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Abstract9

We present two new algorithms for a variant of the 3XOR problem with lists consisting of N n-bit10

vectors whose coefficients are drawn randomly according to a Bernoulli distribution of parameter11

p < 1/2. We show that in this particular context the problem can be solved much more efficiently12

than in the general setting. In particular, we present two new algorithms. The first one has a13

time complexity which is both O
(
N1+2.583p) and O

(
N2−(1−2p)2.1

)
. The second one has a time14

complexity which is almost linear in N for small values of p p ≤ 0.15 and has a time complexity of15

Õ
(

N2−1.97(1−2p)2.37
)
for p > 0.13. The analysis of these algorithms reveal a “phase change” for a16

certain threshold p.17
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1 Introduction22

Given three lists A, B and C of n-bit vectors, the 3XOR problem consists in finding a triplet23

(x,y, z) ∈ A × B × C such that x ⊕ y ⊕ z is equal to a given target, often assumed to be24

zero (here the ⊕ symbol represent the exclusive-OR).25

This problem can be seen as a variant of the celebrated 3SUM problem, where this time26

the input list items are seen as integers and we must have x+ y + z = 0. Many geometric27

problems can be reduced to 3SUM in sub-quadratic time, and those problem are said to be28

3SUM hard [5]. Although the 3XOR problem has enjoyed less interest in the complexity29

theory field, there exists a few such reductions. For instance, it is a fact that any O
(
N2−ε)

30

algorithm for the 3XOR problem with input lists of size N would imply faster-than-expected31

algorithms for listing triangles in a graph [11, 6]. Another result due to [3] show that an32

algorithm solving the 3XOR problem in time Ω
(
n2−o(1)) also reduces the time complexity33

of the offline SetDisjointness and SetIntersection.34

The 3XOR problem also has some cryptographic applications, in which the input lists35

consists of uniformly random vectors (the cryptographic community makes this assumption36

“by default”). In particular, we can mention Nandi’s attack [10] against the COPA mode37

of authenticated encryption, or the more recent attack against the two-round single-key38

Even-Mansour cipher by Leurent and Sibleyras [8].39

May and Both have been considering a variant of the 3XOR problem, the approximate40

3-list birthday problem where giving three lists of uniformly random elements of {0, 1}n the41

goal consist in finding triplets (x,y, z) in the list such that the hamming weight of x⊕ y⊕ z42

is small [1].43

The simplest possible algorithm to solve the 3XOR problem is the quadratic algorithm,44

which consists in taking all xors x⊕y ∈ A×B and checking whether this belongs to the last45

list C. Using an optimal static dictionnary [4] to hold C, this results in a time complexity46

of O (|A||B|+ |C|). In the particular case where |A| = |B| = |C| = N , so that only one47

solution exists (with high probability) this algorithm runs in time O
(
N2).48

We focus on the case where N is such that there is one and only one solution with large49

probability. In the case where the vectors are drawn uniformly at random in {0, 1}n, this50

means that N = 2n/3. In this particular case, the quadratic algorithm is mostly the only51

option to recover the solution. Some improvements of this method exist [2, 3], however52

these improvements allows only to gain a polynomial factor in n compared to the quadratic53

algorithm. It is not clear today whether it is possible to find an algorithm for this problem54

with complexity below N2−o(1).55

To some extent, the problem we consider in this paper is dual to the “approximate 3-list56

birthday problem” [1]: starting from (dense) random lists A,B,C, this asks for approximate57

3XOR triplets (x,y, z) — triplets that approximately sum to zero, (i.e. such that the58

hamming weight of x⊕ y⊕ z is small). Here, we start from random input lists with vectors59

of small hamming weight, and we want to find an exact match — an actual 3XOR triplet.60

Contributions. In this paper, we focus on a variant of the 3XOR problem, where the61

elements of the lists are sparse and random. More precisely, each bit of each vector is drawn62

at random according to a Bernoulli distribution of parameter p < 1/2 (the “dense” random63

case corresponds to p = 1/2). A first consequence is that (exponentially) smaller input lists64

are sufficient to ensure the existence of a 3XOR triplet with high probability.65

As a second consequence, we show that the 3XOR problem can be solved much faster66

than O
(
N2). We take advantage of the fact that the proportion of indices j such that our67
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Figure 1 Complexities of our Algorithms.

solution (x,y, z) satisfies xj = yj = zj = 0 is greater than 1/4 in expectation to come up68

with two new algorithms described in sections 3 and 3.69

In the first one, we select randomly a subset J of the indices, guess that the solution70

satisfies xj = yj = zj = 0 for all j ∈ J . From here, we consider the sublists A′, B′ and C ′71

of A,B, and C, consisting only of vectors whose coefficients indexed by j ∈ J are zero. We72

solve this smaller instance with the quadratic algorithm. If no solution is found, we restart.73

In our second algorithm, we borrow the main technique of the “nearest neighbors”74

algorithm of May and Ozerov [9] (which is an algorithm to decode linear codes). Given a75

parameter t, we split the indices in t slices. We select randomly a subset J1 of the indices76

belonging to the first slice and guess that the solution satisfies xj = yj = zj = 0 for all77

j ∈ J1. We then build the sublists A1, B1, C1 of the vectors whose coefficients indexed by78

j ∈ J1 are zero. After that we select a random subsets J2 of the indices belonging to the79

second slice and build the sublists A2, B2, C2 of A1, B1, C1 whose coefficients indexed by80

j ∈ J2 are zero and so on an so forth, until we obtain the lists At, Bt, Ct, which we process81

with the quadratic algorithm. The trick is that, if one of our guess Jk was wrong, we do not82

have to restart the whole guess, but only starting from Jk.83

These algorithms are polynomial in N (the size of the lists) and exponential in n (the84

number of bits of the input vectors). In both case, we focus on the exponent in the complexity,85

and we disregard all lower-order terms. The complexities of the two algorithms given in this86

paper are shown in fig. 1. Taking p = 1/8, for instance, three lists of 20.165n should contain87
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at least one solution. Finding it with the quadratic algorithm would take time 20.33n. Our88

first algorithm finds it in time 20.213n, while our second algorithm finds it in time 20.17n.89

Organisation We recall the computational model as well as important properties regarding90

the distribution of the zeroes and ones in the triplets in Section 2. Then, we present our91

first new algorithm and study its complexity in Section 3. Finally we present the second92

algorithm and its complexity in Section 4.93

2 Preliminaries94

2.1 Notations, Definition and Useful Properties95

Let x be an n-bit string. We have x = x0x1 . . . xn−1. Let A be a list we denote by |A| the96

size of A, that is the number of elements in A. For any triplet (x,y, z) ∈ {0, 1}n, and any97

index 0 ≤ j < n, we call type of the column j the 3-bit string xjyjzj . For any x = x0 . . . xn−1,98

we denote by x\j the bit-string x0 . . . xj−1xj+1 . . . xn−1. More generally, if J is a subset of99

[0 : n], we denote by x\J the sub-string of x, where all xj for j ∈ J have been discarded.100

Let us now define formally our version of the 3XOR problem.101

I Definition 1 (3XOR triplet). Let (x,y, z) ∈ {0, 1}n, we say that the triplet (x,y, z) is a102

3XOR triplet if x⊕ y⊕ z = 0.103

I Definition 2 (3XOR problem with distribution D). Let D be a distribution over {0, 1}n. Let104

A, B and C be three lists of elements drawn independently in {0, 1}n, according to D. A105

solution to the 3XOR problem is a 3XOR triplet (x,y, z) ∈ A×B × C.106

We say that n is the dimension of the problem.107

We denote by log the logarithm in basis 2, by Berp the Bernoulli distribution of parameter108

p, and by H the binary entropy function, meaning that H(x) = −x log(x)− (1−x) log(1−x),109

for all 0 < x < 1. The following standard approximation for the binomial coefficient can be110

derived from Stirling’s formula:111

2nH(x)√
8nx(1− x)

≤
(
n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (1)112

We denote by the notation cst any constant. We also use the following result.113

I Lemma 3 (Chernoff’s lower bound). Let X1 . . . Xn be independent random variables taking114

values in {0, 1}, and let X =
∑n
i=1, then for every 0 < ε < 1,115

P[X ≤ (1− ε)E[X]] ≤ e−
ε2E[X]

2 .116

Computational model. We consider a transdichotomous word Random Access Machine117

(word-RAM) model. In this model, we have access to a machine in which each “memory118

cell” contains a n-bit word. We assume that the usual arithmetic and bit-wise operations on119

n-bit words, as well as the comparison of two n-bit integers and memory access with n-bit120

addresses can be done in constant time. In other terms, we assume that the machine is large121

enough to accomodate the instance of the problem at hand.122

The Quadratic Algorithm for 3XOR For the sake of completeness, we recall the Quadratic123

Algorithm for 3XOR in Algorithm 1.124
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Algorithm 1 QuadraticAlgorithm
1: function QuadraticAlgorithm(A,B,C)
2: // Returns a 3XOR triplet (x,y, z) ∈ A×B × C or ⊥ if none exist.
3: Initialize a static dictionnary C with the content of C.
4: for all x,y ∈ A×B do
5: if (x⊕ y) ∈ C then return (x,y,v)
6: return ⊥

z

y

x

αn βn γn δn

n

11111111 11111 00000000 00000

00000000 11111 11111111 00000

11111111 00000 11111111 00000

Figure 2 Shape of a sparse random 3XOR triplet, up to column permutation.

2.2 Structural Properties of Sparse 3XOR Triplets125

Let (x,y, z) be a 3XOR triplet. For each column j, the type tj of the j-th column belongs126

to {000, 011, 101, 110}. Let α, β, γ, δ ∈ [0, 1] be four parameters satisfying α+ β + γ + δ = 1127

and such that αn columns are of type 101, βn columns are of type 110, γn are of type 000.128

Modulo columns permutations, the shape of a 3XOR triplet can be described by Figure 2.129

We claim that if x, y and z are all drawn from the uniform distribution over {0, 1}n, then130

E[α] = E[β] = E[γ] = E[δ] = 1
4 .131

132

Let D the distribution over {0, 1}n, where each bit is drawn independently from Berp,133

with p < 1
2 . Let (x,y, z) be a triplet of n-bit vectors drawn from D (i.e. P[xj = 1] = P[yj =134

1] = P[zj = 1] = p for all j). Then, for a given column j of type tj , we have135

P[xj ⊕ yj ⊕ zj = 0] = P[tj = 000] + P[tj = 011] + P[tj = 101] + P[tj = 110]136

= (1− p)(1− 2p+ 4p2)137
138

It follows that P[x⊕ y⊕ z = 0] = (1− p)n(1− 2p+ 4p2)n. Now let us consider three lists139

A, B and C, each consisting of N n-bit vectors whose coordinates are drawn independently140

from Berp. The expected number S of 3XOR triplets in A×B × C is141

E[S] = N3

(1− p)n(1− 2p+ 4p2)n .142

As such, as soon as N ≥ (1 − p)−n/3(1 − 2p + 4p2)−n/3, there will be a 3XOR triplet in143

A×B×C with high probability. Let us therefore define L = − 1
3 log(1− p)(1− 2p+ 4p2) and144

N = 2nL. The algorithms we describe take as input three lists A, B and C, each of N elements145

drawn independently from D. Their goal is to find a 3XOR triplet (x, y, z) ∈ A×B × C.146
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Let us now consider a sparse random 3XOR triplet (x,y, z). For a given column j, we147

would like to estimate the probability that j is of a certain type. The only possibilities are148

000, 011, 101, 110. Furthermore149

P[tj = 110| 3-xor] = P[tj = 101| 3-xor] = P[011| 3-xor] = p2/(1− 2p+ 4p2),150

P[tj = 000| 3-xor] = (1− p)2/(1− 2p+ 4p2).151
152

As 0 < p < 1
2 , it follows that the most common column type in a sparse random 3XOR triplet153

is 000. For the remaining of this paper, we denote by δ the quantity (1− p)2/(1− 2p+ 4p2):154

its the expected proportion of 000 columns in a random sparse 3XOR triplet.155

We take advantage of this column repartition to propose several new algorithms to solve156

the following problem.157

3 A Simple Sparse 3-XOR Algorithm158

For the sake of simplicity, let us assume that such a 3XOR triplet exists in the input lists159

and denote it by (x∗,y∗, z∗). Let δ∗ denote the proportion of 000 columns in this triplet.160

Because of the randomness of the input lists, we assume that (x∗,y∗, z∗) is a random 3XOR161

triplet. As such, we expect to find E[δ∗] = δ.162

The algorithms described in this section exploit the same underlying idea exposed in163

section 2.2: because the most frequent “column type” in a 3XOR triplet is 000, we try to164

reduce the size of the instance by guessing that the 3XOR triplet contained in the input is165

000 on some columns.166

Let δ0 be a parameter chosen such that with overwhelming probability, at least δ0n columns167

are of type 000 in (x∗,y∗, z∗). Using the Chernoff bound, we may pick δ0 =
(
1− n−1/3) δ.168

Algorithm 2 A Simple Sparse Random 3XOR Algortihm.
1: function Filter(L, J)
2: // Return the sublist made of vectors which are 0 on the columns in J .
3: return {x\J | (x ∈ L) ∧ (∀j ∈ J, xj = 0)}
4: function Cashew(A, B, C)
5: // Returns a 3XOR triplet w.h.p. if there is one in A×B × C.
6: repeat
7: J ← uniformly random subset of {1, 2, . . . , n} of size κδ0n.
8: A′ ← Filter(A, J), B′ ← Filter(B, J), C ′ ← Filter(C, J).
9: S ← QuadraticAlgorithm(A′, B′, C ′).

10: until S 6= ⊥
11: return S

Algorithm 2 is inspired by information set decoding techniques (notably by the Lee-169

Brickell [7] algorithm). It takes a parameter 0 ≤ κ ≤ 1, whose value is discussed below.170

I Theorem 4. The expected time complexity of Cashew is171

i) Ω
(
N1+2p) and O (N1+2.583p)

172

ii) O
(
N2−(1−2p)2.1

)
173

The rest of this section is devoted to proving theorem 4. Let us denote:174

I = H(κδ0)− δ∗H(κδ0/δ
∗)175

R = −κδ0 log2(1− p)176
177
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I Lemma 5. i) The expected total time spent in Filter is O
(
2n(I+L)).178

ii) The expected total time spent in QuadraticAlgorithm is O
(
2n(I+2(L−R))).179

iii) The expected complexity of Cashew is O
(
2n(I+L) + 2n(I+2(L−R))).180

Proof. We first observe that Filter is linear in the size of its input. The probability that181

the choice of J is compatible with (x∗,y∗, z∗) is:182

P
[
x∗j = y∗j = z∗j = 0 for all j ∈ J

]
=
(
δ∗n

κδ0n

)/(
n

κδ0n

)
.183

The expected number of iterations of Cashew is the inverse of this probability, and thanks184

to eq. (1), it is upper-bounded by:185

E [# iterations] ≤ 2nH(κδ0)√
2πnκδ0(1− κδ0)

/
2nδ∗H(κδ0/δ

∗)√
8nκδ0/δ∗(1− κδ0/δ∗)

186

≤ cst× 2n[H(κδ0)−δ∗H(κδ0/δ
∗)]

187
188

This establishes point i).189

We now estimate the size of the subproblems (A′, B′, C ′). A random sparse vector of190

density p is zero on the κδ0n columns chosen in J with probability q = (1− p)κδ0n. Because191

A,B and C are made of independent and uniformly random sparse vectors of density p, we192

find that E[|A′|] = q|A| (an identical result holds for B′ and C ′). It follows that the expected193

complexity of solving a single subproblem is |A′| × |B′| = q2N2. This establishes point ii).194

Point iii) is a trivial consequence of i) and ii). J195

By choosing the value of κ, we can adjust the expecting number of iterations and the196

size of the subproblems. A quick examination reveals that I + L is an increasing function197

of κ, while I + 2(L− R) first decreases to a minimum then increases again when κ varies198

between 0 and 1. It turns out that there are two distinct situations, depending on p: the199

best option is either to balance the cost of filtering and solving the subproblems (for small p)200

or to minimize the total time spent dealing with the subproblems (for large p).201

I Lemma 6. There exist a constant p∗ = 0.30534... such that the value of κ minimizing the202

expected running time of Cashew is:203

κ =
{
−L/(2δ log 1− p) when p < p∗

4 + 6/(p− 2) when p > p∗
204

The threshold p∗ is the single value that equates the two alternatives.205

Proof. Let us consider the expected values of I and R over the random choice of a 3XOR206

triplet (i.e. assuming that δ∗ = δ0 = δ):207

I ′ = H(κδ)− δH(κ)208

R′ = −κδ log2(1− p)209
210

It follows from lemma 5 that the optimum expected value of κ is the one that minimizes211

max {I ′ + L, I ′ + 2(L−R′)} — this minimizes the exponent in the complexity.212

Let κ1 denote the solution of I ′ + L′ = I ′ + 2(L − R′) (this is the value of κ that213

balances the cost of filtering and solving the subproblems). Let κ2 denote the solution of214

∂(I ′ − 2R′)/∂κ = 0 (this is the value of κ that minimizes the total expected time required to215

solve the subproblems).216
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When κ1 < κ2, then κ1 minimizes the expected running time of Cashew. Indeed, taking217

κ below κ1 increases the complexity of solving the subproblems (which is decreasing below218

κ2); taking κ > κ1 increases the complexity of the filtering step (which is always increasing).219

When κ1 > κ2, then κ2 is the optimal value: moving beyond κ2 increases the complexity220

of both steps. Because the cost of the filtering step is increasing as a function of κ, it is221

smaller than that of solving the subproblems while κ < κ1. As such, solving the subproblems222

dominate the complexity, and the cost of this step is minimum when κ = κ2.223

A somewhat tedious calculation shows that κ1 = −L/(2δ log 1−p) and κ2 = 4 + 6/(p−2).224

Another tedious calculation shows that κ1 < κ2 ⇐⇒ p < p∗, where p∗ is the solution J225

Theorem 4 can be established by taking the optimal value of κ given by lemma 6, and226

verifying numerically that the resulting complexity indeed satisfies the announced bounds.227

This is visible on Fig. 1.228

4 Improved Filtering à la May and Ozerov229

In this section we describe an improved algorithm, which is highly inspired by that of May230

and Ozerov for Information Set Decoding [9].231

Let (x∗,y∗, z∗) be a 3XOR triplet in A×B ×C and let δ∗ be the proportion of columns232

of type 000 in this triplet. Let us fix a constant t and positive reals s1, . . . , st such that233

s1+· · ·+st = 1. We again consider the parameter δ0 such that, with overwhelming probability,234

at least δ0n columns are of type 000 in (x∗,y∗, z∗).235

As in section 3, we define I = H(δ0κ)− δ0H(κ) and R = − log(1− p)κδ0.236

We assume that the columns of type 000 are uniformly distributed in [0, n− 1]. If not,237

we can randomize the instance by permutating the columns randomly. After a polynomial238

number of such permutation, the columns of type 000 should be uniformly distributed. Here239

is the main idea of the method.240

1. Choose a random subset J1 of s1δ0n columns among the first s1n, and assume that for241

all j ∈ J1, the type tj of the column j is tj = 000.242

2. Compute the sub-lists A1, B1, C1 such that for all x ∈ A1, (resp. B1, C1) xj = 0.243

3. Compute sublists A2, B2, C2 recursively in a similar way, and so on and so forth until we244

came up with small sublists At, Bt, Ct.245

4. Solve the instance with At, Bt, Ct using the quadratic algorithm.246

Now let 1 ≤ i0 ≤ t be the first index for which our choice of the set Ji0 is wrong (i.e.247

∃j ∈ Ji0 such that tj 6= 000 in the solution). We do not have to restart computing the lists248

Ai0−1, Bi0−1, Ci0−1, but we only have to restart the computation starting from Ai0 , Bi0 , Ci0 .249

More formally, this yields Algorithm 3. The remainder of this section is devoted to250

establishing its complexity.251

I Theorem 7. For any constant t, there exists s1, . . . , st and a polynomial P such that252

Pistachio finds a solution in expected time253

P (n)
[
2n
(
L+I 1−(R/I)

1−(R/I)t

)
+ 2n(I+2(L−R))

]
.254

I Lemma 8. Let (x∗,y∗, z∗) be a 3XOR triplet in A×B × C. We assume that this is the255

only 3XOR triplet in A × B × C. Let δ∗ denote the proportion of columns of type 000 in256

(x∗,y∗, z∗). Assume that these columns are uniformly distributed among all the columns of257

(x∗,y∗, z∗); then Peanut(A,B,C, 1) returns (x∗,y∗, z∗) with overwhelming probability.258
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Algorithm 3 Sparse Random 3XOR with Improved Filtering
1: function Pistachio(A, B, C)
2: // Returns a 3XOR triplet in A×B × C w.h.p. or ⊥ if none exists
3: do
4: q ← random permutation of {0, . . . , n− 1}
5: A← q(A), B ← q(B), C ← q(C) . Permute randomly the columns of the lists
6: S ← Peanut(A,B,C, 1)
7: while S = ⊥
8: return S

9: function Peanut(A, B, C, i)
10: if i = t+ 1 then
11: return QuadraticAlgorithm(A,B,C)
12: else
13: for 0 ≤ ` < n2nsiI do
14: J ← random subset of κδ0sin columns in [(s1 + · · ·+ si−1)n : (s1 + · · ·+ si)n]
15: A′ ← Filter(A, J), B′ ← Filter(B, J), C ′ ← Filter(C, J)
16: S ← Peanut(A′, B′, C ′, i+ 1)
17: if S 6= ⊥ then
18: return S

19: return ⊥

Proof. Let Ai, Bi, Ci denote the lists that are taken as input by Peanut alongside with the259

index i. Let x∗i denote the vector x∗\Ii , where Ii = J1 ∪ . . . Ji−1, for i > 1 and I1 = ∅. We260

define y∗i and z∗i accordingly.261

Let us denote by πi the probability that the triplet (x∗i+1,y∗i+1, z∗i+1) is in Ai+1 ×Bi+1 ×262

Ci+1, knowing that (x∗i ,y∗i , z∗i ) is in Ai ×Bi × Ci. Assuming a uniform distribution of the263

columns of type 000, we have (using (1)):264

πi =
(
siδ
∗n

κsiδ0n

)
/

(
sin

κsiδ0n

)
≥
(
siδ0n

κsiδ0

)
/

(
sin

κsiδ0n

)
265

≥ cst · sin2δ0sinH(κ)

δ0sin2sinH(κδ0) = cst · 2sin(δ0H(κ)−H(κδ0))

δ0
≈ 2sin(δ0H(κ)−H(κδ0)).266

267

At each step i, if the solution is not found, we restart the procedure up to ≈ n/πi times.268

Assuming that (x∗i , y∗i , z∗i ) is in Ai, Bi, Ci, the probability that we do not find the solution269

after this many call to the procedure is270

P[fail at step i] ≈ (1− πi)
n
πi ≤ e−n,271

In particular, this is true for i = 1. This means that the algorithm will return the solution272

with overwhelming probability, as long as the 000 columns are uniformly distributed. J273

I Lemma 9. The expected size of the input lists Ai, Bi, Ci of Peanut at step i is:274

Ni = 2n
(
L−R

∑i−1
j=1

si

)
.275

Proof. The probability that a vector of size greater than sin, whose coefficients are drawn276

from Berp is 0 on κδ0sin arbitrary fixed columns is277

qi = (1− p)κδ0sin = 2κδ0sin log(1−p) = 2−Rsin.278



10 Faster Algorithms for the Sparse Random 3XOR Problem

It follows that the expected size Ni+1 of the list Ai+1, Bi+1, Ci+1, for i ≥ 1 is given by279

E[Ni+1] = qiNi = N1

i∏
j=1

qjN1 = 2−n
(
L−R

∑i

j=1
si

)
280

281

J282

I Lemma 10. The number of iterations of Pistachio is O
(
n(t−1)/2).283

Proof. Let Q be a random permutation of the columns of the lists. We say that Q is "good284

enough" if after applying Q to A, B and C, the δ∗n columns of type 000 are uniformly285

distributed. In other words, in each slice of sin columns we would like to have about siδ∗n286

columns of type 000. The probability that Q satisfies this condition is given by287

P[Q good enough] =
(
s1n

s1δ∗n

)
. . .

(
stn

stδ∗n

)
/

(
n

δ∗n

)
288

≥ cst ·
√
n2s1nH(δ∗) . . . 2stnH(δ∗)
√
s1n . . . stn2nH(δ∗)289

≥ cst ·
√
n2nH(δ∗)√

(s1 . . . st)nt2nH(δ∗)
290

≥ cst · n(1−t)/2.291
292

It follows that the expected number of iteration of Pistachio is O
(
n(t−1)/2). J293

We are now ready to prove Theorem 7.294

Proof. Let us denote by Ci the time complexity of one iteration i of Peanut. In particular,295

we have296

Ct+1 = O
(
N2
t+1
)

297

Ci = O
(
2nsiI(Ni + Ci+1)

)
, ∀i ≤ t (2)298

299

where Ni is the size of the lists at the beginning of Step i. Furthermore, Step i of the300

procedure has to be restarted at most 2nI
∑i−1

j=1
si times. Let us denote by Ti the value301

2nI
∑i−1

j=1
Ci . From (2), we have302

Ti = O
(

2nI
∑i

j=1
sjNi

)
+ Ti+1.303

From Lemma 9, this is304

Ti = O
(

2n
(
L+Isi+(I−R)

∑i−1
j=1

sj

))
+ Tj+1.305

For all 1 ≤ i ≤ t− 1, we want the following to hold306

n

L+ Isi + (I −R)
i−1∑
j=1

sj

 = n

L+ Isi+1 + (I −R)
i∑

j=1
sj

 .307

This would mean that the time spent filtering the lists is mostly the same in all levels i.308

After simplification, this gives309

si+1 = R

I
si = Ri

Ii
s1.310
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The condition
∑
i si = 1 ensures that s1 = 1−(R/I)

1−(R/I)t . It follows that for all i,311

Ti = O
(

2n(L+Is1)
)

+ Ti+1 = O
(

2n
(
L+It I−R

It−Rt

))
+ Ti+1.312

In particular, as t is a constant, this implies that313

C1 = T1 = O
(

2n
(
L+It I−R

It−Rt

))
+ Tn+1314

and315

Tn+1 = O
(

2nI
∑t

i=1
si22n

(
L−R

∑t

i=1
si

))
= 2n(I+2(L−R)).316

It follows that317

C1 = O
(

2n
(
L+It I−R

It−Rt

)
+ 2n(I+2(L−R))

)
.318

We use Lemma 10 to obtain the claimed complexity. J319

Tuning for Maximum Speed320

It remains to choose a value of κ that minimizes the running time. This time, κ depends on321

p and t. We can essentially replay the analysis in lemma 6, but everything becomes messier322

because of t.323

Let κ1 be the value that balances the cost of filtering and solving the subproblems in324

Peanut. It can be seen that this is the solution (in κ) of:325 (
1− (R/I)t−1) / (1− (R/I)t

)
= 2− L/R. (3)326

Barring anything else, this equation can be solved numerically. This allows to evaluate327

the exponent in the complexity. Let κ2 denote the value that minimizes the total time spent328

solving subproblems. As previously, we find that κ2 = 4 + 6/(p− 2), and that the best value329

of κ is the minimum of κ1 and κ2.330

To make things more concrete, we will consider two settings: a “small” value of t (say,331

t = 4), and a “large” value of t (t = +∞).332

For t = 4, We find that the threshold where κ1 = κ2 is attained for p? = 0.1690...333

(overwise we have κ1 < κ2 ⇔ p < p?). In other terms, for p > p?, the best strategy is to334

minimize the total time spent in dealing with the subproblems. We find numerically that335

while p < 0.169, algorithm 3 runs in time less than N5/4.336

We now consider the case t =∞; arguably, this is not a realistic value, but we think that337

it helps understand the global behavior of the algorithm. We pass to the limit by noting338

that when t→ +∞, the function f(x) = 1−x
1−xt becomes339

f̂(x) =
{

1− x when x ≤ 1
0 when x ≥ 1

340

Therefore, balancing the cost of filtering with that of solving the subproblems means finding341

κ1 satisfying:342

L+ If̂

(
R

I

)
= I + 2(L−R)343
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This yields a new threshold p? = 0.1265...: for p < p?, the best value of κ is κ1, while344

for p > p∗ it is again κ2. For p < p?, with κ = κ1, we find that R/I > 1, and therefore the345

complexity of the whole algorithm is exactly N (it is linear in its input). In fact, we observe346

that even for smaller (“reasonable”) values of t, the complexity is very close to N when p is347

close enough t zero. We summarise this in the following corollary.348

I Corollary 11. 1. For any t ≥ 2, for all ε > 0, there exist a threshold p0 such that for349

p ≤ p0, Algorithm 3 runs in time O
(
n(t−1)/2N1+ε)

350

2. In particular, for t = 12 and ε = 0.01, p0 ≥ 1/8.351

3. For t ≥ 10 and p ≥ 0.130, Algorithm 3 runs in time O
(
n(t−1)/2N2−1.97(1−2p)2.37

)
.352

Tuning the parameters to minimize the concrete running time on an actual computer to353

solve a given instance with specified values of n and p is another problem.354

To conclude, Algorithm 3 spends less time filtering the lists than Algorithm 2. As such,355

solving the subproblems using the quadratic algorithm dominates the running time for smaller356

values of p with an optimal choice of κ. It follows that for p ≥ 0.305..., both algorithms357

exhibit essentially the same behavior. Algorithm 3 shines for small values of p (as can be358

seen on Fig 1).359
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