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We present algorithms for variants of the 3XOR problem with lists consisting of random sparse n-bit vectors. We consider two notions of sparsity: low-density (each bit is independently biased towards zero) and low-weight (the Hamming weight of n-bit vectors is fixed).

We show that the random sparse 3XOR problem can be solved in strongly subquadratic time, namely less than O N 2-operations for a constant > 0. This stands in strong contrast with the regular case, where it has not been possible to have the exponent drop below 2 -o(1).

In the low-density setting, a very simple algorithm even runs in linear time with overwhelming success probability when the density is less than 0.0957. Our algorithms exploit the randomness (and sparsity) of the input in an essential way.

Introduction

Given three lists A, B and C of n-bit strings, the 3XOR problem consists in deciding the existence of (or even finding) a triplet (x, y, z) ∈ A × B × C such that x ⊕ y ⊕ z is equal to a given target, often assumed to be zero (here the ⊕ symbol represents the exclusive-OR or XOR).

In the general setting where the input lists have size N and can be arbitrary, a simple algorithm decides the existence of a 3XOR triplet in time O N 2 , but there is no known way of doing it in O N 2-operations for any constant > 0. Dietzfelbinger, Schlag and Walzer found an algorithm that gains a poly-logarithmic factor over the quadratic algorithm [START_REF] Dietzfelbinger | A subquadratic algorithm for 3xor[END_REF].

3XOR can be seen as a variant of the celebrated 3SUM problem. In 3SUM, the input lists contain integers and we must have x + y + z = 0 over Z. Many geometric problems can be reduced to 3SUM in sub-quadratic time, and those problems are said to be 3SUM-hard [START_REF] Gajentaan | On a class of O(n 2 ) problems in computational geometry[END_REF].

Although the 3XOR problem has enjoyed less interest in the complexity theory field, there exists a few such reductions. For instance, it is a fact that any O N 1+ algorithm for the 3XOR problem with input lists of size N would imply faster-than-expected algorithms for listing triangles in a graph [START_REF] Jafargholi | 3sum, 3xor, triangles[END_REF]. In the other direction, some conditional lower-bounds have been established based on the hypothesis that 3XOR is inherently quadratic: [START_REF] Dietzfelbinger | A subquadratic algorithm for 3xor[END_REF] shows that the offline SetDisjointness and SetIntersection problems cannot be solved in time

O N 2-unless 3XOR can.
Besides being a natural extension of 3SUM, the 3XOR problem has some applications in the cryptanalysis of symmetric encryption schemes. Nandi's attack [START_REF] Nandi | Revisiting Security Claims of XLS and COPA[END_REF] against the COPA mode of authenticated encryption, or the more recent attack against the two-round single-key Even-Mansour cipher by Leurent and Sibleyras [START_REF] Leurent | Low-memory attacks against two-round even-mansour using the 3XOR problem[END_REF] both reduce the problem to solving a large instance of the 3XOR problem.

In the context of cryptanalysis, the attacker has oracle access to three random functions f, g, h whose range is {0, 1} n , and she must output a triplet (i, j, k) such that f (i) ⊕ g(j) ⊕ h(k) = 0 as quickly as possible. In other terms, the attacker is free to choose a target size N , query the oracles and assemble input lists of size N , then solve this instance of the 3XOR problem. In order to minimize the total running time of the attack, the usual approach consists in assembling lists of size N ≈ 2 n/2 , which makes it possible to find a 3XOR triplet in time Õ (N ) by essentially sorting the lists. At this point, there is no known way to solve this "cryptanalytic version" of the 3XOR problem in 2 (0.5-)n operations, for any constant > 0.

Cryptanalytic applications yield a family of 3XOR problems with a distinctive flavor: the input lists consist of uniformly random bit strings. Assuming random inputs is natural in the context of cryptanalysis, and this lead to several algorithms (predating [START_REF] Dietzfelbinger | A subquadratic algorithm for 3xor[END_REF]) gaining a polylogarithmic factor over N 2 and often tailored to specific input sizes [START_REF] Joux | Algorithmic cryptanalysis[END_REF][START_REF] Nikolić | Refinements of the k-tree Algorithm for the Generalized Birthday Problem[END_REF][START_REF] Bouillaguet | Revisiting and improving algorithms for the 3xor problem[END_REF]. This randomness assumption makes the problem simpler, but even in this simpler case it has not yet been possible to obtain a O N 2-algorithm.

Let us also mention that May and Both considered the "approximate 3-list birthday problem": given three lists of N uniformly random n-bit strings, find triplets (x, y, z) in the list such that the hamming weight of x ⊕ y ⊕ z is small [START_REF] Both | The approximate k-list problem[END_REF].

In this paper, we consider an even more favorable setting for the 3XOR problem, where the input lists are both random and sparse. We consider two natural sparse distributions over {0, 1} n , with a sparsity parameter 0 < p < 1/2: Low-density D is the distribution where each bit is drawn independently from the Bernoulli distribution of parameter p.

Motivation.

The two algorithms presented in this paper have no concrete application that we are aware of, either in cryptography or elsewhere. Our initial motivation was the study of the following strategy for the "cryptanalytic flavor" of the 3XOR problem: build three lists of size 2 µn with µ = 5 24 log 2 5 = 0.483..., then discard all vectors of weight = n/4. This result in three smaller lists of expected size ≈ 2 λn , with λ = 5 24 log 2 5 - 

Contributions.

In section 3, we first give the probability that the input actually contains a 3XOR triplet for a given list size N and parameter p in each setting, using a form of the second-moment inequality. To the best of our knowledge, this result was not readily available from the existing literature, not even in the dense case which is cryptographically relevant.

In section 4 we give an algorithm for the low-density 3XOR problem. It discards input vectors whose Hamming weight is above a well-chosen threshold, then searches a solution using the naive quadratic algorithm. This yields the Theorem 1 (low-density). Write: This means that a solution can be found with overwhelming probability in time linear in N for small density (i.e. p < 0.0957, which makes e ≤ 1 in the theorem).

e = 2 + 6 D 2p 2 1-2p+4p 2 , p ln(1 -p)(1 -2p + 4p 2 ) , D(a, p) = a ln a p + (1 -a) ln 1 -a 1 -p . D(
In section 5, we give an algorithm for the low-weight setting, inspired by an algorithm of May and Ozerov [START_REF] May | On computing nearest neighbors with applications to decoding of binary linear codes[END_REF] for Nearest-Neighbor search: it randomly guesses positions where bits of the solution are 1, and uses this guess to reduce the size of the lists. This yields the other

Theorem 2 (low-weight). Write v = p/2 and e = H(3v) + 3v log 2 3 (1 -3v) log 2 (1 -3v) -3v log 2 (4v) -3(1 -2v) log 2 (1 -2v)
.

Assume that N is large enough (in a sense defined precisely in section 5). For any d > e,

there is an algorithm that solves the low-weight random 3XOR problem (with weight np) in time O n 4 N d and fails to reveal a 3XOR triplet present in the input with exponentially small probability as n → ∞.

Figure 1 show the limiting exponents in theorems 1 and 2. We implemented these algorithms ; appendix A presents a somewhat artifical application. 

Preliminaries

Let x = x 1 x 2 . . . x n be an n-bit string (we use "bit string" and "vector" as synonyms). We denote by wt(x) its Hamming weight. We identify a bit string x ∈ {0, 1} n with a subset S ⊆ {1, 2, . . . , n} in the obvious way (i ∈ S ⇔ x i = 1). For instance, with x, y ∈ {0, 1} n , we say that x ⊆ y ("x is contained in y") if (x i = 1) ⇒ (y i = 1), for 1 ≤ i ≤ n. In addition, we define x ↓y ("x projected onto y") to be the subword of x formed by removing all letters where y is one. For instance 0100101 ↓0011001 = 0110 (bits 3, 4 and 7 are removed).

Let A be a list ; |A| denotes the number of elements in A. We say that (x, y, z) is a 

3XOR triplet if x ⊕ y ⊕ z = 0. Let 0 < p < 1/
(x) = -x log 2 (x) -(1 -x) log 2 (1 -x)
, for all 0 < x < 1. The following standard bounds for the binomial coefficient can be derived from Stirling's formula:

2 nH(x) 8nx(1 -x) ≤ n xn ≤ 2 nH(x) 2πnx(1 -x) , (0 < x < 1/2) (1) 
Let X ∼ B(n, p) be a binomial random variable. We make heavy use of tail bounds, notably the Chernoff bound (2) and the tighter classical inequality (3), a proof of which can be found in [START_REF] Arratia | Tutorial on large deviations for the binomial distribution[END_REF] amongst others. Here, D is again the Kullback-Leibler divergence as in theorem 1.

Pr(X ≤ an) ≤ exp - n 2p (p -a) 2 , if a < p (2)
Pr(X ≤ an) ≤ exp -nD(a, p) if a < p.

(3)

Computational Model. We consider a transdichotomous word Random Access Machine (word-RAM) model. In this model, we have access to a machine in which each "memory cell" contains an n-bit word (in other terms, we assume that the machine is large enough to accommodate the instance of the problem at hand). We assume that the usual arithmetic and bit-wise operations on n-bit words, as well as the comparison of two n-bit integers and memory access with n-bit addresses can be done in constant time. We also assume that obtaining the Hamming weight of an n-bit word is an elementary operation.

The Quadratic Algorithm. The simplest possible way to solve the 3XOR problem is the quadratic algorithm (shown as algorithm 1). For all pairs (x, y) ∈ A × B, check if x ⊕ y belongs to C. Each test can be done in constant time if all entries of C have been stored in a suitable data structure beforehand -for instance one could use the optimal static dictionary of [START_REF] Michael | Storing a sparse table with o(1) worst case access time[END_REF], or simply cuckoo hashing [START_REF] Pagh | Cuckoo hashing[END_REF].

Algorithm 1

The simple quadratic algorithm for 3XOR.

1: function QuadraticSetup(C) 2:
Initialize a static dictionary C containing all the bit strings in C return (x, y, x ⊕ y)

8:
return ⊥

The initialization of the dictionary holding C is separated from the rest, because we will subsequently invoke Quadratic3XOR many times with the same C. We assume (using [START_REF] Michael | Storing a sparse table with o(1) worst case access time[END_REF] for instance) that QuadraticSetup takes time O (|C|). Then Quadratic3XOR(A, B, C)

takes time O (|A| × |B|).
The quadratic algorithm works regardless of the sparsity of the input, and as such it does not take advantage of it. It is the only solution, up to logarithmic factors, when the input is dense.

Bounds on the Existence of 3XOR Triplets

Suppose that (G, +) is a group (in additive notation) and assume that three lists A, B and C, each of size N , are made of group elements sampled independently at random according to some distribution Ψ over {0, 1} n (in this paper, ψ is either D or W). Let Y be the random variable that counts the number of triplets (x, y, z)

∈ A × B × C such that x + y + z = 0
(taken over the random choice of A, B and C). Assuming that the expected value of Y is bounded away from zero, a concentration inequality would yield a lower-bound on the probability that the input lists contain at least one triplet that sums to zero. The problem is that the N 3 triplets in A × B × C are not independent and thus classical techniques such as the Chernoff bound do not apply. A standard, but slightly less immediate argument is necessary to take this dependence into account. Let x, y, z, u, v denote five independent random variable distributed according to Ψ, and set:

ρ = Pr(x + y + z = 0) σ = Pr(x + y + z = 0 | u + v + z = 0) τ = Pr(x + y + z = 0 | u + y + z = 0)
Using a form of the second-moment inequality, we obtain:

Lemma 3. E Y = N 3 ρ and 1 -N 3 ρ ≤ Pr(Y = 0) ≤ 1 ρ 3σ N + 3τ N 2 + 1 N 3 .
Specializing the result for the group of n-bit strings with the XOR operation and the two distributions of interest to us yields the Theorem 4. With the above notations, if the input distribution is ψ ∈ {D, W}, we have:

1 -E Y ≤ Pr (Y = 0) ≤ 3 (E Y ) 1/3 + 3 (E Y ) 2/3 + 1 E Y . ( 4 
)
If ψ = D, then ρ = (1 -p) n (1 -2p + 4p 2 ) n .
If ψ = W, then we have the following bound:

π 4 3/2 ≤ ρ ρ ≤ 4 π 3/2 with ρ = 8 (1 -2v) 3 1 -3v 1/2 2 n[3v log 2 3+H(3v)-3H(2v)]
Both proofs are in appendix B.

Implications

First of all, when the input is random, the 3XOR problem may potentially be easy to solve with low error probability without even observing the input lists, depending on n, the size and the distribution of the input. In light of theorem 4, we see that if N (the size of input lists) is exponentially smaller than ρ -1/3 , then "return ⊥" is an algorithm that has an exponentially small probability of yielding false negatives. Alternatively, in the low-density case, if N is exponentially larger than (1 -p) -n , then we expect the string 000 . . . 0 to be present in A, B and C with overwhelming probability ; it follows that "return (0, 0, 0)" is a fast algorithm with exponentially low false positive probability. To avoid these pitfalls, our main focus is on the hard case where N ≈ ρ -1/3 , and where the expected number of solutions in the random input lists is close to one.

In general, if the input lists are too long, we may use the following technique. Let N 0 := ρ -1/3 (input lists of this size contain a single 3XOR triplet in average) and suppose that N > N 0 2 n , where N denotes the size of the input lists. Assume that we have an algorithm A that solves the 3XOR problem with probability greater than some constant c > 0 in expected time T for input lists of size N 0 . The "exponent" e such that T = N e 0 can be obtained for longer lists as well.

Slice the input lists in chunks of size 4N 0 and run algorithm A on each successive chunk until a solution is found. Theorem 4 tells us that each chunk contain 64 3XOR triplets on average, and contain at least one 3XOR triplet with probability greater than 3/64. Therefore, a 3XOR triplet will be found in each chunk with probability greater than 3c/64; because the chunks are completely independent parts of the random input, the events "A finds a 3XOR triplet in chunk i" are independent. Therefore, the whole process fails to reveal a 3XOR triplet with exponentially small probability, namely less than 1 -3c 64 n . The running time

is O N • N e-1 0
, which is less than N e .

Random Low-Density 3XOR

In this section, we present a simple algorithm that solves the low-density 3XOR problem with interesting theoretical guarantees when p is small. It is always subquadratic when p < 1/2 but its most striking feature is that it succeeds with overwhelming probability in linear time when p is small enough.

Let a, b and c be random bits drawn according to Ber p conditioned to a ⊕ b ⊕ c = 0. The possible combinations are 000, 011, 101 and 110. We find that

u := Pr(abc = 110 | a ⊕ b ⊕ c = 0) = p 2 /(1 -2p + 4p 2 )
The same result is attained for 101 and 011. Two out of the three non-zero options result in a 1 bit, and therefore Pr(a = 1 | a ⊕ b ⊕ c = 0) = 2u. It follows that if the (x, y, z) is a triplet drawn from D such that x ⊕ y ⊕ z = 0, then the expected "density" of x, y and z is 2u. This is always smaller than p when 0 < p < 1/2. In other terms: random triplets drawn from D have density p, but random 3XOR triplets drawn from D have smaller density.

This observation can be exploited in a simple way: we discard from the input lists all vector above a given weight threshold then proceed using the naive quadratic algorithm.

This yields algorithm 2. It takes an additional argument w max controlling the maximum allowed weight. w max = 2nu yields an algorithm that reveals a 3XOR triplet present in the input with probability greater than 1/4, because the median weight of both x and y is 2nu if x ⊕ y ⊕ z = 0. Setting w max = 2nu(1 + ) is enough to miss an existing solution with exponentially small probability.

Algorithm 2 Algorithm for the low-density 3XOR problem.

1: function Low-Density-3XOR(A, B, C, w max ) 2: A ← {x ∈ A | wt(x) ≤ w max } 3: B ← {y ∈ B | wt(y) ≤ w max } 4: C ← QuadraticSetup(C) 5: return Quadratic3XOR(A , B , C)
The performance of algorithm 2 is summarized by theorem 1 in the introduction. It seems at first glance that the limiting exponent satisfies e ≤ 2p(1 -2 ln p) ; establishing this is a fascinating endeavour that we must regrettably leave for future work. It is worth noting that the not-so-friendly expression of e comes from the use of the tight binomial bound (3). It would be greatly simplified had we instead used the simpler Chernoff bound (2). However, doing so makes the result much worse for small p: it results in lim e = 1 when p goes to zero (instead of lim e = 0).

The rest of this section is devoted to prove theorem 1. A sensible choice consists in picking w max in the range ]2nu, np[ -above the expected density of random 3XOR triplets so that we do not discard them, and below the density of the input lists in order to actually discard input vectors that are too heavy. In this case the algorithm succeeds with overwhelming probability as long as the original input contains at least one solution.

Lemma 5. With w max = 2nu(1 + ), if the input contains a 3XOR triplet, then algorithm 2 returns ⊥ with probability less than 2 exp(-nu 2 ).

Proof. Assume that the input lists contain a 3XOR triplet (x * , y * , z * ). It will be discarded if and only if the weight of either x * , y * is greater than w max .

We know that the expected weight of x * and y * (and z * as well but this is irrelevant) is 2un, therefore the Chernoff bound [START_REF] Athreya | Branching processes[END_REF] shows that either has weight greater than 2un(1 + ) with probability less than exp(-nu 2 ). A union bound (for x * and y * ) then ensures that the solution is discarded with probability less than 2 exp(-nu 2 ).

Lemma 6. Let T denote the running time of algorithm 2 with w max = 2nu(1 + ). Then

E T ≤ N + N 2 exp(-2nD (2u(1 + ), p)).
Proof. In the sequel, all the stated complexities must be understood "up to a constant factor". Filtering the input lists and keeping only low-weight vectors can be done in linear time. From the complexity of Quadratic3XOR on input (A , B , C), we obtain the total time complexity:

T = N + |A | • |B |.
Let X ∼ B(n, p) be a binomial random variable modeling the weight of an input vector of density p. Such a vector belongs to A or B if its weight is less than or equal to w max , and this happens with probability s := Pr(X ≤ w max ). Because w max < np, the binomial tail bound (3) yields the tight upper-bound s ≤ e -nD(2u(1+ ),p) .

The sizes of A and B are stochastically independent random variables following a binomial distribution of parameters (N, s) with expectation N s. The expected running time of the quadratic algorithm on A and B is therefore

E (|A | × |B |) = E |A | × E |B | = N 2 s 2 .
Combining this with the upper-bound on s gives the announced result.

proof of theorem 1. Let d be a complexity exponent greater than the bound e given in theorem 1. Let > 0 be such that

d = 2 + 6 D (2u(1 + ), p) ln(1 -p)(1 -2p + 4p 2 ) -3 ln 2 .
(such an always exist). Note that setting = 0 in this expression yields the lower-bound exponent e of the theorem.

Let N 0 := ρ -1/3 (input lists of this size contain a single 3XOR triplet in average). Suppose that N ≤ N 0 2 n , where N denotes the size of the input lists ; in this case run algorithm 2 with w max = 2un(1 + ). Lemma 5 guarantees the exponentially small failure probability while lemma 6 tells us that the expected running time T is less than N +N 2 exp[-2nD(2u(1+ ), p)].

Set d := log N (E T -N ), so that the algorithm runs in time O N + N d . A quick calculation shows that d ≤ d, and the theorem is proved in this case.

If N > N 0 2 n , then slice the input lists in chunks of size 4N 0 and run algorithm 2 with w max = 2un on each successive chunk until a solution is found. The reasoning in section 3.1

proves that this yields an algorithm that satisfies the conditions of theorem 1.

Random Low-Weight 3XOR

Let us be given three lists of bit strings of weight w = pn, where w is an even integer (this is a necessary condition for the existence of a 3XOR triplet). We assume that the input lists contain a 3XOR triplet (x , y , z ), and we want to find it. Following the reasoning in section 3.1, we focus on input lists that are "long enough". In particular, a different algorithmic strategy would be required if lists were significantly shorter than necessary to have a single solution in expectation. All the results in this section rely on this assumption.

A moment's reflection shows that each component of a 3XOR triplet has an intersection of size w/2 with the others (see fig. 2). This motivates the notation v := w/2. Our strategy is the following: let s ≤ v be a parameter to determined later; guess a subset of size s of the intersection of x and y (this is a set of positions where x and y are both 1, thus on the left segment of fig. 2); discard non-conformant vectors from A and B; solve the smaller resulting instance using the quadratic algorithm. However, instead of guessing random s-subsets of {1, . . . , n} en bloc, we proceed incrementally following an approach initiated by May and Ozerov in [START_REF] May | On computing nearest neighbors with applications to decoding of binary linear codes[END_REF] for nearest-neighbor search: guess one position in x ∩ y , filter the lists, solve the smaller subproblem recursively, repeat. The point is that each time the lists are filtered, subsequent filtering steps start with smaller lists. This yields algorithm 3.

Algorithm 3

An algorithm for the low-weight 3XOR problem. A randomly chosen position belongs to the intersection x ∩y with probability (v-k)/(nk); filtering the lists by only keeping vectors that are 1 on this position yields lists of expected

size N k+1 = N k w k /n k . We define R k := (n -k)/(v -k) as well as F k := (2v -k)/(n -k),
with the intention that R k is the expected number of iterations of the for loop of line 6 at depth k while F k is the "filtering factor" at depth k. Indeed, the size of the input lists at depth is given by

N k = N k-1 j=0 F j = N n-k 2v-k / n 2v .
Finally, the tree of recursive calls has (on average)

k-1 j=0 R j = n k / v k nodes at depth k.
It is sometimes useful to abstract n away, so we define s = s/n and v = v/n.

We begin by studying the success probability of algorithm 3. This means that the (random) subtree formed by the edges corresponding to correct guesses is a Galton-Watson tree with offspring distribution Pois(1). The expected offspring number is 1 and the variance is also 1. Let Z k denote the size of the k-th generation. The algorithm succeeds if Z s > 0. This Galton-Watson tree is critical and a well-known result of Kolmogorov states Pr(Z k > 0) ∼ 2/k when k → +∞ (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF][START_REF] Athreya | Branching processes[END_REF] for details).

This implies that nZ s → 1/(2s) when n → +∞. Because s ≤ v ≤ 1/4, we know that for large enough n, nZ s becomes greater than 2, and therefore Z n becomes greater than 1/n. This implies that for large enough n, the probability that the n 2 iterations of the main loop of algorithm 3 fail to disclose a 3XOR triplet in the input lists is less than

(1-1/n) n 2 ≤ e -n .
We now move on to upper-bound the time complexity of algorithm 3. We proceed in two steps: 1) we minimize the total time spent in the leaves of the recursion tree, then 2)

we show that the time spent in internal nodes of the tree is not much larger. In order to simplify our analysis, we assume that the input lists are large enough so that N s ≥ 1. This is to avoid the degenerate situation where the filtering steps reduce the size of lists to either 0 or 1, which means that the quadratic algorithm has nothing to do anymore and the proof strategy outlined above breaks down. Note that this condition is always satisfied if the input lists are long enough to contain one solution in expectation (because we have N v ≥ 1 in this case). This is why we make this hypothesis.

Lemma 8. If N s ≥ 1, then the expected time spent in Quadratic3XOR by algorithm 3 is minimized by s = v(n -4v)/(n -3v). Note that this depends only on the input weight.

Proof. Let R denote the total number of calls to Quadratic3XOR by algorithm 3 and let F N denote the expected size of inputs to Quadratic3XOR. According to the above, we

find that R = s-1 j=0 R j = n s / v s and F = n-s 2v-s / n 2v . To get rid of n, we write N = 2 n Ñ , R = 2 n R and F = 2 n F . Using (1)
, we find that up to small constant factors :

R ≈ H(s) -vH(s/v), F ≈ (1 -s)H((2v -s)/(1 -s)) -H(2v)
And therefore, the expected total time spent in the quadratic algorithm is n2 nσ , with

σ := R + 2 F + 2 Ñ = H(s) -vH(s/v) + 2( Ñ + (1 -s)H((2v -s)/(1 -s)) -H(2v))
We seek the value for which σ reaches a local minimum by computing its derivative:

dσ ds = log 2 1 -s s -log 2 v -s s + 2 log 2 2v -s 1 -s
And we solve dσ ds = 0, which translates to (1 -s)(v -s) = (2v -s) 2 . The announced value is the only solution of this equation.

We now argue that the time spent filtering the lists in internal nodes of the recursion tree does not dominate the whole computation. Given an integer 0 ≤ s ≤ v, we focus on the sequence of numbers θ 0 , . . . , θ s defined by

θ k log N k = log R k + θ k+1 (log N k + log F k ) and θ s = 2.
The point is that a node at depth k in the recursion tree performs Õ N θ k k operations, a fact that we prove below. It implies that the number of operations in the leaf nodes dominate that of the inner nodes, and therefore the value of s given by lemma 8 actually minimizes the total running time of algorithm 3.

Lemma 9.

Let T k denote the expected total time spent in the leaf nodes (i.e. in Quad-ratic3XOR) that are below a given node of depth k in the tree of recursive call. Then

T k = O N θ k k .
Proof. The proof is by decreasing induction. At k = s (leaf nodes), the quadratic algorithm is invoked, therefore T s = N 2 s and we have θ s = 2. Up in the tree, we have T k = R k T k+1 and by induction hypothesis there is a constant c such that T k+1 ≤ cN

θ k+1
k+1 . This implies that

T k ≤ cR k (F k N k ) θ k+1 = cN θ k k , which proves the lemma. Lemma 10. If s = v(n -4v)/(n -3v) and N s ≥ 1, then 1 < θ k ≤ 2 for all 0 ≤ k ≤ s.
Proof. The proof is by decreasing induction starting with k = k s , where by definition θ s = 2.

Next, assume that 1 < θ k+1 ≤ 2. Because both N k and N k+1 = F k N k are greater than 1 by hypothesis, it follows that:

log R k + log N k + log F k < θ k log N k ≤ log R k + 2 log N k + 2 log F k . (5) 

A A "Sensible" Application

In order to put algorithm 2 to the test, we forged an artificial instance of the problem. We downloaded an XML dump of the DBLP database, and extracted all articles published in a few selected cryptography conferences (CRYPTO, EUROCRYPT, ASIACRYPT, FSE, PKC, CHES, SAC) as well as two journals (TOSC, TCHES). This made more than 7700 articles.

For each article, we wrote down one line of text with the authors and title.

We considered the function (where & denotes the bitwise AND):

F (x 1 , x 2 , x 3 , x 4 ) = SHA-512(x 1 ) & SHA-512(x 2 ) & SHA-512(x 3 ) & SHA-512(x 4 ).
This yields 512-bit hashes with expected density 1/16. SHA-512 is a secure cryptographic hash function, so we assumed that there was no way to find inputs leading to correlated outputs besides brute force. We looked for three quadruplets of articles such that

F (x 1 , x 2 , x 3 , x 4 ) ⊕ F (y 1 , y 2 , y 3 , y 4 ) ⊕ F (z 1 , z 2 , z 3 , z 4 ) = 0
With the additional constraint that all articles are distinct. There are 5775 ways to dispatch 12 items into 4 indistinguishable urns, so that with our 7700 articles, we can assemble 2 138.5

bundles of 12 publications having a chance to satisfy the above equation (of course the inputs are correlated, and this deviates from the original problem formulation, but this is not a serious issue). Alternatively, we may form 2 47 quadruplets of publication. With p = 1/16

and n = 512, we could then expect about 40 solutions from out data set. This made us confident that we there would be at least one, but finding it does not seem so easy at first glance.

Evaluating F on all the available quadruplets is not a problem (it takes 240 CPU-hours).

Trouble starts when we considered writing the list of 2 47 hashes to persistent storage: this would require more than 9 petabytes -this is a lot, but some computing centers have that much. However, finding the "golden" triplet of quadruplets using the quadratic algorithm would then require 2 94 probes into a large hash table, and given mankind's present computing power, this does not seem feasible before the sun turns into a red giant.

Exploiting the sparsity of the input turns the problem into a walk in the park. The expected weight of 3XOR triplets of density 1/16 is ≈ 2.25. We evaluated F on all quadruplets, but kept only the hashes with hamming weight less than or equal to 3. We thus kept 5091 candidate quadruplets, for a total storage size of 358KB. We then searched for solutions in this restricted data set using the quadratic algorithm. This required 25 millions probes in a hash table and was very fast.

We found six solutions, one of which is shown as algorithm 4. Amusingly, it contains the name of one of the authors of the present article.

B Omitted Proofs

Proof of lemma 3. Let X(i, j, k) denote the binary random variable that takes the value 1 if and only if

A[i] + B[j] + C[k]
= 0 (and zero otherwise), so that Y = X(i, j, k). Unless mentioned otherwise, in this section all sums are taken over 0 ≤ i, j, k < N ; we omit the indices to alleviate notations.

The expected value of Y is easy to determine. Because the elements of the lists are identically distributed, Pr(A

[i] + B[j] + C[k] = 0) is independent of i, j
and k and its value is ρ. We get: 

E Y = E X(i, j, k) = E X(i, j, k) = Pr(A[i] + B[j] + C[k] = 0) = N 3 ρ.
assert (H(a) & H(b) & H(c) & H(d)) ^(H(e) & H(f) & H(g) & H(h)) ^(H(i) & H(j) & H(k) & H(l)) == 0
The Markov bound yields 1 -E Y ≤ Pr(Y = 0). Because Y is the sum of binary random variables, we are entitled to use Ross's conditional expectation inequality [START_REF] Ross | Probability Models for Computer Science[END_REF]:

Pr(Y > 0) ≥ E (X(i, j, k)) E (Y | X(i, j, k) = 1)
.

As argued above, the value of the term under the sum is independent of i, j and k, so this boils down to: Pr(Y > 0) ≥ EY /E(Y | X(0, 0, 0) = 1). It remains to compute the expected number of solutions knowing that there is at least one. This yields: Then the two events are in fact independent and p ijk = ρ. But when at least one index is

We now claim that 1/2 ≤ σ 3/n /ρ 2/n ≤ 1 and 1/4 ≤ τ 3/n /ρ 1/n ≤ 1 when 0 ≤ p ≤ 1/2; this yields the desired result. This claim follows from the facts that both values are decreasing functions of p. This can be seen by computing their derivatives (all factors are easily seen to be positive when 0 ≤ p ≤ 1/2): We again investigate σ 3 /ρ 2 and τ /ρ 3 , but this time we focus on the exponents. Define f (v) ≈ 1 n log 2 (σ 3 /ρ 2 ) and g(v) ≈ 1 n log 2 (τ 3 /ρ). We claim that both functions are negative when 0 ≤ v ≤ 1/3, and this again entails (4).

∂
We claim that f is decreasing over this range. To see why, compute its second derivative:

∂ 2 f ∂v 2 = 3 ln 2 1 -4v (1 -3v)(1 -2v)v .
It is positive when v ≤ 1/4 and negative afterwards. This means that the first derivative of f reaches a maximum at v = 1/4. It is then easy to check that ∂f ∂v (1/4) = 0.

We next claim that g is decreasing over [0; 1/4] and increasing over [1/4; 1/3]. To see why, just compute its derivative:

∂g ∂v = -3 log 2 (1 -3v)/v.
We then find that g reaches a limit of zero when v goes to zero, and that g(1/3) = -log 2 3.

This guarantees that g is negative over the full range.

  a, p) is the Kullback-Leibler divergence between an a-coin and a p-coin. For all d > e there is an algorithm for the random low-density 3XOR problem (with density p) that runs in time O N + N d , where N denotes the size of the input list and fails to reveal a 3XOR triplet present in the input with negligible probability (in n).

Figure 1

 1 Figure 1 The limit exponents of theorems 1 and 2: algorithms run in O N d for any d > e, where e is shown in the figure as a function of the sparsity of the input. p = 1/2 corresponds to the random dense case.
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 456 function Quadratic3XOR(A, B, C) for (x, y) ∈ A × B do if x ⊕ y ∈ C then 7:

Figure 2

 2 Figure 2 Shape of a 3XOR triplet (x , y , z ), up to column permutation. Here, v = w/2.

1 : 5 : 6 :r times do 7 : 9 : 11 :ζ = ⊥ then return ζ 12 : return ⊥ 13 :for n 2 times do 16 :

 1567911121316 function RecursiveFiltering(n, α, A, B, C, k, s) Sample r according to the Poisson distribution with parameter n/α. for m ← random bit string of weight 1 in {0, 1} n Correct with proba. α/n 8: A ← {x ↓m | x ∈ A and m ⊆ x} Keep elements that are 1 when m is 1 B ← {y ↓m | y ∈ B and m ⊆ y} 10: ζ ← RecursiveFiltering(n -1, α -1, A , B , C, k + 1, s) if function Low-Weight-3XOR(n, w, A, B, C, s) ζ ← RecursiveFiltering(n, w/2, A, B, C, 0, s) Here are a few comments. Assuming that A and B still contain a 3XOR triplet, each random choice of m is correct with a certain probability α/n where α = |x ∩ y |. In order to at least have one correct guess in expectation, the loop in RecursiveFiltering should do r ≥ n/α iterations. Naturally, this is not an integer, and rounding up is not an option because it would incur an exponential blow-up in the total number of iterations. Instead, we sample randomly the number of iterations, with expectation n/α. Any easy-to-sample distribution could be used to choose r, but the choice of the Poisson distribution is necessary for us to prove a lower-bound on the success probability. The quadratic algorithm is run on sparse inputs but we do not know how to exploit this sparsity anymore. Guessing positions in segments of fig. 2 other than the left one leads to less efficient algorithms. The rest of this section proves theorem 2. The recursive calls to RecursiveFiltering corresponds to nodes in a tree. At depth k in this tree, a problem instance is composed of two filtered lists A k and B k of expected size N k , containing n -k-bit words of weight w -k (no longer necessarily even). Assuming that they contain a solution, then α k := |x ∩ y | denotes the size of the intersection and α k = v -k.

Lemma 7 .

 7 If the input lists contain a 3XOR triplet, then Algorithm 3 returns ⊥ with exponentially small probability as n → +∞. Proof. Each edge in the tree of recursive calls of algorithm 3 corresponds to a random choice of m. The algorithm succeeds if and only if there is a branch that reaches depth s where all choices are correct. Take an arbitrary depth-k node in the tree of recursive calls. Each choice of m is correct with probability (v -k)/(n -k) and the number of trials (r in the algorithm) is also random. Let X 1 , X 2 , . . . denote a sequence of Bernoulli random variables of parameter (v -k)/(n -k); the distribution of the total number of correct choices at each node is given by G = r i=1 X i , where r follows a Poisson distribution of parameter (n -k)/(v -k). The sum G follows a compound Poisson distribution, and the special case where the X i are Bernoulli is well-known: G again follows a Poisson distribution of parameter 1 (independently of n, v and k).

E

  (Y | X(0, 0, 0) = 1) = Pr(A[i] + B[j] + C[k] = 0 | A[0] + B[0] + C[0] = 0)We split this sum in 8 parts by considering separately the situation where i = 0, j = 0 and k = 0 (resp = 0 for each summation index). We introduce the shorthandp ijk = Pr (A[i] + B[j] + C[k] = 0 | A[0] + B[0] + C[0] = 0)and we assume that i, j, k > 0.

∂p σ 3 /n ρ 2 /n = - 6 (4p 3 - 3 ∂ ∂p τ 3 /n ρ 1 /n = - 6 (4p 2 - 3 Using ( 1 )2 1 -- 1 , and π 4 ≤ τ τ ≤ 4 π

 326333162311144 8p 2 + 4p -1) 2 (2p 2 -6p + 3)(1 -2p) 2 p (4p 2 -2p + 1) 6 (1 -p) 3p + 1) 2 (4p 2 -6p + 3)(1 -2p)p (4p 2 -2p + 1) 5 (1 -p) 2Low-Weight 3XOR We finally focus on the case where the elements of the lists are sampled uniformly at random amongst bit strings of hamming weight w = np. 3XOR triplets only exist if w is even and less than 2n/3, so that it seems fitting to define w = 2v, with 0 ≤ v ≤ 1/3.There are A := n 3v 3v v 2v v 3XOR triplets of weight w and there are B := n , we may simplify this expression. It turns out that using the relative weightv = v/n is more convenient: n[3v log 2 3+H(3v)-3H(2v)] Next, σ = Pr(x ⊕ y = z | u ⊕ v = z)can be determined by observing that this amounts to count the number of pairs (x, y) such that x ⊕ y gives a fixed weight-2v bit string. It followsthat: 2v)(1 -v)2 n[(1-2v)H(v/(1-2v))-2H(2v)+2v]Lastly, τ = Pr(x = y ⊕ z | u = y ⊕ z) is just the probability that sampling randomly yields a fixed weight-2v bit string. Therefore τ = n 2v with σ = 1/ 2nv(1 -2v)2 n-H(2v) 

  3 4 log 2 3 + 1 = 0.295.... They are expected to contain one 3XOR triplet, according to theorem 4 below.If this instance of the random low-weight 3XOR problem could be solved in time O N1.69 , then the original problem would be solved in time ≈ 2 0.498n , which would have been a

breakthrough. Unfortunately, algorithm 3 below is only capable of solving this problem in O N

1.75 

operations.

  2 be fixed and let Ber p the Bernoulli distribution of parameter p.

	We also
	denote by Pois(λ) the Poisson distribution with parameter λ and by B(n, p) the binomial
	distribution with parameters (n, p).
	Bounds for Binomial Distributions. Let H denote the binary entropy function, meaning
	that H

Algorithm 4

 4 Demonstrating a sensible application of sparse 3XOR algorithms.

	from hashlib import sha512
	# FSE 2011
	a = "Simon Knellwolf and Willi Meier: Cryptanalysis of the Knapsack Generator. (2011)"
	# ASIACRYPT 2017
	b = "Ran Canetti, Oxana Poburinnaya and Mariana Raykova: Optimal-Rate Non-Committing Encryption. (2017)"
	# CRYPTO 2019
	c = "Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu and Dongxi Liu: Lattice-Based Zero-Knowledge \
	Proofs: New Techniques for Shorter and Faster Constructions and Applications. (2019)"
	# FSE 2009
	d = "Martijn Stam: Blockcipher-Based Hashing Revisited. (2009)"
	# EUROCRYPT 1990
	e = "Cees J. A. Jansen: On the Construction of Run Permuted Sequences. (1990)"
	# EUROCRYPT 2013
	f = Charles Bouillaguet, Pierre-Alain Fouque and Amandine Véber: Graph-Theoretic Algorithms for the \
	"Isomorphism of Polynomials" Problem. (2013)
	# CRYPTO 2017
	g = "Prabhanjan Ananth, Arka Rai Choudhuri and Abhishek Jain: A New Approach to Round-Optimal Secure \
	Multiparty Computation. (2017)"
	# EUROCRYPT 2001
	h = "William Aiello, Yuval Ishai and Omer Reingold: Priced Oblivious Transfer: How to Sell Digital \
	Goods. (2001)"
	# CRYPTO 2019
	i = "Navid Alamati, Hart Montgomery and Sikhar Patranabis: Symmetric Primitives with Structured \
	Secrets. (2019)"
	# CRYPTO 2019
	j = "Shweta Agrawal, Monosij Maitra and Shota Yamada: Attribute Based Encryption (and more) for \
	Nondeterministic Finite Automata from LWE. (2019)"
	# EUROCRYPT 1986
	k = "Christoph G. Günther: On Some Properties of the Sum of Two Pseudorandom Sequences. (1986)"
	# CRYPTO 2009
	l = "Susan Hohenberger and Brent Waters: Short and Stateless Signatures from the RSA Assumption. (2009)"
	def H(s : str) -> int:
	"""Returns the hash (SHA-512) of the string s as a 512-bit integer."""
	return int.from_bytes(sha512(s.encode( utf8 )).digest(), byteorder= big )
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The left part of [START_REF] Dietzfelbinger | A subquadratic algorithm for 3xor[END_REF] implies that (θ k -1) log

and N k ≥ 1, we find that 1 < θ k . On the other hand, the right part of (5) also implies that (θ k -2) log N k ≤ log R k + 2 log F k . We now claim that R k F 2 k ≤ 1 for all considered values of k, and the lemma follows. This claim results from the observation that a) R k F 2 k is an increasing function of k over the considered range and b) R s F 2 s = 1 (indeed, this is the equation satisfied by the "optimal" value of s in the proof of lemma 8). Let k = k/n; we find that

All factors are obviously positive, which shows that R k F .

Because θ k+1 > 1, we conclude that a recursive call costs more than n -2 N k . This holds true for all inner nodes, and the lemma follows.

We now have all the ingredients to prove theorem 2. The proof is very similar to that of theorem 1.

Proof of theorem 2. Let N 0 denote the size of input lists containing a single 3XOR triplet in expectation, and write N 0 = 2 n Ñ0 . From theorem 4, we know that Ñ0 = H(2v) -H(3v)/3v log 2 3.

Write e = 2 + ( R + 2 F )/ Ñ0 . The value given in the statement of the theorem is the result of many simplifications of this expression, using the expressions of R and F from the proof of lemma 8.

Let be such that d = 2 + ( R + 2 F )/( Ñ0 + ). Such an always exist, because this is an increasing function of .

Write N = 2 n Ñ the size of the input lists. From lemma 11, we know that the running time of algorithm 3 is upper bounded by n 4 2 n( R+2 F +2 Ñ ) .

Assume that Ñ ≤ Ñ0 + . Use algorithm 3 with s = v(n -4v)/(n -3v) as in lemma 8.

Lemma 7 guarantees the success probability. We claim that its expected running time is less ) and d was chosen so that this is

The case where Ñ > Ñ0 + can be dealt with using the technique highlighted in section 3.1.

Algorithms for the Sparse Random 3XOR Problem

zero, this is no longer the case ; the extreme situation is p 000 = 1. By symmetry between the three input lists, we find that p ij0 = p i0k = p 0jk (this is the value we denote by σ) and p i00 = p 0j0 = p 00k (this is the value we denote by τ ). We can now write:

The "error term" ∆ is always positive for N ≥ 1. Going back to the beginning, we have:

Low-Density 3XOR. We now specialize the result of lemma 3 to the group ({0, 1} n , ⊕) with the low-density distribution D (each bit is drawn independently at random according to the Bernoulli distribution Ber p of parameter p < 1/2). This the low-density case of theorem 4.

If a, b and c are random bits drawn according to Ber p , then the probability that they XOR to zero is (1 -p) 1 -2p + 4p 2 . It follows that if x, y and z are drawn according to D,

What happens essentially depends on the hamming weight of z. Both x, y and u, v have to XOR to z. Two random bits drawn according to Ber p XOR to zero with probability p 2 + (1 -p) 2 and their XOR to one with probability 2p(1 -p). This yields (using the binomial theorem):

In this context, this mostly depends on the hamming weight of u ⊕ v. This yields (again using the binomial theorem):

n

We now move on to establish [START_REF] Bouillaguet | Revisiting and improving algorithms for the 3xor problem[END_REF]. Because N = (E Y ) 1/3 /ρ, the bound of lemma 3 can be rewritten as: