involved
in diverse physiological functions (1). The seven known sub-
units all contain two transmembrane domains linked by a large
extracellular loop. Functional receptors are homo- or hetero-
meric trimers (2, 3).
Based on mutagenesis studies, it has been suggested that con-

served positively charged and aromatic residues are crucial for
ATP binding, presumably by interacting with the negatively
charged phosphate chain of ATP (4–6) and its adenine ring (6),
respectively. We have previously shown that replacement of two of
these residues, K68 and F291, by cysteine residues allows disulfide
cross-linking between neighboring P2X1 subunits and that this
reaction is prevented in the presence of ATP. Based on these data,
we concluded that the ATP binding sites are located at the subunit
interfaces (7, 8). This conclusion is in good agreement with the
positions of the relevant amino acids in the crystal structure of the
unliganded P2X4R from zebrafish (2). This zP2X4 structure re-
vealed an ion channel architecture that resembles a dolphin, with
the transmembrane helices and the extracellular region forming
the fluke and the upper body, respectively. Attached to the body
domain, a head domain, a dorsal fin, and right and left flippers
have been defined. It was suggested that the ATP binding site is
formed by deep intersubunit grooves, which are surrounded by the
conserved residues implicated in ATP binding. These residues are
provided by the body domain and enclosed by the left flipper of
one subunit and the dorsal fin of the neighboring subunit. The

cysteine-rich head domain of the first subunit projects over this
binding site (2). Because the zP2X4 crystal was obtained in the
absence of ATP, the exact mode of agonist binding is unknown.
Likewise, the conformational changes governing channel opening
and desensitization remain elusive.
A powerful method for resolving ligand interactions and struc-

tural rearrangements accompanying the conformational transitions
of channels and transporters is the simultaneous recording of cur-
rent responses and fluorescence changes after site-directed fluo-
rescence labeling by voltage clamp fluorometry (VCF) (9). This
method has the potential to detect electrically silent processes,
such as antagonist binding or recovery from desensitization. A
common structural feature of all vertebrate P2XRs is five con-
served disulfide bridges. Three of these disulfide bridges are
arranged in the head domain (2). Two findings suggest a close
association of this region with ATP binding: (i) the P2X7 subtype
has been found to be constitutively active on ADP ribosylation of
residue R125 located between the first and second conserved
cysteine residues (10), and (ii) a recent report has shown that the
thiol-reactive ATP analog 8-thiocyano-ATP (NCS-ATP) can be
covalently attached to the cysteine-substituted residue N140C in
the head domain of the P2X2R (11). To probe the proximity of the
first intercysteine region to the presumed ATP binding site and
a possible function of the cys-rich region in receptor activation
and/or desensitization, we performed VCF with the fast desensi-
tizing P2X1R expressed in Xenopus oocytes. Our data reveal de-
tails about the implication of the cys-rich head domain in ligand
binding, channel activation, and desensitization of the P2X1R.

Results
Generation and Assembly of Cysteine-Substituted P2X1 Receptor
Mutants. Each of the eight residues in the first intercysteine re-
gion (positions A118 to I125) was exchanged by a cysteine residue
in the hexahistidyl-tagged rat P2X1R. To ensure that the mutant
receptors were correctly folded and functional, our mutations were
done on the background of the naturally occurring 10 cysteine
residues. Because this process bears the risk of receptor misfolding
due to unspecific disulfide cross-linking, we first analyzed the effi-
ciency of surface expression of each mutant by selective labeling
of the resulting plasma membrane receptors with Cy5-conjugated
N-hydroxysuccinimide ester (7), which reacts with primary amines
at the cell surface. As shown by SDS/PAGE analysis in Fig. 1A,
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all mutants generated uniform receptor populations with expres-
sion levels in the plasma membrane that were similar to the levels
of the WT receptor or even higher, showing that the introduced
cysteine residues did not notably influence receptor folding, as-
sembly, or surface transport (Table S1). In addition, two-electrode
voltage clamp analysis of the mutants and WT receptors revealed
similar EC50 values (at most, a 10-fold difference) for ATP, further
confirming that the introduced cysteine residues did not severely
affect receptor function (Fig. 1C and Table S2).

Identification of Tetramethyl-Rhodamine-Maleimide–Accessible Residues
in the Cys-Rich Extracellular Domain. We next used VCF to monitor
the changes in fluorescence intensities of single fluorescent probes
that are specifically attached to free cysteine residues. To identify
residues that are accessible, we incubated all cysteine mutants with
the sulfhydryl-reactive fluorescent dye tetramethyl-rhodamine-
maleimide (TMRM). As depicted in Fig. 1B, no labeling was ob-
served with the WT P2X1R, confirming that all endogenous cys-
teine residues are oxidized or buried within the protein (2, 12, 13).
In contrast, six of eight cysteine substitutions were specifically la-
beled by TMRM.TMRM labeling did not notably change theATP
sensitivity of the mutants (Table S2), indicating that the modifi-
cations do not impose any steric hindrance with ATP or residues
involved in receptor activation or that the flexible linker allows the
required movements. It has to be noted, however, that small
changes in binding affinity would not lead to changes in the EC50
value because of the fast and long-lasting desensitization (14).

Different Positions in the C1–C2 Intercysteine Stretch Sense Different
Changes in Fluorophore Environment. Simultaneous recording of
current responses and fluorescence on application of 10 μMATP
showed pronounced fluorescence changes of between 2.7% and
6.1% upon receptor activation in all labeled mutants (Table S3).
Based on their directions and time courses, the fluorescence
changes could be divided into three groups. Mutants N120C and
G123C showed a decrease in fluorescence on ATP application,
and these fluorescence changes were fast and seemed to be
complete when peak currents where reached (Fig. 2A). Mutant
G124C showed a fast fluorescence increase (Fig. 2A). Mutants
P121C, E122C, and I125C displayed slower ATP-induced fluo-
rescence increases that reached a steady state only several sec-
onds after the peak current response (Fig. 2B). A small initial
fluorescence decrease generally preceded this signal (Fig. S1A,
arrows). After the washout of ATP, the fluorescence signals of all
mutants did not significantly revert within a recording time of
50 s (Fig. S1), even if only short pulses of ATP were applied (Fig.
S2A). This finding is in agreement with both slow unbinding
of ATP and an extremely slow recovery from desensitization
as previously determined (14). Because bleaching of the fluo-
rophore and slow fluorescence run-up/run-down effects biased
longer recordings, the reversibility of the fluorescence changes
was not further investigated. However, the P2X1 E122C mutant
showed a slow reversibility, and the T123C (analogous to I125C
in P2X1) mutant of the nondesensitizing P2X2R revealed a
completely reversible fluorescence signal (Fig. S2B), thus arguing
against an irreversible effect of TMRM.

Analysis of emission spectra before and after application of
ATP revealed superimposable spectra in all mutants, thus ex-
cluding that the fluorescence changes were caused by a shift in
the TMRM emission spectrum (Fig. S3).

Fluorescence Changes in Mutants N120C and G123C Are Associated
with Receptor Activation. To better correlate kinetics of fluores-
cence changes observed with receptor activation or desensitiza-
tion, we determined the time constants for the current and
fluorescence changes (Table S3). With WT and all mutant re-
ceptors, activation time constants between 0.1 ± 0.03 and 1 ±
0.01 s were obtained for the current responses. The respective
desensitization kinetics were, in most mutants, best fitted by a
biexponential function, with faster and slower time constants
ranging from 0.4 ± 0.1 to 2.3 ± 0.4 s and from 2.9 ± 0.4 to 8.3 ±
1.1 s, respectively. Notably, however, the time constants of the
fluorescence changes seen with the N120C, G123C, and G124C
mutants were more similar (0.3 ± 0.1, 0.4 ± 0.04, and 0.3 ± 0.1 s,
respectively) to the activation time constants, whereas in case of
the P121C, E122C, and I125C mutants, they correlated better
with the current desensitization constants. Similar results were
obtained when receptors were activated with 10 μM ATP-γS
(Table S3).We conclude from these data that the N120C, G123C,
and G124C mutants report ligand binding and/or conformational
changes during channel opening, whereas the other mutants re-
port structural rearrangements that are more likely associated
with subsequent processes, such as receptor desensitization. In
support of this interpretation, current and fluorescence changes
start at virtually identical times after ATP application to the
N120C, G123C, and G124C mutants, whereas fluorescence
changes begin with a 200- to 300-ms delay (compared with the
current) in mutants P121C, E122C, and I125C (Fig. 2C).

Mutant E122C Specifically Senses Binding of Benzoyl-Benzoyl-ATP. To
further support this hypothesis, we repeated the above experi-
ments with the partial agonist benzoyl-benzoyl-ATP (Bz-ATP).
Bz-ATP has a similar EC50 value as ATP but has been shown to
induce currents with slower activation times than ATP (15). Here,
we found about twofold slower current activation time con-
stants for Bz-ATP compared with ATP with the N120C (τATP =
0.2 ± 0.03 and τBz-ATP = 0.5 ± 0.04), G123C (τATP = 0.2 ± 0.02
and τBz-ATP = 0.5 ± 0.1), and G124C (τATP = 0.3 ± 0.04 and
τBz-ATP = 0.5 ± 0.1) mutants (Table S3). Likewise, the time
constants of their fluorescence changes were about twofold
slower (N120C: τATP = 0.3 ± 0.1, τBz-ATP = 0.6 ± 0.04; G123C:
τATP = 0.4 ± 0.04, τBz-ATP = 0.8 ± 0.2; G124C: τATP = 0.3 ± 0.1,
τBz-ATP = 0.8 ± 0.1), supporting the close association of their
fluorescence changes with the channel activation process. Un-
expectedly, if activated by Bz-ATP, the fluorescence change of
mutant E122C was reversed from a slowly increasing (τ1 = 2.4 ±
0.4, τ2 = 19.2 ± 1.3) to a fast decreasing (τ1 = 0.9 ± 0.2) signal
that seemed to be more closely associated with the time course of
current activation (Fig. 2 B and D). This reversal of fluorescence
change was accompanied by a threefold increase in the amplitude
of the fluorescence change from 3.9 ± 0.5% on activation with
ATP to 12.4 ± 1.7% with Bz-ATP. The specificity and amplitude
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Fig. 1. Surface expression, TMRM labeling and
functional analysis of cysteine-substituted mutants.
The indicated His-P2X1 constructs were expressed in
Xenopus oocytes and successively labeled with the
(A) amino-reactive fluorescence dye Cy5 (labeling of
surface protein) and (B) TMRM. P2X complexes were
purified by Ni2+-NTA agarose and separated by SDS/
PAGE. Gels were directly scanned with a fluores-
cence scanner. Statistical analysis is in Table S1. (C)
Normalized dose–response curves for ATP of WT and
single cysteine mutant receptors. Lines represent
nonlinear curve fits of the Hill equation to the data
(for EC50 values and Hill coefficients) (Table S2). Error
bars represent SE of 5–11 experiments.
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of this fluorescence change suggest that the TMRM attached to
E122C interacts with the Bz moiety of Bz-ATP and thus, at least
partially, reports binding of Bz-ATP.

Use of the Competitive Antagonist 2′,3′-O-(2,4,6-trinitrophenyl)-ATP
Confirms that Mutants N120C, E122C, and G123C Report Ligand
Binding. To further differentiate whether the fluorescence
changes were reporting ATP binding or subsequent conforma-
tional changes, we made use of the competitive P2X1R antag-
onist 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) that can be
expected to have a similar binding mode as ATP (16). If the
agonist-induced fluorescence changes resulted from conforma-
tional changes associated with channel opening or desen-
sitization, no fluorescence changes would be expected with TNP-
ATP, because it does not induce opening. As seen in Fig. 2F,
TNP-ATP caused large fluorescence decreases for the N120C
(20.3 ± 2.1%), E122C (43.4 ± 2.5%), and G123C (13.5 ± 1.7%)
mutants. Interestingly, the direction and rank order of fluores-
cence amplitudes mirrored the direction and rank order of Bz-
ATP–induced fluorescence amplitudes for these mutants: E122C
(12.4 ± 1.7%) > N120C (9.6 ± 0.7%) > G123C (5.4 ± 0.6%)
(Table S3). In contrast, mutants P121C (3.7 ± 0.2%), G124C
(0%), and I125C (2.3 ± 0.3%) showed only comparably small or
no TNP-ATP–induced fluorescence changes (Fig. 2G). To test if
the large fluorescence changes are caused by a direct TMRM–
ligand interaction, we generated Stern–Volmer plots for the
ligands and N-acetyl-L-tryptophanamide(NATA), which was
used as a model for an amino acid with a strong quenching ef-
ficiency (Fig. S4). The obtained quenching efficiencies (ATP <
NATA < Bz-ATP < TNP-ATP) correlated with the fluorescence
amplitudes of the ligands at the individual mutants, and the
higher efficiencies of Bz-ATP and TNP-ATP compared with
NATA are in line with a direct interaction between Bz-ATP and
TNP-ATP with TMRM. However, the absence of quenching by
ATP indicates that fluorescence changes observed with ATP
report protein movements rather than direct ligand interaction.

Fluorescence Changes in Residues P121C, E122C, and I125C Are
Associated with Receptor Desensitization. After opening of the
ion channel pore, the P2X1R is believed to undergo conforma-
tional changes that lead to the closed desensitized state. Because
the fluorescence changes in mutants P121C, E122C, and I125C
started when the current response reached its maximum and
saturated only clearly after the current peak, we supposed that
they were associated with the desensitization process. However,
the time constants of desensitization and the respective fluo-
rescence changes seemed more complex (Discussion). Never-
theless, both were within the same order of magnitude (Table
S3). In particular, mutant E122C, which has a 10-fold reduced
ATP sensitivity and shows the slowest desensitization of these
mutants on application of 10 μM ATP, also has the slowest
fluorescence change. As expected, the desensitization, as de-
termined by the fluorescence change, became faster if a saturat-
ing ATP concentration (100 μM) was used (Table S3).

Positions of the Cys Substitutions in a P2X1 Homology Model. The
investigated amino acid sequence varies considerably in both
length and sequence between the seven P2X subunits. To obtain
an idea about the dimensions of the supposed ATP binding site
and the distance and orientation of the cys-rich head domain in
the P2X1R, we generated homology models for each of the
aforementioned P2X1 mutants using the crystal structure of the
zP2X4R as a template. In these models, the stretch between
C117 and C126 forms a loop that reaches over the ATP binding
site and all introduced cysteines except for E119C are predicted
to be solvent-accessible (Fig. 3A). In agreement with the exper-
imental data, docking of TMRM to the individual cysteine
mutants (Fig. 3 B and C) revealed at least two poses that should
allow the reaction with the side chain for all models except for
the solvent-inaccessible E119C mutant and the A118C mutant,
in which only one pose was identified. To further interpret our
data, we measured the distance between the maleimide moiety of
the docked TMRM and residue F188 (homologous to residue
L186 in the P2X2R) as a marker for the ATP binding site (11).
This measurement takes into account the flexibility of TMRM
that should explore a cone in space after being fixed to the receptor
and thus, gives a rough idea of possible interactions of TMRM
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Fig. 2. Comparison of current traces and fluorescence changes induced by
ATP and ATP analogs. TMRM-labeled oocytes expressing the indicated His-
P2X1 cysteine mutants were analyzed by VCF at −60 mV. Representative
recordings of simultaneous current and fluorescence traces are shown for
(A–C) 10 μM ATP, (D and E) 10 μM Bz-ATP, and (F and G) 300 nM TNP-ATP.
(C) Representative recordings at an expanded time scale to show the latency
between the start of current and fluorescence changes. Dotted lines indicate
current peak times or current onset (C).
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with the ligands. As seen in Fig. 3C and Table 1, two groups
could be differentiated based on the functional and docking
data: (i) mutants N120C, E122C, and G123C with a large TNP-
ATP–induced fluorescence, fast decreasing signal with Bz-ATP,
and distances below 21 Å and (ii) mutants P121C and I125C with
small or no TNP-ATP–induced fluorescence changes, slow in-
creasing signals with agonists, and distances above 26 Å. In
contrast to the good correlation between functional and in silico
data found for these mutants, unexpected results were obtained
with the G124C mutant. Despite the fact that the 124C residue
showed clear TMRM labeling and the model showed convincing
poses for TMRM docking in a distance less than 20Å from
the F188 residue, no fluorescence changes were observed on
TNP-ATP binding (Fig. 2G), suggesting that the residue does not
interact with ligands. In contrast to the ATP-induced

fluorescence increases of the P121C and I125C mutants, how-
ever, these changes were fast, indicating that they report
channel opening.

Additional Validation of the Model and Differentiation of
Fluorescence Changes Associated with Ligand Binding, Channel
Opening, and Desensitization. Because most investigated residues
are close to the ligand binding site, it is difficult to exclude that
a change in TMRM fluorescence intensity is caused by or af-
fected by quenching of the fluorophore by the ligand. To clearly
isolate fluorescence changes associated with protein movements
only and further validate our model, we generated three more
mutants in or close to the cys-rich domain (Fig. 3). In the W164C
mutant, just before the last cysteine in the cys-rich domain, the
cysteine residue is predicted to face away from the ATP binding
site. In agreement with this finding, this mutant showed no sig-
nificant signal with TNP-ATP but a slow fluorescence increase
with ATP (Fig. 4A and Fig. S5). Thus, it most likely reports the
desensitization movement of the head domain only. The muta-
tion G115C (Fig. 4B) lies two residues before the first cysteine
residue of the cys-rich head domain and according to our model,
over 30 Å away from residue F188 that is used as marker for the
ATP binding site. As expected, it showed no fluorescence change
with TNP-ATP. However, it revealed a fast fluorescence increase
with ATP and therefore, most likely reports channel opening. A
third mutation, R139C, was generated in the middle of the cys-
rich domain, being located at a similar distance from residue
F188 as the N120C, E122C, and G123C mutations and accord-
ingly, produced virtually identical fluorescence changes with
TNP-ATP (Fig. 4C) and Bz-ATP (Table S3). In further support
of our hypothesis that these fluorescence changes are, at least
partly, caused by direct quenching by the ligand, small or no
fluorescence changes with TNP-ATP were observed with five of
six (L80C, I144C, K221C, S245C, F297C, and N303C) additional
control mutants in regions distant from the ligand binding site
(Fig. S6). In the S245C mutant, fluorescence changes of 4.4 ±
0.8% were observed for TNP-ATP. However, this change is
clearly smaller than the changes observed for the N120C, E122C,
and G123C mutants and suggests movement of this protein do-
main during ligand binding.

Discussion
In this study, we used VCF to determine amino acid residues in
the fast desensitizing P2X1R that monitor ligand binding and
conformational changes during channel opening and desensiti-
zation. Based on the findings summarized in Table 1 and discussed
below, we conclude that the cys-rich head domain undergoes
substantial movements during P2X1R opening and desensitiza-
tion. In addition, we show that the substituents at the ribose
moiety of the ATP analogous ligands Bz-ATP and TNP-ATP are
specifically detected by TMRM attached to position 122 and thus,
provide evidence that this part of the ATP molecule is solvent-
accessible rather than buried inside the ATP binding cleft. Finally,
our results confirm that the intersubunit pockets seen in the crystal
structure indeed represent the ATP binding sites (11, 17).

Correlation of Fluorescence Time Courses with Channel Activation and
Desensitization. The simplest P2XR activation scheme leads from
the resting closed (R) state through the agonist bound closed
state (C) and agonist-activated open state (O) to the desensitized
closed receptor (D):

ðaÞ ðbÞ ðcÞ
RþATP ↔ CðATPÞ ↔ OðATPÞ ↔ DðATPÞ:

While the current signals indicate the functional states of the re-
ceptor (closed/open), changes in fluorescence can also report elec-
trically silent ligand interactions or structural rearrangements in
the protein. We propose that different mutants sense conforma-
tional changes correlating with distinct transitions (a, b, and c) in
the above scheme. The fact that the fluorescence changes in
mutants G115C, N120C, G123C, and G124C begin simultaneously
with the currents and reach steady state by the time that the cur-
rent responses reach their peak values implies that these changes

C 

B 

A 

180° 

Fig. 3. Homology and docking models of the P2X1 receptor. (A) Surface
representation of the head domain showing the position of the TMRM-in-
accessible A118C and E119C residues. (B) Model of the proposed intersubunit
ATP binding site showing the TMRM-accessible cysteine-substituted residues.
ATP was docked in the proximity of F188 (blue). This constraint was used,
because the docking was not robust because of the large binding site. (C)
Model of the cys-rich P2X1 head domain with docked TMRM and ATP.
TMRM docked to residues that were associated with ligand binding and
desensitization are presented in green and red, respectively. TMRM bound
to residue 124 is shown in cyan. Residues Q142 and F188 (homologous to
P2X2 N140 and L186 identified by affinity labeling) are in yellow.
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correlated directly with ligand binding and/or conformational
changes induced by ligand binding (induced fit) and/or confor-
mational changes during opening of the ion channel pore (a or b).
The delayed (compared with the current) and slower changes in
mutants P121C and I125C seemed to report subsequent move-
ments, most likely desensitization of the receptor (c). The unclear
correlation of time constants and in some cases, complex kinetics
of the fluorescence changes (e.g., smaller changes in opposite di-
rection of the dominant signal that were regularly observed with
some of these mutants such as I125C) imply that parallel processes
(onset of desensitization while some receptors are still activating,
ligand interactions) are reported to different extents. This is also
suggested by the shift in the fluorescence time constant of the
P121C mutant on shorter ATP application (Fig. S2A and Table S3)
and would be expected because of the close distance of the mu-
tated loop to the binding site and the high flexibility of the whole
loop domain. Additionally, recordings might be compromised by
the limited speed of solution exchange in the VCF setup (SI
Materials and Methods) and the fact that more channels are re-
corded electrophysiologically than are imaged (Fig. S2B). How-
ever, a clear and reproducible distinction between fast (a and b)
and slow responses (c) is possible.

Specificity of Results/Antagonist Data. We used the competitive
antagonist TNP-ATP to further discriminate between fluores-
cence changes that were caused by ligand-induced fluorophore
quenching (a) and conformational changes associated with
channel opening (b) and/or desensitization (c). Mutants G115C,
P121C, G124C, I125C, and W164C as well as six control mutants
showed comparably small (2.3–4.4%) or no fluorescence changes
with TNP-ATP. All other mutants revealed large fluorescence
decreases (13.5–43.4%) in the following rank order: E122C >
R139C > N120C >G123C. These amplitudes are unusually high,
which would be expected in the case of a direct interaction be-
tween the TMRM and the strongly quenching TNP moiety. In
support of this hypothesis, a similar rank order of fluorescence

changes and increased fluorescence amplitudes compared with
the full agonist ATP (2.7–5.1%) were observed with the partial
agonist Bz-ATP (5.4–12.4%), which also carries an aromatic
substitution at the ribose moiety and is able to efficiently quench
the TMRM fluorescence. Furthermore, the rank order of
quenching efficiencies of ligands reflected the amplitudes of the
ligand-induced fluorescence decreases at these mutants (Fig. S4).
We, therefore, propose that residues R139C, N120C, E122C, and
G123C detect mainly ligand binding (a) in the case of Bz-ATP
and TNP-ATP. Because ATP did not quench, the fluorescence
changes observed with ATP are caused by protein movements.
We cannot exclude that TNP-ATP also induces conformational

changes (e.g., induced fit) during ligand binding (a). In fact, TNP-
ATP caused clear fluorescence changes in mutant S245C that is at
least 25 Å away from the supposed ligand binding site, and it has
even been shown to act as an agonist at a P2X2 mutant with fa-
cilitated channel gating (16). The small fluorescence changes
observed with mutants P121C and I125C might also reflect such
movements. In contrast, these same mutants and the more distant
W164C mutant showed clear fluorescence changes with all ago-
nists, thus further showing that they report primarily protein
movements and that substantial movements of the head domain
occur during channel desensitization. Likewise, the absence of
significant TNP-ATP fluorescence changes in the distant G115C
mutant and the G124C mutant suggests that no direct interaction
with the ligand occurs. These mutants showed fast agonist-in-
duced fluorescence changes, indicating that they report move-
ments of the head domain associated with channel opening (b). A
potential explanation for the unexpected absence of TNP-in-
duced fluorescence change with the G124C mutant could be that
the attached TMRM does not experience a shift in the dielectric
constant because it interacts with a different part of the ligand or
because two parallel effects that cause an increase and a decrease
in fluorescence (e.g., moving away from a quenching residue and
towards a quenching residue) occur at the same time. Also, it has
to be considered that the distances to the ligand binding site in
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Fig. 4. Current traces and fluorescence changes of TMRM-
labeled mutants that were rationally planned based on a ho-
mology model. Recordings were made on application of ago-
nist (10 μM ATP) or antagonist (300 nM TNP-ATP). (A) W164C,
(B) G115C, and (C) R139C. Dotted lines indicate the current
peak times.

Table 1. Summary of fluorescence changes and modeling data

115C 120C 121C 122C 123C 124C 125C 139C 164C

ATP ⇑ Fast ⇓ Fast ⇑ Slow ⇑ Slow ⇓ Fast ⇑ Fast ⇑ Slow ⇓ Fast ⇑ Slow
Bz-ATP ⇑ Fast ⇓ Fast ⇑ Slow ⇓ Fast ⇓ Fast ⇑ Fast ⇑ Slow ⇓ Fast ⇑ Slow
TNP-ATP Small Large Small Large Large — Small Large —

Distance (Å) maleimide
To F188 31.7 20 29.3 20.4 17.2 19.6 26.7 20.8 21.7
To K68 28.4 19.6 29.3 21.1 18.8 20.6 27.7 20.9 18.7

Reported process 2 1/2 3 1/3 1/2 2 3 1/2 3

Reported processes refer to (1) ligand binding, (2) channel opening, and (3) desensitization. Small and large
responses are below 4% and above 10%, respectively. Note that the distance for W164C is misleading, because
the side chain points away from the ligand binding site. Ability to detect ligand binding is dependent on
quenching efficiency of the ligand. ⇑ and ⇓ indicate ΔF increase and decrease, respectively.
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our homology model were measured from the maleimide moiety,
and specific directions of the fluorescent TMR part were not
considered. Thus, it is also possible that the tilt of the C124 side
chain compared with the neighboring G123 residue is enough to
prevent the interaction.

Homology Modeling and Docking of ATP. Our P2X1 homology
model is largely supported by the experimental data. Docking
studies with ATP have been difficult because of the large
dimensions of the cleft supposed to constitute the ATP binding
site. The location of ATP in our docking model is supported by
the finding that mutants N120C and R139C, which are located at
two ends of the head domain, show almost identical fluorescence
changes both in quality and quantity, suggesting similar inter-
actions with the ligands. In support of this model, the cysteine
side chains introduced in these mutants are oriented to residue
F188, and their distance to this residue is almost identical.
Our data imply an ATP binding mode in which its ribose moiety

faces the solution and the head domain. Such an orientation of
ATP is compatible with a P2X2 docking model that was de-
termined based on the covalent attachment of NCS-ATP to resi-
due L186 of the receptor (11). Our model also supports a docking
model for Bz-ATP in the human P2X1R binding site, which has
been proposed based on substituted cysteine accessibility studies
(17) and in which the Bz-Bzmoiety faces towards the head domain.
However, these models are based on the closed receptor confor-
mation. Our results clearly show an agonist-induced movement of
the head domain, which we suggest moves down to ATP. This
suggestion has also been proposed by two independent reports (18,
19), and was confirmed by the crystal structure of the ATP-bound
zP2X4R (20), which were published while this work was under
revision. The zP2X4 structure also fully justifies restriction of ATP
binding to residue F188 in our P2X1model. Additional studies are
needed to identify the amino acid residues that transmit this move-
ment to the transmembrane domains and the specific mechanism
causing closure of the channel during desensitization.

Conclusion
In summary, using VCF, we showed that the cys-rich head do-
main is involved in both channel activation and desensitization.
In addition, we confirmed the proposed localization of the ATP
binding site and not only identified additional residues close to
the ATP binding site but also determined positions that could
specifically differentiate between ATP analogs. Use of this method
on receptor subtypes with different pharmacology, pore opening,

and desensitization behavior will help to validate homology and
docking models and contribute to elucidation of the channel
activation and desensitization process and the determinants of
subtype-specific ligand binding.

Materials and Methods
cDNA Constructs and cRNA Synthesis. Construction of the His-tagged rat
P2X1R and mutants has been described (3, 7). Capped RNA was synthesized
with the SP6 Message Machine kit (Ambion).

Oocyte Injection and Protein Labeling. X. laevis oocytes were prepared and la-
beled with Cy5 N-hydroxysuccinimide ester as described (3, 7). For cysteine-
specific fluorescence labeling, oocytes were incubated for 15 min in the dark
and on ice in 5 μM TMRM (Molecular Probes) in ND96. Oocytes were sub-
sequently washed and extracted or kept on ice (<1 h) until used for recording.

Purification of Hexahistidyl-Tagged Proteins and SDS/PAGE. Protein complexes
containing His-tagged P2X subunits were purified from dodecylmaltoside
extracts of Xenopus oocyte, separated by SDS/PAGE, and analyzed as de-
scribed (3, 7).

Electrophysiological Recordings. Two-electrode voltage clamp recordings
at −60 mV were performed as described (7, 14) using a TEC-05 amplifier (NPI
Electronics), low pass filtered at 100 Hz, and sampled at 200 Hz. VCF re-
cordings were performed principally as described (21) using an Axiovert 200
inverted fluorescence microscope equipped with a 20× Neofluar objective
(N.A. = 0.75, working distance = 2 mm) and the BP545/25, FT570, BP605/70
filter set (Carl Zeiss MicroImaging). Fluorescence was recorded with a Hama-
matsu SN5973 photodiode and an FDU-2 fluorescence detection unit moun-
ted to the bottom port (Till Photonics). Data were recorded with CellWorks
software (NPI Electronic) and analyzed with Origin 7.5 software (Microcal).

Homology Modeling. Models for each P2X1 mutant were prepared as de-
scribed (11) using the program Modeler 9v9 (22) and analyzed for solvent
accessibility with the DSSP software (23). Docking was performed with
Autodock vina software (24) using a distance below 5 Å between the thiol
group and the maleimide moiety and correct side chain orientation as
constraints. Figures were prepared with PyMOL (DeLano Scientific LLC).
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Voltage Clamp Fluorometry Recording Chamber. The oocyte was
placed with the animal pole down on a 0.7-mm diameter hole that
separates the upper and lower compartments of the recording
chamber. The upper compartment allows access of the recording
electrodesandwas continuously superfusedwith recording solution.
Ligands were applied by a manifold to the lower compartment,
which is sealed at the bottomby a glass coverslip. The portion of the
oocyte exposed to ligands was totally within the optical field of the
microscope, and therefore, current and fluorescence could be
measured from the same population of receptors.

Speed of Solution Exchange. Our standard two-electrode voltage
clamp (TEVC) setup has previously been reported (1). A sub-
second solution exchange was determined in the present study
at an expressed ether-a-go-go (eag) potassium channel by ex-
changing Na+ against K+ solution at a holding potential of +20
mV (current rise time t10–90% = 0.33 + −0.04 s for a 10–90%
change in holding current). A similar rise time of 0.38 + −0.02
ms was measured when activating the P2X2T123C mutant with
30 μM ATP, indicating that use of this receptor yields a realistic
measure of the speed of solution exchange. Therefore, the
P2X2T123C mutant was used to assess the speed of solution
exchange in the voltage clamp fluorometry (VCF) chamber. As
shown by the fluorescence signal in Fig. S2B, the solution ex-
change in the lower chamber of the VCF setup is finished in
about 1 s (rise time t10–90% = 1.13 + 0.16 s). It has to be noted,
however, that the current rise is slower (t10–90% = 1.73 + −0.09
s), and the current decline is prolonged, most likely because of
spill over of the ligand into the upper compartment. However,
the current rise times observed with our P2X1 mutants are
comparable with values determined before (2) for WT and var-
ious mutant P2X1 receptors by TEVC on oocytes.

Analysis of VCF Data.Mono- or biexponential functions were fitted
to the fluorescent and current traces depending on the quality of
the fits. The following formulas were used for increasing and
decreasing signals, respectively (Eq. S1):

y ¼ y0 þA* expð− ðx− x0Þ=τÞ [S1]

or (Eq. S2)

y ¼ y0 þA1* expð− ðx− x0Þ=τ1Þ þA2* expð− x− x0Þ=τ2 [S2]

and (Eq. S3)

y ¼ y0 þA* ð1− expðð− x− x0Þ=τÞÞ [S3]

or (Eq. S4)

y ¼ y0 þ A1* ð1− expðð− x− x0Þ=τ1ÞÞ
þA2* ð1− expðð− x− x0Þ=τ2ÞÞ: [S4]

Determination of Emission Spectra from Tetramethyl-Rhodamine-
Maleimide–Labeled Oocytes. Fluorescence measurements were per-
formed using a Quanta-Master QM4 spectrofluorometer (PTI).

Single tetramethyl-rhodamine-maleimide (TMRM) -labeled and
washed oocytes were placed in a 3 × 3-mm quartz cuvettete
(Hellma), and their fluorescence emission spectra were measured
inMg2+Oocyte Ringer before and after application of 10 μMATP
or 300 nM 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP). Sam-
ples were excited at 530 nm, and the fluorescence signal intensities
were recorded from 540 to 650 nm in 2-nm steps with an in-
tegration time of 1 s. Data were acquired with Felix32 software
(PTI) and analyzed with Igor Pro (Wavemetrics). Each oocyte was
measured three times to account for position-dependent differ-
ences in the fluorescence intensities, and experiments were re-
peated at least three times for each mutant. Emission spectra
(F/Fmax) were normalized to the peak fluorescence intensity at the
emission wavelengths above 550 nm (Fmax). A ninth-order
polynomial expression was fitted to the data to allow a better
visualization of the emission spectra. In the case of uninjected
TMRM-labeled control oocytes, Fmax corresponded to the
maximum fluorescent value across the whole emission spectrum.

Determination of TMRM Quenching in Solution. The fluorescence
quenching of 1 μMTMRM in Mg2+ oocyte Ringer was measured
at the indicated concentrations of N-acetyl-L-tryptophanamide
(NATA), benzoyl-benzoyl-ATP (Bz-ATP), or ATP (λem = 573
nm, λex = 530 nm). For TNP-ATP, the parameters were adjusted
(λem = 590 nm, λex = 580 nm) to avoid fluorescence bleed
through with TNP-ATP. All quenchers were diluted in Mg2+

Oocyte Ringer, and their final concentrations were determined
by their absorbance at 280, 259, 261, 408, and 554 nm for NATA,
Bz-ATP, ATP, TNP-ATP, and TMRM, respectively (3–7).
Stern–Volmer plots were produced by presenting the ratio F0/F
as a function of the quencher concentration. An equation of the
form F0/F= 1 + Ksv[Q] was fitted to the data, where F0 and F are
the fluorescence intensities in the absence and presence of the
quencher, Ksv is the Stern–Volmer quenching constant, and [Q]
is the quencher concentration. For Stern–Volmer plots with
a negative deviation from linearity, an exponential function was
fitted to the data.

Confocal Microscopy. Fluorescence signals were collected with an
LSM 510 Meta laser scanning confocal microscope (Zeiss) using
a 20× objective (PlanNeofluar 20×/0.50). Single TMRM-labeled
oocytes were placed in a 35-mm μ-dish (Ibidi) in Mg2+ Oocyte
Ringer solution. TMRM was excited at 543 nm, and the emission
was collected at 564–725 nm in 10-nm steps. The images were
acquired in line-scanning mode with a four-time line average,
a pixel time of 1.04 μs, and a pinhole of 10 μm (∼1 Airy unit). To
determine the emission spectrum, a region of interest was
manually delimited around the oocyte membrane, and the av-
erage fluorescence was calculated for each acquisition window
and plotted as a function of the emission wavelength. Emission
spectra were normalized to the maximum fluorescence (Fmax). A
ninth-order polynomial expression was fitted to the data to allow
a better visualization of the emission spectra. Zeiss LSM AIM
software v.2.2.0.121 (Zeiss) was used for image acquisition.
Postacquisition processing was done with the open source image
analysis software FIJI.
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Fig. S1. Examples of VCF recordings with (A) 10 μMATP, (B) 10 μM Bz-ATP, and (C) 300 nM TNP-ATP on an extended time scale. Fits for current and fluorescent
traces are shown as red and black lines, respectively. Current traces were fitted with Eq. S1 (receptor activation) and Eq. S4 (receptor desensitization) in the case
of ATP and Bz-ATP. Fluorescence traces were fitted with Eq. S1 (fluorescence decrease) or Eq. S4 (fluorescence increase) and Eq. S1 (single exponential) or Eq.
S2 (double exponential) in the case of TNP-ATP.

Lörinczi et al. www.pnas.org/cgi/content/short/1118759109 2 of 9

www.pnas.org/cgi/content/short/1118759109


3%
 

F
/F

 
 5

 
A

 

N120C

10 M ATP 

1 s 

5 
A

 

P121C

2%
 

F
/F

 

1 s 

10 M ATP A 

B P2X2T123C 

5 s 

5 
A

 

30 M ATP

C P2X2T123C 

30 M ATP

1.
5%

 
F

/F
5 

A
 

5 s 

Fig. S2. Reversibility of fluorescence signals and speed of solution exchange. (A) Fluorescence changes in P2X1 receptor mutants N120C and P121C on 1-s ATP
(10 μM) pulses. In case of the P121C mutant, the fluorescence change became faster and could be fitted with a single exponential function (Table S3), sug-
gesting that the fluorescence change in this mutant reflects movements during both opening and desensitization and that the shorter ligand application
results in fewer desensitization movements. (B) Recording of a nondesensitizing rP2X2T123C mutant on application of 30 μM ATP in the VCF setup and the
conventional TEVC setup (C). To show the reproducibility, two consecutive recordings are shown. Note that the current traces show slightly slower activation
and much slower deactivation times than the corresponding fluorescent changes. This finding indicates that spillage of small amounts of agonist in the upper
part of the recording chamber activates an additional population of receptors that is not accessible to our fluorometry measurements and for which the
solution exchange is delayed. In the TEVC, setup activation and deactivation are equally fast.
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Fig. S3. Analysis of emission spectra of TMRM-labeled oocytes. (A) The normalized emission spectra (F/Fmax) of TMRM-labeled oocytes were measured by
spectrophotometry (λex = 530 nm) before (black) and after (red) the application of 10 μM ATP (Top and Middle) or 300 nM TNP-ATP (Bottom; n ≥ 3). Uninjected
TMRM-labeled oocytes (blue; n = 4) were used as a negative control (Top Left). (B) Representative confocal images of a TMRM-labeled E122C mutant (Upper Left)
and uninjected (Lower Left) oocytes to show the specific P2X receptor labeling by TMRM. After application of TNP-ATP, no differences were observed in the
normalized emission spectra (F/Fmax) as determined by microscopy. Error bars represent SEM.

Lörinczi et al. www.pnas.org/cgi/content/short/1118759109 4 of 9

www.pnas.org/cgi/content/short/1118759109


A B

Fig. S4. Comparison of quenching efficiencies of ATP, Bz-ATP, TNP-ATP, and NATA. (A) Stern–Volmer plots showing NATA, Bz-ATP, or ATP quenching of 1 μM
TMRM in Oocyte Ringer solution. The emission was measured at 573 nm with a 530 nm excitation. F0 and F represent the TMRM fluorescence intensities before
and after application of the quencher, respectively. A Stern–Volmer (Ksv) constant of 59.7 M−1 was determined for NATA and is in agreement with previously
published data (1). No quenching effect was observed for ATP. (B) Same data as in A but on a different scale to include TNP-ATP, which had much stronger
quenching effect than both Bz-ATP and NATA in the same concentration ranges. Points represent the means of at least three independent experiments. Error
bars represent SEM.
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Fig. S5. Recordings from P2X1 mutants R139C, W164C, and G115C on application of 10 μM ATP and 300 nM TNP-ATP on an extended timescale. Current
recordings were fitted with Eqs. S1 and S4. Fluorescence traces were fitted with Eqs. S1 (R139C with ATP and TNP-ATP) and S3 (W164C and G115C with ATP).
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Fig. S6. Control experiments with P2X1 mutants in regions distant from the ligand binding domain (L80C, I144C, K221C, S245C, F297C, and N303C). (A)
Position of these mutants in the P2X1 homology model. (B) Accessibility of the introduced cysteine residues as determined by labeling with TMRM and SDS/
PAGE analysis. (C) Recordings from P2X1 mutants on application of 10 μM ATP and 300 nM TNP-ATP. Where applicable, averaged dF/F values are shown. The
fluorescence changes in the L80C and S245C mutants suggest movements of these domains during ligand binding. EC50 values (determined from three to four
oocytes per mutant) ranged between 0.6 and 1.5 μM and thus, did not greatly differ from the WT P2X1 receptor.

Table S1. Cy5 and TMRM labeling of cysteine-substituted His-
P2X1 mutants

Normalized Cy5 labeling
(surface expression) N

Normalized TMRM
labeling N

Wt 48 ± 29 6 — —

A118C 33 ± 13 7 — —

E119C 59 ± 30 6 — —

N120C 72 ± 23 7 71 ± 26 6
P121C 31 ± 13 7 40 ± 17 6
E122C 102 ± 44 7 31 ± 8 6
G123C 100 7 100 6
G124C 30 ± 16 7 33 ± 12 6
I125C 38 ± 13 7 84 ± 38 6

Intact oocytes expressing the indicated mutants were sequentially labeled
with amino-reactive Cy5–N-hydroxysuccinimide ester and cysteine-reactive
TMRM. Following purification by Ni2+ nitrilo-triacetic acid (NTA) agarose,
P2X1 protein was separated by SDS/PAGE and quantified by fluorescence
scanning. Fluorescence intensities were normalized to the intensities of
the G123C mutant, which generally revealed the largest signal for both
Cy5 and TMRM.
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Table S2. EC50 values for ATP and Hill coefficients (n) at WT P2X1
and cysteine-substituted P2X1 mutants without and after
labeling by TMRM (n = 4–11)

Mutant EC50 (μM) n EC50 (μM) + TMRM n + TMRM

WT 0.67 ± 0.03 1.07 ± 0.04 Not labeled Not labeled
A118C 0.94 ± 0.05 1.12 ± 0.06 Not labeled Not labeled
E119C 1.56 ± 0.23 1.31 ± 0.21 Not labeled Not labeled
N120C 1.19 ± 0.13 1.14 ± 0.11 1.76 ± 0.08 1.34 ± 0.06
P121C 1.21 ± 0.14 1.09 ± 0.11 1.27 ± 0.19 1.13 ± 0.16
E122C 7.07 ± 0.98 0.88 ± 0.07 9.87 ± 3.4 0.83 ± 0.13
G123C 2.53 ± 0.21 1.46 ± 0.14 2.64 ± 0.16 1.32 ± 0.08
G124C 0.77 ± 0.1 0.99 ± 0.11 0.71 ± 0.04 1.15 ± 0.06
I125C 1.64 ± 0.28 0.79 ± 0.08 0.89 ± 0.06 1.15 ± 0.08
115C 1.02 ± 0.03 1.44 ± 0.05 n.d. n.d.
139C 6.89 ± 1.33 0.89 ± 0.13 n.d. n.d.
164C 14.06 ± 4.9 0.63 ± 0.08 n.d. n.d.

n.d., not determined.
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Table S3. Agonist- and antagonist-induced current responses and fluorescence changes of
TMRM-labeled P2X1R mutants

Agonist I amplitude (μA) ΔF (%) τ Activation (s)
Desensitization (s)

τ1/τ2 τ Δ F (s) n

G115C
ATP −6.5 ± 0.5 2.5 ± 0.3 0.2 ± 0.04 0.5 ± 0.1 0.6 ± 0.1 7

4.6 ± 0.3 5.1 ± 1.2
Bz-ATP −5.9 ± 0.2 2.2 ± 0.2 0.5 ± 0.02 0.8 ± 0.5 0.8 ± 0.6 8

5.4 ± 0.5 2.9 ± 0.1
N120C
ATP −14.4 ± 3.4 −5.1 ± 0.4 0.2 ± 0.03 1 ± 0.1 0.3 ± 0.1 17

5.5 ± 0.5
ATP (1s) −13 ± 2.8 −6.2 ± 1.06 0.3 ± 0.1 1.6 ± 0.04 0.53 ± 0.04 5
ATPγS −13.1 ± 4.5 −3.1 ± 0.5 0.2 ± 0.02 0.8 ± 0.1 0.4 ± 0.1 11

5.3 ± 0.4
Bz-ATP −18.1 ± 3.2 −9.6 ± 0.7 0.5 ± 0.04 1.4 ± 0.3 0.6 ± 0.04 16

10.1 ± 1.3
TNP-ATP −20.3 ± 2.1 2.7 ± 0.2 14

44.4 ± 2.4
P121C
ATP −5.2 ± 1.8 4.2 ± 0.6 1 ± 0.01 0.4 ± 0.1 1 ± 0.1 17

2.9 ± 0.4 9.6 ± 1.2
ATPγS −11.3 ± 5 6.8 ± 1.3 0.2 ± 0.02 1.1 ± 0.3 0.9 ± 0.1 12

4.4 ± 0.5 16.4 ± 1.6
ATP (1s) −13.1 ± 2.3 4.4 ± 0.7 0.3 ± 0.1 1.7 ± 0.2 0.6 ± 0.1 5
Bz-ATP −8.2 ± 1.7 6.5 ± 1.4 0.4 ± 0.06 1.4 ± 0.3 0.8 ± 0.1 7

6.8 ± 0.4 11.7 ± 2.1
TNP-ATP −3.7 ± 0.2 3.8 ± 0.7 10

13.2 ± 1.9
E122C
ATP −8.8 ± 2.2 3.9 ± 0.5 0.2 ± 0.01 1.4 ± 0.2 2.4 ± 0.4 13

8.2 ± 1.1 19.2 ± 1.3
100 μM −6.7 ± 1.75 5.1 ± 1.1 0.1 ± 0.004 1.7 ± 0.4 1.2 ± 0.1 4

9.2 ± 0.9 16.4 ± 1.9
ATPγS −9.5 ± 4.3 5.6 ± 0.6 0.2 ± 0.03 1.8 ± 0.2 2.6 ± 0.5 11

9.4 ± 1.7 17.3 ± 2.6
Bz-ATP −8 ± 2 −12.4 ± 1.7 0.55 ± 0.1 1.6 ± 0,3 0.9 ± 0.2 10

9.6 ± 0.7
TNP-ATP −43.4 ± 2.5 4.9 ± 0.7 9

39.6 ± 8.1
G123C
ATP −19.5 ± 7.02 −2.7 ± 0.3 0.2 ± 0.02 2.3 ± 0.4 0.4 ± 0.04 11

8.3 ± 1.1
ATPγS −20.4 ± 5.7 −3.2 ± 0.4 0.3 ± 0.03 1.05 ± 0.08 0.9 ± 0.1 10

5.25 ± 0.3
Bz-ATP −23.1 ± 4.9 −5.4 ± 0.6 0.5 ± 0.09 1.9 ± 0.2 0.8 ± 0.2 8

8.2 ± 1.6
TNP-ATP −13.5 ± 1.7 4.2 ± 0.8 7

G124C
ATP −5.2 ± 0.6 6 ± 1.1 0.25 ± 0.04 0.8 ± 0.1 0.3 ± 0.1 7

6.8 ± 1.5
Bz-ATP −3 ± 0.4 5.7 ± 1.8 0.5 ± 0.05 1.4 ± 0.18 0.8 ± 0.1 5

6.7 ± 0.8
I125C
ATP −5.1 ± 1.6 6.1 ± 1.2 0.1 ± 0.03 0.5 ± 0.1 1.3 ± 0.2 9

4.2 ± 0.4 9.6 ± 2
ATPγS −4.5 ± 1.6 4.8 ± 1 0.3 ± 0.02 0.7 ± 0.1 1.7 ± 0.3 9

4.8 ± 0.4 16 ± 1.9
Bz-ATP −5.3 ± 1.7 11.55 ± 1.2 0.2 ± 0.03 0.8 ± 0.1 1.2 ± 0.06 9

12 ± 2.5 7.1 ± 0.7
TNP-ATP −2.3 ± 0.3 2.8 ± 0.4 7
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Table S3. Cont.

Agonist I amplitude (μA) ΔF (%) τ Activation (s)
Desensitization (s)

τ1/τ2 τ Δ F (s) n

R139C
ATP −6.3 ± 0.4 −2.8 ± 0.4 0.3 ± 0.03 0.8 ± 0.1 0.8 ± 0.1 7

6.6 ± 0.4
100 μM −8.8 ± 1.1 −4.2 ± 0.2 0.1 ± 0.01 n.d. 0.18 ± 0.1 6
Bz-ATP −4.9 ± 0.52 −10.3 ± 2 0.7 ± 0.1 1.8 ± 0.2 0.7 ± 0.1 9

9.2 ± 0.7
TNP-ATP −25.4 ± 5.3 5 ± 0.7 9

26.8 ± 2.7
W164C
ATP −4.65 ± 0.9 7.1 ± 0.7 0.2 ± 0.02 1.2 ± 0.02 0.7 ± 0.04 9

6.5 ± 0.4 12 ± 1.1
Bz-ATP −4.54 ± 1.4 6.7 ± 0.7 0.7 ± 0.2 1.2 ± 0.1 0.8 ± 0.1 5

6.8 ± 0.4 13.3 ± 2.8

If not otherwise noted, 10 μM ATP, 10 μM ATPγS, 10 μM Bz-ATP, and 300 nM TNP-ATP were applied. n.d., not
determined.

Lörinczi et al. www.pnas.org/cgi/content/short/1118759109 9 of 9

www.pnas.org/cgi/content/short/1118759109

