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Nice Attacks — but What is the Cost?
Computational Models for Cryptanalysis

Charles Bouillaguet1

LIP6 laboratory, Sorbonne Université, Paris
France charles.bouillaguet@lip6.fr

Abstract. This paper discusses the implications of choosing a compu-
tational model to study the cost of cryptographic attacks and therefore
quantify how dangerous they are. This choice is often unconscious and
the chosen model itself is usually implicit; but it has repercussions on
security evaluations.
We compare three reasonable computational models: i) the usual Ran-
dom Access Machine (RAM) model; ii) the “Expensive Memory Model”
explicitly introduced by several 3rd-round submissions to the Post-Quantum
NIST competition (it states that a single access to a large memory costs
as much as many local operations); iii) the venerable VLSI model using
the Area-Time cost measure.
It is well-known that costs in the RAM model are lower that costs in
the last two models. These have been claimed to be more realistic, and
therefore to lead to more precise security evaluations. The main techni-
cal contribution of this paper is to show that the last two these models
are incomparable. We identify a situation where the expensive memory
model overestimates costs compared to the (presumably even more real-
istic) VLSI model.
In addition, optimizing the cost in each model is a distinct objective that
leads to different attack parameters, and raises the question of what is
the “best” way to proceed for an eventual attacker. We illustrate these
discrepancies by studying several generic attacks against hash function
and Feistel networks in the three models.

1 Introduction

Cryptographic schemes are used to enforce security properties (secrecy, integrity,
etc.). Algorithms whose complete and successful execution would break security
properties are cryptographic attacks. In most cases, security holds in a compu-
tational sense: attacks that would break security properties either require too
many operations, or have a negligible probability of success.

“Too many operations” is often taken to a number that is believed to be out of
reach of the day’s computing capabilities. Presently, it is widely assumed that a
computation requiring 2128 (classical) operations is intractable. More generally,
it is expected that there is a fast-growing gap between the cost of cryptographic
attacks and the cost of legitimate operations, as the size of the parameters in-
creases. For instance, in symmetric cryptology, encryption schemes with n-bit



keys (resp. message authentication codes with n-bit tags) are often expected to
provide “n bits of security”, namely to resist to all attacks that require less than
2n operations (legitimate operations only require polynomial time). It is often
expected that brute-force is the best attack on secure symmetric schemes; any
algorithm that improves over brute-force is a non-trivial cryptanalytic result.

Public-key cryptography necessarily relies on computational hardness as-
sumptions: integer factoring, computing logarithms in some groups, finding short
vectors in euclidean lattices, solving polynomial systems of equations, decoding
random linear codes, etc. are assumed to be intractable for sufficiently large pa-
rameters sizes. In this context, exhaustive search is no longer the gold standard
against which public-key primitives are measured.

Designers of concrete public-key primitives must choose key sizes. They have
to make sure that the best known algorithms for the underlying hard prob-
lem would require too many operations (barring the invention of new, faster
algorithms). This is sometimes a delicate issue, because it can be non-obvious
to translate a rough complexity estimate into an actual number of operations
(there can be hidden constants and even polynomial factors). This process has
recently been at work in the context of the NIST Post-Quantum competition.

Studying the complexity of algorithms therefore plays an important role in
cryptology. Cryptanalysts strive to invent attacks with lower and lower complex-
ity, namely more and more dangerous and powerful attacks.

The number of elementary operations is the prime measure of complexity,
in addition to estimating the amount of space and of “data” extracted from
legitimate users. Inventing an attack that requires less operations that all pre-
viously known ones is usually considered an improvement over the state of the
art. Improving the space or data complexity while not increasing the number of
operations is also usually considered a net gain.

An attack against a symmetric cryptographic scheme requiring 2
4
5n opera-

tions and 2
4
5n bits of memory is usually considered an improvement over brute-

force (2n operations and no memory, with the same amount of data), because it
uses less operations. Many such attacks have been published.

In any case, rigorously obtaining formulas for the complexity of an algorithm,
either in a concrete or asymptotic sense, requires a computational model. The
time complexity is usually defined to be the number of elementary operations in
the model. Depending on the context, only certain operations may be accounted
for: bit operations, group operations, block cipher evaluations, comparisons (for
sorting), memory accesses, etc.

Besides this paper’s technical contributions (outlined a bit later), the authors
would like to offer several positions and submit them to a discussion within the
cryptology community.

1.1 What is a Good Computational Model?

The Turing machine and the λ-calculus are two historical computational model
that were used to formalize the concept of algorithm in the 1930’s. They are
still used in theoretical computer science, but are not very practical to write



programs for (it is known to be possible, but rarely ever done). In addition, they
are quite unrelated to the actual hardware available at the present time. The
ideal computational model should be simultaneously:

– As simple as possible (just simple operations).
– Sufficiently expressive (λ-reduction is not enough).
– Sufficiently abstract to shield us away from the intricacies of actual hardware

(“Starting from Ivy Bridge processors, there is an undocumented hardware
next-page TLB prefetcher for virtual 4K pages1”).

– Sufficiently faithful to reality.

The first two points mean that translating high-level algorithmic ideas into
a formal program in the computational model should be as easy as possible
(ideally, it would be like using a well-known programming language). The third
point means that studying the behavior of a program in the computational model
should be as simple as possible. The fourth point means that the model is relevant
because it correspond to possible computational systems in the material world.

These requirements imply several desirable features. For instance, an arith-
metic operations between small integer should be an “elementary” operation,
with the assumption that common hardware performs it in constant time. On
the other hand, multi-precision arithmetic between million-bit numbers should
not come for free.

The computational model most widely taught in all algorithmic classes at
this moment is most likely the Random Access Machine (RAM) model or a
variant thereof. It assumes that arithmetic operations and memory accesses are
both elementary operations, but its exact features are often somewhat implicit
and under-specified.

Position 1 The Random Access Machine modem is well-suited to the study of
small computations that take place in common, small computers and require only
a modest amount of memory. Typically, when the data fit inside the memory of
a single compute node, then it is true that the sequential running-time is well-
correlated with the number of operations executed.

1.2 Realism of Computational Models

Finding the “right” computational model is a long-standing, and still open ques-
tion. Realism is probably the most contentious aspect.

A cryptographic primitive or protocol is considered secure if the best known
attack is intractable. This means that running the attack should require more
resources (time, memory, energy, ...) than available to any attacker. Security is
therefore defined with respect to a computational model and a cost function that
makes sense in this model. An attack is intractable is it costs too much, and its
“threat level” is directly related to its cost in the computational model.

1 This is true.



For instance, it is common to assume that the perspective of doing more
than, say, 2128 bit operations, should deter any reasonable attacker. Therefore,
taking the number of bit operations as a cost measure is relevant from a security
point of view.

More generally speaking, to be useful from a security perspective, a compu-
tational model should have a cost function that relates to the material world.
A high cost in the model must imply that actually running the computation on
actual hardware is infeasible. It is strictly necessary that the model does not
overestimate the difficulty of doing the actual computation, since this would
render all theoretical security analyzes meaningless. The situation that must be
avoided no matter what is that where running an attack is deemed intractable
in the computational model but turns out to be feasible in the real world. Such
a computational model would be unsuitable for theoretical reasoning in cryp-
tology. Some early computational models (such as counter machines [34]) may
overestimate actual costs.

In the context of cryptology, the faithfulness requirement stated above dic-
tates that running a given computation in the model should not be harder than
in the real world. But what if, on the contrary, the computational model un-
derestimates the real world? It would make attacks appear more threatening in
the model than what they could ever be in reality. From the point of view of
security, this is not a problem; it is fine to be overly conservative. A dangerous
attack (with low cost in the model) is a good enough reason to consider a cryp-
tographic primitive and/or a set of parameters as “broken”. It is better to be
safe by discarding the scheme/parameters in face of the attack in the abstract
computational model than to be sorry later when an actual break happens in
the real world. The whole point of cryptanalytic research is to discover potential
threats, early on if possible.

The obvious downside of a computational model that underestimates costs
is that we may be worrying about unrealistic attacks that are only dangerous on
fictitious abstract machines. These artificial attacks would nevertheless lead some
cryptographic primitives to be dropped, or security parameters to be increased
in some others, with an efficiency loss.

This is obviously undesirable and it can be related to the quest for tightness
in security proofs. Tight security proofs are better than loose ones, because they
allow for smaller key sizes and better efficiency with the same guaranteed security
level. For the same reason, “tight”, namely more realistic computational models
are better.

Somewhat obviously, some attacks that are “valid” (cost less than the ex-
pected security level) in less realistic models are “invalid” (cost more than the
expected security level) in more realistic computational models. These attacks
are not necessarily bad. But attacks that are also valid in more realistic models
are better, and potentially more dangerous.

Position 2 Simple-but-unrealistic models of computations do not need to be
abandoned. However, exploring the cost of cryptographic attacks in more real-
istic models results in a finer understanding of the danger they potentially cause.



1.3 The Problem of Memory Accesses

One recurring realism issue concerns the cost of memory accesses. In the context
of the NIST Post-Quantum competition, the designers of several third-round
submissions observe that accessing an exponentially large memory is costly; it
takes more time and it requires more energy than accessing a small memory.
Attacks requiring an exponential number of accesses to an exponentially large
memory should “cost more” than what the number of elementary operations in
the RAM model suggests.

This observation allows the designers of these submissions to use slightly more
aggressive parameter choices. Indeed, their claim is that some attacks would
require a bit less operations than the security threshold, but that these attack
in fact cost more because their perform a lot of expensive memory accesses.

For instance, the designers of Classic McEliece discuss the case of a parameter
set named mceliece6960119, claimed to offer as much cryptographic resistance
as a secure block cipher with 256-bit key. The designers discuss existing attacks,
notably generic decoding algorithms for random linear codes, and state that:

[...] Subsequent ISD variants have reduced the number of bit operations
considerably below 2256. However none of these analyses took into account
the costs of memory access.

(Classic McEliece 3rd-round submission [7], §8.2)

The designers of NTRU Prime distinguish attacks in “local” computational
models, where information travels at finite speed (single-tape Turing machine,
VLSI circuits, ...) and “non-local” ones where accessing memory is free. Compar-
ing the energy consumption of a double-precision floating-point multiplication
and that of a memory read on usual CPUs, the designers of NTRU prime

[...] estimate the cost of each access to a bit within N bits of memory as
the cost of N0.5/25 bit operations.

(NTRU Prime 3rd-round submission [8], §6.6)

These authors state that the usual computational model where accesses to
an exponentially large memory are “free” is unrealistic (underestimates costs).
They conclude that there are unrealistic attacks against their proposed scheme
whose cost in the usual model is too low. On the other hand, in a presumably
more realistic model where accessing a large memory is costly, all these attacks
would cost more than the security threshold, and their scheme would be secure.

These arguments have then also been used by the Rainbow team [36]. It thus
seems that a significant fraction of designers of public-key primitives adhere to
this point of view.

This raises a wealth of interesting question. Is it true that accessing a large
memory has cost equivalent to exponentially many local operations? Is the most
common computational model too unrealistic? What are more realistic models?
Are there attacks that are efficient only in unrealistic models? Should these
attacks be considered as relevant? What are the implication on key sizes?



Falling short of an established name, we call the computational model de-
scribed above the Expensive Memory Model. It asserts that accesses to a memory
of size M have a cost equivalent to

√
M “local” elementary operations that do

not access memory. The complexity of an algorithm is then decomposed into the
number of local operations and the number of memory accesses. The final cost is
then expressed in terms of local operations, using the equivalence given above.

Position 3 The expensive memory model is more realistic than the Random
Access Machine model.

1.4 The Problem of Counting the Number of Operations

There is another well-known problem with using the number of elementary op-
erations as a cost function. This specific issue has been raised by Bernstein [5]
and Aumasson [1], among others. Let us consider two algorithms both capable
of breaking a symmetric primitive with n-bit keys:

Algorithm A Sophisticated. Requires 2
3
5n operations and 2

3
5n memory “cells”.

Algorithm B Exhaustive search. Requires 2n operations and little memory.

Just counting elementary operations, the sophisticated algorithm seems bet-
ter; running it costs less than exhaustive search; it is a “more dangerous” attack.
Incidentally, it is also better in the expensive memory model, because even if all
operations are random memory accesses, they still cost only 20.9n.

Running the sophisticated algorithm requires a machine of size 2
3
5n to hold

its memory. Suppose that an adversary has enough resources to build a machine
of this size. Then she also has the resources to build another machine that does
exhaustive search in parallel using 2

3
5n processors (this trades storage hardware

for computing hardware). Such a machine would terminate after 2
2
5n wall-clock

time steps. This is less wall-clock time than a sequential implementation of the
sophisticated algorithm, using a comparable amount of resources.

Counting the number of operations in the RAM model suggests that the
sophisticated algorithm is better. However, a rational attacker would not even
hesitate a second between implementing a sequential version of the sophisticated
algorithm and a parallel implementation of exhaustive search. The latter is ob-
viously a better use of resources, leading to a smaller time-to-solution using a
comparable budget.

The comparison is, of course, unfair. Why would a rational attacker be re-
stricted to sequential implementation of the sophisticated algorithm? Assume
that she is capable of building a large machine with 2

3
5n memory cells and 2

3
5n

processors (this machine has the same asymptotic size as before). Can the sophis-
ticated algorithm be parallelized to run in less wall-clock time than exhaustive
search on this large parallel machine? This would a strong incentive for the ra-
tional attacker to favor it over parallel exhaustive search. Counting the number
of operations in a sequential computing model does not predict the outcome of
this comparison, which nevertheless seems practically relevant.



In other terms, if an algorithm that competes against exhaustive search re-
quires M memory cells, can it run on a parallel machine of size M in less than
2n/M time steps? Exhaustive search does. This question is rarely, if ever, ad-
dressed by the authors of cryptographic attacks against symmetric schemes.

In fact, there is a more fundamental problem. Using the number of operations
as the sole cost measure pushes algorithm designers to use as much memory as
possible in order to reduce the number of operations. This leads to the design
of (sequential) algorithms using a large memory that are even more likely to be
less efficient than (parallel) exhaustive search because they require larger and
larger machines to run. It is often unknown whether they can be parallelized
efficiently. In addition, using a large memory means that there are most likely
“hidden costs”, as suggest by the discussion on the expensive memory model.

A model where a single sequential processor is attached to a large memory
is, in fact, unrealistic. Such machines do not actually exist. Large memories are
distributed over a large number of compute nodes connected by a network. For
instance, the most powerful computer in the world at the time of this writing,
the fugaku computer, has 150,000+ nodes with 32GB of memory, which makes
about 255 bits.

In addition, available memory is usually more restricted than available time.
Take the case of the double-DES: a well-known meet-in-the-middle attack due
to Diffie and Hellman breaks it in 257 block-cipher evaluations using ≈ 262 bits
of memory [16]. The time complexity is not a problem (exhaustive search over
the 56-bit keys has been done in the late 1990’s) but the memory requirement
makes this simple attack completely impractical.

Position 4 (controversial) Counting the number of operations in the Random
Access Machine Models pushes theoretically-minded cryptanalysts towards the
invention of impractical attacks.

1.5 Looking Back at a Venerable Computing Model

There are well-known computational models that do not have exhibit the prob-
lems discussed above. About 40 years ago, the VLSI computational model was
widely studied. This models considers computer chips as graphs under some
restrictions (components are laid on a two-dimensional grid; wires take space;
wires are either horizontal or vertical; only two wires cross at a given point in
space). Computation are necessary local operations (data must be moved to a
common point in space to be acted upon).

A VLSI chip is characterized by its area A and the time T it takes to perform
its task. If a specific computation has to be repeated many times (a common
pattern in cryptographic attacks), then the AT product is the prime measure of
efficiency: given some budget, there is an upper limit on the total circuit area
that can be used. One can use a few large-but-fast circuits or many small-but-
slow circuits. In the end the throughput is inversely proportional to AT . This
strongly suggest to use the product AT as a cost measure. In addition, a machine
of total size A, running for T time steps can perform at most AT operations.



In the sequel, we use the term “AT model” to denote the AT cost in the VLSI
model.

The AT model satisfies the requirement that accessing a large memory should
be costly: long wires are required to move the data around, and thus has reper-
cussions on both area and time.

Some cryptographic constructions, such as memory-hard hash functions like
scrypt explicitly state their security goals in the AT model. Several authors,
including most notably Bernstein [4, 9, 6] and Wiener [42] advocated the use of
the AT cost in cryptography.

Starting from 2012, Kleinjung, Lenstra, Page et Smart suggested to quantify
the security level offered by several well-known cryptography primitives by es-
timating the amount of money an attacker would need to pay to a well-known
public cloud operator to carry the attack [27]. These costs have been reevaluated
every three years [15]. The cost model of a cloud operator is very close to the
AT model: one pays proportionally to the amount of resource rented (A) and to
the duration of the rental (T ).

It must be noted that many large-scale cryptographic attacks have been
carried out on a shared computing infrastructure (either public clouds [35] or
public computation centers [11]). In this case, the cryptanalyst often has a “bud-
get” given in CPU-hours — in other terms, an upper limit on the AT cost of the
attack.

Many common operations have an AT cost asymptotically larger than the
number of elementary operations they require (n1.5 vs n log n for sorting). It
is natural to expect that the cost of many cryptographic attacks is higher in
the AT model than what their number of operations suggests. The AT cost
of most complex computations is under-estimated by counting the number of
elementary operations. At the very least, the AT costs seems to correlate with
energy consumption, and someone has to pay the bill. Therefore, we are facing
(at least) one of the two following situations:

1. Either the RAM model underestimates the cost of computation on actual
hardware,

2. Or the AT model overestimates the cost of computation on actual hardware.

The first alternative seems much more likely to us.

Position 5 The AT model is more realistic than the expensive memory model.

1.6 Technical Contributions

This paper does not present new attacks. It discusses the cost of existing generic
attacks (on symmetric constructions) in several computational models. In par-
ticular, we shows that:

– Judging an existing attack in the expensive memory model may be more com-
plex than doing “[local operations] + [memory accesses] ×

√
[Memory size]”.



Attacks can often be modified to reduce their cost in the expensive mem-
ory model. This may involve time-memory trade-offs (more time for less
memory) or simply reorganizing the computation to reduce the number of
memory accesses without altering the total number of operation. We show
examples of the two cases using simple generic attacks on hash functions in
sections 3 and 4.

– In some cases, the AT cost is necessarily (strictly) higher than the cost in
the expensive memory model. We show an example with a simple generic
second-preimage attack on hash functions in section 3.

– In some cases, the cost in the expensive memory model is apparently higher
than the cost in the AT model, which seems counter-intuitive at first. We
show an example with a simple key-collision search on HMAC in section 4.
This is a red flag: the expensive memory model seems to overestimate actual
costs. We exhibit a situation where the premise underlying the expensive
memory model (access to a memory of size N costs as much as

√
N local op-

erations) is invalidated. As such, security analyses in the expensive memory
model should be taken with a grain of salt.

– Optimizing the cost in the RAM model, the expensive memory model and
the AT models are three different and incompatible objectives. This means
that improving an attack in one model can make it worse in the other two.
This is shown on an example in section 3.

– In particular, reducing the memory complexity without changing the num-
ber of operations, which is apparently a strict improvement, may lead to an
increase of the cost in the expensive memory model, counter-intuitively. This
happens when the improvement prevents time-memory trade-offs. An exam-
ple is shown in section 5 with generic key-recovery attacks against Feistel
networks.

– Somewhat obviously, complex generic attacks, such as the recent universal
forgery attack against HMAC of Guo, Peyrin, Sasaki and Wang [24] can be
better than brute-force in some simplified models and worse than brute-force
in more realistic models (or even stop making sense at all). This attack is
discussed in-depth in section 6.

All complexities stated in this paper are asymptotic. We always omit both con-
stant factors and the “big O” notation.

2 Abstract Models of Computation

This section surveys the computational models discussed in the introduction.

2.1 The Random Access Machine

The Random Access Machine is one of the simplest and most likely the most
widely-taught computational model. To the best of our knowledge, it has been
introduced by Cook and Reckhow [13] in 1972–73 in order to model a Von



Neumann architecture. Informally speaking, it consists of a sequential processor
connected to an arbitrarily large memory. A more thorough description is given
by Van Emde Boas in the Handbook of Theoretical Computer Science [39].

The machine has a constant number of states, a (fixed-size) instruction
pointer, a constant number of integer registers of unbounded size, an infinite
number of memory cells M [0],M [1], . . . , each capable of holding an integer of
unbounded size. Here are the instructions that the machine can execute :

1. Control flow: halt, goto, if condition then goto. A condition is a test of
the form register == 0 or register ≥ 0.

2. Input/Output: read register and print register.
3. Data movement: register← i, register←M [register],M [register]←

register, where i is an integer constant.
4. Boolean and arithmetic operations between registers.

The unbounded memory size is necessary to deal with arbitrarily large prob-
lem instances. In turn, this requires arbitrarily large registers to perform indirect
memory accesses to the whole memory. Finally, unbounded memory cells are
necessary to store pointers.

If addition and multiplication of registers are allowed as an “elementary
operation”, then the machine allows the execution of Shamir’s factoring algo-
rithm [33], which only uses a linear number of arithmetic operations. This is
clearly not reasonable, therefore some restriction have to be enforced: preventing
multiplication, restricting addition to incrementation, “billing” arithmetic oper-
ations more than O (1), etc. None of these solutions match the mental model
that most programmers have of the complexity of their programs.

For instance, a function computed in T (n) steps by a Random Access Ma-
chine able to add, substract, divide by two and compare to zero, can also be com-
puted by a 7-tape Turing machine in T (n)3 steps [29]. Disallowing multiplication
between registers thus rules out the inadvertent polynomial-time integer factor-
ing algorithm. However, this model is still problematic for many reasons; most
programmer expect constant-time arithmetic operations and fixed-size memory
cells.

2.2 The Transdichotomous Model

A possible way to make the Random Access Machine more realistic is by observ-
ing that large computations can only be done on large machines. Therefore it is
reasonable to assume that the size of the machine is related to the size of the
problem. This intuition leads us to consider a Random Access Machine where
registers and memory cells have a size of c log n bits, for some constant c, where
n denote the size of the instance. The machine does all arithmetic operations
between registers in constant time.

This model has been introduced by Fredman andWillard [21, 22], who termed
it Transdichotomous:

[...] because the dichotomy between the machine model and the problem
size is crossed in a reasonable manner. (quoted from [3])



It has been explicitly adopted in late editions of the well-known textbook
Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein [14]. It seems
to us that it is used implicitly in most of the cryptanalytic literature and most
algorithmic courses.

2.3 The “Expensive Memory Model”

One of the drawbacks of the two previous computational model is that accessing
an unbounded amount of memory takes constant time. Not only is this em-
pirically untrue, but it also violates the known law of physics. The expensive
memory model asserts that accessing a large memory has a cost equivalent to
Θ
(
N0.5

)
local operations.

The point is that physically moving data between the memory and processing
units requires energy; assuming a mostly flat machine, N bits of memory fit in
a disk of radius O

(
N0.5

)
. The underlying assumption is that transporting data

over x meters requires an amount of energy proportional to x.
Even at a small scale, memory accesses can be experimentally checked to be

more expensive than the evaluation of a simple cryptographic primitive. We just
report here the result of a single experiment. We wrote two simple computer
programs 2:
A Iterate x← T [x], where T is an array of 224 long integers (64 bits) holding a

random permutation. The array requires 128MB.
B Iterate x ← Speck128/128x(0) — a constant plaintext block is encrypted

with a fresh key at each iteration.

Recall that Speck128/128 is a presumably secure block-cipher that encrypts
128-bit blocks using a 128-bit key. We used the plain C reference implementa-
tion given by its authors [2]. Program B typically runs faster and therefore uses
less energy. In other words, evaluating a full-blown block-cipher “costs less” that
performing a single memory access that causes a cache miss, for any reasonable
notion of cost. Table 1 shows more detailed results. It is well-known that this
would only be exacerbated if the size of the data being randomly probed in-
creased, in particular to the point of no longer holding inside a single compute
note.

In the RAM model, the complexity (i.e. the number of operations) of many
attacks is optimized by trading time for memory, eventually reaching T = M
in many cases. This is counter-productive in the expensive memory model, as it
increases the cost to M1.5.

2.4 The AT Model

In the late 70’s and early 80’s, many lower and upper bounds have been shown
on the performance of flat VLSI circuits performing common operations: rota-
tion and convolution [41], sorting [10], integer multiplication [12], Fourier trans-
form [37], matrix multiplication [32], ...
2 They are available at https://pastebin.com/3D83Kk0s and https://pastebin.
com/5n6LWprP.



Program A B
Speed (M iterations/s) 11.5 29.5
RAM energy (J) 118.5 40
CPU socket energy (J) 1,053 380

Fig. 1. Performance comparison of two simple programs on a single-core of an Intel
Xeon Gold 6130 CPU equipped with 192GB of DDR4 ECC memory at 2666MT/s.
Both programs perform 108 iterations. The energy readings have been obtained un-
der Linux using the command perf stat -e power/energy-ram/,power/energy-pkg/
[PROGRAM]. The “Socket” includes the cores, the full cache hierarchy and the memory
controllers. It turns out that the power consumption is comparable in both cases.

These bounds connect the area A of a VLSI circuit and the time T it needs to
perform a given computation. They often are of the form AT ≥ n1.5 or AT 2 ≥ n2.
The former follows from the latter when A ≥ n, which is often the case when
the input must be entirely memorized by the circuit before the output can be
emitted. The point of AT bounds is that a machine of total size A, running for T
time steps can perform at most AT operations. These bounds connect the area
of a VLSI circuit and the time it needs to perform a given computation. They
often are of the form AT ≥ n1.5 or AT 2 ≥ n2. The former follows from the latter
when A ≥ n.

The known AT lower bounds rely on communication complexity arguments,
i.e. something that is completely ignored by the Random Access Machine model.
Figure 2 shows a prime example: a circuit that rotate its n-bit input by n/2 bits.
This would require O (n) operations in the RAM model, but is subject to AT 2 ≥
n2. Assuming that the signals propagate in constant time along the wiring, the
circuit shown by the figure has nearly optimal area O

(
n2
)
. Transporting the

data is more costly than suggested by the RAM model.
Using the same kind of arguments, Wiener proved a quite general result:

Theorem 1 ([42], rephrased by us). In a machine where each of p processors
performs uniformly random access to m memory elements at a memory access
rate r, the total length of wires is Ω

(
(pr)2

)
. This bound is tight.

This requires no assumption on the relative locations of processors and mem-
ory elements. However this assumes that the computation is in “steady state” for
a sufficiently long time. (the memory access rate is the ratio between the number
of memory accesses and the total number of instructions executed).

This comes down to saying that a parallel machine where a large number
of processors communicate efficiently is larger and costs more than a machine
where the same number of processors do not need to communicate at all. The
size of the communication network may even dominate the size of the machine.
Note that this is a theorem about machines, not necessarily algorithms and even
less computational problems.

Based on this result, Wiener argues that attacking double-encryption costs
asymptotically more in the AT model than what the number of operations sug-
gests (because it is assumed to need a sophisticated and costly parallel machine).



Fig. 2. Possible VLSI circuit that rotates its 8-bit input by 4 bit. Its surface is of
order n2.

Looking again at the case of an algorithm that requires M bits of memory and
O (M) operations, Wiener’s theorem suggests to run it on a parallel machine
equipped with p =

√
M processors. This balances the size of memory with the

size of the communication network that connects it to the processors. Assuming
that the algorithm can be perfectly parallelized, the computation requires

√
M

time steps with a machine of size M , and the AT cost is M
√
M .

The problem is that estimating the cost of a computation in the AT model
not only requires us to study an algorithm, but also to study how it could be
implemented, mostly in parallel.

In this paper, to avoid problems with the size of the interconnection networks,
we consider machines organized as (mostly square) 2D meshes. Each processor
has a small memory. It is connected to its north, south, west and east neighbors.
The total wire length is proportional to the number of processors. The network
link can transmit a finite amount of data during a single time steps. A data
packet can only move from one node to the next during a single time step.

2.5 Digression: 2D or 3D?

Both the expensive memory model and the AT model assume flat machines. The
NTRU prime team states that this is reasonable because “chips are laid out in two
dimensions, receiving energy (and dissipating heat) through the third dimension”.
These authors conclude that a 3D machine is unrealistic.

Very large computers often span a little in a third dimension. Compute nodes
are vertically stacked in racks, themselves often arranged on a 2D grid. The



K computer computer (Riken Advanced Institute for Computational Science,
Japan), once considered to be the most powerful in the world, had 88 128 com-
pute nodes disposed on a 48× 72× 24 physical grid.

In 3D, the expensive memory model means that accessing a memory of size
N costs O

(
N1/3

)
instead of O

(
N1/2

)
. The bound in theorem 1 becomes (pr)3/2.

To the best of our knowledge, the AT bounds proved by the VLSI community
have not been generalized to three dimensions; it is natural to assume that they
would yield something like V T ≥ n4/3 (where V denotes the volume of the
machine). Thompson and Kung have shown that a d-dimensional mesh of size
nd can hold and sort nd small integers in time O (n), which is consistent with
this assumption.

In this paper, we choose to stick with two dimensions, but all the reasoning
presenting here could be adapted to three dimensions as well.

2.6 Relations between Models

It is fairly obvious that the number of operations in the RAM model is a lower
bound on the cost in both the expensive memory model and in the AT model.

Other simple relations are easy to come by. Assume that a program runs in
time T using M bits of memory on a Random Access Machine. It costs less than
T
√
M in the expensive memory model: there are at most T memory accesses and

each costs less than
√
M . The same computation can be done with cost smaller

than TM3/2 in the AT model: consider a 2D mesh of size
√
M ×

√
M , where

the processor of coordinate (0, 0) runs the main program; each other processor
contains a single memory cell and act as a storage server; a memory access
requires routing the request and the response through the mesh, which requires
less than 2

√
M network hops. Thus, the machine has size M and runs in time

less than T
√
M .

Both bounds are loose. An interesting example is the classic Hellman Time-
Memory trade-off [25]. Its purpose is to efficiently invert a (presumably one-way)
function f : {0, 1}n → {0, 1}n. Set N = 2n, and recall that the trade-off consists
in a preprocessing phase that produces a data structure of sizemt, withmt2 = N .
Then, inverting the function f on an arbitrary output requires t2 evaluations of
f and t accesses to this data structure. It is customary to set t = m = N1/3,
which balances time and space. Then, the “online” cost in the expensive memory
model matches the number of operations: inverting f requires N2/3 operations
and N1/3 accesses to a memory of size N2/3. The cost of these memory accesses
is also N2/3. Therefore, the technique yields the same cost in the RAM model
and in the expensive memory model (and also in the AT model but this is left
as an exercise to the reader).

In any case, an access to a memory of size N can be simulated in time
O
(√

N
)

in the AT model, using a machine of size N . This being said, it is
difficult to relate costs in the expensive memory and in the AT models. The AT
models “charges” the programmer for the memory even it is unused, because the
size of the machine includes the size of memory.



Optimizing the cost in the Expensive Memory model can be achieved by re-
ducing the amount of memory needed and/or by reducing the number of memory
accesses, as illustrated by the time-memory trade-off discussed above. Optimiz-
ing the cost in the AT model means parallelizing the computation and is usually
more complex.

The next two sections show separation results. These models may yield costs
are incomparable: in section 4 we give an example where the AT cost will be
lower than the cost in the expensive memory model, while in section 3 it will be
the opposite.

3 The Long Message Attack

The long message attack [28, §9.3.4] is one of the simplest generic attacks there
is. It is an interesting example of what can go wrong even in simple cases when
working in different computational models. The long message attack applies to
naive iterated hash functions that do not use the Merkle-Damgård strengthening,
namely including the size of the hashed message in the padding of the last block.
It has been extended by Kelsey and Schneier to deal with actual Merkle-Damgård
hash functions using expandable messages [26]. In this section, we consider the
simpler original version.

Consider an ideal (random) compression function f : {0, 1}n × {0, 1}m →
{0, 1}n. The Merkle-Damgård hash function Hf iterates f as follows: set an ini-
tial internal state x0 ← IV , split the input in m-bit blocksM0,M1, . . . ,Mk (pad
the last block with a single one bit and sufficiently many zero bits), then com-
pute xi+1 ← f(xi,Mi). The hash of the input message is simply Hf (M) = xk+1.
The long message attack forges second preimages for Hf faster than exhaustive
search even when f is a random function. The attack is illustrated by fig. 3 and
works as follows:

1. Hash the input messageM , yielding a sequence of internal states x0, . . . , xk+1.
Store them in a static dictionary with constant-time access.

2. Choose a random message block m. Compute h ← f(IV,m). Probe the
dictionary for h: if f(IV,m) = xi, then proceed to the next step. Retry
otherwise.

3. A second preimage M ′ is obtained by replacing the first i + 1 blocks of M
by m.

To simplify both notations and analysis, let N = 2n and k = N `. Full
exhaustive search requires N compression function evaluations, while finding a
collision using generic algorithms require only N1/2.

Finding the “connecting” message block m such that f(IV,m) = xi for some
internal state xi requires N1−` trials on average. The attack requires N `+N1−`

compression function evaluations and as many accesses to a memory of size
O
(
N `
)
. A static dictionary allowing worst-case constant-time access can be

built in linear time [20].
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m

Mi+1, . . . ,Mk

Fig. 3. The long message attack.

3.1 Cost Analysis

In the Random Access Machine model, ` = 1/2 yields an optimal number of op-
erations of N1/2 (an operation is, implicitly, a compression function evaluation).

In the expensive memory model, the cost increases because of the (expensive)
memory accesses and becomes N

3
2 ` +N1− 1

2 `. Choosing ` = 1/2 yields a higher
yet optimal cost of N3/4.

We now show that the cost is necessarily higher in the AT model, and that
the optimal target message size is different. A machine must have size N ` to
hold the dictionary or even just the input message. However, hashing the input
message is an intrinsically sequential process. The running time of the machine
is thus lower-bounded by N `, and the AT cost is now lower-bounded by N2`.
It follows that using values of ` smaller than 1/2 is mandatory — a fact that
apparently evaded previous analyzes in less realistic models of computation.

Assume a 2D mesh of N ` nodes, which is enough to hold the dictionary in
a distributed way. We store the dictionary as follows: an n-bit word w is stored
by the node of index w mod N `. Classical results on balls and bins tell us that
with high probability the maximum number of values stored by a single node is
O (n). The node of index zero hashes the input message and emits the successive
internal states, which are then routed across the mesh towards their destination
node.

Once this is done, all nodes repeat the following cycle: generate a random
message blocks m, compute h ← f(IV,m), send the pair (h,m) to the node
of index h mod N `. We are thus facing a parallel mesh routing problem: all
nodes simultaneously try to send a message to a randomly chosen target node.
Valiant described a simple and efficient algorithm to accomplish this parallel
mesh routing in Õ

(
N `/2

)
time steps with high probability [38] (the algorithm is

simple: route each packet to its correct position along the horizontal axis first,
then along the vertical axis). This is easily seen to be optimal using a bisection
bandwidth argument: assume that the mesh is split in two halves vertically: on
average, half the nodes in the left partition are sending a message to a node in
the right partition. Therefore, roughly 0.5N ` messages must cross the cut during
each cycle; the cut consists in N `/2 network links; therefore moving this amount
of data across the cut takes time Ω

(
N `/2

)
.



It follows that N ` random blocks can be tested in time N `/2. This process
has to be repeated N1−2` times. Processors spend most of their time moving
data around, and not evaluating the compression function. This issue of com-
munication complexity is ignored by other models.

The running time of the attack is therefore N ` +N1−3`/2, and the AT cost
is N2` +N1−`/2. The optimal choice is ` = 2/5, yielding an AT cost of N

4
5 .

Optimizing for the AT cost is thus a distinct objective than optimizing for
the cost in the expensive memory model, and the AT cost can be higher than the
expensive memory cost. Here, the difference lies in the fact that the AT models
captures problems caused by inherently sequential computations.

The above attack could potentially be improved a little. Instead of waiting
that the input message has been completely hashed, all nodes could try to find
m (the connecting block) while the message is being hashed, even though with a
reduced probability of success. We leave it to the reader to check that this only
reduces the AT cost by a constant factor.

3.2 The Long Message Attack With Distinguished Points

A well-known technique to reduce both the memory consumption and memory
access rate of some algorithms consists in using distinguished points. It is the
basis of Hellman’s Time-Memory trade-off, and it has been used in the late
1980’s by Quisquater and Delescaille to find a key-collision on the DES [31].
The technique has then been refined by Van Oorschott and Wiener in the late
1990’s [40], and has been used in practice to compute discrete logarithms on
elliptic curves, among others.

The technique consists in choosing an easy-to-evaluate predicate π. Bit strings
w such that π(w) = 1 are “distinguished”. The key idea is that only distinguished
values will be stored in memory. A common way to implement π is distinguish
bit strings whose k least significant bits are zero. Choosing the value of k al-
lows us to adjust the proportion of distinguished points. In the sequel, we write
N−y the proportion of distinguished points — if w is uniformly random, then
Pr(π(w) = 1) = N−y. Here is how the modified attack works:

1. Hash the input message M , yielding a sequence of internal states x0, x1, . . . .
Store only the distinguished ones in a static dictionary.

2. Choose a random message block m. Compute h ← f(IV,m). If h is not
distinguished, retry. Otherwise probe the dictionary for h: if f(IV,m) = xi,
then proceed to the next step. Retry otherwise.

3. Assemble a second preimage of M by replacing the first i + 1 blocks of M
by m.

There are N1−y distinguished points in expectation, and the dictionary con-
tains N `−y entries. Therefore the probability that probing the dictionary with
a random distinguished point yields a hit is still N `−1. In this modified attack,
the space complexity is reduced to N `−y, while the time complexity increases to
N ` + N1−`+y. This is a pure time-memory trade-off where the search phase is
governed by TM = N . The dictionary is still probed N1−` times.



Let us examine this in the expensive memory model: there are N `−y +N1−`

accesses to a memory of size N `−y, in addition to N `+N1−`+y local evaluations
of the compression function. The cost is therefore:

N
3
2 `−

3
2y +N1− `

2−
y
2 +N ` +N1−`+y.

Minimizing the exponent means solving a linear program in two variables.
The optimal solution is ` = 3/5 and y = 1/5, yielding a cost of N

3
5 . This balances

the number of local operations and the cost of memory accesses. It also balances
the two phases of the attack (hashing M and probing the dictionary). The total
amount of memory needed is N

2
5 , and there are this many memory accesses in

each phase. This improves upon the basic attack.

Let us now consider the AT model. We consider a 2D mesh of Np nodes,
with p ≥ ` − y (so that the mesh has enough memory to store the dictionary).
The mesh is split into square partitions of size N `−y. Each partition stores a
copy of the dictionary. The rate Nρ at which candidate distinguished points are
checked against the dictionary obeys two constraints:

– The speed at which processors generate them: ρ ≤ p− y.
– The network bisection bandwidth: ρ ≤ p/2.

The wall-clock time needed to produce and test N1−` distinguished points is
therefore N1−`−ρ. The AT cost of the whole attack is then N `+p +N1−`−ρ+p.

Minimizing the cost again amount to solving a linear program in `, y, p, ρ.
The optimal solution is ` = 3/7, y = 1/7, p = 2/7 (so the mesh is just large
enough to store the dictionary), and the optimal AT cost is N

5
7 .

3.3 Summary and Discussion

Figure 4 summarizes the situation. We end up with five different cost exponents
with four different target message lengths. Which one is right? At the very
least, this shows that optimizing the cost in the three computational models is a
distinct task. Depending on the model, the “best” target message size is different.

Using distinguished points increases the cost in the RAM model but lowers it
in both the expensive memory and the AT model. The cost of the long message
attack in the AT model is always higher than in the expensive memory model.
The ratio of distinguished points and the optimal target message size are always
different.

4 HMAC Collisions

This section discusses the problem of evaluating many times a function that
has a large description. This is a reoccurring pattern in generic attacks (other
applications include for instance the enumeration of high-degree boolean poly-
nomials). The point this section makes is that this typically results in higher



Model Msg. size (x) y # f # Mem. accesses Mem. Cost
Basic Attack

RAM 1/2 - 1/2 1/2 1/2 1/2
Expensive Mem. 1/2 - 1/2 1/2 1/2 3/4
Area × Time 2/5 - 3/5 3/5 2/5 4/5

With Distinguished Points
RAM 1/2 0 1/2 1/2 1/2 1/2

Expensive Mem. 3/5 1/5 3/5 2/5 2/5 3/5
Area × Time 3/7 1/7 5/7 4/7 2/7 5/7

Fig. 4. Cost of the long message attack, with and without distinguished points, in
various computational models. The values given are exponents in base 2n, i.e. a cell
containing α must be read as 2αn.

costs in the expensive memory model than in the AT model. This is important
because it suggests that the expensive memory model way overestimate costs
in some situations. This makes the model unsuitable for security analyses, as
discussed in section 1.2. The problem we expose is that not all memory accesses
are equally costly. In some cases, the cost of random memory accesses to a large
memory of size M can be reduced to O (1), in the AT model.

We illustrate this by considering the following problem: given a (long) mes-
sage M , find two HMAC keys k0 6= k1 such that HMAC(k0,M) = HMAC(k1,M).

To begin with, we extend the construction of an iterated hash function given
in section 3 by writing Hf (k,M) to denote the hash function uses the key k
as an initialization vector for the iteration. Then, we define as usual the classic
Message Authentication Code:

HMAC(k,M) = H(k ⊕ opad, H(k ⊕ ipad,M)),

where ipad and opad are two fixed n-bit constants.
Let again N denote 2n and let N ` be the size of M in message blocks

(` < 1/2). A collision can be found using only a constant amount of additional
memory, for instance using Floyd’s cycle-finding algorithm. We describe here a
solution using the parallel collision search of van Oorschott and Wiener [40],
because it will be useful later on. We again assume a proportion of distinguished
points equal to N−y, with y < 1/2. In order to make this paper self-contained,
the well-known algorithm is described below and illustrated by figure 5.

Collision Detection. We search colliding trails. A trail ends at a distinguished
point and it is completely described by its initial value and its length. The attack
starts with an empty dictionary.

1. Choose a uniformly random initial value s ∈ {0, 1}n. Set x← s and i← 0.
2. While x is not distinguished, do: x← HMAC(x,M) and i← i+ 1.
3. Probe the dictionary for key x. If x is already a key in the dictionary, then

we have two trails ending with x. Run the collision location phase.
4. Store the association x 7→ (s, i) in the dictionary
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Fig. 5. Collision between trails in the parallel collision search algorithm. Image: [40].

5. Return to step 1.

Collision Location. We have two trails (s, i) and (s′, i′) with a common end-
point. Hopefully, this will lead to the discovery of an actual collision. W.l.o.g.
we assume that i′ ≥ i.
1. While i′ < i, do: s′ ← HMAC(s′,M)
2. If s = s′, report failure
3. While s 6= s′, do:

(a) r ← s and r′ ← s′

(b) s← HMAC(s,M)
(c) s′ ← HMAC(s′,M)

4. Return the colliding keys r and r′

Van Oorshott and Wiener [40] show that the expected number of HMAC
evaluations in the collision detection phase is N1/2, while it is of order Ny in
the collision location phase. The dictionary stores N

1
2−y trails on average when

a collision is found.
This requires N1/2 evaluations of HMAC, and therefore N

1
2+` compression

functions evaluations in total. This settles the complexity analysis in the RAM
model.

4.1 Expensive memory Model

In the expensive memory model, the cost is higher: each evaluation of HMAC
must read the whole message M from memory. This requires N ` accesses to a
memory of size N `. These accesses are sequential and thus not random, but the
model does not say anything about this. In the collision detection phase, these
memory accesses cost N

1
2+

3
2 `, which dominates the number of local operations.

However, the algorithm can be modified in order to decrease its cost by
reorganizing memory accesses. Blocking is a well-known technique that improves
data locality and decreases the cost of memory accesses (it is abundantly used
in scientific computation). We modify the collision detection phase as follows:



Collision Detection with Blocking. We run Np trails in parallel, where p
is a parameter to be chosen later on.

1. For each 0 ≤ i ≤ Np, do: [Start all trails]
(a) Choose a uniformly random initial value si. Set xi ← si

2. For each 0 ≤ i ≤ Np, do: [Advance all trails]
(a) Check if xi is distinguished. If so, process as before when a trail is com-

pleted and restart a new trail at a fresh random initial value si.
(b) Set hi ← xi ⊕ ipad [initiate HMAC(xi, ·)]

3. For all 0 ≤ j < N `, do: [Evaluate HMAC on all trails]
(a) Fetch the j-th message block Mj from memory
(b) For each 0 ≤ i < Np, do:

i. Set hi ← f(hi,Mj) [advance HMAC(xi, ·) by one block]
4. For each 0 ≤ i < Np, do:

(a) Set xi ← H(xi ⊕ opad, hi) [Finalize HMAC(xi, ·)]
5. Return to step 2

The loop of step 2–5 handles Np trails in parallel. This loop will therefore
be repeated N

1
2−p times on average. The total number of HMAC evaluation is

therefore still N1/2 as in the basic version. However, the memory access pattern
has changed. Each message block fetched from memory is amortized over Np

concurrent HMAC computations.
The memory access in each execution of steps 3.a costs N

`
2 ; each execution

of step 3.b costs N
p
2 . The total cost of the algorithm is therefore

N
1
2−p+

3
2 `︸ ︷︷ ︸

step 3.a

+N
1
2+`+

p
2︸ ︷︷ ︸

step 3.b

Other steps have negligible cost compared to this. Setting p = `/3 yields a
minimal cost of N

1
2+

7
6 `. Compared to the original presentation, the cost has

been divided by N `/3. Improving this left as an open problem.

4.2 AT Model

We claim that it is possible to implement this algorithm with a smaller cost in
the AT model using a parallel machine. The main idea is simple: broadcasting
the content of a memory location to N processors essentially costs

√
N if the

memory has size N . This means that all processors can fetch the same memory
location with constant unit cost. The expensive memory model would have given
a cost of N

√
N for the same amount of memory accesses. Anecdotally, this is

explicit in the CUDA programming model for GPUs: memory broadcasts are
explicitly said to be much more efficient that random uncoordinated memory
accesses.

For the sake of completeness, figure 6 shows a machine with area ≈ 4 × N
containing N processors connected in a complete binary tree fashion (this is
a classic VLSI design). Each processor holds a memory cell. To broadcast the



content of a memory cell to all the other processors, the value is first routed
up through the tree to the root (this takes

√
N time steps). Then it is routed

down the tree towards all processors, also in
√
N steps. The whole process can

be pipelined, assuming that network links between processors are full-duplex.
This means that a new memory cell can be broadcasted to all processors at each
time step.

We now describe a machine that finds HMAC collisions with optimal AT
cost. It runs the parallel collision search algorithm using N ` processors. Let
φ : {0, 1}n → {0, 1}` be the function that returns the ` most significant bits.

In the collision detection phase, each processor picks a random key x0, then
computes the sequence xi+1 ← HMAC(xi,M). The iteration stops when xi has
its n

2 − ` least significant bits equal to zero. Once all processors have stopped,
they move to the collision location phase: each processors sends the message
(x0, xi, i) to the target processor φ(xi) on the mesh. If (at least) a processor
receives (at least) two messages, then a collision will be detected almost surely.

We claim that this machine outputs a MAC collision with constant proba-
bility. The length of the trails computed by each processor follow a geometric
distribution of expected value N

1
2−`, so that the total expected number of eval-

uations of HMAC is N1/2. It follows from the analysis of [40] that the probability
of finding a collision is high.

Fig. 6. A mesh of area ≈ 4 ·2n with 2n (circled) nodes linked in a complete binary tree
communication pattern.

The machine has N ` processors arranged in a tree-like fashion as in figure 6.
Each processor has a constant number of n-bit memory cells, so the machine is



actually of size Õ
(
N `
)
. The input message M is distributed among the memory

of all processors: the i-th processor holds the i-th message block.
The machines does N

1
2−` “cycles” ; during each cycle, each processors com-

putes the next term of its sequence. A cycle requires N ` time steps. During
the i-th step of a cycle, the i-th processor emits the i-th message block; it is
routed upwards the root of the tree, and the downwards all the other leaf nodes.
The process is fully pipelined: a single message block reaches all processors in
O
(
N

`
2

)
time steps, but a new message block is pushed into the pipeline at each

time step. Once the pipeline is full, all processors receive the complete message
M every N ` time steps. This allows the N ` processors to evaluate HMAC on N `

distinct keys in N ` time steps. The collision detection phase therefore requires
N1/2 time steps.

In the collision location phase, we are facing the same network routing prob-
lem as before: each processors sends a small packet to another, randomly chosen
processor. Valiant’s routing algorithm can be used again. Then, once collisions
have been detected, they must be located. This requires N1/2 time steps. Note
that reading the input message M from the outside world takes less time, even
if done sequentially.

It follows that this machine solves the problem with AT cost N
1
2+`. Because

this matches the number of operations required in the RAM model, we assume
that this cannot be improved.

4.3 Summary and Discussion

We exhibited a situation where the expensive memory model overestimates costs
compared to the AT model. Calibrating the size of a cryptographic key on the
basis of the best attack in the expensive memory model would lead to a potential
attack in the AT model, which seems more realistic, not less. We conclude that
the expensive memory model should be manipulated we care, if not avoided
altogether.

5 Generic Key-Recovery Attacks Against Feistel
Networks

In this section, we show that reducing the memory complexity of an attack is
not automatically a way to reduce its cost in either the expensive memory or
the AT models. It can even have an adverse effect.

We illustrate this with key-recovery attacks on Feistel networks. We assume
that a block cipher encrypts n-bit blocks using a 2n-bit master key using a Feistel
network. We further assume that round subkeys are n

2−bit long, and that their
are derived from the 2n-bit master key in a secure way. This models, for instance,
is the CAST-128, DEAL-256, etc. The i-th round transforms the n-bit internal
state (Li, Ri) into (Li+1, Ri+1) = (Ri ⊕ Fki(Li), Li).



We discuss two key-recovery attack against seven rounds, using 4 plaintext-
ciphertext pairs. Both are illustrated by figure 7. All values obtained while en-
crypting the k-th pair are denoted byX(k)

i . The vector of all valuesX(0)
i , . . . , X

(3)
i

is denoted by X(?)
i . We again write N = 2n.
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Fig. 7. Meet-in-the-middle attack on 7 Feistel rounds (left) and improved version based
on the dissection idea [18] (right).

5.1 Basic Meet-in-the-Middle Attack

A simple meet-in-the middle attack breaks 7 rounds using four known plaintext-
ciphertext pairs. It is described by fig. 7. Here is a high-level description.

1. For each value of k0, k1, k2, do:
a. Partially encrypt the four plaintexts to obtain R(?)

3 .
b. Store the association “R(?)

3 7→ ki” in a dictionary.
2. For each value of k4, k5, k6, do:

a. Partially decrypt the ciphertexts to obtain R(?)
3 .



b. Query the dictionary on R(?)
3 . This yields candidates for (k0, k1, k2).

c. For each suggested triplet (k0, k1, k2), do:
i. Enumerate all possible values of k3 and check the full key against the

known plaintext-ciphertext pairs.

The attack requires N1.5 units of memory (a “unit” is assumed to hold at
least n bits). The number of operations is also of order N1.5: the outer loops
in steps 1 and 2 do N1.5 iterations. Step 2.c.i does N0.5 iterations, but it is
only expected to be executed N times. In the RAM model, this is faster than
exhaustive search on the 2n-bit master key.

5.2 Improved Attack using Less Memory

Dunkelman, Keller, Dinur and Shamir [18] have improved this basic attack,
reducing its memory complexity to N instead of N1.5, while leaving its time
complexity unchanged at N1.5. In the RAM model, this is obviously a strict
improvement.

The main idea consists in guessing R(0)
3 first. This reduces from N1.5 to N

the number of triplets (k0, k1, k2) or (k4, k5, k6) that are admissible. The actual
attack works as follows.

Offline phase. Initialize an empty dictionary G. Then for each x, k, store the
association “(x, Fk(x)) 7→ k” in G. The dictionary stores N key-value pairs. Each
key may yield zero, one, or several values.

Online phase. For each R(0)
3 , do:

1. Initialize an empty dictionary H. For each k0, k1 do:
(a) Partially encrypt the first plaintext to obtain L(0)

2 , R
(0)
2 .

(b) Query G to find all values of k2 such that Fk2(R2) = L
(0)
2 ⊕R

(0)
3 .

(c) For each suggested k2, partially encrypt all plaintexts to obtain R(?)
3 and

store the association “R(1,2,3)
3 7→ k0, k1, k2” in a dictionary H.

2. For each k5, k6, do:
(a) Partially decrypt the first ciphertext to obtain R(0)

4 , R
(0)
5 .

(b) Query G to find all values of k4 such that Fk4(R4) = R
(0)
5 ⊕R

(0)
3 .

(c) For each suggested k4, partially decrypt all ciphertexts to obtain R(?)
3 .

(d) Query the dictionaryH on R(1,2,3). This yields candidates for (k0, k1, k2).
(e) For each suggested (k0, k1, k2) do:

i. For each k3, do: check the full key against all plaintext-ciphertext
pairs.

The expected number of keys suggested by each probe to G is 1. Therefore
H stores N bindings on expectation. The memory complexity is thus reduced
to N . Step 2.e.i is executed N1/2 times per iteration of the outer loop. Each
iteration of the outer loop requires N operations on expectation.



5.3 Modified Basic Attack in the Expensive Memory Model

In the expensive memory model, the basic attack costs N2.25 while the improved
attack costs N2. Neither attack is better than exhaustive search when accessing
memory is not free. By the way, had we considered 3D machines, then the re-
duced cost of memory accesses would make the improved attack less costly than
exhaustive search. This is the curse of (low) dimensionality.

In this remaining of this section, we show that the basic attack can be sal-
vaged, while the improved one cannot. The point is that the basic attack is
amenable to a time-memory trade-off that increases the number of local opera-
tions to N1.875, including N1.5 accesses to a smaller memory of size N0.75.

It is indeed possible to turn the tide using distinguished points. The basic
attack essentially consists in finding all the collisions between two expanding
functions from 1.5n bits (3 subkeys) to 2n bits (4 values of R3). Say that F0

maps k0, k1, k2 to the values of R3, while F1 maps k4, k5, k6 to the sames values.
We expect to find about 2n collisions F0(x) = F1(x) with x 6= x′. For each
collision between F0 and F1, the values of k3 are searched exhaustively.

The parallel collision search algorithm of van Oorshott and Wiener can again
be used to find these collisions efficiently [40]. We briefly recast their ideas applied
to the problem of finding all collisions between two expanding functions F0, F1 :
{0, 1}k 7→ {0, 1}k+`. About 2k−` such collisions are expected. First, we consider
modified functions F0, F1 with output truncated to k bits; finding all collisions
between F0 and F1 can be done by finding all the collisions between F0 and F1

(there are 2k of them in expectation), and checking each of them against the
original functions. This reduces the problem to functions with identical domain
and range.

Let us be given a new predicate P : {0, 1}n → {0, 1}; we define a new
function gP : x 7→ FP (x)(x). A collision gP (x) = gP ′(x′) (x 6= x′) reveals a
collision between F0 and F1 if and only if P (x) 6= P ′(x′). We therefore have a
large family of functions g?; finding many collisions between members of this
family reveals a significant fraction of collisions on the original functions.

Finding all collisions on g? is done using distinguished points. Let us again
assume that a fraction θ of k-bit strings are distinguished. A memory of size M
is shared among all processors. Each processor chooses a random starting point
x0 and a random predicate P ; it iterates the gP function, setting xi+1 ← gP (xi),
until a distinguished point is reached. Then it stores the triplet (x0, P, i) into the
memory cell of index h(xi), where h is some hash function. If this memory cell
already contained a triplet with the same end point, then we may have found a
collision. In all cases, the memory cell is overwritten and the process continues.

The heuristic analysis of Van Oorschott andWiener states that a new collision
is found every θ2k/M +2/θ iterations of g on average. Finding 2k collisions thus
requires θ22k/M+2k/θ work. Choosing θ =

√
M/2k minimizes this amount. The

process then requires about 21.5k/
√
M operations and 2k accesses to a memory

of size M .
In the Expensive Memory model, this costs 21.5k/

√
M+2k

√
M . The optimal

amount of memory is thus 2k/2, and the total cost is 2
5
4k. There are 21.25k “local”



evaluations of g, as well as 2k accesses to a memory of size 2k/2. Wiener shows
that this cost can be matched in the AT model [42].

Back to the basic meet-in-the-middle attack on Feistel Networks, this means
that all collisions between F0 and F1 can be found with cost N1.875, barely less
than exhaustive search. Performing the N exhaustive searches on k3 costs less.
The attack is therefore still viable in the expensive memory model, but only
using distinguished points.

5.4 Improved attack in the Expensive Memory Model

The improved attack repeat N1/2 times a procedure that searches all collisions
between two expanding functions F0, F1 : {0, 1}n → {0, 1}1.5n. The problem is
that these functions now have an exponentially large description because they
access the dictionary G, which is of size N . It is therefore not possible to evaluate
them “locally” without accessing a large memory, and the whole parallel colli-
sion search approach seemingly breaks down. Indeed, the whole point of using
distinguished points is to reduce the space complexity below N .

Given M memory cells, choosing the optimal proportion of distinguished
points requires

√
N3/M evaluations of F0 and F1, with M ≤ N . To beat ex-

haustive search, we would need a way to evaluate the functions with cost strictly
less than N0.5. We are not aware of any such technique. Using the offline phase
proposed in [18] and described above, evaluating the functions costs exactly N0.5

(one access to a memory of size N). The size of the data structure computed
during the offline phase could be reduced using Hellman’s Time-Memory trade-
off N0.5 times for each value of k. This would yield a data structure of size N

5
6

and evaluating the functions would require N
1
3 local operations plus N

1
6 accesses

to the data structure. The cost of these memory accesses is N
7
12 , which is even

worse than before.

5.5 Summary and Discussion

The basic attack could be modified to cost N1.875 in the expensive memory
model. On the other hand, we fall short of finding a way to make the improved
attack less costly than exhaustive search in the expensive memory model. This
comes at a surprise, because the improved attack uses less memory, and as many
operations as the basic one.

This shows that optimizing for more sophisticated costs models goes beyond
reducing the space complexity. It may require to make the attacks worse in the
more common RAM model of computation.

6 Generic Key-Recovery Attacks Against HMAC

We conclude this paper with the study of a sophisticated generic attack. We
show that it is more costly than brute force in the expensive memory model.



Attack # Operations # Mem. Access Mem. Size EM Cost
Basic 1.5 1.5 1.5 2.25

Improved [18] 1.5 1.5 1 2
Modified Basic 1.875 1.5 0.75 1.875

Fig. 8. Cost of the key-recovery attacks on 7-round Feistel networks. The values given
are exponents in base 2n, i.e. a cell containing α must be read as 2αn.

We then show that it can be modified to beat brute force in this same model.
Lastly, we show that it is always worse than brute force in the AT model.

The universal forgery attack against HMAC presented by Peyrin-Wang [30],
and later improved by Guo-Peyrin-Sasaki-Wang [24], is one of the most spectac-
ular generic attack of the last decade. We consider the setting where the internal
state of the hash function has the same size as the tag, namely n bits. The attack
even works against NMAC:

NMAC(k1, k2,M) = H(k1, H(k2,M)),

The attack forges a valid tag for any message M by computing a second preim-
age M ′ 6= M for the inner hash function: H(k2,M) = H(k2,M

′). This is ac-
complished without knowledge of k2. Then, M ′ can be submitted to the MAC
oracle, and the resulting tag is also valid for M . In the sequel, we again use the
notation N = 2n and we write N ` the size of the target message M .

All known second-preimage attacks are variants of the long message attack
discussed in section 3, and they require access to the sequence of internal states
x0, x1, x2, . . . obtained while hashing the input message M . Here, the adversary
faces a major obstacle because these internal states are not available: the hashing
process starts from k2, which is unknown. Identifying a single internal state is
sufficient to recover all the next ones and make existing second-preimage attacks
work. Once this is done, computing the second preimage (using the Kelsey-
Schneier attack) requires N1−` compression function evaluations.

To recover one internal state value, the attacks exploits the functional graph
of the function g : {0, 1}n → {0, 1}n defined by g(x) = f(x,m), where m is a
fixed arbitrary message block. This graph has N nodes and there is a directed
edge x → y if and only if y = g(x). Properties of these graphs for random
functions g have been extensively studied [19]. Each connected component of
the graph contains a single cycle into which several trees are grafted. The height
of a node is zero if it belongs to a cycle, otherwise it is its distance to the cycle
of its component.

A clever procedure (not described here) enables the adversary to discover
the heights of all internal state values xi’s in the functional graph of g. Because
the xi’s are random and g behaves as a random function, the heights of the xi’s
are expected to be less than N

1
2 ; if the message size obeys ` ≤ 1

4 , we expect the
heights to be all distinct. The two successive versions of the attack differ in how
they exploit this information.



6.1 First Version (Peyrin-Wang) [30]

This version of the attack targets messages of size ` = 1
6 . Its time and space

complexity are both N
5
6 .

The attack requires the construction of “filters” for all internal state values xi,
namely of a pair of message blocksmi 6= m′i such that f(xi,mi) = f(xi,m

′
i). This

enables an efficient decision procedure to test if xi is equal to a candidate value
x̂: we just have to test if f(x̂,mi) = f(x̂,m′i). There are no false negatives and
the probability of false positive is extremely small. The filters can be obtained
by finding MAC collisions: For all i ≤ N `, the adversary searches a pair of blocks
mi 6= m′i such that the tags of M0‖ . . . ‖Mi‖m and M0‖ . . . ‖Mi‖m′ are equal.
This requires N `+ 1

2 queries to the oracle with messages of size less than N `.
Following the authors of the attack, we assume that submitting a x-block query
to the MAC oracle requires x “elementary operations”. All-in-all, building the
filters takes time N2`+ 1

2 .
To identify one of the xi, the attacker maintains a set Y of N1−` bit strings.

With constant probability, at least one of the xi’s belongs to Y . The attack
works as follows: for each target internal state xi, let h be its height; for each
x̂ ∈ Y of height h, use the i-th filter to test if xi = x̂ in constant time. Because
the heights of the xi’s are all distinct, each element of Y is tested at most once,
and this takes time at most N1−`.

It remains to see how the data structure holding Y can be built. This can
be done in an offline phase and reused for several input messages. The following
procedure is suggested to accumulate Ny nodes with y ≥ 1/2. Until enough
nodes have accumulated, pick a random bit string u0 then iterate ui+1 = g(ui)
until a collision is detected (ui = uj with i < j) or ui already belongs to Y .
Once a chain ends due to either stopping criteria, add all the encountered nodes
to Y . This procedure takes Ny units of time; the data structure uses Ny units
of space.

Choosing ` = 1/6 balances the number of operations required to build the
filters, build Y , identify an internal state value and compute the second preimage.

In the Expensive Memory Model. The attack uses N
5
6 time and N

5
6 space.

In the expensive memory model, just reading each memory cell once costs at
least N5/4 and the attack is doomed. Adjusting the parameter ` does not help:
because the data structure that contains Y has to be read entirely, we would need
to use values of ` greater than 1/3 to beat brute force. Not only is this forbidden
by the description of the attack (arguments to establish its complexity require
` ≤ 1/4), but it would drive the cost of creating the “filters” to at least N7/6.

Fortunately, the space complexity of the data structure holding Y can be
reduced. This can again be achieved using distinguished points, as observed by
Dinur [17]. Assume that we want to represent Ny nodes with y ≥ 1/2. The key
idea is to consider that a fraction Ny−1 of the nodes is distinguished and to only
store distinguished points. The compacted data structure requires N2y−1 space.
Building it now works as follows: start each chain at a random distinguished



point x0 ; compute the iterates xi+1 = g(xi) ; if xi is distinguished, then check
if it belongs to Y ; if so, stop and begin a new chain ; otherwise, add it to Y and
continue iterating. A minor extension of this procedure also stores the height of
each distinguished point. The time complexity of the construction is unaltered.
Building the data structure requires Ny local operations and N2y−1 accesses to
a memory of size N2y−1. The cost of memory accesses dominates the cost of
local operations when y ≥ 3/4.

When it is used in attacks against MACs with y = 1−` and ` ≤ 1/4, building
the data structure thus costs N

3
2 (1−2`). Its size is reduced from N1−` originally to

N1−2`. The problem is that it is no longer possible to iterate over nodes of a given
height. However, it is possible to efficiently iterate over all nodes while knowing
the height of the current node (this is easy if the height of all distinguished points
is known). The attack can then be modified as follows: for each node x̂ in Y , let
h be its height, and let xi denote the single value of height h in the sequence of
input internal states (if there is any). Use the procedure described above to test
if xi = x̂. The number of operations is unchanged. The online search phase now
requires N1−2` accesses to the data structure of size N1−2` and N1−` access to
an associative array of size N ` that maps a height h to a pair (xi,mi,m

′
i). The

cost of the online search phase is therefore N
3
2 (1−2`) + N1−`/2. Note that this

dominates the cost of both building the data structure and finding the second
preimage naively.

Creating the filters is done “online” and requires interactions with the MAC
oracle. What is the cost of these interactions? In fact, what is the actual inter-
action mechanism? In the classic textbook [23], Goldreich suggests to use oracle
Turing machines: a special oracle tapes receives the queries to the oracle; upon
invocation, it is erased and replaced with the answer. This implies that invok-
ing the oracle on a long message takes time proportional to the length of the
message. But it also implies that the message has to be read first, which in our
case entails N

1
2+2` accesses to a memory of size N `. The cost of sending these

queries to the oracle is therefore N
1
2+

5
2 `.

The total cost, including the creation of the filters, is therefore

N
1
2+

5
2 ` +N

3
2 (1−2`) +N1−`/2.

This reaches a minimum of N21/22 with ` = 2/11. This is still better than
exhaustive search... but barely. The precise mechanism of interaction with the
oracle could change the whole complexity of the attack.

6.2 Second Version (Guo-Peyrin-Sasaki-Wang) [24]

This improved version of the attack changes two aspects. First, the “filters” are
improved. Suppose that the adversary has obtained a MAC collision between
M‖m and M‖m′ where m 6= m′ are two message blocks. Finding this MAC
collision requires N

1
2 queries to the MAC oracle with messages of size N ` (this

is less than in the first version). Obtaining this single “super-filter” requires N
1
2

MAC queries and N
1
2+` operations.



Then, given a candidate value x̂ and a position i, testing if xi = x̂ can be
done without access to the oracle by checking whether the following equality
holds:

f(f(. . . f(f(xi,Mi),Mi+1) . . . ,MN`),m) = f(f(. . . f(f(x̂,Mi),Mi+1) . . . ,MN`),m′).

Performing this test requires N ` operations (this is more than in the first ver-
sion).

The second improvement comes from the (heuristic) observation that the
heights of elements of Y are approximately uniformly distributed integers less
than N

1
2 . This implies that Y contains N

1
2−` nodes of each height. In the online

search phase, for each internal state xi, the number of tested candidates is ap-
proximately N

1
2−`; each test requires less than N ` operations. The total number

of operations of the search phase is therefore N
1
2+`.

Choosing ` = 1/4 minimizes the total number of operations, which is reduced
toN

3
4 . It must be noted that only a small fraction of the data structure is actually

read during the online phase of the attack, namely N
1
2 nodes out of N

3
4 .

In the Expensive Memory Model Finding the “super-filter” costs N
1
2+

3
2 `:

each query to the MAC requires N ` accesses to a memory of size N ` containing
the input message.

Testing if xi = x̂ requires N ` local operations, in addition to N ` accesses to
a memory of size N `. Therefore it costs N

3
2 `.

However, a new problem arises: the attack specifically requires us to iterate
over nodes of Y of a given height. This does not seem compatible with the
use of the compact representation of Y (at least, we do not know how to do
it). Using the original data structure for Y is impossible (the cost is too high).
Using the compact representation, we can only iterate over all nodes of Y , as
opposed to those with a specific height. The attack could work as follows. For
each x̂ ∈ Y : obtain its height h ; access a memory of size N ` to check if there is
an intermediate hash value of height h ; if so, perform the test as in the original
presentation of the attack.

This tests N
1
2 candidates. Enumerating all x̂ requires N1−` local operations

and N1−2` accesses to a memory of size N1−2` (holding Y ). It also requires N1−`

accesses to a memory of size N ` to check if there is a chaining value of height h.
The total cost of this modified version of the attack is then:

N
1
2+

3
2 ` +N

3
2 (1−2`) +N1− 1

2 `

This reaches a minimum of N
7
8 with ` = 1

4 . The optimal target message size is
the same as in the RAM model.

6.3 In the AT Model

A potential problem arises in the AT model with the construction of the data
structure representing Y . Using distinguished points, the amount of memory



(and thus the area of the machine) can be reduced to A ≥ N2y−1 as we have
seen earlier, if Y is to represent Ny nodes.

To obtain the heights of nodes in Y , we need to find at least one cycle in
the functional graph of g. Nodes on a cycle represent a small fraction N−

1
2 of

the total, but they are relatively easy to find: it suffices to iterate g from an
arbitrary point. This can even be done using only a constant amount of memory
using classical cycle-finding algorithms. But it requires N

1
2 sequential steps —

we do not see how this could be parallelized.
In fact, the problem is even more general: the i-th chain computed by the

sequential procedure that builds Y has length N
1
2 /
√
i. There are N2y−1 chains

in total, and they could be computed in parallel. However, the machine cannot
stop until the longest chains have completed. This implies that the wall-clock
running time of a machine that computes Y is lower-bounded by T ≥ N 1

2 .
It follows that AT ≥ Ny +N2y− 1

2 . This is more than what we had found in
the expensive memory model. In the attacks against MACs, this translates to
an increased cost of N

3
2−2` to build the data structure holding Y . Because ` is

capped at 1/4, we find that building the data structure is always as costly as
exhaustive search.

Both versions of the attack are thus doomed in the AT model for this simple
reason.

6.4 Summary and Discussion

This section shows that interesting and sophisticated generic attacks can be valid
in a given computational model and invalid in another, slightly more realistic one.
The reasoning presented here does not rule out the possibility of a “better than
brute force” generic universal forgery attack against HMAC in the AT model,
using the same ideas as the attacks of [30, 24]. But at the very least, some major
modifications seem to be required (such as dropping the ` ≤ 1/4 constraint).

We also remark that it has never been clear how a parallel machine could
access an outside oracle. Is the machine allowed to query the oracle in parallel?
Is this restricted to processing elements on the surface of the machine or can
even interior nodes query the oracle? What is the wall-clock time taken by these
interactions? What is the processing power of the oracle? In fact, the attack
scenario itself already makes it difficult to consider “realistic” attack machines.

7 Conclusion

In light of the problems discussed in section 4, we claim that

Position 6 If one wishes to use a more realistic than the RAM model, then it
is safest to jump all the way to the AT model, just to be on the safe side.
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