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Abstract8

We present two new algorithms for a variant of the 3XOR problem with lists consisting of n-bit vectors9

whose coefficients are drawn randomly according to a Bernoulli distribution of parameter p < 1/2.10

We show that in this particular context the problem can be solved much more efficiently than in the11

general setting. We first present a simple adaptation of the folklore quadratic algorithm that discards12

heavy vectors in a preprocessing step. This leads to a linear algorithm with overwhelming success13

probability for p < 1/11, and is sub-quadratic for all p < 1/2. We also describe a variant of this14

method which succeeds deterministically, which is also linear for p < 1/47 and always sub-quadratic.15

We finally propose a randomized algorithm with a sub-quadratic time complexity when the lists16

consists of vector of fixed Hamming weight, and discuss possible further improvements.17
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1 Introduction21

Given three lists A, B and C of n-bit vectors, the 3XOR problem consists in deciding the22

existence of (or even finding) a triplet (x,y, z) ∈ A×B × C such that x⊕ y⊕ z is equal to23

a given target, often assumed to be zero (here the ⊕ symbol represent the exclusive-OR or24

XOR).25

This problem can be seen as a variant of the celebrated 3SUM problem, where this time26

the input list items are seen as integers and we must have x+ y + z = 0. Many geometric27

problems can be reduced to 3SUM in sub-quadratic time, and those problem are said to be28

3SUM hard [6]. Although the 3XOR problem has enjoyed less interest in the complexity29

theory field, there exists a few such reductions. For instance, it is a fact that any O
(
N2−ε)

30

algorithm for the 3XOR problem with input lists of size N would imply faster-than-expected31

algorithms for listing triangles in a graph [14, 7]. Another result due to [4] show that an32

algorithm solving the 3XOR problem in time Ω
(
n2−o(1)) also reduces the time complexity33

of the offline SetDisjointness and SetIntersection problems.34

The 3XOR problem also has some cryptographic applications, in which the input lists35

consist of uniformly random vectors (the cryptographic community makes this assumption36

“by default”). In particular, we can mention Nandi’s attack [11] against the COPA mode37

of authenticated encryption, or the more recent attack against the two-round single-key38

Even-Mansour cipher by Leurent and Sibleyras [9]. May and Both have been considering a39

variant of the 3XOR problem, the approximate 3-list birthday problem: given three lists of N40

uniformly random elements of {0, 1}n the goal consist in finding triplets (x,y, z) in the list41

such that the hamming weight of x⊕ y⊕ z is small [2].42

The simplest possible algorithm to solve the 3XOR problem is the quadratic algorithm,43

which consists in taking all x⊕ y ∈ A×B and checking whether they belong to C. Using an44

optimal static dictionary [5] to hold C, this results in a time complexity of O (|A| · |B|+ |C|).45

https://orcid.org/0000-0001-9416-6244
mailto:charles.bouillaguet@univ-lille.fr
mailto:claire.delaplace@rub.de


2 Algorithms for the Sparse Random 3XOR Problem

In the particular case where |A| = |B| = |C| = N this algorithm runs in time O
(
N2). In46

the following, this simple algorithm will be referred to as QuadraticAlgorithm.47

When the input lists are made of random vectors, the decisional variant of the problem48

may be trivial: if the input lists are too long (resp. too short), then the existence (resp.49

absence) of a “3XOR triplet” (x ⊕ y ⊕ z = 0) in the input may be asserted with high50

probability without even observing the input. In this setting, a computational variant of the51

problem, namely actually finding a single 3XOR triplet given the input lists makes more52

sense.53

We believe that with random vectors, the hardest case occurs when the size of the input54

lists N is chosen such that they contain one (and only one) solution with high probability. In55

any case, if the input lists where longer, they could always be truncated to this size. In the56

case where the vectors are drawn uniformly at random in {0, 1}n, this means that N ≈ 2n/3.57

In this particular case, the quadratic algorithm is mostly the only option to recover the58

solution. Some improvements of this method exist [3, 4], however these improvements allows59

only to gain a polynomial factor in n. It is not clear today whether it is possible to find an60

algorithm for this problem with complexity below N2−o(1).61

Contributions. In this paper, we focus on a variant of the 3XOR problem where the elements62

of the lists are random and sparse. More precisely, each input bit is drawn independently63

at random according to a Bernoulli distribution of parameter 0 < p < 1/2 — the “dense”64

random case corresponds to p = 1/2. The sparse variant of the problem is quite different65

from its dense counterpart.66

We first give the probability that the input actually contains a 3XOR triplet for given N67

and p. To the best of our knowledge, this result was not readily available from the existing68

litterature, not even in the simple case where p = 1/2. We then describe three algorithms to69

solve the random sparse 3XOR problem. The simplest possible one (Section 3) works by70

discarding useless input vectors (whose hamming weight is above a well-chosen threshold),71

then searches a solution using the quadratic algorithm. This first algorithm returns the72

solution with overwhelming probability. We also propose an incremental version of this73

algorithm (Section 4) which deterministically returns a solution if there is one in the input.74

These algorithms have a time complexity of O (N +Ne), for some parameter e < 2 when75

p < 1/2. The evolution of this parameter e in function of p is shown in Figure 1 (left diagram).76

In particular, both algorithms are shown to be linear when p is small enough — this stands77

in strong contrast with the dense case.78

In the rest of the paper we propose alternatives to the quadratic algorithms to deal with79

instances (Ai, Bj , Ck) where the elements of the lists have fixed Hamming weight, respectively80

i, j, k. In this context, useless heavy vectors have already been discarded and the sparsity of81

the input vectors has to be exploited differently. We use techniques inspired from decoding82

algorithms.83

This is an interesting case as all instances of the sparse 3XOR problem can be converted84

to several independent sub-instance of this type. In the first of these algorithms (Section 5)85

we select randomly a subset J of the indices and “guess” that a 3XOR triplet has only86

zeroes on columns in J . From here, we consider the sublists A′, B′ and C ′ of Ai, Bj , and87

Ck, consisting only of vectors whose coefficients indexed by j ∈ J are zeroes. We solve this88

smaller instance with the quadratic algorithm. If no solution is found, we try again with a89

different J . For a well chosen size of J , this algorithm is at least as fast as the quadratic90

algorithm. In the particular case where i = j = k, we show that the complexity of the91

algorithm is between N7/4 (when p is close to zero) and N2 (when p is close to 1/2), where92
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Figure 1 Exponents in the time complexity in function of p when the input lists contain one
3XOR triplet with high probability.

N is the size of the input lists.93

Finally, we discuss possible improvement of this method in section 6, which basically94

consists in re-iterating the filtering steps a constant number of times instead of solving the95

sub-instance directly with the quadratic algorithm. This borrows the main technique of the96

“nearest neighbors” algorithm of May and Ozerov [10] (which is used in a decoding algorihtm).97

Given a parameter t, we split the indices in t slices. We select randomly a subset J1 of the98

indices belonging to the first slice and guess that the solution is zero over the columns in99

J1. We then build the sublists A(1)
i , B

(1)
j , C

(1)
k of the vectors whose coefficients indexed by100

` ∈ J1 are zero. After that we select a random subsets J2 of the indices belonging to the101

second slice and re-iterate until we obtain the lists A(t)
i , B

(t)
j , C

(t)
k , which we process with the102

quadratic algorithm. The trick is that, if one of our guess J` was wrong, we do not have to103

restart the whole process, but only starting from J`. Although we did not fully investigate104

the time complexity of this algorithm, we believe that this method should be more efficient105

in practice than the previous one.106

Motivation The algorithms described in this paper have no concrete application that we107

know of, and we don’t really care. However they can be used to obtain the —non-trivial and108

“interesting”— result shown in Appendix C.109

2 Preliminaries110

2.1 Notations, Definition and Useful Properties111

Let x = x0x1 . . . xn−1 be an n-bit string (we use “bit string” and “vector” as synonyms).112

We denote by wt(x) its Hamming weight. We denote by ~x the negation of x (XORing 1113

to each bit) and by x & y the bit-wise AND of x and y. We denote by x\j the bit-string114

x0 . . . xj−1xj+1 . . . xn−1; more generally, if J is a subset of {0, . . . , n− 1}, we denote by x\J115

the sub-string of x, where all xj for j ∈ J have been discarded. Let A be a list ; we denote116

by |A| the number of elements in A. Let A[i] be the i-th element of A. We denote by Ai the117

sublist of A such that Ai = {x ∈ A|wt(x) = i}.118

I Definition 1 (3XOR triplet). Let x,y and z be three n-bit strings. We say that (x,y, z) is119

a 3XOR triplet if x⊕ y⊕ z = 0.120
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n

11111111 11111 00000000 00000

00000000 11111 11111111 00000

11111111 00000 11111111 00000

Figure 2 Shape of a sparse random 3XOR triplet t = (x, y, z), up to column permutation.

For any triplet t = (x,y, z) of n-bit strings and any index 0 ≤ j < n, we denote by tj the 3-121

bit string xjyjzj and we say that it is the type of column j in t. In a 3XOR triplet, the possible122

column types are {000, 011, 101, 110}. Therefore, up to columns permutations, the shape of a123

3XOR triplet can be described by Figure 2. Given again a triplet t = (x,y, z) of n-bit strings,124

we consider the following functions αt = wt(x & z), βt = wt(x & y), γt = wt(y & z) and125

δt = wt(~x & ~y & ~z). In any case, if (x,y, z) is a 3XOR triplet we have αt+βt+γt+δt = n.126

127

I Definition 2 (3XOR problem with distribution). Let D be a probability distribution over128

{0, 1}n. Let A, B and C be three lists of elements drawn independently at random according129

to D. A solution to the instance of the 3XOR problem given by (A,B,C) is a 3XOR triplet130

(x,y, z) ∈ A×B × C. A random 3XOR triplet is a triplet (x,y, z) chosen according to D131

conditioned to x⊕ y⊕ z = 0.132

Because of randomness of the input, the question of the existence of a 3XOR triplet in133

(A,B,C) may be easy to decide with low probability of error without even observing A,B134

and C, depending on n,D and the size of the lists. Therefore, our main focus is on the search135

problem (actually producing a solution, not merely deciding its existence).136

Bounds for Binomial Distributions. Let B(n, p) denote the binomial distribution with137

parameters n, p. We denote by log the logarithm in basis 2 and by H the binary entropy138

function, meaning that H(x) = −x log(x)−(1−x) log(1−x), for all 0 < x < 1. The following139

standard bounds for the binomial coefficient can be derived from Stirling’s formula:140

2nH(x)√
8nx(1− x)

≤
(
n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (1)141

We make heavy use of tail bounds for binomial distributions, notably the Chernoff142

bound (2) and the tighter classical inequality (3), a proof of which can be found in [1]143

amongst others.144

Pr(X ≤ k) ≤ exp
(
− 1

2p
(np− k)2

n

)
, if k

n
< p (2)145

Pr(X ≤ an) ≤ exp−nD(a, p) if a < p, (3)146

Pr(X ≥ an) ≤ exp−nD(a, p) if a > p,147
148

where D(a, p) = a ln a
p + (1− a) ln 1−a

1−p is the Kullback-Leibler divergence between an a-coin149

and a p-coin.150
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Computational Model. We consider a transdichotomous word Random Access Machine151

(word-RAM) model. In this model, we have access to a machine in which each “memory152

cell” contains a n-bit word. We assume that the usual arithmetic and bit-wise operations on153

n-bit words, as well as the comparison of two n-bit integers and memory access with n-bit154

addresses can be done in constant time. In other terms, we assume that the machine is large155

enough to accommodate the instance of the problem at hand.156

2.2 Properties of Random Sparse 3XOR Triplets157

Let 0 < p < 1/2 be fixed. We denote by Berp the Bernoulli distribution of parameter p (if158

x
$←− Berp, then Pr(x = 1) = p). Let D the distribution over {0, 1}n, where each bit is drawn159

independently from Berp. This paper focus on the 3XOR problem with input distribution D.160

Existence of a 3XOR triplet. Let a, b and c be random bits drawn according to Berp; the161

probability that they XOR to zero is (1− p)
(
1− 2p+ 4p2). It follows that if x,y and z are162

random bit strings drawn according to D, then Pr(x⊕ y⊕ z = 0) = (1− p)n(1− 2p+ 4p2)n.163

Given three lists A,B and C of random bit strings drawn according to D, each of size N ,164

the number of 3XOR triplets in (A,B,C) is a random variable, denoted by Y below, that165

follows a binomial distribution. We have the following result.166

I Theorem 3. Let q0 = (1 − p)
(
1− 2p+ 4p2), q1 = (1 − p)

(
1− 4p+ 8p2 − 4p3) and167

q2 = (1− p)
(
1− 3p+ 4p2). Then:168

i) EY = N3q0
n

169

ii) Pr (Y = 0) ≤ 3N−1 (q1/q0
2)n + 3N−2 (q2/q0

2)n +N−3(1/q0)n.170

iii) Pr (Y = 0) ≤ 3
(EY )1/3 + 3

(EY )2/3 + 1
EY .171

The proof of this theorem can be found in Appendix A.1. The inequality ii) is tighter172

than iii), but iii) is often more practical. A first difference between the sparse case and the173

dense case is that in (exponentially) smaller input lists are sufficient to ensure the existence174

of a 3XOR triplet with high probability.175

For instance, with p = 1/16 and n = 512, there is one expected 3XOR triplet in the input176

with N = 244.41 (compare this to N = 2170.7 with p = 1/2). Point ii) of theorem 3 states177

that if we want this solution to be there with probability 99%, we need N ≥ 246.70 — the178

input lists must be 6.5 times larger.179

Expected Density of a 3XOR Triplet. Let us now consider a sparse random 3XOR triplet180

t = (x,y, z); for a given column j, we find that181

u := Pr(tj = 110) = Pr(tj = 101) = Pr(tj = 011) = p2/(1− 2p+ 4p2),182

v := Pr(tj = 000) = (1− p)2/(1− 2p+ 4p2).183
184

Note that 3u+ v = 1. This means that (αt, βt, γt, δt) is a vector of random variables that185

follows a multinomial distribution of parameters n and (u, u, u, v). Therefore, αt, βt and γt186

individually follow the binomial distribution B(n, u) and it follows that the expected “density”187

of x, y and z is 2u. This is always smaller than p when 0 < p < 1/2. In other terms: random188

triplets drawn from D have density p, but random 3XOR triplets drawn from D have smaller189

density. The algorithms described in this paper take advantage of this fact.190
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2.3 Methodology191

We decided to focus on the case where N = poly(n) · q0
−n/3. In that case we can expect192

to have a constant number of 3XOR triplets in A×B × C with high probability thanks to193

theorem 3. This decision can be justified in two ways.194

First, if the input lists are too long, then we may simply look only at the first poly(n) ·195

q0
−n/3 entries. Theorem 3 then tells us that we can still expect to find a solution with196

high probability.197

Second, if the input lists contain “too many” elements, there will be trivial and unin-198

teresting solutions. Indeed, if N ≥ [1/(1 − p)]n, we can expect the string 000 . . . 0 to199

be present in all three lists. It follows that “return (0, 0, 0)” would be a constant-time200

algorithm for the sparse random 3XOR problem with a high success probability.201

The algorithms we present below would also work for N < q
−n/3
0 , but since the lists202

consists of random elements, it is unlikely that a solution exists in this case. We can however203

imagine the following scenario, when a solution following the distribution D is created and204

injected inside of smaller lists. In this case, our algorithms will find it with the claimed205

probability.206

Consistently with this assumption on the size of the input, we assume that there is a207

3XOR triplet t∗ = (x∗,y∗, z∗) in the input, and we study the performance of our algorithms208

in returning this triplet t∗.209

3 A Very Simple, “Direct”, Algorithm210

In this section, we present the simplest possible algorithm that solves the sparse 3XOR211

problem with interesting theoretical guarantees when p is small. Its most striking feature is212

that it succeeds with overwhelming probability in linear time when p is small enough.213

It follows from our preliminary observations that random sparse 3XOR triplets are very214

sparse. This can be exploited in the following simple way: choose a threshold weight w ;215

remove from the input all vectors of hamming weight greater than or equal to w and run the216

quadratic algorithm on the filtered lists.217

Choosing a small value of w leads to smaller “filtered” instances and thus to a smaller218

running time for the actual computation using the quadratic algorithm. However, if w is too219

small, then a potential solution present in the input might be discarded by the filtering step.220

To avoid this, we choose the value of w in the range ]2nu, np[ — above the expected density221

of random 3XOR triplets so that we do not discard them, and below the density of the input222

lists in order to actually discard input vectors that are too heavy.223

Any value of w in this “admissible range” ensures an exponentially small failure probability.224

Indeed, the solution present in the original input is discarded by the filtering step if and225

only if the weight of either x∗,y∗ or z∗ is greater than or equal to w. Define ε with226

2un(1 + ε) = w ; it follows that ε is strictly positive. We know that the expected weight227

of x∗,y∗ and z∗ is 2un, therefore the Chernoff bound (2) shows that either has weight228

greater than w with probability less than exp(−nuε2). A union bound then ensures that the229

solution is discarded with probability less than 3 exp(−nuε2), so the algorithm succeeds with230

overwhelming probability as long as the original input contains at least one solution.231

We now discuss the complexity of the algorithm. Filtering the input lists takes time O (N).232

Let X ∼ B(n, p) be a (binomial) random variable modeling the weight of an input vector233

of density p. Such a vector is kept by the filtering step if its weight is less than w, and234

this happens with probability s := Pr(X < w). Let A′, B′, C ′ denote the filtered lists; their235
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sizes are stochastically independent random variables following binomial distributions of236

parameters N, s and their expected size is Ns. The expected running time of the quadratic237

algorithm on the filtered instance is therefore E (|A′||B′|+ |C ′|) = N2s2 +Ns.238

How to choose w? We could target the middle of the admissible range ]2nu;np[, however239

a much better choice is w = np3 + (1− p2)2nu = 2nu(1 + ε) with ε = p(1−2p)2

2 . The idea is240

that the filtering threshold weight drifts closer to 2nu when p gets closer to zero. This leads241

to the Direct algorithm shown below.242

Algorithm 1 A “direct” algorithm for the sparse 3XOR problem.
1: function Filter(L, w)
2: return {x ∈ L | wt(x) < w}

3: function Direct(A,B,C)
4: Set w ← n

(
p3 + (1− p2)2u

)
.

5: Set A′ ← Filter(A,w), B′ ← Filter(B,w) and C ′ ← Filter(C,w).
6: return QuadraticAlgorithm(A′, B′, C ′).

Using the binomial tail bound (3), we see that the Direct algorithm has an expected243

running-time of:244

ET = N +N2 exp(−λn) + o(N) with λ = 2D
(

(2− 3p+ 2p2)(2p+ 1)p2

1− 2p+ 4p2 , p

)
245

Let e = logN (ET −N), so that the algorithm runs in time O (N +Ne). A quick calculation246

shows that:247

e = 2 + 6
D

(
(2− 3p+ 2p2)(2p+ 1)p2

1− 2p+ 4p2 , p

)
ln(1− p)(1− 2p+ 4p2) .248

The graph of e is shown in Fig. 1a. When p goes to zero, the exponent e reaches a limit249

of zero. When p goes to 1
2 , then e = 2. In between, e is increasing. Using the bisection250

algorithm, we find that e ≤ 1 when p ≤ 0.0925. It follows that the Direct algorithm is251

linear when p ≤ 1
11 . Looking at Fig. 1a, we conjecture that e ≤ 2p(1− 2 ln p). Establishing252

this is left for future work.253

It is worth noting that the unwieldy expression of e would be greatly simplified from254

using the simpler Chernoff bound (2) instead of (3). However, the resulting upper-bound on255

the complexity of the algorithm is much looser for small p: it results in lim e = 1 when p256

goes to zero.257

4 An Incremental Version258

The Direct algorithm uses an a priori threshold on the density of solution to reduce the259

size of the instance. This can be improved by starting with a low threshold weight and260

progressively increasing it while no solution is found. The resulting Incremental algorithm261

deterministically reveals the 3XOR triplet present in the input, and it also does so in linear262

time for small values of p.263

The main idea is the following: when w ≥ np, then the filtering step does not reduce264

significantly the size of the lists. Thus, all iterations after the np-th cost essentially Ω
(
N2).265

However, the w-th iteration (with filtering weight w) is done if and only if any of x∗,y∗266
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Algorithm 2 An improved, “incremental” algorithm for the sparse 3XOR problem.
1: function Incremental(A,B,C)
2: for w = 0, 1, 2, . . . , n do
3: Set A′ ← Filter(A,w), B′ ← Filter(B,w) and C ′ ← Filter(C,w).
4: S ← QuadraticAlgorithm(A′, B′, C ′).
5: if S 6= ⊥ then
6: return S

and z∗ has Hamming weight greater than or equal to w. Their expected weight is 2un, and267

therefore the probability that the most expensive iterations take place is exponentially small.268

I Theorem 4. The Incremental algorithm returns a solution if it exists in time O (N +Ne),269

where270

e = 2 + 3
2D
(

1
1+ 3
√

(1− 1
p )2(1− 1

2u )
, p

)
+D

(
1

1+ 3
√

(1− 1
p )2(1− 1

2u )
, 2p2

1−2p+4p2

)
ln(1− p)(1− 2p+ 4p2) .271

The proof of this Theorem is given in Appendix A.2. The graph of e is also shown in272

Fig. 1a. We find again that e is increasing, limp→0 e = 0, limp→ 1
2
e = 2 and e ≤ 1 when273

p ≤ 0.02155. Thus, this unfailing algorithm is linear when p ≤ 1
47 . We conjecture that274

e ≤ 3 3
√

2p− 4
5 2p− 1

5 (2p)2 but we leave for future work to prove it. It is worthwhile noting that275

the complexity of this algorithm is significantly higher than that of the Direct algorithm276

of section 3. The difference comes from the difference in success probability: this one is277

unfailing.278

In practice, in order to avoid repeating the same work several time, we propose to dispatch279

the entries of the lists according to their Hamming weight (e.g. the list Ai is the sub-list280

of A containing only elements of Hamming weight equal to i), and treat independently all281

instances (Ai, Bj , Ck) such that the values i, j, k make it possible to find a solution. More282

details about how we should proceed is given in Appendix B.283

5 A Better Algorithm for the Base Case284

The previous algorithms (Direct and Incremental) all exploit the sparsity of the 3XOR285

triplets by filtering the input lists in order to reduce their size, and they use the quadratic286

algorithm as the “last resort” solution. In this section, we give a better algorithm for the base287

case where the lists have already been reduced to low-density vectors. The same filtering288

ideas are therefore not directly applicable, and we instead use a different technique, inspired289

by the Information Set Decoding algorithm of Lee-Brickell [8].290

We consider the setting where we are given three lists Ai, Bj and Ck composed of vectors291

of hamming weight exactly i, j and k respectively, of possibly different sizes. Up to renaming,292

we assume without loss of generality that |Ai| ≤ |Bj | ≤ |Ck|. Our goal is find a 3XOR triplet293

with high probability if there is one in the input lists, or return ⊥ if there is none.294

The restriction to input vectors of fixed hamming weight is not really stringent ; indeed, if295

the input lists were made of vectors of arbitrary hamming weight, then the following strategy296

could be implemented: partition each input list in n parts according to the Hamming weight ;297

solve the original problem by searching the
(
n+3

3
)
sub-instances Aµ+ν ×Bν+λ×Cµ+λ subject298

to µ+ ν + λ ≤ n. The point is that any potential 3XOR triplet t∗ present in the input is299

contained in the sub-instance where µ, ν and λ denote the number of columns of type 110,300

101 and 011 of t∗, respectively.301
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The main algorithmic idea is the following: if there is a 3XOR triplet t∗ in the input lists,302

then it necessarily has δ = n− (i+ j + k)/2 columns of “type 000”. We randomly guess a303

subset J of these columns and keep only the vectors from the input lists that are zero on304

all columns of J . This produces a smaller sub-instance and we solve it using the quadratic305

algorithm. If no solution is found, we try again.306

As opposed to the two previous algorithms, here the generated sub-instances are not307

sparser but instead denser than the original input. Correctly choosing the number s of308

columns that are clamped to zero is critical for performance. This leads to the following309

Iterative algorithm.310

Algorithm 3 A sub-quadratic algorithm for the base case.
1: function Clamp(L, J)
2: // Return the sublist made of vectors which are 0 on the columns in J .
3: return {x\J | (x ∈ L) ∧ (∀j ∈ J, xj = 0)}

4: function Iterative(Ai, Bj , Ck)
5: Let δ ← n− (i+ j + k)/2.
6: Set s to the integer 0 ≤ s ≤ δ that minimizes (n−i

s )(n−j
s )

(ns)(δs)
|Ai| · |Bj |+

(ns)
(δs)
|Ck|.

7: Let I ← H (s/n)− (δ/n)H (s/δ)
8: for t = 0, 1, . . . , n2nI do
9: J ← uniformly random subset of {1, 2, . . . , n} of size s.
10: A′ ← Clamp(Ai, J), B′ ← Clamp(Bi, J), C ′ ← Clamp(Ci, J).
11: S ← QuadraticAlgorithm(A′, B′, C ′).
12: if S 6= ⊥ then return S

13: return ⊥

To discuss the properties of the algorithm, we assume as usual that there is a 3XOR311

triplet t∗ = (x∗,y∗, z∗) in the input. The following lemma establishes the success probability312

and justifies the choice of s.313

I Lemma 5. The Iterative algorithm fails to returns t∗ with probability e−n and its314

expected running time is less than
(
n−i
s

)(
n−j
s

)(
n
s

)(
`
s

) |Ai| · |Bj |+
(
n
s

)(
`
s

) |Ck|.315

Proof. When the “golden triplet” t∗ belongs to A′ ×B′ × C ′, then the loop stops and the316

algorithm succeeds. Let r denote the probability (over the random choice of J) that a317

given triplet in the input is discarded by the “clamping” step; we have r =
(
δ
s

)/(
n
s

)
. The318

expected number of iterations therefore follows a geometric distribution of parameter r, and319

its expectation is therefore 1/r. Thanks to the bounds on binomial coefficients (1), we obtain:320

E [# iterations] = 1
r
≤ 2nH(s/n)√

2πs(1− s/n)

/
2δH(s/δ)√
8s(1− s/δ)

≤ cst× 2nI321

322

The probability that n/r iterations occur without success is (1− r)n/r and by concavity323

of ln 1 − x we find that this is less than e−n. Therefore, the algorithm fails only with324

exponentially small probability after having done n times the expected number of iterations.325

The total time spent in Clamp is dominated by |Ck|/r. After clamping, the expected326

size of the sub-instances is |A′| = |Ai|
(
n−i
s

)/(
n
s

)
. The same goes for Bj and Ck. Therefore,327

the expected cost of solving a single sub-instance using the quadratic algorithm is:328 (
n−i
s

)(
n−j
s

)(
n
s

)(
n
s

) |Ai||Bj |+
(
n−k
s

)(
n
s

) |Ck|.329
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The lemma follows, because the component in |Ck| of the cost of solving subproblems is330

dominated by the cost of filtering. J331

It is not straightforward to state anything meaningful about the complexity of the332

algorithm in general. However, when the input contains a 3XOR triplet, then the Iterative333

algorithm always returns it faster than the quadratic algorithm. Indeed, assume that the334

input contains a 3XOR triplet ; had we chosen s = 0 then no clamping would take place335

and the original input lists would have been fed to the quadratic algorithm. The whole336

procedure would then stop and succeed during the first iteration, with a running time equal337

to that of the quadratic algorithm (up to negligible terms). The choice of s guarantees a338

better expected running time. This value can be found by exhaustive search over n elements.339

It follows that the algorithm is at most quadratic.340

Equidistributed Inputs. To progress in the analysis, we therefore restrict ourselves to a341

simpler setting: following again our methodology discussed in section 2.3, we start from342

three input lists A,B and C of size poly(n)q0
−n/3 — therefore containing one 3XOR triplet343

with high probability. We choose a constant w and we build the sublists Awn, Bwn and Cwn344

by keeping only the vectors of weight wn from A,B and C. In this setting, the expected345

size of the input lists is Nw = E |Awn| = E |Bwn| = E |Cwn| = N
(
n
wn

)
pwn(1− p)n(1−w). The346

running time of the Iterative algorithm on input (Awn, Bwn, Cwn) is then a function of n347

and p only.348

If the input contains a 3XOR triplet, then it has δ = n
(
1− 3

2w
)
columns of “type 000”.349

The value of the s parameter can be provided manually and/or decided automatically. Define:350

L = −1
3 log q0 +H(w) + w log p+ (1− w) log(1− p)351

I = H
( s
n

)
− δ

n
H
(s
δ

)
352

R = H
( s
n

)
− (1− w)H

(
s

n(1− w)

)
353

354

With these notations, the size of the input lists is Nw = poly(n)2nL, the number of iterations355

of the loop is n2nI and the expected size of the clamped sub-lists is 2n(L−R). It follows that356

the total time spent clamping the lists is 2n(I+L) and the total time spend in the quadratic357

algorithm is 2n(I+2(L−R)). Therefore, in this setting, the Iterative algorithm runs in time358

Õ (Nwe) where the exponent is e = I
L + max

(
1, 2− 2RL

)
.359

Given a choice of w (and a value of s), this allows the exponent to be computed as360

function of p — as shown in Fig. 1b for w = p and w = 2u. The figure strongly suggests that361

the exponent e reaches a limit of 7
4 when p goes to zero. This would make the Iterative362

algorithm asymptotically better than the quadratic algorithm. It is indeed provably the363

case, at least for some values of w. We consider two interesting cases : w = p and w = 2u.364

With w = p, the “filtering” targets the average density of the input vectors, yielding only365

a polynomial reduction in size. with w = 2u, the filtering targets the expected density of366

3XOR triplets.367

I Theorem 6. For w ∈ {2u, p}, the exponent e reaches a limit of 7
4 when p goes to zero.368

The proof amounts to choosing s/δ = 1− e−1/2 when w = p and s/δ = 1− 4
√

2u when369

w = 2u, then compute the limits. More details can be found in Appendix A.3.370
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Application to the Direct Algorithm. This algorithm for the base case can be used to371

improve the Direct algorithm of section 3. After discarding the vectors of weight greater372

than w from the input, the Direct algorithm feeds the filtered lists to the quadratic373

algorithm. The proposed modification consists in partitioning the filtered lists by hamming374

weight, and solving the O
(
n3) sub-instances using the Iterative algorithm.375

The complexity of this procedure is dominated by the running time of the Iterative376

algorithm on the heaviest balanced sub-instance (Aw, Bw, Cw), with w/n = p3 + 2u(1− p2).377

Given a value of p, we can compute w ; from there, we can compute the exponent e of the378

iterative algorithm (by choosing the optimal value of s/δ numerically); we then know that379

the sub-instance can be dealt with in time (Ns)e, where s is the quantity defined in section 3380

; this in turn allows us to compute the exponent of the combination of the Direct algorithm381

with the Iterative algorithm, numerically, for a given value of p. The result is again shown382

in Fig. 1a.383

Proving an upper-bound on the exponent of the combination is left as an interesting open384

problem.385

6 Possible Improvement and Discussion386

We discuss a possible improvement of the previous algorithm. After the clamping step, the387

sub-instances may not be fully dense. Therefore it would make sense to use the Iterative388

algorithm recursively instead of using the quadratic algorithm. More precisely, in order to389

make this idea work, we propose to rely on an technique due to May and Ozerov to improve390

Information Set Decoding [10].391

Algorithm 4 Sparse Random 3XOR with Improved Clamping
1: function Permuted(Ai, Bj , Ck)
2: // Returns a 3XOR triplet in Ai ×Bj × Ck w.h.p. or ⊥ if none exists
3: for κ = 1, . . . , Poly(n) do . degPoly(n) > (t− 1)/2
4: δ ← n− (i+ j + k)/2
5: q ← random permutation of {0, . . . , n− 1}
6: Ai ← q(Ai), Bj ← q(Bj), Ck ← q(Ck) . Permute the columns of the lists
7: Set s to the value that minimize the runtime
8: S ← Recursive(Ai, Bj , Ck, s, 1)
9: return S

10: return ⊥

11: function Recursive(Ai, Bj , Ck, s, `)
12: if ` = t+ 1 then
13: return QuadraticAlgorithm(Ai, Bj , Ck)
14: else
15: I ← H(s/n)− (δ/n)H(s/δ)
16: for 0 ≤ µ < n2nh`I do
17: J ← random subset of h`s columns in [(h1 + · · ·+ h`−1)n : (h1 + · · ·+ h`)n]
18: A′ ← Clamp(Ai, J), B′ ← Clamp(Bj , J), C ′ ← Clamp(Ck, J)
19: S ← Recursive(A′, B′, C ′, `+ 1)
20: if S 6= ⊥ then
21: return S

22: return ⊥
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Once again, we are in the setting where the lists contains entries of fixed Hamming392

weight, respectively i, j and k. Let us fix a constant t and positive reals h1, . . . , ht such that393

h1 + · · ·+ ht = 1. We know that if there is a 3XOR triplet t∗ in the input, then there are at394

δ = n− (i+ j + k)/2 columns of “type 000” in t∗.395

Here is the main idea of the method. We choose a total number s of columns to clamp,396

as in the Iterative algorithm. However, we do the clamping in t stages:397

1. Choose a random subset J1 of h1s columns in the interval [0 : h1n[, and assume that the398

type of all columns in J1 is 000. Compute the sub-lists A(1)
i , B

(1)
j , C

(1)
k by clamping the399

original input lists over J1.400

2. Choose a random subet J2 of h2s columns in the interval [h1n : (h1 + h2)n[. Compute401

sublists A(2)
i , B

(2)
j , C

(2)
k by clamping the output of the previous stage over J2402

3. Continue for t steps until we came up with small sublists A(t)
i , B

(t)
j , C

(t)
k and clamping403

has been done on s columns.404

4. Solve the resulting instance (A(t)
i , B

(t)
j , C

(t)
k ) using the quadratic algorithm.405

In the iterative algorithm, if the choice of J is wrong, then all the clamping that has406

been done must be discarded. Here, only a part of it will be done in vain, but the choices407

that have been made before the bad one can still stand. We assume that the columns of408

type 000 are uniformly distributed in [0, n− 1]. If not, we can randomize the instance by409

randomly permuting the columns.410

I Lemma 7. The Permuted Algorithm finds a solution present in the input with over-411

whelming probability.412

The proof is given in Appendix A.4. Due to the number of parameters that have to be413

taken into account, the complexity of this algorithm is not easy to analyze, and we leave it414

as an open problem. We claim however, that, in order to reach the best time complexity, we415

need to fix the values of the parameters h1, . . . , ht such that the time spent clamping the416

lists is mostly the same in each level.417
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of solutions knowing that there is at least one.478

E(Y | X(0, 0, 0) = 1) =
∑

Pr (A[i]⊕B[j]⊕ C[k] = 0 | A[0]⊕B[0]⊕ C[0] = 0)479

= q0
−n
∑

Pr (A[i]⊕B[j]⊕ C[k] = 0 ∧ A[0]⊕B[0]⊕ C[0] = 0)480
481

To study this joint distribution, we simply distinguish 8 cases by considering separately the482

situation where i = 0, j = 0 and k = 0 (resp 6= 0 for each index). We introduce the shorthand483

pijk = Pr (A[i] ⊕ B[j] ⊕ C[k] = 0 ∧ A[0] ⊕ B[0] ⊕ C[0] = 0) and assume that i, j, k > 0.484

Then the two joined events are in fact independent and pijk = q0
2n. But when at least one485

indice is zero, this is no longer the case ; the extreme situation is p000 = q0
n. By symmetry486

between the three input lists, we find that pij0 = pi0k = p0jk and pi00 = p0j0 = p00k.487

Let us compute p0jk. What happens here depends mostly on the hamming weight of488

A[0]. Indeed B[j] and C[k] have to sum to one where A[0] is one, and to sum to zero where489

A[0] is zero. Two bits drawn according to Berp sum to one with probability 2p(1− p), and490

they sum to zero with probability p2 + (1− p)2. Therefore we get (using the definition of the491

binomial distribution and the binomial theorem):492

p0jk =
n∑

w=0
Pr (wt(A[0]) = w)Pr (B[j]⊕ C[k] = A[0] ∧B[0]⊕ C[0] = A[0] | wt(A[0]) = w)493

=
n∑

w=0

(
n

w

)
pw(1− p)n−w

(
[2p(1− p)]w

[
p2 + (1− p)2]n−w)2

494

=
n∑

w=0

(
n

w

)[
4p3(1− p)2]w [(1− p) (1− 2p+ 2p2)2

]n−w
495

=
(

4p3(1− p)2 + (1− p)
(
1− 2p+ 2p2)2

)n
496

= q1
n

497498

Next, we determine p00k. Here, C[k] has to be equal to A[0]⊕ B[0]. This then mostly499

depends on the hamming weight of A[0]⊕B[0], and the situation is somewhat symmetrical:500

p00k =
n∑

w=0
Pr (wt(A[0]⊕B[0]) = w)Pr (C[k] = A[0]⊕B[0] ∧ C[0] = A[0]⊕B[0] | wt(A[0]⊕B[0]) = w)501

=
n∑

w=0

(
n

w

)
[2p(1− p)]w

[
p2 + (1− p)2]n−w (pw(1− p)n−w

)2
502

=
n∑

w=0

(
n

w

)[
2p3(1− p)

]w [(1− p)2(1− 2p+ 2p2)
]n−w

503

=
(
2p3(1− p) + (1− p)2(1− 2p+ 2p2)

)n
504

= q2
n

505506

We can now write:507

E (Y | X(0, 0, 0) = 1) = q0
−n [(N − 1)3q0

2n + 3(N − 1)2q1
n + 3(N − 1)q2

n + q0
n
]

508

= N3q0
n + 3N2 (q1/q0)n + 3N (q2/q0)n + 1−∆ with:509

∆ = (3N2 − 3N + 1)q0
n + 3(2N − 1) (q1/q0)n + 3 (q2/q0)n510511

Where the “error term” ∆ is always positive for N ≥ 1. Going back to the beginning, we512
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finally have (using the convexity of 1/(1 + x) in the last step):513

Pr (Y > 0) ≥ E (Y )/E (Y | X(0, 0, 0) = 1)514

≥ N3q0
n

N3q0n + 3N2 (q1/q0)n + 3N (q2/q0)n + 1−∆
515

≥ 1
1 + 3N−1 (q1/q02)n + 3N−2 (q2/q02)n + 1/E (Y )

516

Pr (Y = 0) ≤ 3N−1 (q1/q0
2)n + 3N−2 (q2/q0

2)n + 1/E (Y )517
518

This establishes the second point of the theorem.519

It it worthwhile noting that the second moment inequality Pr(Y > 0) ≥ (E (X))2/(E (X2))520

gives exactly the same bound; computing the variance σ2 = (E (X2))− (E (X))2 and using521

Chebyshev’s inequality also yields the result of the theorem.522

Next, using E (Y ) = N3q0
n, we may rewrite our last inequality in terms of the expectation:523

Pr (Y = 0) ≤ 3
(
q1

3/q0
5)n/3

(E (Y ))−1/3 + 3
(
q2

3/q0
4)n/3

(E (Y ))−2/3 + 1
E (Y ) .524

525

We claim that q1
3/q0

5 and q2
3/q0

4 are both smaller than one over (0, 1/2). This follows from526

the facts that: i) they are both equal to 1 when p = 0 and ii) they decreasing functions of p527

over this interval. The latter claim an be established by actually computing their derivatives528

and checking that they are negative (all factors are easily seen to take only positive values):529

∂

∂p

(
q1

3

q05

)
= −6p(4p3 − 8p2 + 4p− 1)2(2p2 − 6p+ 3)(2p− 1)2

(4p2 − 2p+ 1)6(1− p)3 ,530

∂

∂p

(
q2

3

q04

)
= −6p(4p2 − 3p+ 1)2(4p2 − 6p+ 3)(1− 2p)

(4p2 − 2p+ 1)5(p− 1)2 .531

532

This establishes the third point of the theorem. J533

A.2 Proof of the Complexity of the Incremental Algorithm534

Proof of Theorem 4. Let Ti denote the running time of the i-th iteration and S the number535

of iterations done when the algorithm stops. The total running time is then given by536

T =
∑n
i=0[S ≥ i]Ti. The two random variables [S ≥ i] and Ti are not independent, however537

we claim that E ([S ≥ i]Ti) ≤ (E [S ≥ i]) (Ti) — i.e. they are negatively correlated. The538

point is that is that the fact that input lists contain a “large weight” triplet t∗ can only539

reduce the expected size of filtered lists by at most one, and therefore reduce the expected540

running time of processing them. It follows that ET ≤
∑n
i=0 Pr(S ≥ i)(ETi).541

Next, let us consider two random variables following binomial distributions X2u ∼ B(n, 2u)542

and Xp ∼ B(n, p). From the previous section, we know that ETi = N2s2 + Ns, where543

s = Pr(Xp ≤ i). In addition, following the same reasoning as in section 3, we have544

Pr(S ≥ i) ≤ 3 Pr(X2u ≥ i). This gives:545

ET ≤ 3N2
n∑
i=0

Pr(Xp ≤ i)2Pr(X2u ≥ i)546

547

Set ui = Pr(Xp ≤ i)2Pr(X2u ≥ i). Our goal is to upper-bound the sum of the ui’s. To548

this end, we split the sum in three parts:549

n∑
i=0

ui ≤
2nu∑
i=0

ui +
np∑

i=2nu
ui +

n∑
i=np

ui550
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First, we note that Pr(Xp ≤ i) is increasing when i ≤ 2nu, because 2u < p. Therefore551

we have ui ≤ Pr(Xp ≤ 2nu)2, and because Pr(X2u ≥ i) is greater than 1
2 when i ≤ 2nu, we552

find that ui ≤ 2u2nu when 0 ≤ i ≤ 2nu. A symmetric argument shows that 2unp ≥ ui for all553

np ≤ i ≤ n. Let M denote the largest ui for 2nu ≤ i ≤ np ; then the sum of all the ui’s is554

less than 2nM . We use (3) to get an upper-bound on M . Set f(x) = 2D(x, p) +D(x, 2u), so555

that ui ≤ e−nf(
i
n ). We next seek the maximum of f , and for this we compute its derivative:556

f ′(x) = 2 log x
p
− 2 log x− 1

p− 1 + log x

2u − log x− 1
2u− 1557

Solving f ′(x0) = 0 reveals only one possible real solution, that satisfies:558

1− 1
x0

= 3

√(
1− 1

p

)2(
1− 1

2u

)
559

It appears that 1− 1/x0 is the geometric mean of 1− 1/p, 1− 1/p and 1− 1/(2u); therefore560

we find that 2u ≤ x0 ≤ p (in other terms, the largest ui actually has an index in the range561

[2nu;np]). It follows that the total expected cost of the algorithm is upper-bounded by:562

ET ≤ N + 6nN2e−n[2D(x0,p)+D(x0,2u)]
563

Setting again e = logN (ET −N), the Incremental algorithm runs in time O (N +Ne),564

with:565

e = 2 + 3
2D
(

1
1+ 3
√

(1− 1
p )2(1− 1

2u )
, p

)
+D

(
1

1+ 3
√

(1− 1
p )2(1− 1

2u )
, 2p2

1−2p+4p2

)
ln(1− p)(1− 2p+ 4p2) .566

J567

A.3 Proofs for the Analysis of the Iterative Algorithm568

Proof of theorem 6. First of all, let us start by considering the case where w = np — we569

“filter” the input list by keeping the most common weight. We set the number of clamped570

columns to s/δ =
(

1− e− 1
2

)
. This gives571

L = −1
3 log2 q0572

I = H

((
1− e− 1

2

)(
1− 3

2p
))
−
(

1− 3
2p
)
H
(

1− e− 1
2

)
573

R = H

((
1− e− 1

2

)(
1− 3

2p
))
− (1− p)H

((
1− e− 1

2

)(
1− 3

2p
)

1
1− p

)
574

575

This allows the exponent e to be computed, at least numerically. It is not well-defined at576

p = 0, but the limit can be computed: we find that lim
p→0

I

L
= 3

4 while lim
p→0

R

L
= 1

2 (these577

limits can be computed automatically by the Maple computer algebra system ; unfortunately578

the open-source SageMath system fails). This means that the exponent reaches a limit of 7
4579

when p goes to zero.580

Let us next consider another interesting case, namely w = 2u — we target the expected581

density of 3XOR triplets. This time, we set the number of clamped columns so that582
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s/δ = 1− 4
√

2u. This gives:583

L = −1
3 log q0 +H(2u) + 2u log p+ (1− 2u) log(1− p)584

I = H
((

1− 4
√

2u
)

(1− 3u)
)
− (1− 3u)H

(
1− 4
√

2u
)

585

R = H
((

1− 4
√

2u
)

(1− 3u)
)
− (1− 2u)H

((
1− 4
√

2u
) 1− 3u

1− 2u

)
586

587

We again find that lim
p→0

I

L
= 3

4 while lim
p→0

R

L
= 1

2. Therefore, the exponent also reaches a588

limit of 7
4 when p goes to zero. J589

A.4 Proof regarding the Permuted Algorithm590

Proof of Lemma 7. We denote by t∗ = (x∗,y∗, z∗) the solution we aim to recover.591

Let A(`)
i , B

(`)
j , C

(`)
k denote the lists that are taken as input by the Recursive algorithm592

alongside with the index `. Let x∗` denote the vector x∗\I` , where I` = J1 ∪ . . . J`−1, for ` > 1593

and I1 = ∅. We define y∗` and z∗` accordingly.594

Let us denote by π` the probability that the triplet (x∗`+1,y∗`+1, z∗`+1) is in A
(`+1)
i ×595

B
(`+1)
j × C(`+1)

k , knowing that (x∗` ,y∗` , z∗` ) is in Ai × Bj × Ck. Assuming that there is a596

fraction h` of the δ the columns of “type 000” in the interval of size h`n inside which we597

choose J`, we have (using the bounds on binomial coefficients (1)):598

π` ≥
(
h`δ

h`s

)
/

(
h`n

h`s

)
≥ cst · 2h`(δH(s/δ)−nH(s/n)) = cst · 2−nh`I .599

600

At each step `, if the solution is not found, we restart the procedure up to ≈ n/π`601

times. Assuming that (x∗` ,y∗` , z∗` ) is in A(`)
i , B

(`)
j , C

(`)
k , the probability that we do not find602

the solution after this many iterations is603

Pr [fail at step `] ≈ (1− π`)
n
π` ≤ e−n,604

In particular, this is true for i = 1. This means that the algorithm will return the solution605

with overwhelming probability, as long as the 000 columns are uniformly distributed (i.e.606

there are hlδ columns of type 000 in each slice of size h`n).607

It remains to show that there exist a permutation Q of the columns of the lists, such that608

the columns of type 000 in the solution are uniformly distributed. We claim that such a609

permutation can be found in roughly n(t−1)/2 iterations of the Permuted Algorithm.610

Let Q be a random permutation of the columns of the lists. Let δ∗ be the exact number611

of columns of type 000 in the solution. We say that Q is “good enough” if after applying Q612

to A, B and C, the columns of type 000 are uniformly distributed. In other words, in each613

slice of h`n columns we would like to have about s`δ∗ columns of type 000. The probability614

that Q satisfies this condition is given by615

Pr [Q good enough] =
(
h1n

h1δ∗

)
. . .

(
htn

htδ∗

)
/

(
n

δ∗

)
616

≥ cst ·
√
n2h1nH(δ∗/n) . . . 2htnH(δ∗/n)
√
h1n . . . htn2nH(δ∗/n)617

≥ cst ·
√
n2nH(δ∗/n)√

(h1 . . . ht)nt2nH(δ∗/n)
618

≥ cst · n(1−t)/2.619
620
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It follows that the expected number of iteration of the Permuted Algorithm is O
(
n(t−1)/2).621

Making at least Poly(n) iterations of the Permuted Algorithm where the degree of the622

polynomial is greater than (t − 1)/2 should ensure that a good enough permutation is623

found. J624

B “Practical” Considerations for the Incremental Algorithm625

The iterative algorithm outlined in Section 4 may terminate earlier than its direct counterpart626

of section 3, but it may also do more work (this happens in particular when the chosen filtering627

threshold weight is “just right” and all previous iterations have been wasted). However, it628

can be modified to do less work in all circumstances.629

Let Ai denote the sub-list formed by all vectors of A of hamming weight exactly i ; Bi630

and Ci are defined accordingly. This partitions each input list in n parts. The original631

problem could then be solved by searching the n3 sub-instances Ai ×Bj × Ck for all i, j, k.632

In fact, some of these sub-instance cannot contain a 3XOR triplet. This is obvious with633

i = 1, j = 1 and k = 5 for instance: A and B are too sparse to cancel the heavier C. A 3XOR634

triplet t necessarily belongs to Aµ+ν ×Bν+λ × Cµ+λ, where µ, ν and λ denote the number635

of columns of type 110, 101 and 011 of t, respectively. This is subject to the constraint that636

µ+ ν + λ ≤ n, and there are
(
n+3

3
)
such possibilities.637

All these “admissible” sub-instances are not equally likely to contain a solution, and they638

require a variable amount of time to search. Finding the order in which to process them639

to minimize the expected running time is a classical scheduling problem, namely that of640

minimizing the weighted sum of completion times on a single machine (1||
∑
wiCi in the usual641

nomenclature). It can be solved optimally in polynomial time using Smith’s ratio rule [13]:642

process the sub-instances by decreasing order of cost-efficiency (probability of success divided643

by time required). It turns out that the cost-efficiency of searching Aµ+ν × Bν+λ × Cµ+λ644

is very well correlated to µ + ν + λ, which counts the number of non-000 columns of the645

solution. This yields the following “practical” algorithm.646

Algorithm 5 A refined, more “practical” iterative algorithm.
1: function Practical(A,B,C,w)
2: Partition A (resp. B and C) by hamming weight into A0, . . . , An (resp. Bi, Ci)
3: for m = 0, . . . , n do
4: for each (µ, ν, λ) such that µ+ ν + λ = m do
5: if µ+ ν < w, ν + λ < w and µ+ λ < w then
6: Search Aµ+ν ×Bν+λ × Cµ+λ using the quadratic algorithm.
7: If a solution has been found, report it and stop.
8: return ⊥

With the “if” statement of line 4, the Practical algorithm succeeds in reporting a647

solution (x∗,y∗, z∗) if all the three components have hamming weight less than w ; therefore648

it succeeds at the same conditions than the Direct algorithm of section 3 with the same649

threshold w, but faster. Without the “if” statement (or with w = +∞), it always succeeds,650

but faster than the “iterative” algorithm outlined in section 4. In all cases, the speedup is at651

most polynomial.652

C Computation of a sparse 3XOR653

#!/usr/bin/env python3
from hashlib import sha512
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# Des. Codes Cryptogr. 33(2)
a = "Mark Goresky and Andrew Klapper: Periodicity and Correlation Properties of d-FCSR Sequences. (2004)"

# TCC (2) 2015
b = "Ran Canetti, Yael Tauman Kalai and Omer Paneth: On Obfuscation with Random Oracles. (2015)"

# Cryptologia 10(1)
c = "David Kahn: Secrets of the Codebreakers. (1986)"

# CT-RSA 2007
d = "Mario Lamberger, Norbert Pramstaller, Christian Rechberger and Vincent Rijmen: Second Preimages for SMASH. (2007)"

# EUROCRYPT 2013
e = "Patrick Derbez, Pierre-Alain Fouque and Jérémy Jean: Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting. (2013)"

# Financial Cryptography 2003
f = "Javier Herranz and Germán Sáez: Verifiable Secret Sharing for General Access Structures, with Application to Fully Distributed Proxy Signatures. (2003)"

# C2SI 2019
g = "Yongge Wang and Qutaibah M. Malluhi: Reusable Garbled Turing Machines Without FHE. (2019)"

# CRYPTO 2000
h = "Masayuki Abe and Tatsuaki Okamoto: Provably Secure Partially Blind Signatures. (2000)"

# Cryptologia 38(2)
i = "Chris Christensen: The National Cash Register Company Additive Recovery Machine. (2014)"

# ICISC 2003
j = "Jonathan Katz: Binary Tree Encryption: Constructions and Applications. (2003)"

# CRYPTO 1994
k = "Olivier Delos and Jean-Jacques Quisquater: An Identity-Based Signature Scheme with Bounded Life-Span. (1994)"

# J. Mathematical Cryptology 9(2)
l = "Shlomi Dolev, Juan A. Garay, Niv Gilboa, Vladimir Kolesnikov and Yelena Yuditsky: Towards efficient private distributed computation on unbounded input streams. (2015)"

def H(s):
"""Apply SHA-512 to a string and converts the hash to an integer"""
return int.from_bytes(sha512(s.encode('utf8')).digest(), byteorder='big')

# An unexpected relationship through SHA-512... with ``Secrets of the Codebreakers'' ?!?
assert (H(a) & H(b) & H(c) & H(d)) ^ (H(e) & H(f) & H(g) & H(h)) ^ (H(i) & H(j) & H(k) & H(l)) == 0
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