
Algorithms for the Sparse Random 3XOR Problem1

Charles Bouillaguet2

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France3

charles.bouillaguet@lip6.fr4

Claire Delaplace5

MIS Laboratory, Université de Picardie Jules Verne, 14 quai de la Somme, 80080 Amiens, France6

claire.delaplace@u-picardie.fr7

Antoine Joux8

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany9

joux@cispa.de10

Abstract11

We present algorithms for variants of the 3XOR problem with lists consisting of random sparse n-bit12

vectors. We consider two notions of sparsity: low-density (each bit is independently biased towards13

zero) and low-weight (the Hamming weight of n-bit vectors is fixed).14

We show that the random sparse 3XOR problem can be solved in strongly subquadratic time,15

namely less than O
(
N2−ε) operations for a constant ε > 0. This stands in strong contrast with the16

regular case, where it has not been possible to have the exponent drop below 2− o(1).17

In the low-density setting, a very simple algorithm even runs in linear time with overwhelming18

success probability when the density is less than 0.0957. Our algorithms exploit the randomness19

(and sparsity) of the input in an essential way.20

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-21

graphy; Theory of computation22

Keywords and phrases Algorithms, 3-xor problem, random sparse 3-xor23

https://orcid.org/0000-0001-9416-6244
mailto:charles.bouillaguet@lip6.fr
https://orcid.org/0000-0002-5314-1806
mailto:claire.delaplace@u-picardie.fr
mailto:joux@cispa.de

2 Algorithms for the Sparse Random 3XOR Problem

1 Introduction24

Given three lists A, B and C of n-bit strings, the 3XOR problem consists in deciding the25

existence of (or even finding) a triplet (x,y, z) ∈ A×B ×C such that x⊕ y⊕ z is equal to a26

given target, often assumed to be zero (here the ⊕ symbol represents the exclusive-OR or27

XOR).28

In the general setting where the input lists have size N and can be arbitrary, a simple29

algorithm decides the existence of a 3XOR triplet in time O
(
N2), but there is no known way30

of doing it in O
(
N2−ε) operations for any constant ε > 0. Dietzfelbinger, Schlag and Walzer31

found an algorithm that gains a poly-logarithmic factor over the quadratic algorithm [5].32

3XOR can be seen as a variant of the celebrated 3SUM problem. In 3SUM, the input lists33

contain integers and we must have x+ y + z = 0 over Z. Many geometric problems can be34

reduced to 3SUM in sub-quadratic time, and those problems are said to be 3SUM-hard [8].35

Although the 3XOR problem has enjoyed less interest in the complexity theory field, there36

exists a few such reductions. For instance, it is a fact that any O
(
N1+ε) algorithm for the37

3XOR problem with input lists of size N would imply faster-than-expected algorithms for38

listing triangles in a graph [9]. In the other direction, some conditional lower-bounds have39

been established based on the hypothesis that 3XOR is inherently quadratic: [5] shows that40

the offline SetDisjointness and SetIntersection problems cannot be solved in time41

O
(
N2−ε) unless 3XOR can.42

Besides being a natural extension of 3SUM, the 3XOR problem has some applications in43

the cryptanalysis of symmetric encryption schemes. Nandi’s attack [13] against the COPA44

mode of authenticated encryption, or the more recent attack against the two-round single-key45

Even-Mansour cipher by Leurent and Sibleyras [11] both reduce the problem to solving a46

large instance of the 3XOR problem.47

In the context of cryptanalysis, the attacker has oracle access to three random functions48

f, g, h whose range is {0, 1}n, and she must output a triplet (i, j, k) such that f(i)⊕ g(j)⊕49

h(k) = 0 as quickly as possible. In other terms, the attacker is free to choose a target size N ,50

query the oracles and assemble input lists of size N , then solve this instance of the 3XOR51

problem. In order to minimize the total running time of the attack, the usual approach52

consists in assembling lists of size N ≈ 2n/2, which makes it possible to find a 3XOR triplet53

in time Õ (N) by essentially sorting the lists. At this point, there is no known way to solve54

this “cryptanalytic version” of the 3XOR problem in 2(0.5−ε)n operations, for any constant55

ε > 0.56

Cryptanalytic applications yield a family of 3XOR problems with a distinctive flavor: the57

input lists consist of uniformly random bit strings. Assuming random inputs is natural in58

the context of cryptanalysis, and this lead to several algorithms (predating [5]) gaining a59

polylogarithmic factor over N2 and often tailored to specific input sizes [10, 14, 4]. This60

randomness assumption makes the problem simpler, but even in this simpler case it has not61

yet been possible to obtain a O
(
N2−ε) algorithm.62

Let us also mention that May and Both considered the “approximate 3-list birthday63

problem”: given three lists of N uniformly random n-bit strings, find triplets (x,y, z) in the64

list such that the hamming weight of x⊕ y⊕ z is small [3].65

In this paper, we consider an even more favorable setting for the 3XOR problem, where66

the input lists are both random and sparse. We consider two natural sparse distributions67

over {0, 1}n, with a sparsity parameter 0 < p < 1/2:68

Low-density D is the distribution where each bit is drawn independently from the Bernoulli69

distribution of parameter p.70

C. Bouillaguet, C. Delaplace and A. Joux 3

Low-weight W is the uniform distribution over n-bit strings of Hamming weight np.71

We consider the problem of finding a 3XOR triplet in three lists A,B and C of of size N72

containing n-bit strings drawn independently according to either D or W. The two settings73

are quite different and we give an algorithm for each case. In both cases it is possible to find74

a 3XOR triplet in O (Ne) operations with e < 2 when the input lists contain one.75

Motivation. The two algorithms presented in this paper have no concrete application that76

we are aware of, either in cryptography or elsewhere. Our initial motivation was the study77

of the following strategy for the “cryptanalytic flavor” of the 3XOR problem: build three78

lists of size 2µn with µ = 5
24 log2 5 = 0.483..., then discard all vectors of weight 6= n/4. This79

result in three smaller lists of expected size ≈ 2λn, with λ = 5
24 log2 5− 3

4 log2 3 + 1 = 0.295....80

They are expected to contain one 3XOR triplet, according to theorem 4 below.81

If this instance of the random low-weight 3XOR problem could be solved in time O
(
N1.69),82

then the original problem would be solved in time ≈ 20.498n, which would have been a83

breakthrough. Unfortunately, algorithm 3 below is only capable of solving this problem in84

O
(
N1.75) operations.85

Contributions. In section 3, we first give the probability that the input actually contains a86

3XOR triplet for a given list size N and parameter p in each setting, using a form of the87

second-moment inequality. To the best of our knowledge, this result was not readily available88

from the existing literature, not even in the dense case which is cryptographically relevant.89

In section 4 we give an algorithm for the low-density 3XOR problem. It discards input90

vectors whose Hamming weight is above a well-chosen threshold, then searches a solution91

using the naive quadratic algorithm. This yields the92

I Theorem 1 (low-density). Write:93

e = 2 + 6
D
(

2p2

1−2p+4p2 , p
)

ln(1− p)(1− 2p+ 4p2) , D(a, p) = a ln a
p

+ (1− a) ln 1− a
1− p .94

95

D(a, p) is the Kullback-Leibler divergence between an a-coin and a p-coin. For all d > e there96

is an algorithm for the random low-density 3XOR problem (with density p) that runs in time97

O
(
N +Nd

)
, where N denotes the size of the input list and fails to reveal a 3XOR triplet98

present in the input with negligible probability (in n).99

This means that a solution can be found with overwhelming probability in time linear in N100

for small density (i.e. p < 0.0957, which makes e ≤ 1 in the theorem).101

In section 5, we give an algorithm for the low-weight setting, inspired by an algorithm of102

May and Ozerov [12] for Nearest-Neighbor search: it randomly guesses positions where bits103

of the solution are 1, and uses this guess to reduce the size of the lists. This yields the other104

I Theorem 2 (low-weight). Write v = p/2 and105

e = H(3v) + 3v log2 3
(1− 3v) log2(1− 3v)− 3v log2(4v)− 3(1− 2v) log2(1− 2v) .106

Assume that N is large enough (in a sense defined precisely in section 5). For any d > e,107

there is an algorithm that solves the low-weight random 3XOR problem (with weight np) in108

time O
(
n4Nd

)
and fails to reveal a 3XOR triplet present in the input with exponentially109

small probability as n→∞.110

Figure 1 show the limiting exponents in theorems 1 and 2. We implemented these111

algorithms ; appendix A presents a somewhat artifical application.112

4 Algorithms for the Sparse Random 3XOR Problem

0.0 0.1 0.2 0.3 0.4 0.5
p

1.0

1.2

1.4

1.6

1.8

2.0
e

Low-density
Low-weight

Figure 1 The limit exponents of theorems 1 and 2: algorithms run in O
(
Nd
)
for any d > e,

where e is shown in the figure as a function of the sparsity of the input. p = 1/2 corresponds to the
random dense case.

2 Preliminaries113

Let x = x1x2 . . . xn be an n-bit string (we use “bit string” and “vector” as synonyms). We114

denote by wt(x) its Hamming weight. We identify a bit string x ∈ {0, 1}n with a subset115

S ⊆ {1, 2, . . . , n} in the obvious way (i ∈ S ⇔ xi = 1). For instance, with x,y ∈ {0, 1}n, we116

say that x ⊆ y (“x is contained in y”) if (xi = 1) ⇒ (yi = 1), for 1 ≤ i ≤ n. In addition,117

we define x↓y (“x projected onto y”) to be the subword of x formed by removing all letters118

where y is one. For instance 0100101↓0011001 = 0110 (bits 3, 4 and 7 are removed).119

Let A be a list ; |A| denotes the number of elements in A. We say that (x,y, z) is a120

3XOR triplet if x⊕ y⊕ z = 0.121

Let 0 < p < 1/2 be fixed and let Berp the Bernoulli distribution of parameter p. We also122

denote by Pois(λ) the Poisson distribution with parameter λ and by B(n, p) the binomial123

distribution with parameters (n, p).124

Bounds for Binomial Distributions. Let H denote the binary entropy function, meaning125

that H(x) = −x log2(x) − (1 − x) log2(1 − x), for all 0 < x < 1. The following standard126

bounds for the binomial coefficient can be derived from Stirling’s formula:127

2nH(x)√
8nx(1− x)

≤
(
n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (1)128

C. Bouillaguet, C. Delaplace and A. Joux 5

Let X ∼ B(n, p) be a binomial random variable. We make heavy use of tail bounds, notably129

the Chernoff bound (2) and the tighter classical inequality (3), a proof of which can be found130

in [1] amongst others. Here, D is again the Kullback-Leibler divergence as in theorem 1.131

Pr(X ≤ an) ≤ exp− n

2p (p− a)2, if a < p (2)132

Pr(X ≤ an) ≤ exp−nD(a, p) if a < p. (3)133
134

Computational Model. We consider a transdichotomous word Random Access Machine135

(word-RAM) model. In this model, we have access to a machine in which each “memory136

cell” contains an n-bit word (in other terms, we assume that the machine is large enough to137

accommodate the instance of the problem at hand). We assume that the usual arithmetic138

and bit-wise operations on n-bit words, as well as the comparison of two n-bit integers and139

memory access with n-bit addresses can be done in constant time. We also assume that140

obtaining the Hamming weight of an n-bit word is an elementary operation.141

The Quadratic Algorithm. The simplest possible way to solve the 3XOR problem is the142

quadratic algorithm (shown as algorithm 1). For all pairs (x, y) ∈ A × B, check if x ⊕ y143

belongs to C. Each test can be done in constant time if all entries of C have been stored in a144

suitable data structure beforehand — for instance one could use the optimal static dictionary145

of [7], or simply cuckoo hashing [15].146

Algorithm 1 The simple quadratic algorithm for 3XOR.
1: function QuadraticSetup(C)
2: Initialize a static dictionary C containing all the bit strings in C
3: return C

4: function Quadratic3XOR(A,B, C)
5: for (x, y) ∈ A×B do
6: if x⊕ y ∈ C then
7: return (x, y, x⊕ y)
8: return ⊥

The initialization of the dictionary holding C is separated from the rest, because we will147

subsequently invoke Quadratic3XOR many times with the same C. We assume (using [7]148

for instance) that QuadraticSetup takes time O (|C|). Then Quadratic3XOR(A,B, C)149

takes time O (|A| × |B|). The quadratic algorithm works regardless of the sparsity of the150

input, and as such it does not take advantage of it. It is the only solution, up to logarithmic151

factors, when the input is dense.152

3 Bounds on the Existence of 3XOR Triplets153

Suppose that (G,+) is a group (in additive notation) and assume that three lists A,B and C,154

each of size N , are made of group elements sampled independently at random according to155

some distribution Ψ over {0, 1}n (in this paper, ψ is either D or W). Let Y be the random156

variable that counts the number of triplets (x, y, z) ∈ A × B × C such that x + y + z = 0157

(taken over the random choice of A,B and C). Assuming that the expected value of Y158

is bounded away from zero, a concentration inequality would yield a lower-bound on the159

probability that the input lists contain at least one triplet that sums to zero. The problem is160

6 Algorithms for the Sparse Random 3XOR Problem

that the N3 triplets in A×B × C are not independent and thus classical techniques such161

as the Chernoff bound do not apply. A standard, but slightly less immediate argument162

is necessary to take this dependence into account. Let x, y, z, u, v denote five independent163

random variable distributed according to Ψ, and set:164

ρ = Pr(x+ y + z = 0)165

σ = Pr(x+ y + z = 0 | u+ v + z = 0)166

τ = Pr(x+ y + z = 0 | u+ y + z = 0)167
168

Using a form of the second-moment inequality, we obtain:169

I Lemma 3. EY = N3ρ and 1−N3ρ ≤ Pr(Y = 0) ≤ 1
ρ

(
3σ
N

+ 3τ
N2 + 1

N3

)
.170

Specializing the result for the group of n-bit strings with the XOR operation and the two171

distributions of interest to us yields the172

I Theorem 4. With the above notations, if the input distribution is ψ ∈ {D,W}, we have:173

1− EY ≤ Pr (Y = 0) ≤ 3
(EY)1/3 + 3

(EY)2/3 + 1
EY . (4)174

If ψ = D, then ρ = (1− p)n(1− 2p+ 4p2)n.175

If ψ =W, then we have the following bound:176

(π
4

)3/2
≤ ρ

ρ̃
≤
(

4
π

)3/2
with ρ̃ = 8

(
(1− 2v)3

1− 3v

)1/2

2n[3v log2 3+H(3v)−3H(2v)]
177

Both proofs are in appendix B.178

3.1 Implications179

First of all, when the input is random, the 3XOR problem may potentially be easy to solve180

with low error probability without even observing the input lists, depending on n, the size181

and the distribution of the input. In light of theorem 4, we see that if N (the size of input182

lists) is exponentially smaller than ρ−1/3, then “return ⊥” is an algorithm that has an183

exponentially small probability of yielding false negatives. Alternatively, in the low-density184

case, if N is exponentially larger than (1− p)−n, then we expect the string 000 . . . 0 to be185

present in A,B and C with overwhelming probability ; it follows that “return (0, 0, 0)” is186

a fast algorithm with exponentially low false positive probability. To avoid these pitfalls,187

our main focus is on the hard case where N ≈ ρ−1/3, and where the expected number of188

solutions in the random input lists is close to one.189

In general, if the input lists are too long, we may use the following technique. Let190

N0 := ρ−1/3 (input lists of this size contain a single 3XOR triplet in average) and suppose191

that N > N02εn, where N denotes the size of the input lists. Assume that we have an192

algorithm A that solves the 3XOR problem with probability greater than some constant193

c > 0 in expected time T for input lists of size N0. The “exponent” e such that T = Ne
0 can194

be obtained for longer lists as well.195

Slice the input lists in chunks of size 4N0 and run algorithm A on each successive chunk196

until a solution is found. Theorem 4 tells us that each chunk contain 64 3XOR triplets on197

average, and contain at least one 3XOR triplet with probability greater than 3/64. Therefore,198

a 3XOR triplet will be found in each chunk with probability greater than 3c/64; because the199

C. Bouillaguet, C. Delaplace and A. Joux 7

chunks are completely independent parts of the random input, the events “A finds a 3XOR200

triplet in chunk i” are independent. Therefore, the whole process fails to reveal a 3XOR201

triplet with exponentially small probability, namely less than
(
1− 3c

64
)nε. The running time202

is O
(
N ·Ne−1

0
)
, which is less than Ne.203

4 Random Low-Density 3XOR204

In this section, we present a simple algorithm that solves the low-density 3XOR problem with205

interesting theoretical guarantees when p is small. It is always subquadratic when p < 1/2206

but its most striking feature is that it succeeds with overwhelming probability in linear time207

when p is small enough.208

Let a, b and c be random bits drawn according to Berp conditioned to a⊕ b⊕ c = 0. The209

possible combinations are 000, 011, 101 and 110. We find that210

u := Pr(abc = 110 | a⊕ b⊕ c = 0) = p2/(1− 2p+ 4p2)211
212

The same result is attained for 101 and 011. Two out of the three non-zero options result213

in a 1 bit, and therefore Pr(a = 1 | a⊕ b⊕ c = 0) = 2u. It follows that if the (x,y, z) is a214

triplet drawn from D such that x⊕ y⊕ z = 0, then the expected “density” of x, y and z is215

2u. This is always smaller than p when 0 < p < 1/2. In other terms: random triplets drawn216

from D have density p, but random 3XOR triplets drawn from D have smaller density.217

This observation can be exploited in a simple way: we discard from the input lists all218

vector above a given weight threshold then proceed using the naive quadratic algorithm.219

This yields algorithm 2. It takes an additional argument wmax controlling the maximum220

allowed weight. wmax = 2nu yields an algorithm that reveals a 3XOR triplet present in the221

input with probability greater than 1/4, because the median weight of both x and y is 2nu222

if x ⊕ y ⊕ z = 0. Setting wmax = 2nu(1 + ε) is enough to miss an existing solution with223

exponentially small probability.224

Algorithm 2 Algorithm for the low-density 3XOR problem.
1: function Low-Density-3XOR(A,B,C,wmax)
2: A′ ← {x ∈ A | wt(x) ≤ wmax}
3: B′ ← {y ∈ B | wt(y) ≤ wmax}
4: C ← QuadraticSetup(C)
5: return Quadratic3XOR(A′, B′, C)

The performance of algorithm 2 is summarized by theorem 1 in the introduction. It seems225

at first glance that the limiting exponent satisfies e ≤ 2p(1− 2 ln p) ; establishing this is a226

fascinating endeavour that we must regrettably leave for future work. It is worth noting that227

the not-so-friendly expression of e comes from the use of the tight binomial bound (3). It228

would be greatly simplified had we instead used the simpler Chernoff bound (2). However,229

doing so makes the result much worse for small p: it results in lim e = 1 when p goes to zero230

(instead of lim e = 0).231

The rest of this section is devoted to prove theorem 1. A sensible choice consists in picking232

wmax in the range]2nu, np[— above the expected density of random 3XOR triplets so that233

we do not discard them, and below the density of the input lists in order to actually discard234

input vectors that are too heavy. In this case the algorithm succeeds with overwhelming235

probability as long as the original input contains at least one solution.236

8 Algorithms for the Sparse Random 3XOR Problem

I Lemma 5. With wmax = 2nu(1+ ε), if the input contains a 3XOR triplet, then algorithm 2237

returns ⊥ with probability less than 2 exp(−nuε2).238

Proof. Assume that the input lists contain a 3XOR triplet (x∗,y∗, z∗). It will be discarded239

if and only if the weight of either x∗,y∗ is greater than wmax.240

We know that the expected weight of x∗ and y∗ (and z∗ as well but this is irrelevant) is241

2un, therefore the Chernoff bound (2) shows that either has weight greater than 2un(1 + ε)242

with probability less than exp(−nuε2). A union bound (for x∗ and y∗) then ensures that243

the solution is discarded with probability less than 2 exp(−nuε2). J244

I Lemma 6. Let T denote the running time of algorithm 2 with wmax = 2nu(1 + ε). Then245

ET ≤ N +N2 exp(−2nD (2u(1 + ε), p)).246

Proof. In the sequel, all the stated complexities must be understood “up to a constant247

factor”. Filtering the input lists and keeping only low-weight vectors can be done in linear248

time. From the complexity of Quadratic3XOR on input (A′, B′, C), we obtain the total249

time complexity: T = N + |A′| · |B′|.250

Let X ∼ B(n, p) be a binomial random variable modeling the weight of an input vector251

of density p. Such a vector belongs to A′ or B′ if its weight is less than or equal to wmax,252

and this happens with probability s := Pr(X ≤ wmax). Because wmax < np, the binomial253

tail bound (3) yields the tight upper-bound s ≤ e−nD(2u(1+ε),p).254

The sizes of A′ and B′ are stochastically independent random variables following a255

binomial distribution of parameters (N, s) with expectation Ns. The expected running time256

of the quadratic algorithm on A′ and B′ is therefore E (|A′| × |B′|) = E |A′| × E |B′| = N2s2.257

Combining this with the upper-bound on s gives the announced result. J258

proof of theorem 1. Let d be a complexity exponent greater than the bound e given in259

theorem 1. Let ε > 0 be such that260

d = 2 + 6 D (2u(1 + ε), p)
ln(1− p)(1− 2p+ 4p2)− 3ε ln 2 .261

(such an ε always exist). Note that setting ε = 0 in this expression yields the lower-bound262

exponent e of the theorem.263

Let N0 := ρ−1/3 (input lists of this size contain a single 3XOR triplet in average). Suppose264

that N ≤ N02εn, where N denotes the size of the input lists ; in this case run algorithm 2 with265

wmax = 2un(1 + ε). Lemma 5 guarantees the exponentially small failure probability while266

lemma 6 tells us that the expected running time T is less than N+N2 exp[−2nD(2u(1+ε), p)].267

Set d′ := logN (ET − N), so that the algorithm runs in time O
(
N +Nd′

)
. A quick268

calculation shows that d′ ≤ d, and the theorem is proved in this case.269

If N > N02nε, then slice the input lists in chunks of size 4N0 and run algorithm 2 with270

wmax = 2un on each successive chunk until a solution is found. The reasoning in section 3.1271

proves that this yields an algorithm that satisfies the conditions of theorem 1. J272

5 Random Low-Weight 3XOR273

Let us be given three lists of bit strings of weight w = pn, where w is an even integer (this274

is a necessary condition for the existence of a 3XOR triplet). We assume that the input275

lists contain a 3XOR triplet (x?,y?, z?), and we want to find it. Following the reasoning276

in section 3.1, we focus on input lists that are “long enough”. In particular, a different277

C. Bouillaguet, C. Delaplace and A. Joux 9

z?

y?

x?

v v v

n

11111 11111 00000 0000000000

11111 00000 11111 0000000000

00000 11111 11111 0000000000

Figure 2 Shape of a 3XOR triplet (x?,y?, z?), up to column permutation. Here, v = w/2.

algorithmic strategy would be required if lists were significantly shorter than necessary to278

have a single solution in expectation. All the results in this section rely on this assumption.279

A moment’s reflection shows that each component of a 3XOR triplet has an intersection280

of size w/2 with the others (see fig. 2). This motivates the notation v := w/2. Our strategy281

is the following: let s ≤ v be a parameter to determined later; guess a subset of size s of282

the intersection of x? and y? (this is a set of positions where x? and y? are both 1, thus on283

the left segment of fig. 2); discard non-conformant vectors from A and B; solve the smaller284

resulting instance using the quadratic algorithm. However, instead of guessing random285

s-subsets of {1, . . . , n} en bloc, we proceed incrementally following an approach initiated by286

May and Ozerov in [12] for nearest-neighbor search: guess one position in x? ∩ y?, filter the287

lists, solve the smaller subproblem recursively, repeat. The point is that each time the lists288

are filtered, subsequent filtering steps start with smaller lists. This yields algorithm 3.289

Algorithm 3 An algorithm for the low-weight 3XOR problem.
1: function RecursiveFiltering(n, α,A,B, C, k, s)
2: if k = s then
3: return Quadratic3XOR(A,B, C)
4: else
5: Sample r according to the Poisson distribution with parameter n/α.
6: for r times do
7: m← random bit string of weight 1 in {0, 1}n . Correct with proba. α/n
8: A′ ← {x↓m | x ∈ A and m ⊆ x} . Keep elements that are 1 when m is 1
9: B′ ← {y↓m | y ∈ B and m ⊆ y}
10: ζ ← RecursiveFiltering(n− 1, α− 1, A′, B′, C, k + 1, s)
11: if ζ 6= ⊥ then return ζ

12: return ⊥
13: function Low-Weight-3XOR(n,w,A,B,C, s)
14: C ← QuadraticSetup(C)
15: for n2 times do
16: ζ ← RecursiveFiltering(n,w/2, A,B, C, 0, s)
17: if ζ 6= ⊥ then return ζ

18: return ⊥

Here are a few comments. Assuming that A and B still contain a 3XOR triplet, each290

random choice of m is correct with a certain probability α/n where α = |x? ∩ y?|. In order291

to at least have one correct guess in expectation, the loop in RecursiveFiltering should292

10 Algorithms for the Sparse Random 3XOR Problem

do r ≥ n/α iterations. Naturally, this is not an integer, and rounding up is not an option293

because it would incur an exponential blow-up in the total number of iterations. Instead,294

we sample randomly the number of iterations, with expectation n/α. Any easy-to-sample295

distribution could be used to choose r, but the choice of the Poisson distribution is necessary296

for us to prove a lower-bound on the success probability. The quadratic algorithm is run on297

sparse inputs but we do not know how to exploit this sparsity anymore. Guessing positions298

in segments of fig. 2 other than the left one leads to less efficient algorithms.299

The rest of this section proves theorem 2. The recursive calls to RecursiveFiltering300

corresponds to nodes in a tree. At depth k in this tree, a problem instance is composed of301

two filtered lists Ak and Bk of expected size Nk, containing n− k-bit words of weight w − k302

(no longer necessarily even). Assuming that they contain a solution, then αk := |x? ∩ y?|303

denotes the size of the intersection and αk = v − k.304

A randomly chosen position belongs to the intersection x?∩y? with probability (v−k)/(n−305

k); filtering the lists by only keeping vectors that are 1 on this position yields lists of expected306

size Nk+1 = Nkwk/nk. We define Rk := (n− k)/(v − k) as well as Fk := (2v − k)/(n− k),307

with the intention that Rk is the expected number of iterations of the for loop of line 6 at308

depth k while Fk is the “filtering factor” at depth k. Indeed, the size of the input lists at309

depth is given by Nk = N
∏k−1
j=0 Fj = N

(
n−k
2v−k

)
/
(
n
2v
)
. Finally, the tree of recursive calls has310

(on average)
∏k−1
j=0 Rj =

(
n
k

)
/
(
v
k

)
nodes at depth k. It is sometimes useful to abstract n away,311

so we define s = s/n and v = v/n.312

We begin by studying the success probability of algorithm 3.313

I Lemma 7. If the input lists contain a 3XOR triplet, then Algorithm 3 returns ⊥ with314

exponentially small probability as n→ +∞.315

Proof. Each edge in the tree of recursive calls of algorithm 3 corresponds to a random choice316

of m. The algorithm succeeds if and only if there is a branch that reaches depth s where all317

choices are correct. Take an arbitrary depth-k node in the tree of recursive calls. Each choice318

of m is correct with probability (v− k)/(n− k) and the number of trials (r in the algorithm)319

is also random. Let X1, X2, . . . denote a sequence of Bernoulli random variables of parameter320

(v−k)/(n−k); the distribution of the total number of correct choices at each node is given by321

G =
∑r
i=1 Xi, where r follows a Poisson distribution of parameter (n− k)/(v − k). The sum322

G follows a compound Poisson distribution, and the special case where the Xi are Bernoulli323

is well-known: G again follows a Poisson distribution of parameter 1 (independently of n, v324

and k).325

This means that the (random) subtree formed by the edges corresponding to correct326

guesses is a Galton-Watson tree with offspring distribution Pois(1). The expected offspring327

number is 1 and the variance is also 1. Let Zk denote the size of the k-th generation. The328

algorithm succeeds if Zs > 0. This Galton-Watson tree is critical and a well-known result of329

Kolmogorov states Pr(Zk > 0) ∼ 2/k when k → +∞ (see [6, 2] for details).330

This implies that nZs → 1/(2s) when n→ +∞. Because s ≤ v ≤ 1/4, we know that for331

large enough n, nZs becomes greater than 2, and therefore Zn becomes greater than 1/n.332

This implies that for large enough n, the probability that the n2 iterations of the main loop of333

algorithm 3 fail to disclose a 3XOR triplet in the input lists is less than (1−1/n)n2 ≤ e−n. J334

We now move on to upper-bound the time complexity of algorithm 3. We proceed in335

two steps: 1) we minimize the total time spent in the leaves of the recursion tree, then 2)336

we show that the time spent in internal nodes of the tree is not much larger. In order to337

simplify our analysis, we assume that the input lists are large enough so that Ns ≥ 1. This338

is to avoid the degenerate situation where the filtering steps reduce the size of lists to either339

C. Bouillaguet, C. Delaplace and A. Joux 11

0 or 1, which means that the quadratic algorithm has nothing to do anymore and the proof340

strategy outlined above breaks down. Note that this condition is always satisfied if the input341

lists are long enough to contain one solution in expectation (because we have Nv ≥ 1 in this342

case). This is why we make this hypothesis.343

I Lemma 8. If Ns ≥ 1, then the expected time spent in Quadratic3XOR by algorithm 3344

is minimized by s = v(n− 4v)/(n− 3v). Note that this depends only on the input weight.345

Proof. Let R denote the total number of calls to Quadratic3XOR by algorithm 3 and let346

FN denote the expected size of inputs to Quadratic3XOR. According to the above, we347

find that R =
∏s−1
j=0 Rj =

(
n
s

)
/
(
v
s

)
and F =

(
n−s
2v−s

)
/
(
n
2v
)
. To get rid of n, we write N = 2nÑ ,348

R = 2nR̃ and F = 2nF̃ . Using (1), we find that up to small constant factors :349

R̃ ≈ H(s)− vH(s/v),350

F̃ ≈ (1− s)H((2v − s)/(1− s))−H(2v)351
352

And therefore, the expected total time spent in the quadratic algorithm is n2nσ̃, with353

σ̃ := R̃+ 2F̃ + 2Ñ = H(s)− vH(s/v) + 2(Ñ + (1− s)H((2v − s)/(1− s))−H(2v))354

We seek the value for which σ̃ reaches a local minimum by computing its derivative:355

dσ̃

ds
= log2

1− s
s
− log2

v − s
s

+ 2 log2
2v − s
1− s356

And we solve dσ̃
ds = 0, which translates to (1− s)(v − s) = (2v − s)2. The announced value is357

the only solution of this equation. J358

We now argue that the time spent filtering the lists in internal nodes of the recursion359

tree does not dominate the whole computation. Given an integer 0 ≤ s ≤ v, we focus on the360

sequence of numbers θ0, . . . , θs defined by361

θk logNk = logRk + θk+1(logNk + logFk) and θs = 2.362

The point is that a node at depth k in the recursion tree performs Õ
(
Nθk

k

)
operations, a363

fact that we prove below. It implies that the number of operations in the leaf nodes dominate364

that of the inner nodes, and therefore the value of s given by lemma 8 actually minimizes365

the total running time of algorithm 3.366

I Lemma 9. Let Tk denote the expected total time spent in the leaf nodes (i.e. in Quad-367

ratic3XOR) that are below a given node of depth k in the tree of recursive call. Then368

Tk = O
(
Nθk

k

)
.369

Proof. The proof is by decreasing induction. At k = s (leaf nodes), the quadratic algorithm370

is invoked, therefore Ts = N2
s and we have θs = 2. Up in the tree, we have Tk = RkTk+1 and371

by induction hypothesis there is a constant c such that Tk+1 ≤ cN
θk+1
k+1 . This implies that372

Tk ≤ cRk(FkNk)θk+1 = cNθk

k , which proves the lemma. J373

I Lemma 10. If s = v(n− 4v)/(n− 3v) and Ns ≥ 1, then 1 < θk ≤ 2 for all 0 ≤ k ≤ s.374

Proof. The proof is by decreasing induction starting with k = ks, where by definition θs = 2.375

Next, assume that 1 < θk+1 ≤ 2. Because both Nk and Nk+1 = FkNk are greater than 1 by376

hypothesis, it follows that:377

logRk + logNk + logFk < θk logNk ≤ logRk + 2 logNk + 2 logFk. (5)378

12 Algorithms for the Sparse Random 3XOR Problem

The left part of (5) implies that (θk − 1) logNk > logRkFk. Because RkFk = 2v−k
v−k ≥ 1379

and Nk ≥ 1, we find that 1 < θk. On the other hand, the right part of (5) also implies380

that (θk − 2) logNk ≤ logRk + 2 logFk. We now claim that RkF 2
k ≤ 1 for all considered381

values of k, and the lemma follows. This claim results from the observation that a) RkF 2
k is382

an increasing function of k over the considered range and b) RsF 2
s = 1 (indeed, this is the383

equation satisfied by the “optimal” value of s in the proof of lemma 8). Let k = k/n; we find384

that385

d

dk
(RkF 2

k) = (k[1− 3v] + 2v2)(2v − k)
(v − k)2(1− k)2 .386

All factors are obviously positive, which shows that RkF 2
k increases to 1 when k = s (and387

therefore is less than one otherwise). J388

I Lemma 11. Assume that Ns ≥ 1. In algorithm 3, denote by I the total time spent in389

inner nodes (i.e. filtering the lists) and by L the total time spent leaf nodes (in the quadratic390

algorithm). Then I = O
(
n2L

)
.391

Proof. In an inner node of depth k, filtering the lists costs Nk, while a recursive call costs392

more than (FkNk)θk+1 — indeed, this value ignores the cost of inner nodes below the current393

one. In all cases, Fk ≥ 1/n and θk+1 ≤ 2, so that a recursive call costs more than n−2N
θk+1
k .394

Because θk+1 > 1, we conclude that a recursive call costs more than n−2Nk. This holds true395

for all inner nodes, and the lemma follows. J396

We now have all the ingredients to prove theorem 2. The proof is very similar to that of397

theorem 1.398

Proof of theorem 2. Let N0 denote the size of input lists containing a single 3XOR triplet in399

expectation, and write N0 = 2nÑ0 . From theorem 4, we know that Ñ0 = H(2v)−H(3v)/3−400

v log2 3.401

Write e = 2 + (R̃+ 2F̃)/Ñ0. The value given in the statement of the theorem is the result402

of many simplifications of this expression, using the expressions of R̃ and F̃ from the proof403

of lemma 8.404

Let ε be such that d = 2 + (R̃+ 2F̃)/(Ñ0 + ε). Such an ε always exist, because this is an405

increasing function of ε.406

Write N = 2nÑ the size of the input lists. From lemma 11, we know that the running407

time of algorithm 3 is upper bounded by n42n(R̃+2F̃+2Ñ).408

Assume that Ñ ≤ Ñ0 + ε. Use algorithm 3 with s = v(n− 4v)/(n− 3v) as in lemma 8.409

Lemma 7 guarantees the success probability. We claim that its expected running time is less410

than n4Nd. Indeed, it is n42n[R̃+2F̃+2Ñ] which we can rewrite as n4N2+[R̃+2F̃]/Ñ . Because411

R̃ + 2F̃ is negative, this is less than n4N2+[R̃+2F̃]/(Ñ0+ε) and d was chosen so that this is412

n4Nd.413

The case where Ñ > Ñ0 + ε can be dealt with using the technique highlighted in414

section 3.1. J415

Ackowledgements We thank Pierre-Alain Fouque, Anand Kumar Narayanan and Amandine416

Véber for useful discussions. We are very grateful to 3 out of 9 anonymous reviewers (so far)417

for rejecting two previous versions of this paper while providing extremely helpful feedback418

and suggesting new ideas.419

C. Bouillaguet, C. Delaplace and A. Joux 13

References420

1 R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribu-421

tion. Bulletin of Mathematical Biology, 51(1):125 – 131, 1989. URL: http://www.422

sciencedirect.com/science/article/pii/S0092824089800527, doi:https://doi.org/10.423

1016/S0092-8240(89)80052-7.424

2 K.B. Athreya and PE Ney. Branching processes. Dover Publications, 2004.425

3 Leif Both and Alexander May. The approximate k-list problem. IACR Transactions on426

Symmetric Cryptology, 2017(1):380–397, 2017.427

4 Charles Bouillaguet, Claire Delaplace, and Pierre-Alain Fouque. Revisiting and improving428

algorithms for the 3xor problem. IACR Transactions on Symmetric Cryptology, 2018(1):254–429

276, 2018.430

5 Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A subquadratic algorithm for 3xor.431

In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium432

on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,433

UK, volume 117 of LIPIcs, pages 59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,434

2018. doi:10.4230/LIPIcs.MFCS.2018.59.435

6 William Feller. An introduction to probability theory and its applications. Vol. I. Third edition.436

John Wiley & Sons Inc., New York, 1968.437

7 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with o(1)438

worst case access time. J. ACM, 31(3):538–544, June 1984. URL: http://doi.acm.org/10.439

1145/828.1884, doi:10.1145/828.1884.440

8 Anka Gajentaan and Mark Overmars. On a class of O(n2) problems in computational geometry.441

Computational geometry, 5(3):165–185, 1995.442

9 Zahra Jafargholi and Emanuele Viola. 3sum, 3xor, triangles. Algorithmica, 74(1):326–343,443

2016. doi:10.1007/s00453-014-9946-9.444

10 Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009.445

11 Gaëtan Leurent and Ferdinand Sibleyras. Low-memory attacks against two-round even-mansour446

using the 3XOR problem. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances447

in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa448

Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes449

in Computer Science, pages 210–235. Springer, 2019. doi:10.1007/978-3-030-26951-7_8.450

12 Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to451

decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors, Advances452

in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory453

and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,454

Part I, volume 9056 of Lecture Notes in Computer Science, pages 203–228. Springer, 2015.455

doi:10.1007/978-3-662-46800-5_9.456

13 Mridul Nandi. Revisiting Security Claims of XLS and COPA. IACR Cryptology ePrint Archive,457

2015:444, 2015.458

14 Ivica Nikolić and Yu Sasaki. Refinements of the k-tree Algorithm for the Generalized Birthday459

Problem. In ASIACRYPT, pages 683–703. Springer, 2015.460

15 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European Symposium on461

Algorithms, pages 121–133. Springer, 2001.462

16 E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on463

Information Theory, 8(5):5–9, 1962. doi:10.1109/TIT.1962.1057777.464

17 S.M. Ross. Probability Models for Computer Science. Elsevier Science, 2002. URL: https:465

//books.google.fr/books?id=fG3iEZ8f3CcC.466

http://www.sciencedirect.com/science/article/pii/S0092824089800527
http://www.sciencedirect.com/science/article/pii/S0092824089800527
http://www.sciencedirect.com/science/article/pii/S0092824089800527
https://doi.org/https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/10.4230/LIPIcs.MFCS.2018.59
http://doi.acm.org/10.1145/828.1884
http://doi.acm.org/10.1145/828.1884
http://doi.acm.org/10.1145/828.1884
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/s00453-014-9946-9
https://doi.org/10.1007/978-3-030-26951-7_8
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1109/TIT.1962.1057777
https://books.google.fr/books?id=fG3iEZ8f3CcC
https://books.google.fr/books?id=fG3iEZ8f3CcC
https://books.google.fr/books?id=fG3iEZ8f3CcC

14 Algorithms for the Sparse Random 3XOR Problem

A A “Sensible” Application467

In order to put algorithm 2 to the test, we forged an artificial instance of the problem. We468

downloaded an XML dump of the DBLP database, and extracted all articles published in a469

few selected cryptography conferences (CRYPTO, EUROCRYPT, ASIACRYPT, FSE, PKC,470

CHES, SAC) as well as two journals (TOSC, TCHES). This made more than 7700 articles.471

For each article, we wrote down one line of text with the authors and title.472

We considered the function (where & denotes the bitwise AND):473

F (x1, x2, x3, x4) = SHA-512(x1) & SHA-512(x2) & SHA-512(x3) & SHA-512(x4).474

This yields 512-bit hashes with expected density 1/16. SHA-512 is a secure cryptographic475

hash function, so we assumed that there was no way to find inputs leading to correlated476

outputs besides brute force. We looked for three quadruplets of articles such that477

F (x1, x2, x3, x4)⊕ F (y1, y2, y3, y4)⊕ F (z1, z2, z3, z4) = 0478

With the additional constraint that all articles are distinct. There are 5775 ways to dispatch479

12 items into 4 indistinguishable urns, so that with our 7700 articles, we can assemble 2138.5
480

bundles of 12 publications having a chance to satisfy the above equation (of course the inputs481

are correlated, and this deviates from the original problem formulation, but this is not a482

serious issue). Alternatively, we may form 247 quadruplets of publication. With p = 1/16483

and n = 512, we could then expect about 40 solutions from out data set. This made us484

confident that we there would be at least one, but finding it does not seem so easy at first485

glance.486

Evaluating F on all the available quadruplets is not a problem (it takes 240 CPU-hours).487

Trouble starts when we considered writing the list of 247 hashes to persistent storage: this488

would require more than 9 petabytes — this is a lot, but some computing centers have that489

much. However, finding the “golden” triplet of quadruplets using the quadratic algorithm490

would then require 294 probes into a large hash table, and given mankind’s present computing491

power, this does not seem feasible before the sun turns into a red giant.492

Exploiting the sparsity of the input turns the problem into a walk in the park. The493

expected weight of 3XOR triplets of density 1/16 is ≈ 2.25. We evaluated F on all quadruplets,494

but kept only the hashes with hamming weight less than or equal to 3. We thus kept 5091495

candidate quadruplets, for a total storage size of 358KB. We then searched for solutions in496

this restricted data set using the quadratic algorithm. This required 25 millions probes in a497

hash table and was very fast.498

We found six solutions, one of which is shown as algorithm 4. Amusingly, it contains the499

name of one of the authors of the present article.500

B Omitted Proofs501

Proof of lemma 3. Let X(i, j, k) denote the binary random variable that takes the value 1502

if and only if A[i] +B[j] + C[k] = 0 (and zero otherwise), so that Y =
∑
X(i, j, k). Unless503

mentioned otherwise, in this section all sums are taken over 0 ≤ i, j, k < N ; we omit the504

indices to alleviate notations.505

The expected value of Y is easy to determine. Because the elements of the lists are506

identically distributed, Pr(A[i] +B[j] + C[k] = 0) is independent of i, j and k and its value507

is ρ. We get:508

EY = E
∑

X(i, j, k) =
∑

EX(i, j, k) =
∑

Pr(A[i] +B[j] + C[k] = 0) = N3ρ.509

C. Bouillaguet, C. Delaplace and A. Joux 15

Algorithm 4 Demonstrating a sensible application of sparse 3XOR algorithms.

from hashlib import sha512

FSE 2011
a = "Simon Knellwolf and Willi Meier: Cryptanalysis of the Knapsack Generator. (2011)"

ASIACRYPT 2017
b = "Ran Canetti, Oxana Poburinnaya and Mariana Raykova: Optimal-Rate Non-Committing Encryption. (2017)"

CRYPTO 2019
c = "Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu and Dongxi Liu: Lattice-Based Zero-Knowledge \
Proofs: New Techniques for Shorter and Faster Constructions and Applications. (2019)"

FSE 2009
d = "Martijn Stam: Blockcipher-Based Hashing Revisited. (2009)"

EUROCRYPT 1990
e = "Cees J. A. Jansen: On the Construction of Run Permuted Sequences. (1990)"

EUROCRYPT 2013
f = 'Charles Bouillaguet, Pierre-Alain Fouque and Amandine Véber: Graph-Theoretic Algorithms for the \
"Isomorphism of Polynomials" Problem. (2013)'

CRYPTO 2017
g = "Prabhanjan Ananth, Arka Rai Choudhuri and Abhishek Jain: A New Approach to Round-Optimal Secure \
Multiparty Computation. (2017)"

EUROCRYPT 2001
h = "William Aiello, Yuval Ishai and Omer Reingold: Priced Oblivious Transfer: How to Sell Digital \
Goods. (2001)"

CRYPTO 2019
i = "Navid Alamati, Hart Montgomery and Sikhar Patranabis: Symmetric Primitives with Structured \
Secrets. (2019)"

CRYPTO 2019
j = "Shweta Agrawal, Monosij Maitra and Shota Yamada: Attribute Based Encryption (and more) for \
Nondeterministic Finite Automata from LWE. (2019)"

EUROCRYPT 1986
k = "Christoph G. Günther: On Some Properties of the Sum of Two Pseudorandom Sequences. (1986)"

CRYPTO 2009
l = "Susan Hohenberger and Brent Waters: Short and Stateless Signatures from the RSA Assumption. (2009)"

def H(s : str) -> int:
"""Returns the hash (SHA-512) of the string s as a 512-bit integer."""
return int.from_bytes(sha512(s.encode('utf8')).digest(), byteorder='big')

assert (H(a) & H(b) & H(c) & H(d)) ^ (H(e) & H(f) & H(g) & H(h)) ^ (H(i) & H(j) & H(k) & H(l)) == 0

The Markov bound yields 1− EY ≤ Pr(Y = 0). Because Y is the sum of binary random510

variables, we are entitled to use Ross’s conditional expectation inequality [17]:511

Pr(Y > 0) ≥
∑ E (X(i, j, k))

E (Y | X(i, j, k) = 1) .512

As argued above, the value of the term under the sum is independent of i, j and k, so this513

boils down to: Pr(Y > 0) ≥ EY/E(Y | X(0, 0, 0) = 1). It remains to compute the expected514

number of solutions knowing that there is at least one. This yields:515

E(Y | X(0, 0, 0) = 1) =
∑

Pr(A[i] +B[j] + C[k] = 0 | A[0] +B[0] + C[0] = 0)516
517

We split this sum in 8 parts by considering separately the situation where i = 0,518

j = 0 and k = 0 (resp 6= 0 for each summation index). We introduce the shorthand519

pijk = Pr (A[i] + B[j] + C[k] = 0 | A[0] + B[0] + C[0] = 0) and we assume that i, j, k > 0.520

Then the two events are in fact independent and pijk = ρ. But when at least one index is521

16 Algorithms for the Sparse Random 3XOR Problem

zero, this is no longer the case ; the extreme situation is p000 = 1. By symmetry between522

the three input lists, we find that pij0 = pi0k = p0jk (this is the value we denote by σ) and523

pi00 = p0j0 = p00k (this is the value we denote by τ). We can now write:524

E (Y | X(0, 0, 0) = 1) = (N − 1)3ρ+ 3(N − 1)2σ + 3(N − 1)τ + 1525

= N3ρ+ 3N2σ + 3Nτ + 1−∆526

with ∆ = (3N2 − 3N + 1)ρ+ 3(2N − 1)σ + 3τ527
528

The “error term” ∆ is always positive for N ≥ 1. Going back to the beginning, we have:529

Pr (Y > 0) ≥ N3ρ

N3ρ+ 3N2σ + 3Nτ + 1−∆ ≥ 1
1 + 3N−1σ/ρ+ 3N−2τ/ρ+N−3/ρ

530

531

Using the convexity of 1/(1 +x), we obtain Pr (Y = 0) ≤ 3N−1σ/ρ+ 3N−2τ/ρ+N−3/ρ. J532

Low-Density 3XOR. We now specialize the result of lemma 3 to the group ({0, 1}n,⊕) with533

the low-density distribution D (each bit is drawn independently at random according to the534

Bernoulli distribution Berp of parameter p < 1/2). This the low-density case of theorem 4.535

If a, b and c are random bits drawn according to Berp, then the probability that they536

XOR to zero is (1− p)
(
1− 2p+ 4p2). It follows that if x,y and z are drawn according to D,537

then ρ = Pr(x⊕ y⊕ z = 0) = (1− p)n(1− 2p+ 4p2)n.538

Let us compute σ = Pr(x⊕ y = z | u⊕ v = z). What happens essentially depends on539

the hamming weight of z. Both x,y and u,v have to XOR to z. Two random bits drawn540

according to Berp XOR to zero with probability p2 + (1− p)2 and their XOR to one with541

probability 2p(1− p). This yields (using the binomial theorem):542

ρσ = Pr(x⊕ y = z ∧ u⊕ v = z)543

=
n∑
k=0

Pr(wt(z) = k) Pr(x⊕ y = z ∧ u⊕ v = z | wt(z) = k)544

=
n∑
k=0

(
n

k

)
pk(1− p)n−k [2p(1− p)]2k

[
p2 + (1− p)2]2(n−k)

545

=
[
(1− p)(1− 4p+ 8p2 − 4p3)

]n
546
547

We move on to τ = Pr(x = u⊕ v | z = u⊕ v). In this context, this mostly depends on548

the hamming weight of u⊕ v. This yields (again using the binomial theorem):549

ρτ = Pr(x = u⊕ v ∧ z = u⊕ v)550

=
n∑
k=0

Pr(wt(u⊕ v) = k) Pr(x = u⊕ v ∧ z = u⊕ v | wt(u⊕ v) = k)551

=
n∑
k=0

(
n

k

)
[2p(1− p)]k

[
p2 + (1− p)2]n−k [pk(1− p)n−k

]2
552

=
[
(1− p)(1− 3p+ 4p2)

]n
553
554

We now move on to establish (4). Because N = (EY)1/3/ρ, the bound of lemma 3 can555

be rewritten as:556

Pr (Y = 0) ≤ 3
(EY)1/3

σ

ρ2/3 + 3
(EY)2/3

τ

ρ1/3 + 1
EY .557

C. Bouillaguet, C. Delaplace and A. Joux 17

We now claim that 1/2 ≤ σ3/n/ρ2/n ≤ 1 and 1/4 ≤ τ3/n/ρ1/n ≤ 1 when 0 ≤ p ≤ 1/2; this558

yields the desired result. This claim follows from the facts that both values are decreasing559

functions of p. This can be seen by computing their derivatives (all factors are easily seen to560

be positive when 0 ≤ p ≤ 1/2):561

∂

∂p

σ3/n

ρ2/n = −6(4p3 − 8p2 + 4p− 1)2(2p2 − 6p+ 3)(1− 2p)2p

(4p2 − 2p+ 1)6(1− p)3562

∂

∂p

τ3/n

ρ1/n = −6(4p2 − 3p+ 1)2(4p2 − 6p+ 3)(1− 2p)p
(4p2 − 2p+ 1)5(1− p)2563

564

Low-Weight 3XOR We finally focus on the case where the elements of the lists are sampled565

uniformly at random amongst bit strings of hamming weight w = np. 3XOR triplets only exist566

if w is even and less than 2n/3, so that it seems fitting to define w = 2v, with 0 ≤ v ≤ 1/3.567

There are A :=
(
n
3v
)(3v

v

)(2v
v

)
3XOR triplets of weight w and there are B :=

(
n
2v
)3 triplets568

in total. It follows that :569

ρ =
(
n

3v

)(
3v
v

)(
2v
v

)/(n
2v

)3
570

571

Using (1), we may simplify this expression. It turns out that using the relative weight572

v = v/n is more convenient:573

(π
4

)3/2
≤ ρ

ρ̃
≤
(

4
π

)3/2
with ρ̃ = 8

(
(1− 2v)3

1− 3v

)1/2

2n[3v log2 3+H(3v)−3H(2v)]
574

Next, σ = Pr(x⊕ y = z | u⊕ v = z) can be determined by observing that this amounts to575

count the number of pairs (x, y) such that x⊕ y gives a fixed weight-2v bit string. It follows576

that:577

σ =
(

2v
v

)(
n− 2v
v

)/(n
2v

)2
578

579

Using (1) again, we obtain:580

π

4 ≤
σ

σ̃
≤ 4
π

with σ̃ = 2
√

2(1− 2v)(1− v)2n[(1−2v)H(v/(1−2v))−2H(2v)+2v]
581

Lastly, τ = Pr(x = y ⊕ z | u = y ⊕ z) is just the probability that sampling randomly582

yields a fixed weight-2v bit string. Therefore τ =
(
n
2v
)−1, and583

π

4 ≤
τ

τ̃
≤ 4
π

with σ̃ = 1/
√

2nv(1− 2v)2n−H(2v)
584

We again investigate σ3/ρ2 and τ/ρ3, but this time we focus on the exponents. Define585

f(v) ≈ 1
n log2(σ3/ρ2) and g(v) ≈ 1

n log2(τ3/ρ). We claim that both functions are negative586

when 0 ≤ v ≤ 1/3, and this again entails (4).587

We claim that f is decreasing over this range. To see why, compute its second derivative:588

∂2f

∂v2 = 3
ln 2

1− 4v
(1− 3v)(1− 2v)v .589

It is positive when v ≤ 1/4 and negative afterwards. This means that the first derivative of590

f reaches a maximum at v = 1/4. It is then easy to check that ∂f
∂v (1/4) = 0.591

18 Algorithms for the Sparse Random 3XOR Problem

We next claim that g is decreasing over [0; 1/4] and increasing over [1/4; 1/3]. To see592

why, just compute its derivative:593

∂g

∂v
= −3 log2(1− 3v)/v.594

We then find that g reaches a limit of zero when v goes to zero, and that g(1/3) = − log2 3.595

This guarantees that g is negative over the full range.596

	Introduction
	Preliminaries
	Bounds on the Existence of 3XOR Triplets
	Implications

	Random Low-Density 3XOR
	Random Low-Weight 3XOR
	A ``Sensible'' Application
	Omitted Proofs

