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Abstract

SHA-256 is a secure cryptographic hash function. As such, its output should not have any detectable property. This paper describes
three bit strings whose hashes by SHA-256 are nevertheless correlated in a non-trivial way: the first half of their hashes XORs to
zero. They were found by “brute-force”, without exploiting any cryptographic weakness in the hash function itself. This does not
threaten the security of the hash function and does not have any cryptographic implication.

This is an example of a large “combinatorial” computation in which at least 8.7 × 1022 integer operations have been performed.
This was made possible by the combination of: 1) recent progress on algorithms for the underlying problem, 2) creative use of
“dedicated” hardware accelerators, 3) adapted implementations of the relevant algorithms that could run on massively parallel
machines.

The actual computation was done on aging hardware. It required 7 calendar months using two obsolete second-hand bitcoin
mining devices converted into “useful” computational devices. A second step required 570 CPU-years on an 8-year old IBM
BlueGene/Q computer, a few weeks before it was scrapped.

To the best of our knowledge, this is the first practical 128-bit collision-like result obtained by brute-force, and it is the first
bitcoin miner-accelerated computation.
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1. Introduction

Cryptography is an ubiquitous component of information
security. Cryptographic algorithms are used to enforce secu-
rity properties such as secrecy, integrity and authenticity. A
few cryptographic algorithms are widely deployed, and ensure
the secure operations of several key economic sectors. The
RSA signature algorithm guarantees the authenticity of all Eu-
ropean credit cards and enables end-user to digitally sign elec-
tronic mail. Both RSA and variants of the Diffie-Hellman key-
exchange protocol (DH) are present in the majority of “secure”
network connection in the world, because they are the main
components of the TLS secure network layer. They secure
connections to emails accounts, allow web-browsers to authen-
ticate banking, e-commerce or governmental websites, enable
remote connections to “Virtual Private Networks”, etc.

Public-key cryptographic algorithms rely on the hardness of
well-defined computational problems. Concretely, the security
of RSA relies on the hardness of factoring large integers, while
that of the Diffie-Hellman key-exchange relies on the hardness
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of computing discrete logarithms in some groups (usually the
multiplicative group of integers modulo a large prime number
or the group of points on an elliptic curve).

Cryptanalysis is the art of breaking the security properties
that are supposed to be guaranteed by cryptographic schemes.
Research in cryptanalysis is both of a theoretical and practical
nature; on the theoretical side, weaknesses in some cryptogra-
phic schemes can be found “on paper”: given enough resources,
an algorithm could potentially break the security properties of-
fered by a cryptographic scheme faster than expected. On the
other hand, when the break is practical, consequences are usu-
ally more dramatic, especially if it is widely deployed; this puts
more pressure on industrial actors to update their products.

Cryptographic hash function play an important yet special
role in cryptology: as opposed to encryption or data authentica-
tion schemes, their security does not depend on the confidential-
ity of any secret data (such as an encryption key). While formal-
izing the expected security properties of hash function families
is fairly straightforward, precisely defining the security of fixed
and public cryptographic hash function such as SHA-256 is a
long-standing problem (see e.g. [Rog06]). Informally speaking,
a cryptographic hash function is a fixed, public function with-
out structure: given an arbitrary input, its output should appear
indistinguishable from a random bit string, i.e. it should appear
completely decorrelated from the input. It follows that it should
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not be possible to construct inputs such that their hashes exhibit
a detectable correlation. At the very minimum, a cryptographic
hash function should be one-way and collision-resistant — a
collision for a function f is a pair x , y such that f (x) = f (y),
and f is collision-resistant if finding such a pair is intractable.

SHA-256 is presently considered to be a secure cryptogra-
phic hash function, and it is widely used. It was designed by
the NSA in 2001, and it is one of the few cryptographic hash
functions standardized by the government of the United States
of America for its own use [oST15].

1.1. Context of this Work

In the cryptographic community, the “3XOR problem” con-
sists in finding three n-bit strings x, y and z such that f (x) ⊕
g(y) ⊕ h(z) = 0, where ⊕ denotes the XOR operation and f , g, h
are random functions from {0, 1}n to {0, 1}n. This problem has
recently seen a renewed interest because of its potential use
in cryptanalysis: it is used as a building block in a generic
attack [Nan15] against the COPA [ABL+13] mode of opera-
tion for authenticated encryption. Another recent attack [LS19]
against the two-round single-key Even-Mansour cipher [EM91]
also works by reducing it to a 3XOR computation. An instance
of the 3XOR problem can be solved by several naive procedures
described below.

The Quadratic Algorithm. It is possible to build three arrays
A, B and C such that A[i] = f (i), B[i] = g(i) and C[i] = h(i);
the task then consists in finding (x, y, z) ∈ A × B × C such that
x ⊕ y ⊕ z = 0. This can be done by trying all pairs (x, y) ∈ A × B
and checking if x ⊕ y belongs to C. Because there are 2n triplets
in total, we expect to find one such that the n-bit equality holds.

This is the quadratic algorithm. In this form, it requires
n ·2n/3 bits of memory, and performs O

(
22n/3

)
operations. Note

that the random functions f , g, h only have to be evaluated 2n/3

times. The inputs to the random functions can be arbitrary, as
long as they are all distinct.

Collision-Finding. Alternatively, one could fix z ← 0 and set
g′(y) ← g(y) ⊕ h(0). The task then becomes finding x, y such
that f (x) = g′(y), (i.e. finding a collision between two random
functions). This can be done sequentially without any mem-
ory using a slightly modified cycle-finding algorithm (this is
called the “ρ algorithm” in cryptology); this requires on aver-
age
√
π2n/2 evaluations of f and g plus an equivalent number of

bookkeeping operations. It can be parallelized with essentially
linear speed-up and a controllable amount of communication
using the algorithm of van Oorshot and Wiener [vOW99] for
parallel collision search.

This is the collision-finding approach. It requires the ability
to evaluate the random functions f and g “adaptively”, namely
on inputs determined during the course of the computation and
not known in advance.

Recent Improvements. Advances on the 3XOR problem in the
cryptographic community aimed at reducing the total compu-
tational load while ignoring potential memory and hardware
constraints. The known algorithms are summarized in table 1.

Joux proposed an incremental improvement in [Jou09], which
reduces the computational load by

√
n at the expense of using

an exponential amount of memory and increasing the number
of queries to the random functions. Motivated by the potential
cryptanalytic applications, several new algorithms were discov-
ered by Nikolić and Sasaki [NS14] and then later by Bouil-
laguet, Delaplace and Fouque [BDF18].

1.2. Objectives and Results

The attacks that use 3XOR computations as a sub-component
have not been implemented. Previous work on the 3XOR prob-
lem is also of a mostly theoretical nature. What is the practical
efficiency of the five algorithms listed in table 1? If someone
actually wanted to solve an instance of the 3XOR problem in
practice, what would they do? Seeking to answer these ques-
tions, we set up a large instance of the 3XOR problem and tried
to solve it.

We settled for n = 128, an interesting milestone. We used a
well-known cryptographic hash function (SHA-256), truncated
to 128 bits, as f , g and h (using different input prefixes to dis-
tinguish the three functions): because it is considered secure,
it should mimic reasonably well the behavior of random func-
tions.

Solving this instance of 3XOR would mean being able to
“control” the first half of the output of SHA-256. This would
have no immediate cryptographic consequences and would not
threaten the security of any known cryptographic protocol. But
this has not been done before and it is assumed to be difficult.

We were able to solve this large instance of the 3XOR prob-
lem. This necessitated a somewhat large computational effort
that spanned over 7 months. In total, we evaluated the “com-
pression function” of SHA-256 267.6 times, which makes it a
large cryptanalytic computation. This demonstrates that the al-
gorithms we used are practical, and that that brute-force crypto-
graphic “birthday attacks” on 128 bits can be feasible in some
circumstances.

The main ingredient that allowed us to go through with such
a large computation (with a modest budget) is that it was ideally
suited to exploit unconventional but nearly off-the-shelf hard-
ware accelerators: bitcoin mining devices. These inexpensive
and power-efficient machines contain ASICs dedicated to the
evaluation of SHA-256. A single bitcoin mining device is ca-
pable of evaluating SHA-256 at least one million times faster
than a CPU core, but it only does so in a restricted way. Solv-
ing our instance of the 3XOR problem with SHA-256 happened
to be one of the few computations that could potentially be bit-
coin miner-accelerated. The two other ingredients are fast algo-
rithms for the 3XOR problem and efficient parallel implemen-
tations thereof.

We used the following approach to make the computation
tractable. Instead of dealing with an unwieldy instance of the
3XOR problem on 128 bits, we invested quite a lot of time in
assembling a special, smaller instance of the problem: in order
to find (x, y, z) such that f (x)⊕g(y)⊕h(z) = 0, we restricted our
attention to inputs x, y, z such that the first 32 bits of f (x), g(y)
and h(z) are equal to zero. This reduces the problem to finding

2



Algorithm Ref. Running time Memory Inputs

Quadratic folklore 22n/3 2n/3 Arbitrary
Collision folklore 2n/2 1 Chosen adaptively

Nikolić and Sasaki [NS14] 2n/2/
√

n/ ln n 2n/2/
√

n/ ln n Arbitrary
Joux [Jou09] 2n/2/

√
n 2n/2/

√
n Arbitrary

Generalized Joux [BDF18] 22n/3/n 2n/3 Arbitrary

Table 1: Generic algorithms for the 3XOR problem. Quantities are asymptotic. Inputs denote the values fed to the random functions f , g and h.

a 3XOR on a much smaller instance with n′ = 96 bits. On the
other hand, the inputs to the random functions are now imposed
upon us, and we lose the freedom to choose them.

In more detail, we built three lists A, B and C, each con-
taining 232 values f (x), g(y) and h(z) beginning with 32 zero
bits. Each list requires 52GB, which is much more manageable.
Finding by brute force an x such that f (x) begins with 32 zero
bits requires in expectation 232 random trials. Building the lists
therefore requires 3 × 264 evaluations of the random functions.
Once this is done, A × B × C contains 296 triplets f (x), g(y), h(z)
on 96 bits, and we expected one of these to be a full “3XOR
triplet” with f (x) ⊕ g(y) ⊕ h(z) = 0.

It turns out that bitcoin mining devices are ideally suited
to the task of building these three lists. We spent 7 calendar
months “mining” A, B and C, using two (aging) bitcoin mining
devices.

After the three lists had been built, it remained to find the
actual 3XOR triplet hidden in A×B×C. The lists have size 2n′/3

with n′ = 96, therefore using the quadratic algorithm would
yield a solution with 264 probes in a hash table. In practice, we
used the slightly improved algorithm of [BDF18].

We solved this smaller instance of the 3XOR problem (with
n′ = 96 bits) in four calendar days using 65536 cores simul-
taneously on an (aging) IBM BlueGene/Q parallel computer.
This required about 264.6 CPU cycles on its PowerPC A2 CPUs
running at 1.6Ghz, or equivalently 570 CPU-years.

The actual results can be seen in Fig. 1. We give three in-
nocuous bit strings whose digest by SHA-256 are strongly cor-
related (they XOR to zero on the first 128 bits). We emphasize
that these three special bit strings have been found by “brute-
force”; the results presented here do not undermine the security
of SHA-256. We did not discover nor exploit any new crypto-
graphic weakness. A pyhton script in appendix Appendix A
checks that the solutions are correct.

Trying to actually implement and run several 3XOR algo-
rithms in order to solve a large-scale problem led us to an un-
avoidable conclusion: many good “theoretical” algorithms have
little practical value as-is, either because of their unrealistic
memory requirements or because of their unmanageable com-
munication complexity. Evaluating an algorithm in the “Ran-
dom Access Machine” abstract computer model, using the num-
ber of “elementary operations” as a sole metric leads to imprac-
tical results. This is probably obvious to the HPC world, but
other more theoretical research communities seem to be obliv-
ious to this issue or voluntarily disregarding it. Looking at the
five algorithms summarized in table 1, it appears that the re-

quirement for about 2n/2 “memory cells” is completely imprac-
tical for the range of n that we consider. The corresponding
algorithms had to be summarily rejected for this work.

All the programs used to produce the result of Fig. 1 repre-
sent 3700 lines of C code. They are publicly available at:

https://github.com/cbouilla/3XOR-mining

1.3. Cost and Energy

The whole computation (mining + solving) required about
40MWh of energy, which is about 144GJ. This is enough en-
ergy to boil 430m3 of water (a 25m × 10m × 1.72m swimming
pool) starting from 20°C. The bitcoin miners ate 10.8MWh over
7 months, while 65536 cores of the BlueGene/Q consumed
the remaining 30MWh over four days. Given the electricity
rates and the energy mix in France, where the computation took
place, this makes roughly 3000e of electricity and 2 tons of
CO2 released into the atmosphere.

In addition, the computation center that granted us 10 mil-
lion CPU-hours on a BlueGene/Q told us that this was worth
50 000e. In total, the cost of the attack can be estimated to
≈ 55, 000e (including hardware and a few other expenses).

For the sake of comparison, the 2017 practical collision at-
tack on SHA-1 [SBK+17] required an effort equivalent to 263.1

evaluations of SHA-1. It used GPUs to speed things up. The
attack required about 6500 core-years, plus an additional ≈ 100
(high-end) GPU-years. Running the attack on the Amazon pub-
lic cloud would have cost $560,000 according to its authors.
Evaluating SHA-256 requires approximately twice as many op-
erations than evaluating SHA-1, and thus we did about 45 times
more total “hashing work”.

In reality, we used a much smaller amount of computational
resources, as well as much less money and energy, thanks to
the efficient dedicated (and aging) ASICs available in bitcoin
mining devices. The attack on full SHA-1 is definitely much
more challenging than the computation described in this paper
(and more critical from a cryptographic point of view).

1.4. Comparison with a Simple Collision Search on 128 Bits

The algorithmic strategy outlined above requires 2n/2 eval-
uations of the random functions to build a special instance of
the problem, then spends 2n/2/n operations to solve it, using
2n/4 memory. Given this figures, why not use the folklore and
well-known “collision-search” approach?
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Consider the three 80-byte ASCII strings given below:

a = "FOO-0x000000003B1BD2039" + "␣" × 53 + dd3ff46f,

b = "BAR-0x00000000307238E22" + "␣" × 53 + a80da323,

c = "FOOBAR-0x000000001BB6C4C9F" + "␣" × 50 + b01d7c21.

Let x ← SHA-256(a), y ← SHA-256(b) and z ← SHA-256(c).
These hashes are random-looking bit strings:

x = 2cf9b0f0 8cf86175 1f3faad0 4fee9fec

99ac4305 69a48c7c 49d779d8 c4d34321,

y = b9c9240a 4295ff73 fcd53d9b 559ff454

64e9feb2 2d954f9c c7f12d5c 7910bbc0,

z = d0f7153e e6ceb465 01583208 603423b5

f0e2221b 81ccce79 5b0189d5 671bdcca.

Let us feed these values into SHA-256 again. This time, the re-
sults are special: seen as 256-bit integers, they are less than 2224.

SHA-256(x) = 00000000 1a3d266d 0cce284a 21ee2b70

730f8603 62b84219 9af220b9 bdaee2a7,

SHA-256(y) = 00000000 1a2dea9c 30f58ff7 24f4533a

e2485711 a143b883 0db5cd0a efa96f60,

SHA-256(z) = 00000000 0010ccf1 3c3ba7bd 051a784a

efb83f87 a5a87be7 51873c64 aac9340b.

Let ∆ ← SHA-256(x) ⊕ SHA-256(y) ⊕ SHA-256(z), where ⊕
denotes the XOR operation, we finally obtain:

∆ = 00000000 00000000 00000000 00000000

7effee95 6653817d c6c0d1d7 f8ceb9cc.

Figure 1: The result, a 128-bit 3XOR on SHA-256.

We claim that finding a single 128-bit collision on SHA-256
truncated to 128 bits is actually much more difficult than obtain-
ing the result shown in Fig. 1.

Recall that this would mean finding x , y such that f (x) =

f (y), where f is SHA-256 truncated to 128 bits. As argued
above, this would require about to evaluate SHA-256 on 264.8

adaptively chosen inputs to succeed. This requirement is the
actual problem: we do not see how bitcoin miners nor other
special equipment could be used to accelerate it. Evaluating
SHA-256 requires at least 1496 arithmetic operations on 32-
bit integers (additions, XORs, ANDs, ORs). As such, finding
the collision seems to require 8.7 × 1022 integer operations on
“generic” computational hardware, and this looks quite diffi-
cult, at least not without a large budget and/or access to a very
large computational facility. In any case, it is way beyond our
capabilities.

1.5. Related Work

The 3XOR problem is a specific (and difficult) case of the
“generalized birthday problem” [Wag02], which requires find-
ing x1, . . . , xk such that f1(x1)⊕· · ·⊕ fk(xk) = 0. This also has in-
teresting cryptographic applications, and several cryptographic

constructions can be attacked by solving instances of the gener-
alized birthday problem with k > 3. An example is [BLN+09],
which describes an actual implementation of an attack against
(reduced version of) the FSB hash function [AFS05].

Cryptographic attacks using ASICs are rare. The only ex-
ample know to us is the “Deep Crack” machine designed in
1998 to break the DES block-cipher by exhaustive search. It
had 1856 custom ASICs. We note that we have not designed
nor implemented any custom hardware, but we found a way to
use “almost dedicated” ASICs for our own purposes. Many cry-
ptographic algorithms and actual cryptanalytic attacks targeting
real cryptographic constructions have been run on GPUs (for in-
stance the first actual collision on SHA-1 [SBK+17]). Several
cryptanalytic algorithms have also been run on FPGAs for in-
stance using the COPACOBANA machine [KPP+06], including
exhaustive key-search for DES or solving systems of multivari-
ate quadratic equations modulo 2 [BCC+13].

2. A Brief Description of SHA-256

SHA-256 is one of four hash functions defined in the Fed-
eral Information Processing Standard (FIPS-180-2) [oCoST12].
It was designed by the National Security Agency (NSA) and
issued by NIST in 2002. It outputs a 256-bit hash given an
(almost) arbitrary quantity of input data. The input is usually
called the message in the cryptographic community.

The hash is obtained by an iterated process: the input is split
into message blocks of a fixed size (512 bits) that are processed
one at a time using the compression function F, an inner hash
function that hashes 768 bits into 256. The input message is
therefore padded to a multiple of 512 bits and we have:

h−1 = IV,

hi = F (hi−1,mi) .

The Initialization Vector IV is a fixed 256-bit constant, the hi’s
are 256-bit successive chaining values of the hash function and
the mi’s are the 512-bit message blocks. The hash of the input
data is the last chaining value. It follows that evaluating SHA-
256 on a (say) 80-byte message requires two invocations of the
compression function.

The bulk of the hashing process happens in the compression
function F; it takes as inputs a 256-bit chaining value, a 512-bit
message block and yields a new chaining value. It operates on
32-bit words.

Computational Cost. Evaluating the compression function of
SHA-256 requires 600 additions, 192 ANDs, 128 ORs, 576 ro-
tations, 96 shifts and 576 XORs, which makes a total of 2168
operations on 32-bit integers. If we assume that rotations and
shifts are “free” (they sometimes can be realized quite cheaply
in ad hoc hardware), we are left with 1496 unavoidable arith-
metic operations.

It must be noted that SHA-256 can be evaluated several
times in parallel using SIMD instructions (Intel provides such
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optimized implementations [GYG12]). In addition, some re-
cent CPUs, starting with Intel “Ice Lake” and AMD Zen pro-
cessors, have hardware instructions to perform both the mes-
sage expansion (sha256msg1, sha256msg2) and the step up-
date function (sha256rnds2), which is the bulk of the com-
pression function.

Note that even with these tricks, evaluating the compression
function about 264 times is still a large workload.

3. (Aging) Computational Hardware

In this section, we describe the hardware we used to solve
the large 3XOR instance described in the introduction. We used
bitcoin mining devices to assemble an easier subproblem and a
more usual parallel machine to solve it.

3.1. Bitcoin Mining Devices
As mentioned in the introduction, we chose to compute a

3XOR on 128 bits by accumulating three lists of 232 bit strings
each, whose hash start with 32 zero bits (looking at Fig. 1 shows
that the hashes of x, y, z have this special property). This re-
quires 3 × 264 expected evaluations of SHA-256.

Using the cpuminer program1, which uses hand-written as-
sembly implementations of SHA-256 using AVX2 instructions,
we measured that an Intel Xeon Gold 6130 CPU at 2.10GHz
can evaluate SHA-256 about 20 million times per second in the
best case. Performing the 3 × 264 evaluations of SHA-256 thus
requires more than 87,670 CPU-years on these CPUs. It took
7 calendar months using two inexpensive (and aging) bitcoin
mining devices.

These machines contain circuits devoted to the fast evalua-
tion of the function:

Φ : M ∈ {0, 1}608 7→
{
x ∈ {0, 1}32

∣∣∣∣ ∃y ∈ {0, 1}224 :

SHA-256d(M ‖ x) = 0x00000000 ‖ y
}
,

where ‖ denotes concatenation and the SHA-256d hash function
is defined as SHA-256d(x) = SHA-256(SHA-256(x)). It fol-
lows that we just had to pick arbitrary M’s and evaluate Φ(M).
This yields sets of x’s such that SHA-256(SHA-256((M‖x)) be-
gins with 32 zero bits, which is exactly what we need. Indeed,
looking again at Fig. 1, the double evaluation of SHA-256 on
a, b and c is visible, as well as the special structure of a, b, c: the
prefixes (FOO, BAR, FOOBAR and the counters) were supplied by
us to the miners (in M), while the 4 random-looking bytes at
the end were found as a result of evaluating Φ.

In bitcoin mining devices, the Φ function is evaluated by
brute-force, namely by trying all the possible 232 possibles val-
ues of x. Fig. 2 shows the hashing process. The compres-
sion function of SHA-256 needs only be evaluated twice, be-
cause the prefix M is the same for all possible x’s and thus the
“midstate” is independent of the choice of x. It follows that
computing Φ(M) essentially requires 233 compression function
evaluations.

1https://github.com/pooler/cpuminer

F

M[0:64]

F

M[64:76] ‖ x ‖ padding

F
IV h2midstate

h1IV

Figure 2: Evaluation of SHA-256d on an 76-byte prefix M and a 4-byte suffix x.

At the time of this writing, commercial high-end bitcoin
mining devices present themselves as standalone devices that
only require a power cable and Ethernet connectivity. They usu-
ally expose a web interface for configuration purposes. Once
they have been set up, operations are mostly automatic and re-
quire almost no supervision.

The actual device we used is an AntMiner S7 from Bit-
main (acquired for 500e). It contains three boards, each hold-
ing 45 custom “BM1385” 28nm ASICs clocked at 600MHz.
The whole device is capable of doing 4.7 × 1012 evaluations of
SHA-256d per second (meaning 243.1 SHA-256 compression
function evaluations per second).

We gather from their very partial specification [BM] that
the ASICs in each board seem to be linked in a chain. They
communicate with their controller using a standard serial pro-
tocol. We understand that the ASICs take as input: the chaining
value after the first invocation of the compression function (the
“midstate”), bytes 64–76 of M, and a zero-bit count. They
likely return the possible x’s such that SHA-256d(M ‖ x) starts
with the prescribed number of zero bits.

The AntMiner S7 also contains a small ARM cortex-A8
CPU with 512MB of RAM running Linux. It hosts the web in-
terface and the mining program. There is also an FPGA which
is presumably an interface between the mining program and the
mining ASICs. We measured a power consumption of 1450W
at the plug.

Given the hashing power of this mining device, in the best
case we could expect to evaluate the Φ function ≈ 1094 times
per second. If this were true, three lists of size 232 could poten-
tially be assembled in only 136 days.

3.2. An (Aging) Parallel Computer
Once the special instance of the 3XOR problem with 32

leading zero bits would be assembled, it would remain to solve
it. This happened on a massively parallel (and aging) IBM
BlueGene/Q computer named turing and located at IDRIS
(“Institut du Développement et des Ressources en Informatique
Scientifique”), a french national computation center. The ma-
chine had been in production since 2012. At that time, it was
ranked 29th at the TOP500; it has been decommissioned on Oc-
tober 1st, 2019, a few weeks after we used it, and was ranked
463th. We had been granted 10 million CPU-hours. The whole
computation took 5 million CPU-hours over 4 calendar days.
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This machine is a small installation, made of only 6 racks,
each with 32 compute boards, each with 32 compute nodes. The
nodes are connected by a custom 5D torus network. Each node
contains a 64-bit PowerPC A2 processor running at 1.6Ghz
with 16 available cores and 16GB of RAM.

The processors do not support paging nor virtual memory:
all memory addresses are physical. An advantage is that there
are no TLB faults nor page walks. The CPU cores are in-order
and support 4 simultaneous hardware threads. A core can exe-
cute at most two instructions per clock cycle (one integer, one
floating-point), taken amongst any of the four threads. We are
only doing integer computations, therefore actually executing
one Instruction per Cycle (IPC= 1) is potentially challenging.

Each core has 16KB of L1 cache (256 cache lines of 64
bytes), shared between the threads. The L1 cache is write-
through and has a 4-cycle hit latency, therefore using more than
one hardware thread is required to keep the CPU busy. A 32MB
L2 cache with an 80-cycle hit latency is shared between the 16
cores. It was therefore critical to exploit the L1 cache as much
as possible.

These CPU cores are simple and relatively slow, which is
to some extent an advantage: for instance it is quite difficult
to saturate the memory bandwidth, which is roughly 25GB/s.
We used 4096 nodes (65536 cores) simultaneously. The speci-
ficities of this platform dictated some algorithmic choices and
parameters tuning, as discussed in section 5.6.

The only supported programming languages are C and For-
tran, via IBM’s xlc compilers. We tried to keep the programs
running on this machine as simple as possible and avoided re-
lying on external libraries (we initially used the M4RI [AB12]
library for linear algebra over Z2 but eventually recoded sev-
eral functions because it was simpler). Because we had to write
multi-thread code, we used OpenMP.

4. Converting Bitcoin Miners into Compute Accelerators

The global algorithmic strategy described in the introduc-
tion consists in accumulating lists of hashes beginning with k
zero bits, then solving this smaller instance of the 3XOR prob-
lem. We used k = 33, and we now explain why.

Three lists of (128 − k)-bit vectors, of length N = 2(128−k)/3,
contain on average one 3XOR triplet. Finding by brute-force a
single hash beginning with k zero bits requires 2k trials. There-
fore, the cost of building the lists is essentially 2kN = 242.7+2k/3.
Finding all 3XOR triplets in these lists using the quadratic al-
gorithm or the improved algorithm from [BDF18] takes time
N2 = 285.3−2k/3. Balancing the cost of the two phases suggests
to use k = 32, which is, in any case, the minimum value for
which bitcoin mining devices are efficient.

Recent Bitcoin mining devices implement an ad hoc com-
munication protocol to connect to a “pool server”, receive work
and submit results. The stratum pool mining protocol [str] is
widely implemented at this time. Interacting with bitcoin min-
ers trough the stratum protocol, while feasible, was unfit for
our purposes. In “normal use” (to mine bitcoins), a valid block
is found and reported every few seconds. Our particular use

case consisted in finding ≈ 1000 valid blocks per second. The
stratum protocol incurred too much overhead and the low-cost
ARM cortex-A8 running the mining program could not keep
up. It saturated at less than 50 block/s.

To circumvent this problem, we had to change the program
controlling the device. A shell access is exposed through ssh,
with a simple and hard-coded root password (“admin”). The
device runs a well-known mining program, cgminer, whose
source code (in C) is available at:

https://github.com/bitmaintech/cgminer

The code running on the S7 corresponds to a specific branch in
this git repository, the bitmain_fan-ctrl branch. This code
could be cross-compiled for ARM devices and the resulting bi-
nary could be copied to the device and run. It is therefore pos-
sible to alter the control software of the mining operations.

The original cgminer program works in a somewhat mod-
ular way, centered around a concurrent (blocking) work queue
of finite capacity. A work item in this queue is essentially com-
posed of a 76-byte block M missing its 4-byte suffix x, using
the notations of section 3.

• The “stratum component” interacts with the mining pool
server: it receives updates about the current work to do
(which changes every 10 minutes; the work queue is then
flushed) and is responsible for sending back results to the
pool.

• The program runs into an infinite loop that generates new
work items and pushes them into the work queue.

• Each active “device component” pops work items from
the work queue and feed them to the mining hardware
it controls. This evaluates the Φ function on the current
work item. A callback from the stratum component is
invoked for each suffix x found.

Each component has several threads, manages several in-
ternal queues (both in software and in hardware for the device
components parts), etc. We essentially scrapped the stratum
component and replaced both its work generator and network-
ing code with our own. To avoid overloading the low-cost ARM
CPU of the device, we used the simplest possible network pro-
tocol: the miner connects to a server; the server answers with a
prefix (FOO, BAR or FOOBAR) and a 64-bit counter value. Instead
of receiving work and generating the corresponding 76-byte
blocks as prescribed by the stratum protocol, the miner gen-
erates simple blocks by assembling the prefix and the counter
value in hexadecimal. The counter is incremented for each new
block. When a valid suffix x is found, the pair (counter, x) is
reported back to the server. We tried to make the code path
as direct as possible; for instance we removed all correctness
checks in all components.

We used the nanomsg [Sus] message-passing library to ad-
dress networking issues. It is written in plain C, is easy to
cross-compile to the ARM device and works around network
connectivity problems gracefully, while offering well-defined
semantics. The corresponding home-made server is a small C
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program that mostly stores the (counter, x) pairs it receives from
the miners in a file and keeps the current value of the counter up
to date. The storage requirement is then 12 bytes per submitted
block.

Using this setup, we were able to collect about 550 block/s,
each yielding a hash that starts with 33 zero bits. We could not
“mine” the 1000+ block/s we hoped for with only 32 zero bits
(this was crashing the miners for some reason). Using a single
AntMiner S7, the process would have taken 10 full months;
after four months, we acquired another used AntMiner S7 for
80e and put it in production to speed things up.

After a 7-month mining campaign, three lists of 232 (counter,
x) pairs had been accumulated, each yielding a hash starting
with 33 zero bits. This was enough to expect two solutions
on 128 bits (and made us confident that at least one would be
found). In total, 2 × 3 × 232 × 233 = 267.6 compression function
evaluations have been performed by these two mining devices.
The total volume of data accumulated was 155GB.

5. Solving the 3XOR Instance

After having accumulated three lists A, B and C each con-
taining of 232 hashes on 95 bits using our bitcoin miners, it
remained to find (x, y, z) ∈ A × B × C such that x ⊕ y ⊕ z = 0.
This section details how we have managed the computation of
the solution to this large instance of the 3XOR problem.

5.1. Making the Problem Parallel

Finding the 3XOR triplets in lists of size 232 is going to
require ≈ 264 operations, which is a large computation that can
only be carried out on a parallel computing infrastructure. This
in turn requires a parallel algorithm. We only had access to the
(aging) BlueGene/Q computer described above. Note that each
input lists weights 51.5 GByte, while compute nodes only have
16 Gbyte of RAM.

We considered implementing a distributed version of the al-
gorithm of [BDF18], but we believed that this would have been
impractical because of the communication complexity that this
would have generated.

Instead, we used a simple divide-and-conquer approach: we
partitioned each input array in two according to the most signifi-
cant bit of the hashes. This splits the original problem into four
sub-problems of half the size: a 3XOR triplet in (A, B, C) be-
longs to either (A0, B0, C0), (A0, B1, C1), (A1, B0, C1) or (A1, B1, C0).
Note that this is equivalent to the quadratic algorithm, because
doing this recursively results in a time complexity governed by
the recurrence T (n) = 4T (n/2), which yields T (n) = O

(
n2

)
.

Repeating this divide-and-conquer step p times recursively
splits each input array into 2p smaller arrays and splits the input
problem into 4p independent subproblems. This makes solving
our original 3XOR instance embarrassingly parallel, which is
exactly what we wanted. We chose p = 15 (for reasons dis-
cussed below): this resulted in a billion independent subprob-
lems in which each input array has expected size 232/215 = 217.

5.2. Vector Length

This parallelization scheme yields a billion instances of the
3XOR problem with 80-bit hashes (33 bits are known to be zero
and 15 more bits are dealt with automatically by the divide-and-
conquer steps). Dealing with 80 bits is not very practical be-
cause usual CPUs have 64-bit registers. Therefore, we adopted
the following strategy: we compute all triplets that are 3XOR
on the first 64 bits (such that x[0..64]⊕ y[0..64]⊕ z[0..64] = 0).

Each subproblem contain
(
217

)3
triplets; the expected num-

ber of triplets “matching” on 64 bits is therefore 2−13 (of course,
the most likely outcome is that a single subproblem does not
contain any 3XOR triplet on 64 bits). There are 230 subprob-
lems, and we expect to find 217 triplets matching on 64 bits in
total. By chance, we expect 2 of them to match on 16 additional
bits to reach 80 bits.

As such, the actual 3XOR subproblems we need to solve are
the following: three input arrays of size 217 each containing 64-
bit random values. We used a specially tuned implementation
of the algorithm of [BDF18], which requires frequent access
to two of the three arrays. Each array requires 1MB, and with
16 cores on a PowerPC A2 CPUs each running an independent
copy of the algorithm, the 32MB of L2 cache are enough to
hold all the frequently accessed data. This is partly why we
chose p = 15 above.

5.3. Preprocessing and Data Management

The mining server program generates preimage files com-
posed of 12-byte (counter, x) pairs. At 550 block/s, this means
roughly 550 Mbyte of fresh data per day. Every few days, we
restarted the server so that a new preimage file would be cre-
ated.

The preimage files must be checked (i.e. the corresponding
hashes must actually have 33 zero bits). The bitcoin miners oc-
casionally produced incorrect results (one of the bitcoin mining
device produced a proportion ≈ 10−8 of wrong results, while
the second one erred more frequently with a proportion ≈ 10−6

of incorrect results).
Each preimage is associated to a 256-bit full hash by apply-

ing SHA-256d, in which bits [0..33] are zero. From this full
hash, we extract a subset of 64 uniformly distributed bits (bits
[33..97]) that we call the hash. Furthermore, we extract a p-bit
partitioning key from the full hash by taking bits [97..97+p].

For various reasons, we enforce that the 64-bit hashes are
unique in A, B and C. For each list, we actually maintain a dic-
tionary hash → preimage. A dictionary file is simply a list
of pair. Because the 3XOR code actually produces the three
hashes that XOR to zero, the dictionaries are useful to retrieve
the corresponding preimages.

When a new preimage file is ready, we split it into 2p sub-
dictionaries using the partitioning key. Potential duplicate preim-
ages are now confined into a single sub-dictionary. We sort the
sub-dictionaries by hash. This is easily done, since they are
quite small and fit in RAM.

For each partitioning key, we perform a multi-way merge on
all sub-dictionaries. Duplicate hashes are detected and removed

7



(they were the result of “human errors”). We write down the
sorted unique hashes into a single hash file per partitioning key.

For the C list, we ran algorithm S (cf. Fig. 3) on all the
2p hash files, which resulted in as many slice files. A slice file
contains a sequence of slices of C, along with some additional
information (see below).

All these tasks were accomplished by a collection of small
(and in as much as possible, simple) C programs to split, sort,
merge all these files. More importantly, we tried to have another
collection of programs to check the correctness of each step. All
this preprocessing was run on an (aging) desktop PC.

5.4. Solving the Independent Subproblems

To solve a subproblem sequentially, we essentially had the
choice between the folklore quadratic algorithm and the gener-
alized Joux algorithm of [BDF18]. The latter is better asymp-
totically; we knew it to be roughly 3 times faster than a well-
optimized implementation of the quadratic algorithm on x86
CPUs, and therefore we opted to use it. We recall this algo-
rithm in Fig. 3, along with a few brief comments below.

The main algorithmic idea, which is due to Joux [Jou09],
consists in finding the “change of basis” matrices Mi and the
“slices” Ci such that Mi cancels out the first k coordinates of
all rows of Ci. Because the slices Ci form a partition C, solving
all subinstances A × B × Ci guarantees to find all solutions. The
main loop of algorithm G tries all Ci one by one. To reduce the
number of iterations, the slicing step (G1) should produce the
smallest possible number of slices of C (i.e. the biggest possible
slices).

The point of these changes of variables is that if there is a
solution x⊕ y⊕ z = 0 with (x, y, z) ∈ A×B×Ci, then by linearity
xMi ⊕ yMi ⊕ zMi = 0. Set x′ ← xMi, y′ ← yMi and z′ ← zMi ;
it follows that (x′, y′, z′) is also a 3XOR triplet in A′ × B′ × C′i .
Thus, searching all the solutions in A′ × B′ × C′i is sufficient, but
it is easier.

Indeed, because all vectors in C′i have their first k coordi-
nates equal to zero, it follows that x′ and y′ must necessarily
match on their first k coordinates. Finding all (x′, y′, z′) ∈ A′ ×
B′ × C′i is therefore akin to computing the join of A and B on the
first k bits: find all (x′, y′) ∈ A′ × B′ such that x′[0..k] = y′[0..k],
then for each pair, check if x′ ⊕ y′ ∈ C′i . This is what algorithm
J does.

A side advantage of only solving small subproblems is that
it increases the advantage of algorithm G compared to the quad-
ratic algorithm: the number of iterations it has to do is reduced
when log2 |A|, log2 |B| are small compared to n. However, if the
subproblems become too small, on the other hand, the “admin-
istrative overhead” is going to dominate.

All three algorithms depend on two parameters 0 ≤ ` <
k ≤ n. Choosing their best possible values is a delicate bal-
ancing act. The first one k, specifies the number of coordinates
that must be cancelled by the changes of variables. The other
one controls the number of sub-partitions in algorithm J, which
does a partitioned hash join. A small k leads to bigger slices of
C, and therefore reduces the number of iterations of the main
loop of algorithm G. On the other hand, a large k speeds up

each individual iteration by making algorithm J faster. In the-
ory, the optimal value of k is dlog2 min(|A|, |B|)e, which in our
case should be 17. Other practical considerations (discussed
below) led us to use k = 19.

5.5. Slicing C

In each slice Ci, all vectors satisfy k simultaneous linear
equations (given by the first k columns of Mi). Finding such a
partition of C is done greedily by algorithm S: the largest possi-
ble slice C1 is found, then the algorithm tries to partition Ci−C1,
and so on.

Finding such a slice of Ci is also done greedily: a single
equation satisfied by as many vectors of Ci as possible is found
(this is the classic NP-hard problem of decoding an arbitrary
linear code), and the process is iterated on vectors satisfying
this equation.

We used the Lee-Brickell [LB88] algorithm to find low-
weight codewords. It is not the best decoding algorithm, but
it had the advantage of being relatively easy to implement. It is
an iterative procedure in which each iteration has some chance
of finding low-weights linear combinations. We could precisely
control the running time of the procedure by choosing the num-
ber of iterations. This does not yield the best possible result
— but decoding up to the optimal bound is computationally in-
tractable given the problem sizes.

Fig. 4 shows the distribution of the sizes of slices resulting
from running algorithm S for 4 hours on each subproblem. The
average size of slices obtained this way was 59. If only simple
linear algebra was used to compute the change-of-basis matri-
ces Mi, then all slices would have had size n − k = 45. Using
algorithm S instead of a more naive procedure therefore results
in a ≈ 30% reduction in the number of iterations of algorithm G
(and therefore on the time needed to solve the 3XOR problem).

As a preprocessing step, we ran algorithm S on the 2p =

32768 independent parts of C using 32768 cores simultaneously
for 4 hours. Less than 3.5% of the total computation time was
spent in algorithm S. The algorithm outputs the actual slices
Ci, along with the corresponding matrices Mi and their inverse.
This is so that the actual 3XOR code (algorithms G and J) does
not have to compute the inverses “online”, mostly for the sake
of keeping them as simple as possible.

We refer to [BDF18] for more algorithmic details.

5.6. Tuning the Algorithms to the Underlying Hardware

From a performance point of view, we quickly identified
three critical sections in algorithms G and J: matrix multipli-
cation (step G3), partitioning (step J2) and joins (steps J4–J6),
representing 39%, 18% and 41% of the whole running time, re-
spectively.

5.6.1. Matrix Multiplication over Z2 (step G3)
We have to multiply a m×64 matrix (with large m) by a 64×

64 matrix M, over Z2. We use a variant of the “four Russians
trick” [KADF70] which consists in precomputing all possible
linear combinations of subsets of the rows of M.
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Algorithm G (3XOR by linear changes of variables). Given A, B and C, return all 3XOR triplets (x, y, z) ∈ A × B × C. The
algorithm also takes a parameter 0 < k < n.
G1. [Slice C.] Using algorithm S (below), partition C into slices C1, . . . , Cm with associated n×n matrices M1, . . . ,Mm such that:

Ci × Mi =


0 . . . 0 ? . . . ?
...

...
...

...
0 . . . 0 ? . . . ?


k n − k

≥ n − k

G2. [Loop over slices.] For all 1 ≤ i ≤ m, perform steps G3–G4 (this finds solutions in A × B ×Ci) then stop.
G3. [Matrix product.] Set A′ ← AMi, B′ ← BMi and C′ ← CiMi.
G4. [Join] Use algorithm J (below) to find all 3XOR triplets (x′, y′, z′) in A′ × B′ × C′ such that x′[0..k] = y′[0..k]. For each such

triplet, emit
(
x′M−1

i , y′M−1
i , z′M−1

i

)
as a solution of the original problem.

Algorithm S (Slicing by simultaneous linear approximations). Partition C into slices C1, . . . , Cm. In each slice, all vectors satisfy
k simultaneous linear equations, given by matrices M1, . . . ,Mm.
S1. [Setup.] Let i← 0.
S2. [All finished?] If C contains strictly more than n − k elements, then go to step S3. Otherwise, set Ci ← C; find Mi by solving

a linear system; set m← i and terminate the algorithm.
S3. [Start new slice.] Initialize j← 0,T ← C and let Mi be the n × n zero matrix.
S4. [Decoding.] Find a low-weight linear combination y of the columns of T (y =

∑n
k=1 xkT t

k, where y has low hamming weight).
This is done using an Information Set Decoding algorithm such as Lee-Brickell.

S5. [Update Slice.] Remove from T all rows where y is non-zero. Store x1, . . . , xn in the j-th column of M j.
S6. [Slice done?] If j < k, return to step S4.
S7. [Finalize slice.] Pad M j with linearly independent columns; set Ci ← T ; C← C − T .
S8. [Move to next slice.] Increment i and go back to step S2.

Algorithm J (3XOR with special C using a partitioned hash join). Given three arrays A, B, C, where all z ∈ C are such that
z[0..k] = 0, returns all 3XOR triplets (x, y, z) ∈ A × B × C (it follows that x[0..k] = y[0..k]). The algorithm is given k and also
another parameter 0 ≤ ` < k.
J1. [Setup.] Initialize a (static) hash table H with the content of C.
J2. [Partition input.] Partition A and B according to their first ` bits into A0, . . . , A2`−1 and B0, . . . , B2`−1 (Ai contains all x ∈ A such

that x[0..`] = i. A potential 3XOR triplet necessarily belongs in Ai × Bi × C for some i).
J3. [Loop on partitions.] For all 0 ≤ i < 2`, do steps J4–J6 (this finds solutions in Ai × Bi × C), then stop.
J4. [Build H′.] Let H′ be a fresh, empty hash table. For all x ∈ Ai, store the binding x[`..k] 7→ x in H′.
J5. [Probe H′.] For all y ∈ Bi, do: retrieve all x’s bound to the key y[`..k] in H′. For each one, run step J6.
J6. [Probe H.] Set z← x ⊕ y; if z ∈ H, then emit (x, y, z).

Figure 3: Algorithm used to solve the actual 3XOR sub-problems.
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Figure 4: Slice sizes after running algorithm S for 4 hours on each subproblem.

Given M, we precompute 8 tables of 256 entries, where the
i-th table contains all the possible linear combinations of the
rows of M[8i : 8(i + 1)], after which the vector-matrix product
x · M can be computed as:

static inline u64
gemv(u64 x, const struct matmul_table_t *M)
{

u64 r = 0;
r ^= M->tables[0][x & 0x00ff];
r ^= M->tables[1][(x >> 8) & 0x00ff];
r ^= M->tables[2][(x >> 16) & 0x00ff];
r ^= M->tables[3][(x >> 24) & 0x00ff];
r ^= M->tables[4][(x >> 32) & 0x00ff];
r ^= M->tables[5][(x >> 40) & 0x00ff];
r ^= M->tables[6][(x >> 48) & 0x00ff];
r ^= M->tables[7][(x >> 56) & 0x00ff];
return r;

}

The tables fit exactly into the available 16KB of L1 cache.
Each access to the tables entails a latency of 4 cycles, which
can only be partially overlapped by other instructions. Run-
ning this function using a single hardware thread results in only
0.5 instructions per cycle. Fortunately, using more hardware
threads allows to overcome the latency of the L1 cache without
much programming effort. With 2 threads running gemv in par-
allel, we obtain 0.8 instructions per cycle, and with the whole 4
threads we reach 0.95 instructions per cycle. The matrix multi-
plication step is thus CPU-bound.

Doing the vector-matrix product requires 34 cycles, so the
throughput is 46.6 millions vector-matrix products per second
on a single core of a PowerPC A2 at 1.6Ghz. Amongst these
34 cycles, 28 instructions seem mandatory: 8 loads, 8 XORs,
8 combined rotations/mask (rlwinm) and 4 additional shifts
(rldicl). In addition, some bookkeeping operations are nec-
essary to perform this in a loop. The xlc compiler thus did a
fairly good job, and it seemed unlikely that hand-written assem-
bly code would have been much better.

5.6.2. Partitioning (step J2)
This operations essentially consists in moving data around

in memory, and it is memory-bound. This is essentially equiva-
lent to doing one pass of radix-sort. It runs the following code:

for (u32 i = 0; i < n; i++) {
u64 x = L[i];
u64 h = x >> (64 - l);
u32 idx = count[h]++;
scratch[idx] = x;

}

Before this loop runs, the count array is correctly initial-
ized. To avoid using an additional counting pass to count the
size of each partition beforehand, we use Chernoff bounds to
over-allocate individual partitions (the input lists are hashes, so
they are fairly “random”).

The hardware characteristics of the BlueGene/Q processor
are actually quite helpful here: a) because the cache is write-
through, writing in scratch does not pollute it and b) because
there is no paging, there are no TLB faults. TLB faults are
usually a problem in this kind of code in databases servers (see
for instance [BATÖ13]) and special techniques are deployed to
avoid them, such as software write-combining buffers. Here,
this is simply not necessary.

The cache will only contain (useless) chunks of L and the
count array that requires 2`+2 bytes. If ` is too large, then the
count array will no longer fit in L1 cache. However, we are
compelled to use the largest possible ` because this speeds up
algorithm J by reducing the number of times step J6 is executed.

To amortize the 4-cycle latencies of reading L and count,
we need to run at least two hardware threads, each with its own
count array. These threads write in distinct locations inside
the scratch array, and therefore do not need to be explicitly
synchronized.

A few experiments led us to use two hardware threads per
core with ` = 10. On the whole processor (16 cores), this
reaches a memory bandwidth of 23.5GB/s, which is very close
to the maximum. This makes 16 cycles per item, with 0.8 in-
structions per cycle, or nearly 100 million items dispatched per
second per core. Again, this is close to the peak performance of
the hardware.

Using more threads would be detrimental: since memory
bandwidth is the problem, it would likely not improve anything;
in addition, the threads would be competing for the L1 cache.
The two count arrays occupy half of the L1 cache; because
the cache uses a LRU replacement strategy, when a cache line
has to be evicted to make room for the next L[i], there is little
chance that a portion of count will be evicted.

It follows that partitions Ai and Bi in algorithm J are 1024
times smaller than the input subproblems A and B, on aver-
age. By choosing the size of the input subproblems (i.e. by
choosing p), we can tune the expected size of partitions in al-
gorithm J.

5.6.3. Join Computations (steps J4–J6)
Techniques for efficiently performing database joins have

been abundantly studied. Some of these techniques can be used
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in our setting, most notably the idea of using a partitioned hash
join. We just discussed the partitioning step, and it now remains
to discuss the actual joins.

This involves building and probing two hash tables H and
H′ each containing 64-bit integers. We considered cuckoo hash
tables [PR01] and classic open-addressing with linear probing:
we found that probing a cuckoo table is about 67% faster than
linear probing, when the fill ratio is 40%. However, inserting a
new value into a cuckoo table is slower and leads to complica-
tions: it may fail and force a full rebuild of the table with new
hash functions; using keyed hash functions is slower than using
fixed ones.

The hash table containing C is built once (in J1) and probed
many times (in J6). In addition, C is small: it has the size of
a slice (see Fig. 4). Therefore, we decided to use a cuckoo
hash table and invest more time to build H in order to speed up
step J6.

An interesting implementation detail popped up when we
tried to optimize our implementation of cuckoo hash tables.
Our initial code was the following:
/* Does x belong to H? */
static inline bool
cuckoo_lookup(const u64 *H, const u64 x)
{

const u64 probe1 = H[x & 511];
const u64 probe2 = H[(x >> 16) & 511];
return (probe1 == x) || (probe2 == x);

}

The semantic of the C language mandates that the right side
of the “logical or” shall not be evaluated if the left side is true.
We checked that all compilers we could use on the BlueGene/Q
(gcc, clang and xlc) compile it using a conditional jump. We
tried to get rid of the branch by replacing the “logical or” op-
erator || with the “bitwise or” operator |, which is not subject
to the “early-abort” policy. The resulting compiled code was
indeed branchless, and has the same number of instructions but
it is ≈ 4 times slower, which seemed counter-intuitive.

We hypothesize that the problem is the following. The se-
mantics of the equality operator mandates that it returns a 0/1
value. Both gcc and xlc compute probe1 - x and check this
value against zero, using a clever combination of two Pow-
erPC instructions: cntlzd (“count leading zero doubleword”)
and rldicl instructions (“Rotate Left Double Word Immedi-
ate then Clear Left”). To summarize, the number of leading
zeros in the difference is counted, then divided by 64, which
yields the desired 0/1 value. However, on the PowerPC A2
processor, the cntlzd instruction is microcoded and thus may
perform quite poorly compared to other instructions (its latency
is suspiciously not given in the CPU manual). In addition, the
conditional branch was reliably not taken, and could therefore
be easily predicted. All-in-all, it should have been possible to
hand-write better assembly code to probe a cuckoo hash table
on this particular CPU, especially by bypassing idiosyncrasies
of the C language. In our case however, this represented a small
fraction of the total computation time. It therefore did not seem
very profitable to invest a large amount of time into optimizing
this particular task.

Going back to our join computations, we used linear prob-
ing for H′ in steps J4–J5 because this hash table must be built
quickly and is not probed much. The main parameter affecting
performance of linear probing is the fill ratio of the hash table.
This in turn depends on partition size (dictated by p and `) and
on the size allocated to the each table. Everything must fit in L1
cache, so the number of concurrent hardware threads we want
to run also comes into play. With p = 15 and ` = 10, the
expected size of the partitions Ai and Bi are 128 elements.

Using a table H′ of 512 entries (4KB with entries of 64
bits) leads to a relatively low fill ratio of 25% full (smaller fill
ratios are expected to result in faster hash probes/insertions).
We verified experimentally that adjusting the input problem size
by using p + 1 and p − 1 does not lead to better results.

Using hash tables H′ with 512 entries means that we have
to extract a 9-bit hash from x to insert x in H′. This mandates
that k = `+ 9, hence k = 19, which is the value we used. Recall
that in principle, the optimal value of k was 17. This slightly
reduce the size of slices computed by algorithm S.

After a few experiments, we settled for 3 hardware threads,
each with its own H′. This consumes 12KB of L1 cache and
leaves some leg room for fetching inputs.

In steps J5–J6, two probes to two different hash tables are
chained. L1 cache is very scarce in this step. As a result, it
turned out to be faster to “materialize” the output of the join
in memory, instead of probing C on the fly. In other terms, it
is faster to write all the x resulting from step J5 to memory
instead of doing J6 right away. Then, step J6 can be done for
all elements of this array, for all partitions Ci in a second time.
This resulted in a 15% speedup.

All-in-all, building and probing H′ requires about 32 cycles
per item inserted and probed with 0.75 instructions per cycle
(47.7 millions items/s). Then, probing H runs at ≈ 20 cycles per
item probed; because the number of probes smaller, it requires
10 times less wall-clock time.

5.6.4. Summary
In average, the whole computations (algorithms G and J)

runs at 0.85 instructions per cycle, which we found to be sat-
isfactory. When the code runs on 65536 cores at 1.6Ghz, this
makes a not-very-impressive “90TIntOPS” (Integer OPerations).
After all, this is aging hardware. It has a peak performance of
839TFLOPS, that we are unable to exploit because we do only
integer operations ; the peak FLOPS performance comes from
the floating-point-only SIMD units of the BlueGene/Q proces-
sor — that lack the ability to perform a bitwise XOR between
two 256-bit SIMD registers, and therefore are mostly useless to
us. All-in-all, the computation required about 264.6 CPU cycles
in total.

5.7. Comparison with the Quadratic Algorithm

The tuned implementation of algorithm G “solves” a sub-
problem with input size 217 in about 33.5s on a single Blue-
Gene/Q core. For the sake of completeness, we compared it
with our well-optimized implementation of the quadratic algo-
rithm, that we ported to the BlueGene/Q for the occasion. With
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3XOR bits # triplets found # expected
112 31011 30720
113 15523 15360
114 7752 7680
115 3835 3840
116 1959 1920
117 974 960
118 478 480
119 244 240
120 118 120
121 50 60
122 34 30
123 14 15
124 7 7.5
125 2 3.75
126 3 1.88
127 1 0.9375
128 0 0.47
129 1 0.23

Table 2: Number of 3XOR triplets on k bits.

a bit of tuning and using 4 hardware threads, we obtain a perfor-
mance of 178s per subproblem (there are 234 pairs to process,
and each pair requires 16 cycles).

The optimized implementation of algorithm G is thus 5.3×
faster than the quadratic algorithm on the BlueGene/Q — in
fact, the quadratic algorithm benefits from integer SIMD in-
structions available on more conventional CPUs but not on the
BlueGene/Q.

5.8. Managing the Computation

In order to make sure that everything was going according
to plan, we tried our code on instances of increasing size, and
checked that the results were consistent with our expectations.

We had to organize the computation of one billion inde-
pendent subproblems which each require their own input data
(roughly 5MB) and run for about 30s. We arranged tasks in
a 2D grid: the “task” (u, v) consists in solving the subproblem
(Au, Bv, Cu⊕v). Because 30s is too short, we grouped these tasks
into 2D task groups of 8 × 8 tasks. Each task group requires
about 35 minutes of wall-clock time and 41.5MB of data. There
is therefore a 2D grid of 4096 × 4096 tasks group to solve.

Each core loads the data required for a task group, finds
all the solutions of all tasks in the task group and communi-
cate the results to a master processor (using MPI functions)
which writes it in a file. Therefore, if anything fails, 30 min-
utes of computation are lost in the worst case. All task groups
on the same row/column/“diagonal” require the same portions
of A/B/C; we therefore avoided loading the same data multiple
time: in each row/column/diagonal only one processor loads
the data and broadcasts it to the other ones (again using MPI
functions).

It must be noted that in the computing center to which we
had access, submitted jobs must be given a maximum wall-
clock running time (of up to 20h), after which computing jobs

are forcefully stopped. Therefore we were careful to voluntar-
ily stop before the deadline. Our implementation of algorithm
S explicitly manages the remaining running time. When run-
ning algorithm G, we calibrated the jobs to make sure that they
would not extend past the deadline.

Because our tasks are highly moldable, we initially consid-
ered submitting a large number of small and short tasks to back-
fill the parallel machine, however the support staff of the com-
puting center advised against it. We therefore used the biggest
possible jobs allowed by the computing center, namely 4096
nodes (65536 cores) for 20 hours. In each job, each core is af-
fected 30 task groups. After three such jobs, a 128-bit 3XOR
was found. We actually ran a fourth job. About 46.875% of the
search space was explored, which is consistent with our expec-
tation to have two potential solutions.

6. The Solutions

The main result of the computation is shown in Fig. 1. It
has a striking feature: while the hashes of x and y begin with 33
zero bits (as expected), the hash of z begins with 43 zero bits.
This seems to be a coincidence. In any case, we have not been
able to detect any significant bias, either in the input list or in
the other solution triplets.

A total of 62,006 3XOR triplets on at least 112 bits have
been found, versus an expected number of 61,440 after explor-
ing 46.875% of the search space. As such, we feel confident
that our code actually finds all solutions — at the very min-
imum, it does not “miss” a significant fraction thereof. The
numbers of 3XOR triplets of each size are shown in table 2.

The most interesting 3XOR triplets (with the most “collid-
ing bits”) are completely described by table 3.
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Appendix A. Python Script To Verify the Result

from hashlib import sha256
from binascii import hexlify

inputs = [
b"FOO-0x000000003B1BD2039" + b" " * 53 + b"\xdd\x3f\xf4\x6f",
b"BAR-0x00000000307238E22" + b" " * 53 + b"\xa8\x0d\xa3\x23",
b"FOOBAR-0x000000001BB6C4C9F" + b" " * 50 + b"\xb0\x1d\x7c\x21"

]

h = [sha256(sha256(x).digest()).digest() for x in inputs]
xor = bytes([h[0][i] ^ h[1][i] ^ h[2][i] for i in range(32)])

print(' sha256({})'.format(sha256(inputs[0]).hexdigest()))
print('^ sha256({})'.format(sha256(inputs[1]).hexdigest()))
print('^ sha256({})'.format(sha256(inputs[2]).hexdigest()))
print(' =====================================================')
print(' {}'.format(hexlify(xor).decode()))
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