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Abstract. This paper makes the case for considering the cost of cryp-
tographic attacks as the main measure of their efficiency, instead of their
time complexity. This allows, in our opinion, a more realistic assessment
of the “risk” these attacks represent. This is half-and-half a position and
a technical paper.
Cryptographic attacks described in the literature are rarely implemented.
Most exist only “on paper”, and their main characteristic is that their
estimated time complexity is small enough to break a given security
property. However, when a cryptanalyst actually considers implementing
an attack, she soon realizes that there is more to the story than time
complexity. For instance, Wiener has shown that breaking the double-
DES costs 26n/5, asymptotically more than exhaustive search on n bits.
We put forward the asymptotic cost of cryptographic attacks as a mea-
sure of their practicality. We discuss the shortcomings of the usual com-
putational model and propose a simple abstract cryptographic machine
on which it is easy to estimate the cost.
We then study the asymptotic cost of several relevant algorithm: collision
search, the three-list birthday problem (3XOR) and solving multivariate
quadratic polynomial equations. We find that some smart algorithms
cost much more than what their time complexity suggest, while naive
and simple algorithms may cost less. Some algorithms can be tuned to
reduce their cost (this increases their time complexity).

Foreword

A celebrated High Performance Computing paper entitled “Hitting the Memory
Wall: Implications of the Obvious” [47] opens with these words:

This brief note points out something obvious — something the authors
“knew” without really understanding. With apologies to those who did
understand, we offer it to those others who, like us, missed the point.

We would like to do the same — but this note is not so short.



1 Introduction

We all know that the total number of “elementary operations” required to per-
form any kind of computation (including cryptographic “attacks”) is a lower-
bound on the difficulty of actually carrying out this computation. Very often
this lower-bound is not tight.

This fact is used, implicitly or explicitly by the designers of cryptographic
primitives, in particular in the public-key setting where security properties can
always be broken by successfully running a large computation to solve the un-
derlying hard problem. Designers estimate the cost of the best attack and choose
presumably secure parameters in order to make it intractable.

To give an example chosen (almost) at random: the submitters of the GeMSS
signature scheme [14] discuss the complexity of several algorithms against the
underlying hard problem (solving systems of multivariate quadratic equations);
they discuss the case of the elegant and “provable” algorithm of Lokshtanov,
Paturi, Tamaki, Williams and Yu [31], which runs faster than exhaustive search
in Õ

(
20.8765n

)
steps. Conservatively, the designers of GeMSS assume that the

polynomial factor hidden in the exponential complexity may be small, and they
explicitly state that “[they] will estimate the cost of this attack by the lower bound
20.8765n”.

In this paper, we discuss the relationship between the “cost” of running an at-
tack and the number of elementary operations the attack is supposed to require.
These are not the same thing. For instance, we argue in section 8 that the above
algorithm is extremely unlikely to be asymptotically more “cost-effective” than
exhaustive search. It is therefore likely less dangerous in an asymptotic sense,
even though it requires a smaller total number of elementary operations.

Using the time complexity of an attack as a lower-bound on the actual hard-
ness of running it is all right. But using it as an upper-bound is not.

1.1 Simple Encryption vs. Double Encryption

To illustrate the discrepancy between the time complexity of an attack and
the actual difficulty of running it, let us consider double encryption (e.g., the
double-DES). This technique doubles the key length of a block cipher by en-
crypting twice. Given E : {0, 1}n × {0, 1}n → {0, 1}n, we build E2

k1,k2
(x) =

E(k1, E(k2, x)).
Double-encryption is widely considered to only offer “n-bit security” (see for

instance Wikipedia [46]) because of a well-known meet-in-the-middle attack that
require only two known plaintext-ciphertext pairs and 2n sequential steps. The
attack works as follows: for all possible k1, store the (Ek1(P1), k1) pair in a table;
then for all k2, look up E−1k2 (C1) in the table and retrieve the associated k1’s.
Check all (k1, k2) pairs against the second plaintext-ciphertext pair.

Double encryption seemingly offers no advantage compared to single encryp-
tion: breaking it is “as fast” as breaking single encryption. However, we believe
that the situation is actually more complicated. In this form, this simple attack
is in fact much more difficult to actually carry out that n-bit exhaustive search,



because it requires (at least) n2n bits of space. If we consider the DES (n = 56),
ad hoc parallel machines have been built to perform exhaustive search, such as
the “Deep Crack” machine (1856 custom ASICs, 1998). Some low-cost machines
are capable of doing it in a few days, such as the COPACOBANA [27] (128
FPGAs, 2006). It is estimated that performing a DES key exhaustive-search on
the Amazon cloud requires 97 “cloud-CPU years”; doing it as fast as possible
would cost $450,000 as of 2018 [15].

Now, the simple meet-in-the middle attack would require ≈ 512 Petabyte
of fast storage, which is not practical. At the time of this writing, the most
powerful computer in the world (“Summit” at Oak Ridge National Laboratory
in the USA) only has 3.2Pbyte of RAM and 250Pbyte of external storage.

There are several ways to reduce the space requirements of the meet-in-
the-middle attack, most notably the parallel collision search algorithm of van
Oorschot and Wiener [41]. Using nw bits of memory, the running time would be
of order 23n/2/

√
w blockcipher evaluations. In any case, using less than n2n bits

of memory will require more than 2n time. As such, breaking the double-DES
on the cloud is going to cost more than doing a DES exhaustive search: it will
require more energy, more computational resources, more communications, more
storage, more intellectual effort, etc. All this is not reflected by just counting the
number of elementary steps in the algorithm.

In fact, breaking double encryption on the cloud is going to cost asymptoti-
cally more money than breaking single encryption, as pointed out by Wiener [45],
who estimated the cost to be of order 26n/5 using optimal parallelization. Break-
ing the double-DES in practice is potentially within the reach of academic teams,
but it is certainly more challenging than breaking the simple-DES.

Other Examples. It is easy to come up with artificial problems that require
2n computation steps but that are much more costly that n-bit exhaustive key
search. For instance, consider the Median problem: if Fk : {0, 1}n → {0, 1}n is
a pseudo-random function (indexed by a key k), consider the problem of finding
the median of its range given the key.

Precisely assessing the “cost” of solving Median is not completely obvious; if
we had to make a wild guess, we would say that solving an instance of Median
of size n is asymptotically as costly as inverting a 4

3n-bit random function (this
estimate is justified in section 3.2). In any case, we would be quite surprised if
anyone could solve an instance of this problem with n = 56 during the next few
years.

1.2 Main Ideas and Contributions

We first discuss common assumptions about abstract computational models and
how cryptographic attacks are compared.

– In section 2, we argue in detail why comparing the time complexity of crypto-
graphic attacks is sufficient as long as the attacks remain purely theoretical.



In practice, it fails to address the practical difficulty of running the attack.
We argue that the cost of an attack is a better metric.

– In section 3, we put forward the idea of asymptotically estimating the cost of
running cryptographic attacks. We also argue that some common operations
(multiplication, FFT, sorting, ...) cost asymptotically more than their time
complexity. A lot of published cryptographic attacks cost more than simple
algorithms such as exhaustive search.

– In section 4, we restate the (well-known) argument that the usual assumption
that an unbounded amount of memory can be accessed in constant time
violates both the law of physics and empirical observations. This means
that the “running time” and the “time complexity” of exponentially large
computations are decorrelated.

– In section 5, based on ideas of Wiener and Vitányi, we propose a simple
abstract model to discuss the cost of cryptographic attacks: build a parallel
machines using any number of fixed-size computer nodes — and 1-meter
long network cables.

We then apply the previous ideas to several algorithms from both symmetric
and asymmetric cryptanalysis.

– In section 6, as a warm-up, we present parallel implementations (in our pro-
posed model) of parallel collision search, including the meet-in-the-middle at-
tack against double encryption. Its cost matches the known result of Wiener [45].

– In section 7, we study several recent algorithms for the 3XOR problem (i.e.
for the 3-list birthday problem). We argue that the “smart” algorithms cost
asymptotically more than what their time complexity suggests. We also show
that a simple, brute-force algorithm can be implemented with optimal cost,
and is therefore the algorithm of choice.

– Lastly, in section 8, we turn our attention to several algorithms for the MQ
problem (solving multivariate quadratic equations over F2), which is relevant
for some post-quantum schemes. Here the situation is more nuanced: we
disqualify a smart algorithm as more costly than exhaustive search, while
another one can be tuned and implemented in a way that costs less. Its cost
is still higher than its time complexity.

To summarize, we advocate a more practice-oriented approach to cryptanal-
ysis, even when the attacks remain purely theoretical and are analyzed asymp-
totically.

All complexities given in this paper are asymptotic. We usually dispense
with writing the “big O”, for the sake of lighter notations. When we say that
an algorithm costs 2xn or has time complexity 2xn, we mean Õ (2xn) (with the
usual meaning that there is polynomial in n hidden in the Õ).

2 What is a “Better Attack”?

Amongst all cryptographic attacks that have been published, only a minority
is “practical”, in the sense that it could potentially be implemented and run on



existing hardware. Some practical attacks have had a large impact, most notably
in forcing the rest of the world to retire bad cryptographic algorithms (SFLASH
by [18], MD5 by [37], SHA-1 by [36], not to mention RC4). At the same time,
new records in factoring [24] or discrete logs [25] help adjust recommended key
sizes.

Some researchers tried specifically to search for practical attacks. For in-
stance, instead of trying to break as many rounds of the AES as possible faster
than exhaustive search, Bar-On, Dunkelman, Keller, Ronen and Shamir [1] tried
to break as many rounds as possible in practice (and verified some of their at-
tacks by reportedly implementing them).

However, most cryptographic attacks are never implemented and are not
meant to be. For instance, the nice attack discovered by Isobe [20] against GOST
requires time equivalent to 2224 evaluations of the block cipher. Further work
by Dinur, Dunkeman and Shamir [17] reduces this to 2192. Both attacks are
impractical to the point that it makes little sense to try to implement them.

These attacks are theoretical objects that exist only “on paper”, and their
relative merits are compared in theory (without resorting to practical experi-
ments): in this example, the second attack is better because it achieves the same
result while using less resources than the first one1.

To some extent, cryptanalysis is in part a theoretical game where computer
scientists describe (often unimplementable) algorithms and compare their prop-
erties in some abstract model. There, if it is good enough, the algorithm “breaks”
some security property. Asymptotic and sometimes “concrete” complexities are
estimated and compared for computation that will most likely never ever be
tractable.

In this theoretical realm, the principal measure of comparison between at-
tacks is their time complexity. Most of us computer scientists are addicted to
making algorithms as fast as possible, i.e. to minimize their total number of
elementary operations. It is the main metric against which algorithms are eval-
uated, not to mention the most familiar.

If attack A runs in time 2n using negligible memory, and attack B runs in
time 20.875n but also requires 20.875n bytes of memory, which one is better? In
other terms, which one is more dangerous? As a community, we cryptographers
behave as if attack B was better. The algorithm of [31] for multivariate equations
mentioned in the introduction is considered to be better than exhaustive search
(“beating brute force” as the title of the paper says) because it runs in time
20.8765n instead of 2n.

The (obvious) point of this article is that judging attacks by time complexity
alone is fine... as long as these attacks remain theoretical and that no one ever
tries to implement them. Let us look again at attacks A and B above with n = 64.
Attacks requiring 264 operations and negligible memory have been carried out in
practice by academic teams having access to large computational resources [36,

1 In fact, it is a bit more complicated: [17] present one attack with less memory
than [20], other things being equal (it is strictly better). There is also an other
another attack in [17] with more data, less memory and less time (is it “better”?).



24]. On the other hand, the memory requirement of attack B (several Exabytes)
is a show-stopper.

Practitioners know that space constraints are much more difficult to deal
with: one can always wait for a program to stop, but if the data does not fit in
memory, it won’t even start. Algorithms with large space complexities have to
be adapted and made slower to accommodate the space constraints (see [6] for
an example in the context of generalized birthday attacks).

We stress that, for large computations, time complexity alone is only weakly
correlated with the practical hardness of running the computation — it is a
lower bound. Looking again at the “better” attack B above, it is obvious that it
is going to be more difficult to run than attack A in most scenarios. Attack A
should therefore be considered “more dangerous” than attack B, even though it
is “slower”.

Ultimately, the security of a cryptographic construction depends on the prac-
tical hardness of running attacks against it. The main thesis of this paper is that
discussing the cost of running an attack is more realistic than their time com-
plexity for two reasons: a) it gives a better understanding of what would happen
if somebody ever tried to implement it and b) the cost is better correlated to
the “concrete hardness” of running a computation.

Recommendation 1 : Cost Metric
Cryptanalysts should consider the cost of running the attacks and should

compare the relative efficiencies of attacks according to the cost (possibly in
addition to other metrics such as the total number of instructions executed
and the total amount of memory required).

3 The “Cost” of Running a Cryptographic Attack

Several authors in the cryptographic community, most notably Dan Bernstein
(in several papers including [3, 5, 4]), Michael Wiener [45], Kleinjung, Lenstra,
Page and Smart (in [26] and subsequent updates [15]), proposed to consider the
cost of cryptographic attacks.

Cryptographers who have run large computations often discuss their cost.
For instance, Stevens, Bursztein, Karpman, Albertini and Markov [36] estimated
that if their their recent collision on full SHA-1 had to be run on the Amazon
public cloud, it would have cost $560,000. Before that, the authors of the 2009
factorization record of a 768 bits RSA modulus [24] estimated that the compu-
tation required about 500MWh of energy. This is enough to boil two Olympic
swimming pools starting from 20°C (this is another “cost measure”).

The “Amazon cost”, which consists in measuring the cost in US dollar spent
on a public cloud to actually run a given computation is sometimes promoted
as a way of estimating the amount of resources needed to run it. Kleinjung et
al. discuss the Amazon cost of several attacks, including exhaustive key search,
factoring, etc. in [26, 15]. Kuo, Schneider, Dagdelen, Reichelt, Buchmann, Cheng
and Yang [28] discuss the Amazon cost of solving several instances of the Shortest
Vector Problem in euclidean lattices.



The “Amazon cost” evolves in time, which makes it somewhat impractical
as a complexity metric (and Amazon itself like all living things has a finite life
expectancy). Because we want to focus on timeless truths, we consider a more
abstract notion of cost: the product of the size of the machine on which it is run
by its (wall-clock) running time :

Cost = Machine size × Running time.

Bernstein calls it the Price-Performance ratio ; Wiener calls it the full cost ;
Lenstra, Shamir, Tomlinson and Tromer [29] calls it the throughput cost. We
just call it the cost.

The number of sequential operations of the best known sequential algorithm
gives a lower-bound on the cost of the best known parallel implementation: just
assume that the sequential algorithm uses O (1) memory, so that the size of the
machine on which the algorithm runs is O (1).

Sometimes, it is possible to design a parallel implementation whose cost
matches the number of sequential operations. We say that such an implemen-
tation is cost-optimal. Note that if the algorithm uses memory, then any cost-
optimal implementation has to be parallel. In sections 6 and 7 we provide two
examples of cost-optimal implementations. Not all algorithms admit cost-optimal
implementations.

3.1 Memory Costs

The cost “charges” the programmer for the use of memory: to hold n bits of
memory, a machine must have size Ω (n). A sequential algorithm running in
time T and using M bits of space has cost TM .

There are well-known examples where parallel machines achieve a lower cost
than sequential machines. This was put forward by Bernstein [3] with the exam-
ple of sorting: a well-known “systolic array” (a two-dimensional mesh of n × n
nodes, each with a constant amount of memory), can sort n2 numbers in time
O (n) [39]. This costs O

(
n3
)
, compared to Ω

(
n4
)
for a single processor con-

nected to a memory of size n2. Another example is matrix multiplication: an-
other well-known “systolic array” can multiply two n×n matrices in time O (n),
with improved cost compared to a sequential machine.

The intuitive explanation is that in sequential machines, only a constant
number of memory bits can be accessed at each time step, so most of them are
“inactive” all the time, yet they contribute to the cost. In parallel machines, each
piece of silicon gets more chance to contribute to the actual result at each time
step.

The algorithm of [31] to solve quadratic boolean equations in n variables is
an interesting example. It has time and space complexity 20.88n, so running it
would requires a machine of size 20.88n. But if such a big machine could be built,
it would be much more interesting to use it for... exhaustive search! Instead of
taking time 20.88n, exhaustive search on n bits using 20.88n processors in parallel
would take 20.12n time steps, which is much less. The cost of the algorithm of [31]
is discussed in detail in section 8.2.



3.2 Venerable Cost Lower-Bounds

The same notion of cost was in favor in the early 1980’s, when the Very Large
Scale Integration (VLSI) community proved numerous lower-bounds on the Area-
Time product of any VLSI circuit performing specific computations, including
cyclic shift and convolution [44], sorting [7], integer multiplication [13], discrete
Fourier transform [38], matrix product [35], etc. These bounds have generally
been matched by corresponding designs, and hence are tight.

These bounds relate the area A of the circuit and its time complexity T ; they
are usually of the form “AT ≥ n1.5” or “AT 2 ≥ n2” (the former derives from the
latter when the area must be greater than n, which is often the case because the
input have to be memorized). They inherently rely on the fact that the circuits
are planar. One of the proof techniques consists in showing that if the chip is
arbitrarily cut in two, then a given amount of information must flow across the
cut. This in turn requires a minimum number of wires to be cut if the flow is fast
enough, and hence a minimum area for these wires. This way of thinking about
computation gives a major role to the “cost of communications” — moving data
around is not free.

We are not aware of specific lower-bounds for the Median problem; never-
theless, the results cited above suggest that trying to solve Median by sorting
costs at least Ω

(
21.5n

)
if only flat chips are used — asymptotically much more

than exhaustive search on n bits.
We are also not aware of generalization of these lower bounds to three di-

mensions. But it is easy to conjecture that they generalize to “Volume × Time
= Ω

(
n4/3

)
”. For instance, a d-dimensional mesh of size n can sort n numbers in

time O
(
n1/d

)
[39]. For d = 2, this achieves the lower-bound AT = n3/2, while

for d = 3 this achieves V T = n4/3). Going to 3 dimensions would bring down
the cost of solving Median by sorting to 24n/3: 2n/3 time steps with a machine
of size 2n.

We feel confident in assuming that all the problems with VLSI lower-bound
also admit (slightly weaker) cost lower-bounds in three dimensions.

Reality Check. Sorting is an important building blocks in many cryptographic
attacks. Because sorting requires communications (or, equivalently, access to
a large shared memory), we have just claimed that it costs Ω

(
n4/3

)
, hence

asymptotically more than its sequential number of operations. Therefore, sorting
couldn’t possibly be cost-optimal. Is that only theoretical, or does it verifies in
practice?

Just to be sure, and to validate our claims, we ran a little experiment on
actual hardware. Sorting a large array distributed amongst many cluster nodes
can be done as follows: first, each node locally sorts its portion of the distributed
array; second, nodes communicate and move portions of the sorted array to their
destination nodes (this is an “all-to-all” shuffle); lastly, nodes merge the incoming
sorted portions of the array and store them locally.

Using an IBM BluGene/Q parallel computer, we used up to 4096 nodes con-
nected using a high-performance network with a 5D-torus topology. Each node



generated ≈ 7Gbyte of random junk and we measured the wall-clock time needed
to complete the “all-to-all” shuffle that would happen in sorting between n nodes:
each node sends/receives ≈ 7/n Gbyte to/from each other node on the network.
This was done by running the MPI_Alltoall function of the MPI library pro-
vided with the machine. Results are shown on Table 1.

# nodes Data Time (s) Mesh / torus dimension
2 13.5 G 2.7 2
4 27 G 2.9 2× 2
8 54 G 7.0 2× 2× 2
16 108 G 9.5 4× 2× 2
32 215 G 12.45 2× 4× 2× 2
64 430 G 4.1 2× 2× 4× 2× 2

128 861 G 8.9 4× 4× 4× 2
256 1.7 T 13.0 2× 4× 4× 4× 2
512 3.4 T 13.7 4× 4× 4× 4× 2

1024 6.9 T 15.9 4× 4× 4× 4× 2
2048 13.4 T 17.0 4× 4× 8× 8× 2
4096 27.5 T 18.7 8× 4× 8× 8× 2

Table 1. Time needed to complete the communication phase of a simulated sort.
“Data” gives the total amount of data shuffled around on the network. The bad times
obtained for 8 ≤ n ≤ 32 may be caused by the fact that these are “small jobs” unsuited
to the network topology. The network is always a torus on the last dimension; on the
other dimensions, it it a torus if there are at least four ranks, otherwise it is a mesh.

We observed that the running time of the communication phase with n is
essentially 6.1n0.135 seconds (excluding the bad small jobs). On this machine, the
cost of sorting would then be O

(
n1.135

)
. Because this machine has a 5D torus

network, we could expect it to be able to sort n numbers in time n1/5 — it is
indeed the case, and the machine does even better. We argue in section 5 that the
5D torus “cheats” because it has “long wires”: its size would scale super-linearly
with the number of nodes.

In any case, we were able to observe the asymptotic effect of communications
on the cost of sorting, which is super-linear.

3.3 Is the “Cost” an Better Metric ?

We believe that the cost defined above is a better metric than the total number
of elementary operations to appreciate the difficulty of actually running a cryp-
tographic attack. The “exhaustive search vs. Median” example shows that the
cost correlates well with an intuitive notion of difficulty.

The cost metric is annoying because it reverts “attacks” (algorithms that are
fast enough to break something) to “non-attacks” (algorithms that are too costly
to break anything).



To take another example (almost) at random, consider the two-rounds single-
key Even-Mansour construction. This acts as an n-bit block, n-bit key block
cipher. Exhaustive search takes time equivalent to 2n evaluations of the con-
struction and requires no memory to recover the secret key. A series of work by
Nikolic, Wang, and Wu [34], Dinur, Dunkelman, Keller and Shamir [16], Isobe
and Shibutani [21], Leurent and Sibleyras [30] present attacks against this con-
struction. All these attacks have a total number of operations greater than 2n/n
and strive to minimize it using as little queries to the encryption oracle as possi-
ble. Their complexity is summarized in table 2. They all use exponentially more
than n memory words, so as they are described by their authors they all have
cost exponentially greater than exhaustive search.

To be fair, these attacks have been designed with other goals than being
cost-efficient (minimizing total number of queries to a public oracle or the total
number of sequential operations, etc.). Furthermore, they are described as se-
quential algorithms using a large memory. It is possible that their cost could be
reduced by parallelizing them, but it is potentially a non-trivial effort.

In any case, we gather that none of this attacks have been implemented. If
a concrete instance with (say) n = 56 or n = 64 were to be broken in practice,
would any of these attacks be more practical than exhaustive search? Some of
these articles discuss this “practical” case in detail and give precise “concrete”
complexities... which —we dare to think— probably do not mean much in prac-
tice. We believe that those of [16, 30] stands a chance to “beat brute force”
because of their reduced space complexity, but the global situation is unclear,
and again a non-trivial effort would be required to find out.

Ref. Data Time Space Cost
trivial 2 KP 2n 1 = 2n

[34] 2n lnn/n KP 2n lnn/n 2n lnn/n ≥ 22n/n2

[16] 2n/λn CP 2n/λn 2λn ≥ 2(1+λ)n/n

[21] 2λn CP 2n lnn/n 2n lnn/n ≥ 22n/n2

[30] λn KP 2n/λn 2λn ≥ 2(1+λ)n/n

Table 2. Comparison of published attacks against the two-rounds single-key Even-
Mansour cipher. 0 < λ < 1. KP: Known plaintext; CP: Chosen plaintext.

Other interesting cases arise when algorithms have parameters. Very often,
cryptanalysts try to find the values of these parameters that minimize total num-
ber of elementary operations. And very often, different values of the parameters
minimize the cost. An example is provided in section 8.3.

One could argue that there are situations where the cost metric does not
make much sense for the cryptanalyst who wishes to actually run an attack. If
she has a given machine at her disposal and shes wants to break stuff for fun
and profit, then what matters to her is the actual running time of her code on
her machine and not the price-performance ratio. Here, the realism of the metric



does not have to be debated: it holds by definition. Nevertheless, we note that,
if the given machine is a (somewhat) large parallel computer, then minimizing
the actual running time of an attack is quite similar to minimizing the cost: all
the “hidden costs” now have to be accounted for: communications, I/O, memory
latency, etc.

In any case, cryptanalysts most often cannot build parallel machines that
are exactly as they would like (to minimize the cost), and they have to make do
with what they have. The pretty sorting meshes described by Bernstein [3] have
most likely not seen much practical realization.

Most large cryptographic computations known to us typically happened on
machines to which the cryptanalysts did not have exclusive access. Either the
machines belongs to a public cloud operator (as in [36]) or to a campus/national
computing infrastructure (as in [24]), shared between many users (often from
different fields) — of course there are exceptions [6, 37]. In this setting where
the machines are shared, the cloud cost (“number of nodes × running time”)
seems relevant, but it is very similar to the cost discussed above. It is adapted
to situations where the cryptanalyst can still choose the amount of parallelism
and trade a notion of machine size for time, but cannot build a fully customized
machine.

In any case, the cryptanalyst will generally have resource constraints: a bud-
get (in public cloud, the “cloud cost” translates quite directly to a financial cost,
which is the argument used by [26, 15]), or a fixed number of allocated “nodes
× hours” on a shared machine. So the relevant question is: “what is the largest
instance I can break on this machine with this many node × hours? ”. In other
terms, what is the (cloud) cost of breaking an instance of size n? We end up
with the idea that minimizing the (cloud) cost is the actual objective.

This is reinforced by the fact that both the cost as defined above and the
cloud cost correlate with the energy consumption of the computation, thus with
an actual cost in dollars (that someone has to pay eventually).

4 What is the Problem With the Usual Computational
Model?

The usual computational model in the study of algorithms is the “Random Access
Machine” (RAM). Without going into very precise details, it is a von Neumann
architecture where a processor can access an (unbounded) memory divided in
cells containing w-bit words. The machine can do the usual logic and arithmetic
operations between registers in constant time, as well as read/write from its
memory in constant time.

This model is simple and practical, arguably more practical than (even multi-
tapes) Turing machines or lambda-calculus ; it is reasonably close to how (small)
computer appear to a programmer.

It has a parallel counterpart, the “Parallel Random Access Machine” (PRAM)
model, in which an arbitrary number of processors operate synchronously and
have access (in constant time) to an unbounded shared memory. Several flavors



exist, with various behaviors in case of concurrent Read/Write access to the
memory. The most commonly accepted, the CREW PRAM allows Concurrent
Reads but Exclusive Write (to the same memory location). Both models suffers
from several problems:

– The RAM model is, obviously, a sequential model of computation. Crypto-
graphic attacks, when they are actually implemented, run on parallel com-
puters.

– Attaching a single processor to a very large memory would be a tremendously
inefficient use of resources. Such machines do not exist in the real world.

– If we look at parallel computational models, we find that the PRAM model is
unrealistic: large parallel machine do not have a shared memory. Individual
nodes have their own memory and communicate through a network. More
realistic models of parallel computation take communication costs and delay
into account.

– In both case, the assumption that an arbitrarily large memory can be ac-
cessed in constant time breaks down asymptotically because of speed-of-light
delays. The latency of memory accesses increases with the size of the mem-
ory. The models ignore it.

It follows that if both the time and space complexity of a computation are
exponential, then its running time is no longer proportional to the number of
“elementary” operations for the above reason.

Looking at the same problem from another angle, reading 64-bit from the
memory (with a cache miss) of a modern computer requires about 10 times
more energy than performing a double-precision floating-point multiplication [42,
appendix A]. This also only gets worse if data has to be moved further from
another computing node. Thus, running code that accesses a lot of memory
costs more than code that “just computes”, because eventually someone has to
pay that power bill.

All this could be summarized by saying that: a) accessing a lot of data is
not free, and b) accessing a large shared memory entails hidden communication
costs which are not accounted for by the usual computational models.

Recommendation 2 : Memory is not Free
Because it asymptotically contradicts both the laws of physics and prac-

tical observations, cryptanalysts should not blindly assume the existence of
a shared, unbounded memory with constant-time access.

Reality Check. We argued that speed-of-light delays affects the running time
of computations using a large memory. Is this only a theoretical argument? Does
it only have an “asymptotic” value or does it mean something in practice?

We believe that the argument is not only theoretical. Recent multi-die CPUs
can be large enough that light takes at least one cycle to go from one core to
the furthest core on the chip (on the AMD EPYC “rome”, two cores can be
up to 6cm apart). Actual bits of information take presumably much more time



than light to travel. For this reason, distinct processor core on the same machine
do not always have a consistent view of their shared memory (it would be too
expensive to keep them sequentially consistent).

It is well-known from the HPC community that the latency of memory ac-
cesses increases quickly when reaching memory that is further and further away
from the processor core. Just to be sure and to validate our claims, we ran an-
other little experiment on actual hardware: we measured the latency of memory
accesses on a modern cluster node with Xeon Gold 6130 processors (skylake) and
fast RAM. We measured the time needed to do x← A[x] repeatedly, where A is
an array of size n initialized with a random permutation. The results are shown
in table 3.

size of A Latency Note
32Kb 5 L1 cache hit
1Mb 25 L2 cache hit
22Mb 50 L3 cache hit
32Mb 130
128Mb 250
8Gb 300

192Gb 340

Table 3. Latency (in CPU cycles) of random memory accesses in a contemporary
(high-end) computer. 2Mb “huge pages” have been used to alleviate page fault issues
and reduce the latencies.

This shows that randomly probing a few hundred megabytes of memory is
≈ 60× more expensive than accessing a few kilobytes in the fastest cache. We
feel comforted in the conviction that, the more memory an algorithm needs, the
more it has to wait to access it (if it accesses it randomly).

An interesting other data point is the following: on the same CPUs, the
latency of a single evaluation of the AES-128 is about 86 cycle (using AES-NI
instructions, with precomputed subkeys). A good thing to take home is the
following: evaluating the AES is faster than reading a single integer from RAM.

We note that these facts are well-known from the cryptographic community:
special memory-bound functions have been designed to explicitly rely on the
fact that random memory accesses are slow. These functions can be used to
provide proof-of-work (as in [19]) and are recommended to hash passwords (as
in Argon2 [8]).

5 What is the “Size” of a Machine?

Most of the problems we discuss revolve around what happens when processors
access memory. We argued that this involves a “hidden” interconnection network,



which incurs non-trivial costs and delays the computation. Wiener made the
same point in a striking way with the following theorem.

Theorem 1 ([45], rephrased by us). In a machine where each of p processors
uniformly random access to m memory elements at a memory access rate r, the
total length of wires is Ω

(
(pr)1.5

)
. This bound is tight.

This requires no assumption on the relative locations of processors and mem-
ory elements. However this assumes that the computation is in “steady state” for
a sufficiently long time.

In other terms, if many processors must have fast access to a common mem-
ory, then there is a hidden cost (the communication network) which can even
asymptotically dominate the size of the machine if r > p−1/3.

Here is another example of hidden communication costs. Assume 2k simple
processors are connected together in a hypercube (a classical network topology
in parallel computing classes; each node is connected to k neighbors). Bitonic
sorting is easy to implement on such a machine: it sorts 2k items (one per node)
in k2/2 steps, where each steps involves the parallel exchange of one element
along a network link, without contention. So, sorting 2k items would take time
O
(
k2
)
on a machine of size O

(
2k
)
— beating the cost lower bound announced

in section 3.2.
However, Vitányi [43] has shown that the total length of wires needed to

connect the nodes of a hypercube in our three-dimensional world is Ω
(
24n/3

)
.

As such, the “size of the machine” is in fact greater than assumed earlier. And
this is assuming that the wires have zero volume! If the wires occupy some
space, then they will push the nodes further apart, necessitating even longer
wires again... It is known that a hypercube variant (the “cube-connected cycles”)
can be laid out on a three dimensional grid with volume 23n/2, and it seems that
it is the best possible.

In light of the theorem above, and to avoid nasty surprises, we believe that
if cryptanalysts want to discuss the cost of their attacks, they have two options.
The first consists in actually implementing them on real machines, when this
makes sense. The other option is to discuss the asymptotic cost on some abstract
“cryptanalytic” machine.

This machine can be a public cloud: assume that an unbounded number N of
identical nodes with a fixed amount of memoryM per node is available. The cost
of a computation with running time T is then NTM . The slight problem is that
the interconnection network remains to be specified: communication between
nodes takes time and congestion has to be taken into account. We do not know
the precise details of network connectivity in actual public clouds.

This could be fixed by assuming a well-specified network topology that leads
itself to a reasonable embedding in our material world. Two-dimensional or three-
dimensional meshes (or tori) of identical nodes with a fixed amount of local
memory seem to fit this description: the total length of wire is linear in the
number of processors, the number of links per node is constant, and each link
has constant length.



Fig. 1. Theorem 1 illustrated. Wiring is the hidden cost of parallel memory accesses.
(Image: Cray XC40 cabinet).



Recommendation 3 : Abstract Parallel Machine for Cryptanalysts
Cryptanalysts should evaluate the asymptotic cost of their attacks on

machines built assuming an unbounded supply of:

a) Identical cluster nodes with constant amount of CPU cores and RAM.
b) Constant-length network cables.

1D, 2D or 3D meshes of processors with a constant amount of local memory
fit this description.

One could argue that we propose to replace an abstract and inadequate model
of computation (the RAM model) by another abstract model of computation
which does not actually correspond to any actual available machine (we really
don’t want to discuss the issues of power delivery and heat dissipation in a large
3D mesh...).

We still claim that the “2D/3D mesh” model of computation is more realistic
than either the RAM or the PRAMmodel. In fact, some existing large computers
have a comparable network topology. The “Sequoia” supercomputer (Lawrence
Livermore National Laboratory, USA) is a 98,304-node IBM BlueGene/Q. It is
made of 96 racks, each with 32 boards, each with 32 processor nodes (with 16
cores each). The nodes are connected by a custom 5D torus network of dimension
16×12×16×16×2 (the last dimension connects two adjacent processors in the
same board). Another machine, the “K Computer” (Riken Advanced Institute
for Computational Science, Japan) has 88,128 nodes (864 cabinets of 96 nodes)
with a custom “Tofu” interconnect. The nodes are arranged in a large 24×18×17
torus of small 2× 3× 2 tori.

6 Application #1: Collision Search and Double
Encryption

We now provide several examples where discussing the cost of several attacks
provides a better understanding of the actual security of cryptographic construc-
tions.

As a warm-up, and to exercise the (rather constrained) model we recom-
mended at the end of section 5, we describe machines for parallel collision search.
We first describe a parallel machine that finds a single collision on a random n-
bit function with optimal cost 2n/2, using 23n/8 processors for 2n/8 units of time
(less processors can be linearly traded for more time). This corresponds, for
instance, to the computation of a discrete logarithm in a generic group.

We then describe a parallel machine that breaks double encryption in time
23n/5 using 23n/5 processors, and therefore cost 26n/5. This demonstrates that
the results announced in [45] also hold in our model.

6.1 Common Setting

Let us consider a function f : {0, 1}n → {0, 1}n for which collisions are to be
found. Let D ⊂ {0, 1}n be a set of “distinguished points”, with |D| = θ2n (for



instance, the bitstrings beginning with − log2 θ zero bits). The algorithm works
by iterating the function f starting from a distinguished point and until another
distinguished point is reached. The expected number of iterations is 1/θ. If no
distinguished point has been reached after (say), 20/θ iterations, then we have
probably entered a cycle and need to restart from a fresh starting point. This
induces a mapping f∗ : D → D∪{⊥}. Finding collisions on f is reduced to finding
collisions on f∗: from a collision f∗(x) = f∗(y) (with x 6= y), it is possible to
extract a collision on f by “walking the trails”. The point is that f∗ is defined
over a smaller domain.

In order to obtain a small cost, the parallel machine should have the following
characteristics: maximum parallelism and minimum memory per processor. We
use P processors each with a constant amount of memory, connected in a 3D
mesh. This machine has enough memory to hold P distinguished points, but
this memory is distributed amongst all processors. Each distinguished point is
associated to a processor which is “responsible” for it. This processor can for
instance be identified by taking the distinguished point modulo P .

Each time a distinguished point is computed by a processor (of rank i), it
has to be stored in the local memory of the responsible processor (of rank j). To
accomplish this, processor i sends a message to processor j through the mesh
network. Routing this single message to its destination requires 3P 1/3 routing
steps in the worst case. If all processors simultaneously send a message to a
random destination, then a simple routing algorithm can route all the packets
in time Õ

(
P 1/3

)
with high probability [40]. The routing algorithm moves all

messages to the correct coordinate on the x plane first, then on the y plane, and
lastly on the z plane. The expected maximum number of messages piling-up on
a single node is O (logP ) (this follows from the fact that the expected maximum
bin load when n balls are randomly thrown into n bins is log n).

We will enforce that routing a message through the mesh takes less time than
generating a new distinguished point. This guarantees that the network is not
saturated. We therefore want to choose θ such that 1/θ = Ω

(
P 1/3

)
.

The machines work as follows. Each processor picks a random distinguished
point x0 (in a way to be specified below), iterates the function f by computing
xi+1 = f(xi) until another distinguished point x` is found. It then sends a
message through the mesh consisting of (x0, `, x`) to the processor responsible
for x`. Upon reception of a message (x, y, z), two situations may occur:

– Either the processor (which is responsible for z) already holds a triplet with
the same z and a different x. In this case a collision is detected. Both trails
are to be walked again to precisely locate the collision.

– Otherwise, the incoming triplet is simply stored in the local single memory
cell (it replaces anything previously stored).

6.2 Finding a Single Collision

Let 0 < α < 3
8 . We use P = 2αn processors, with the following strategy: we

adjust θ such that each processor only has to compute a single distinguished
point.



It is known that the total number of iterations required to obtain a collision
is
√

π
2 2

n ≈ 2n/2. This means that θ2n/2 distinguished point will be computed in
total; we want one distinguished point per processor, so P = θ2n/2, from which
we obtain θ = 2(α−

1
2 )n.

The machine works as follows: each processor (say its rank is i), starting from
x0 = i (this is a distinguished point), iterates f until it reaches a distinguished
point ; then it sends it through the mesh and stops. Once all distinguished points
have been routed through the network, the collision should be identified.

Computing a distinguished point requires on average 1/θ = 2(
1
2−α)n itera-

tions. Routing the distinguished points on the network requires 2αn/3 routing
steps. Because α < 3

8 , we find that 1/θ is always larger than 2αn/3. The total
time needed to find the collision by this parallel machine is then T = 2(

1
2−α)n.

The cost of the machine is 2n/2. This matches the cost of sequential memory-
less collision search (the “rho” method), and is thus optimal. Had we used a 2D
mesh, we would have had to restrict α < 1

3 to enforce that computation takes as
least as long as communications. Using a linear processor array, we would have
had to enforce α < 1

4 . In both cases, the optimal cost can still be attained, but
with restricted parallelism.

6.3 Finding All Collisions: Application to Double Encryption

This corresponds to the case of meet-in-the middle attacks. Let us be given two
functions F,G : {0, 1}, → {0, 1}n. We want to find all collisions between F and
G. For instance, to break double encryption with two known plaintext-ciphertext
pairs (P1, C1) and (P2, C2), let F (x) = E(x, P1) and G(y) = E−1(y, C1). Each
collision F (k1) = G(k2) suggests a potential key pair (k1, k2) for the double-
encryption. We expect 2n such collisions to exist, only one of which is the “golden
collision” corresponding to the actual key. Checking if a suggested key is correct
can be done by checking it against the second known pair.

To find a collision between F and G, we would like to iterate the following:

H(b‖x) =

{
F (x) if b = 0,

G(x) otherwise
.

The problem is that H maps n+1 bits to n. To be able to iterate it, we compose
it with a reasonably random predicate P (for instance we could use P (x) = a ·x
for some non-zero vector a). Therefore we define π(x) = P (x)‖x and we iterate
H ′ = H ◦π. A collision H ′(x) = H ′(y) reveals a collision between F and G with
probability 50%.

The (heuristic) analysis in [41] shows that the expected total number of
iterations required per collision detected is 2nθ/w+2/θ using w words of memory;
to find the golden collision, this has to be multiplied by 2n. The value of θ that
minimizes the total number of iterations is θ ≈

√
w/2n.

We use P = 2αn processors with O (1) memory, with 0 < α < 3
5 . Just like

in section 6.2, the upper-bound on α enforces that computing a distinguished



point is at least as long as routing it on the network. Each processor starts from a
random distinguished point, iterates f until reaching a new distinguished point,
routes the result through the mesh and repeats. The machine stops when the
golden collision has been found (some technical details are hidden under the rug
— the predicate P has to be changed regularly for instance. See [41]).

The expected running time is 2
3
2 (1−α)n, and the machine has size 2αn. Thus,

it breaks double-encryption with cost 2
3−α
2 n. Increasing the number of proces-

sors reduces the total number of sequential operations (because it increases the
total amount of memory and reduces useless computations). However, after a
certain threshold (P = 23n/5), increasing the number of processors stops being
productive because the communication network cannot keep up. With P = 23n/5

the cost is 26n/5: each processor computes 22n/5 distinguished points; computing
a single distinguished point requires 2n/5 sequential operations, and routing it
through the 3D mesh requires as many routing steps.

If we restricted ourselves to 2D meshes, we would have had to pick α < 1
2 and

the best cost would be 25n/4. If only a linear array of processors were available,
we would have had to pick α < 1

3 and the best cost would be 24n/3. This
example shows that communications can play a crucial role in cryptanalytic
attacks, and that different communications models result in different costs. Thus,
plainly assuming that communications are “free” (as in free beer) obviously yields
more optimistic results. But things are likely to present themselves differently
in reality.

Inferior Designs. We briefly consider other more costly possibilities. Using M
memory cells per processor divides the running time by

√
M but it multiplies

the size of the machine by M — therefore it increases the cost.
The search for a “golden collision” with limited memory wastes some distin-

guished points that are overwritten without contributing to the collision search.
To avoid this phenomenon (i.e. never “forgetting” a distinguished point), we
could increase the number of processors to P = θ2n. This, in turn, will make
routing in the mesh slower, and requires us to decrease θ to maintain the bal-
ance between computation and communication. This leads to θ = 2−n/4 and
P = 23n/4 processors. To find the “golden collision”, 2n collisions have to be
found, and therefore (at least) 2n distinguished points have to be computed.
This takes time 2n/2, and therefore costs 25n/4. It turns out that being forget-
ful and wasting computation enables the use of a smaller machine and allows
reaching a better compromise.

7 Application #2: 3XOR Computation

The 3XOR problem has recently seen a renewed interest. It is a difficult case of
the generalized birthday problem (with only three “lists”), and it can be used as
a building block in more sophisticated attacks, for instance against the 2-round
Even-Mansour construction mentioned above [30] or against the COPA authen-



ticated encryption mechanism [32]. A series of algorithms have been developed
by Joux[22], Nikolić and Sasaki[33], Bouillaguet, Delaplace and Fouque [12].

7.1 3XOR on Pseudo-Random Functions

The problem comes in several flavors that are not completely equivalent. One
of them is the following. Let Fk, Gk, Hk : {0, 1}n → {0, 1}n be three families
of pseudo-random functions indexed by n-bit keys. We consider the problem of
computing a 3XOR on (F,G,H):

– For a random key k, find x, y and z such that Fk(x)⊕Gk(y)⊕Hk(z) = 0.

A possible obvious sequential algorithm (the “quadratic algorithm”) works as
follows:

1. Prepare a hash table of size 2n/3 then for all 0 ≤ i < 2n/3 do: A[Hk(i)]← i.
2. Tabulate the other functions. For all 0 ≤ i < 2n/3 do: B[i] ← Gk(i) and
C[i]← Hk(i).

3. Look for a match. For all 0 ≤ j, k < 2n/3 do: set u ← B[i] ⊕ C[j]. Probe u
in the hash table. If there is a match, report (i, j, A[u]) as a solution.

It requires 2n/3 memory and 22n/3 time — thus it costs 2n. It is possible
to do better with a simple idea called “clamping” by Bernstein in [4]: evaluate
each function 2n/2 times, but discard all results that do not start with n/4 zero
bits. This yields three “lists” of 3n

4 -bit strings of size 2n/4. These lists contain
on average a single solution. This solution can be found in time 2n/2 and space
2n/4, thus with improved cost 23n/4. This technique was used in [12] for an actual
computation with n = 96.

But it is possible to do even better. First let t← Hk(0), then find a collision
between Fk and Gk ⊕ t: this yields a 3XOR for (F,G,H). The collision can be
found by memory-less collision search in time 2n/2 and constant space, thus with
cost 2n/2 — this seems hard to beat. The collision search can be parallelized with
the same cost using the parallel architecture described in section 6.2.

7.2 3XOR on Arbitrary Arrays

Now, consider a different, more general flavor of the problem:

– Given three arrays of n-bit strings A, B and C of respective size A,B and C,
find a single (alternatively, find every) triple (i, j, k) such that A[i] ⊕ B[j] ⊕
C[k] = 0.

All published 3XOR algorithms actually solve this particular problem— they
start with the three “lists” A, B and C in memory. In this setting, the question of
the cost presents itself differently: because the machine has to be big enough to
contain the lists, the costs are going to be much higher.



Smart Algorithms. Joux’s algorithm [22] works when A = B = 2n/2/
√
n/2

and C = n/2. It solves the problem in linear time and space, therefore it costs
2n/n. This improves upon the quadratic algorithm; it uses more data, more
space and less time. This is a sequential algorithm, so its cost could be reduced
by parallelization. However, there is a non-trivial obstruction: the algorithm
requires the computation of the join of A and B: more precisely it needs to be
able to enumerate the set

A ./ B =
{
x⊕ y | x ∈ A, y ∈ B, x and y match on the first n/2 bits

}
.

One way of computing this join is by sorting A and B using the first n/2 bits
as keys, after which a single pass over the sorted arrays identifies the matching
pairs. Recall from section 3.2 that sorting an array of size n costs O

(
n4/3

)
using a 3D mesh. In our “mesh cost model” of computation, just this step in
Joux’s algorithm therefore costs at least 22n/3. We therefore conjecture that it
is impossible to implement Joux’s algorithm with optimal cost.

The algorithm of Bouillaguet, Delaplace and Fouque [12] finds all the so-
lutions in time (A + B)C/n, regardless of the sizes of the lists. This requires
C/n (possibly parallel) join computations between A and B. Assuming that
A = B = C = 2n/3, all these joins costs at least 27n/9. Again, we conjecture
that this algorithm cannot be implemented with optimal cost. Note that it costs
more than Joux’s algorithm, but this is because the amount of data required
is smaller so the problem is more difficult. In fact, with A = B = C = 2n/2,
clamping on n/4 bits produces an instance with lists of size 2n/4, so the sorting
lower-bound on the cost of the algorithm of [12] drops to 27n/12.

Naive Algorithms. We now describe a cost-optimal implementation of the
quadratic algorithm, namely a machine of size N and running time N which
finds all the solutions when A = B = C = N .

The problem lends itself well to a divide-and-conquer approach (already used
in [12]): split the input arrays according to the most-significant bit of each en-
try, then solve the 4 sub-instances (A0, B0, C0), (A1, B0, C1), (A0, B1, C1) and
(A1, B1, C0). This could be done recursively, leading to O

(
N2
)
sub-instances of

expected constant size that could be solved on a single processor. Therefore, a
very large, very parallel machine could potentially be built, which would solve
the problem in constant time. The problem is that getting the input data to
each processor in this very large machine would not require a constant amount
of time — and it would be much longer than the actual computation.

Therefore, a balance has to be kept between the size of the machine (i.e. the
amount of parallelism) and the time needed to propagate the input data inside
it.

We proceed inductively. Assume we have a 2D mesh MN of size
√
N ×

√
N

capable of solving instances of size N . Each MN is capable of either ingesting
or relaying the data it is fed on the top/left to the bottom/right after

√
N

steps. MN needs
√
N time steps to be fed the data (using

√
N wires) and N

computation steps to solve the problem. So it costs O
(
N2
)
.
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Fig. 2. Construction of M4N from four copies of MN : a 2D mesh for the quadratic
algorithm.



We build M4N as shown in fig. 2. The whole machine ingests A,B and C in
time O

(√
N
)
. The lists A and B have to be presented in a (recursive) snakelike

order. In any case, the required ordering can be obtained by sorting in a prepro-
cessing step of negligible cost. Once the sublists shown in fig 2 are loaded into
the four copies of MN , then four sub-instances out of 16 are solved in time N .
To solve the 12 remaining sub-instances, some data juggling has to take place
between the four copies of MN :
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The time needed to move the data at each step is upper-bounded byO
(√

N
)
.

So the total time needed by this machine is dominated by the computation —
not by the data moving. In addition, with some buffering and at most twice more
wires, it could be done in parallel with the computation, and thus not require
any extra time.

Discussion. A simple and naive algorithm seems more cost-effective than
sophisticated techniques. Because it does not rely on sorting (or equivalently,
join computation), the quadratic algorithm require less expensive communica-
tions. We believe that, in this particular example, this in fact quite consistent
with the practical work and observations of actual implementers. For instance,
the “practical work” section of [12] considers parallelizing the join computations
over several machines, and concludes that “it is likely that the communication
overhead will make this less efficient than the quadratic algorithm”.

The same authors [12] found their algorithm to be faster on a single machine
than the quadratic algorithm. Combining these observations leads to an imple-
mentation strategy consistent with our cost analysis: to solve a large instance of
the 3XOR problem, apply the cost-optimal algorithm (divide-and-conquer) until
data fits inside a single compute node, then use the fastest possible algorithm.

8 Application #3: Multivariate Quadratic Equations

The MQ problem consists in solving systems of multivariate quadratic equa-
tions. It is well-known that this problem is NP-complete over finite fields; as
such, it is one of the main hard problems on which “post-quantum” public-key
cryptography relies. For the sake of simplicity, we only consider the case where
the variables are binary, i.e. multivariate quadratic equations over F2. As such,
we assume that x2 = x for all x. Given a list of m quadratic polynomials in n
variables:

fk(x) =

n∑
i=1

n∑
j=1

αijkxixj +

n∑
i=1

βikxi + γk,



the problem consists in finding a vector x ∈ F2
n such that f1(x) = · · · = fk(x) =

0. We assume that the input system is generic, meaning that it does not exhibit
any special structure. It is widely believed thatm = n is the worst case, therefore
we focus on this setting.

We discuss the cost of several algorithms: exhaustive search (that costs 2n)
and two “smart” algorithms. We argue that the algorithm of Lokshtanov, Paturi,
Tamaki, Williams and Yu [31], with running time 20.88n, in fact costs at least
21.15n (more than exhaustive search). We then turn our attention the Boolean-
Solve algorithm of Bardet, Faugere, Salvy and Spaenlehauer [2], with running
time 20.792n. We propose a proper tuning and a parallel implementation which,
while not cost-optimal, costs 20.837n. We thereby conclude that BooleanSolve can
be asymptotically more cost-effective than exhaustive search.

We haven’t been able to apply the same process to the CrossBred algorithm
of Joux and Vitse [23], because a precise complexity analysis is not yet available.
This algorithm is practically faster than exhaustive search as soon as n ≥ 40, so
we expect it be very cost-effective, but we cannot assert it yet.

8.1 Exhaustive Search

In its simplest form, exhaustive search tries all the 2n possible solutions x. Eval-
uating a single quadratic polynomial on an arbitrary vector requires O

(
n2
)

operations. A possible strategy consists in finding all the solutions satisfying
the first log n polynomials: there should be 2n/n of them; Then, in a second
stage, these partial solutions are checked against the remaining polynomials —
which should take an asymptotically equivalent time. In total, solving the system
should require O

(
n2 log n2n

)
operations and space O

(
n3
)
(to store the coeffi-

cients of the polynomials). Therefore this simple strategy costs n5 log n2n. It is
easily parallelizable at will.

An improved exhaustive search algorithm is described in [10]. It can enu-
merate the values of a polynomial on all possible input by doing only O (1)
operations per trial, at the expense of O (n) additional space. Using it on the
first log n polynomials reduces the time complexity to O (log n2n) operations,
and thus reduces the cost by n2.

When one actually tries to implement algorithms, things always get more
complicated. These two exhaustive search algorithms have been considered for
hardware implementations on FPGAs [11]. It turns out that they both have the
same (asymptotic) area complexity (they need to store the polynomial system),
and they both can be implemented in a fully pipelined way. Thus, in hardware
they would be almost equivalent — the notion of cost introduced above does not
take pipelining into account. In the end, it is only because of concrete “details”
(number of slices of each kind available on the given model of FPGA, etc.) that
the “improved” algorithm was eventually a bit better than the very naive one.



8.2 The Algorithm of Lokshtanov, Paturi, Tamaki, Williams and
Yu [31]

This probabilistic algorithm requires Õ
(
20.877n

)
elementary operations, which

is less than exhaustive search. It also has the interesting characteristic that, as
opposed to other algebraic techniques, its complexity can be established without
relying on hypothetical algebraic properties of the input polynomials, such semi-
genericity (which only hold heuristically and have not been proved to exist).

We show that it is unlikely that a parallel implementation of this algorithm
may cost less than exhaustive search, because it hits several of the obstructions
we identified in section 3.2.

Let 0 < δ < 1 be a parameter to be determined later. The algorithm relies
on the simple observation that x = (x1, . . . , xn) is a solution of the input system
if and only if y = (xδn+1, . . . , xn) is a solution of the equation:

∏
a∈F2

δn

(
1−

n∏
i=1

(1− fi(a,y))

)
= 0.

The main idea of the algorithm is to avoid working with this unwieldy poly-
nomial (it has up to 2n terms), but instead to use the following low-degree
approximation:

R(y) =
∑

a∈F2
δn

ta

1−
δn+2∏
i=1

1−
n∑
j=1

saijfj(a,y)

 ,

where the ta and saij coefficients are chosen uniformly at random in F2. If y is
the last part of an actual solution of the input system, then R(y) is uniformly
distributed in F2 ; otherwise, R(y) = 0 with probability at least 3/4.

The algorithm works as follows. Repeat 100n times: choose at random the
ta and saij coefficients; compute the polynomial R; evaluate R(y) for all y ∈
F2

(1−δ)n. For each y, keep a counter of the number of times this procedure results
in R(y) 6= 0. Any y for which this counter exceeds 40n is a solution of the input
system with overwhelming probability.

Minimizing the Running Time. Enumerating all the values of R can be done
in time (and space) Õ

(
2(1−δ)n

)
using for instance the FFT-like algorithm called

the Moebius transform by Joux [22]. Larger values of δ make this step faster
but may potentially increase the size of the R: it is a polynomial in (1 − δ)n
variables of degree 2δn + O (1). It therefore has

(
(1−δ)n
2δn

)
terms of degree 2δn.

The number of these terms asymptotically dominate the number of terms of
all smaller degrees as long as δ < 1/5. Taking approximations using Stirling’s
formula, the size of R is about 2n(1−δ)H(

2δ
1−δ ) terms, where H denotes the binary

entropy function.
This R polynomial is the sum of 2δn polynomials, themselves the product

of δn quadratic polynomials in (1− δ)n variables. The complexity of computing



this multiplication is (at best) linear in the size of its output, Therefore, the time
needed to compute R is about 2n[δ+(1−δ)H( 2δ

1−δ )].
Minimizing the running time means balancing the number of operations in

the computation of R and its evaluation. The optimal value of δ is then the
solution of δ+ (1− δ)H

(
2δ
1−δ

)
= 1− δ, which yields δ = 0.12375.... This results

in the announced time complexity of 20.877n. The space complexity is the same.

Cost Analysis. In its sequential presentation, the algorithm costs more than
27n/4. The problem of this algorithm is its huge space complexity: if a machine
of size 20.88n could be built, then using it to run exhaustive search would require
20.12n time steps, instead of 20.88n time steps to run the algorithm of [31].

Can the cost of this algorithm be improved below 2n by parallelization? We
now argue that this seems quite unlikely. The problem is that the two dominating
operations (polynomial multiplication and Moebius transform, which is in fact
an FFT) are subject to a VLSI lower-bound of AT = n3/2, as mentioned in sec-
tion 3.2. It is therefore implausible that they can be implemented cost-optimally.
Using 3D machines, we assume that both operations cost n4/3.

The cost of computing R is then lower-bounded by 2δn+
4
3n(1−δ)H(

2δ
1−δ ), and

the cost of enumerating all the values of R is also lower-bounded by 2
4
3n(1−δ).

The balancing act between the cost of the two operations is then:

δ +
4

3
(1− δ)H

(
2δ

1− δ

)
=

4

3
(1− δ),

and the optimal value of δ is now δ = 0.1319.... The balanced cost is 21.157n.
Note that this is a lower-bound on the cost of the full algorithm.

We conclude that, in our opinion, this algorithm cannot possibly be relevant
from a cryptographic point of view: running any concrete implementation will
cost more than exhaustive search.

8.3 The BooleanSolve Algorithm of Bardet, Faugere, Salvy and
Spaenlehauer [2]

This hybrid algorithm combines exhaustive search and algebraic manipulations
in the style of Gröbner basis computations. Its time complexity is 20.792n. We
present a parallel implementation with cost 20.837n. While not cost-optimal, it
improves on the direct use of the sequential implementation and it “beats brute
force”.

The algorithm depends on a parameter γ, to be specified later. Again, let
y = (x(1−γ)n+1, . . . , xn). From a high level, the algorithm works as follows: for
each a ∈ F2

(1−γ)n, check if 1 can be written as a polynomial combination of
f1(a,y), . . . , fn(a,y). If so, the input polynomials “specialized in a” have no
solution. Otherwise, perform an exhaustive search to find y.

Determining whether 1 can be written as a polynomial combination of given
polynomials f1, . . . , fn can be decided by solving a linear system over F2: there



exists polynomials g1, . . . , gn of total degree less than d such that f1g1 + · · · +
fngn = 1 if and only if there exists a linear combination of M · fi in which all
monomials vanish except 1, where M ranges over all monomials of degree ≤ d.

The problem is to choose the right value of d. Under the usual semi-regularity
assumptions on the input polynomials, then it is enough to choose this d to be
the index of the first negative coefficient of the power series (1+t)n

(1−t)(1+t2)n . Using
complex analysis techniques, an asymptotic estimation can be obtained:

d ∼ nγM
(
1

γ

)
, M(x) = −x+

1

2
+

1

2

√
2x2 − 10x+ 1 + 2(x+ 2)

√
x(x+ 2).

For the right value of d, this linear system can be written as Ax = 0, where the
largest dimension of the matrix is N = Õ

(
2nγH(M(1/γ))

)
. This matrix is sparse,

with at most n2 non-zero coefficients per row. Solving such a linear system
using naive dense gaussian elimination has time complexity O

(
N3
)
; because

the matrix is so sparse, using a sparse iterative method such as Wiedemann’s
algorithm allows the system to be solved in time Õ

(
N2
)
. We note that the

matrix A admits a compact representation: the coefficients of each row can be
easily recomputed from the input polynomials and d. Therefore, running the
Wiedemann algorithm mostly requires the storage of a few vectors of size N .

Under additional genericity assumptions on the input system (“strong semi-
regularity”), the exhaustive search phase will never be performed in vain (it will
always yield a solution). We thus assume that it will be done only once.

The time complexity of the algorithm is then 2n[1−γ+2γH(M(1/γ))] + 2γn.

Minimizing the Running Time. It is enough to find the minimum of 1 −
γ+2γH(M(1/γ). This expression reaches a minimum of 0.792 when γ = 0.55...,
and the exhaustive search phase is asymptotically negligible. This establishes the
announced running time. Note that this amounts to doing an exhaustive search
on the first 0.45n variables.

Cost Analysis. Using the same value of the parameter δ = 0.55..., we find that
the algorithm requires 20.171n bits of memory. So the cost of running the algo-
rithm on a sequential computer is 20.963n, which is slightly better than exhaustive
search.

Solving the linear systems dominate the overall complexity. Running the
Wiedemann algorithm sequentially costs Õ

(
N3
)
, but this can be improved.

Bernstein has shown [3] that a 2D mesh of total size Õ (N) can perform the
matrix-vector product in time Õ

(
N1/2

)
by reducing it to sorting. As pointed

out by Wiener [45], a 3D mesh of the same size can sort a bit faster in time
Õ
(
N1/3

)
. It follows that solving one linear system using Wiedemann’s algo-

rithm and doing the matrix-vector products with this 3D mesh in fact costs
Õ
(
N7/3

)
.

Minimizing the cost of this parallel implementation of BooleanSolve means
finding the minimum of 1− γ+ 7

3γH(M(1/γ), which is 0.836 when γ = 0.416....



In this case, the space complexity drops to 20.109n and the cost decreases to
20.837n. The total number of elementary operations increases to 20.801n.

This amounts to doing an exhaustive search on the first 0.58n variables
(again, improving the cost means doing more exhaustive search). Let 0 < α ≤
0.58. With 2(0.109+α)n processors, the input polynomial system can be solved in
time 2(0.692−α)n (by exhaustively searching αn variables in parallel).
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