
HAL Id: hal-02306904
https://hal.science/hal-02306904v1

Preprint submitted on 7 Oct 2019 (v1), last revised 26 Jun 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brute-Force Cryptanalysis with Aging Hardware:
Controlling Half the Output of SHA-256

Mellila Bouam, Charles Bouillaguet, Claire Delaplace

To cite this version:
Mellila Bouam, Charles Bouillaguet, Claire Delaplace. Brute-Force Cryptanalysis with Aging Hard-
ware: Controlling Half the Output of SHA-256. 2019. �hal-02306904v1�

https://hal.science/hal-02306904v1
https://hal.archives-ouvertes.fr


Brute-Force Cryptanalysis with Aging Hardware:
Controlling Half the Output of SHA-256

Mellila Bouam1, Charles Bouillaguet2, Claire Delaplace3

1 Ecole Superieure d’Informatique, Alger, Algeria
em_bouam@esi.dz

2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en
Informatique Signal et Automatique de Lille, F-59000 Lille, France

charles.bouillaguet@univ-lille1.fr
3 Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

claire.delaplace@rub.de

Abstract. This paper describes a “three-way collision” on SHA-256 trun-
cated to 128 bits. More precisely, it gives three random-looking bit strings
whose hashes by SHA-256 maintain a non-trivial relation: their XOR
starts with 128 zero bits. They have been found by brute-force, without
exploiting any cryptographic weakness in the hash function itself. This
shows that birthday-like computations on 128 bits are becoming increas-
ingly feasible, even for academic teams without substantial means.
These bit strings have been obtained by solving a large instance of the
three-list generalized birthday problem, a difficult case known as the
3XOR problem. The whole computation consisted of two equally chal-
lenging phases: assembling the 3XOR instance and solving it.
It was made possible by the combination of: 1) recent progress on algo-
rithms for the 3XOR problem, 2) creative use of “dedicated” hardware
accelerators, 3) adapted implementations of 3XOR algorithms that could
run on massively parallel machines.
Building the three lists required 267.6 evaluations of the compression
function of SHA-256. They were performed in 7 calendar months by two
obsolete second-hand bitcoin mining devices, which can now be acquired
on eBay for about 80e. The actual instance of the 3XOR problem was
solved in 300 CPU years on a 7-year old IBM Bluegene/Q computer, a
few weeks before it was scrapped.
To the best of our knowledge, this is the first explicit 128-bit collision-
like result for SHA-256. It is the first bitcoin-accelerated cryptanalytic
computation and it is also one of the largest public ones.

1 Introduction

This paper reports on the computation of a three-way collision for SHA-256 trun-
cated to 128 bits. SHA-256 is presently considered to be a secure hash function,
and it is widely used. It was designed by the NSA in 2001, and it is one of the few
hash functions standardized by the government of the United States of America
for its own use [23].



We emphasize that the results presented in this paper do not undermine
its security. We did not discover nor exploit any new cryptographic weakness.
Instead, we make the practical demonstration that brute-force “birthday” attacks
on 128 bits can be practically feasible in some circumstances.

In symmetric cryptology, where key and output sizes of actual functions are
fixed (to 128 bits, 256 bits, etc.), it is usual to analyze weakened variants of
secure cryptographic constructions. When considering functions where a “round
function” is iterated, weakened versions can be obtained by reducing the number
of rounds. One of the best cryptographic attacks [18] on SHA-256 is a practical
collision on 28 rounds out of 64. This collision attack can be extended to 31
rounds with a computation of 264 operations (which, to the best of our knowl-
edge, has not been carried out).

We looked at a weakened version of SHA-256, obtained not by reducing the
number of rounds but instead by truncating its output to 128 bits. This 128-bit
variant could be denoted as H := SHA-256-128, according to the current ter-
minology. This yields a 128-bit hash function which is presumably “secure”, in
the sense that no attack faster than brute-force is presently known. Of course,
128-bit hashes only offer “64-bit security” and this is way too low by today’s
standards. A collision, or collision-like results, could be obtained after 264 evalu-
ations of the function, even if it were perfectly secure, by the birthday “paradox”.
This level of effort is on the verge of practicality.

Indeed, we found a three-way collision by brute-force. More precisely, we ob-
tained three bit strings x, y and z such that H(x)⊕H(y)⊕H(z) = 0, where ⊕
denotes the XOR operation. They are shown in figure 1. This was accomplished
by solving an instance of the 3XOR problem, which is a generalized birthday
problem [28] with three “lists”. From an algorithmic point of view, it is an an-
noying case: the best algorithms require time Θ̃

(
2n/2

)
versus O

(
2n/3

)
for the

four-list case (where n denotes the number of bits of the hash function to attack).
Finding this “three-way collision” necessitated a somewhat large computa-

tional effort which took place between October, 2018 and May, 2019. Because of
the scarcity of our research funding, we had to make do with aging hardware,
but this turned out to be sufficient. In total, we evaluated the compression func-
tion of SHA-256 267.6 times. To the best of our knowledge, this is the biggest
reported cryptanalytic computation reported in a research work at this time
(larger computations have been carried out in other fields; in addition, the bit-
coin network does a lot more evaluations of SHA-256 every minute, but with a
different purpose). As we discuss later, it is not the most expensive cryptanalytic
computation, nor the hardest to carry out in practice.

The main ingredient that allowed us to go through with such a large com-
putation is that it was ideally suited to exploit unconventional but (nearly)
off-the-shelf hardware accelerators: bitcoin mining devices. These inexpensive
and power-efficient devices contain dedicated ASICs devoted to the evaluation
of SHA-256. A single bitcoin mining device is capable of evaluating SHA-256 at
least one million times faster than a CPU core, but it only do so in a restricted
way. Finding a three-way collision happened to be one of the few attacks we



Consider the three 80-byte ASCII strings given below :

a = "FOO-0x000000003B1BD2039"+ "␣"× 53 + dd3ff46f,

b = "BAR-0x00000000307238E22"+ "␣"× 53 + a80da323,

c = "FOOBAR-0x000000001BB6C4C9F"+ "␣"× 50 + b01d7c21.

Notice how the 64-bit hexadecimal counters take 17 characters; this is the
result of an embarrassing off-by-one error.

Let x← SHA-256(a), y ← SHA-256(b) and z ← SHA-256(c). These hashes
are random-looking bit strings:

x = 2cf9b0f0 8cf86175 1f3faad0 4fee9fec

99ac4305 69a48c7c 49d779d8 c4d34321,

y = b9c9240a 4295ff73 fcd53d9b 559ff454

64e9feb2 2d954f9c c7f12d5c 7910bbc0,

z = d0f7153e e6ceb465 01583208 603423b5

f0e2221b 81ccce79 5b0189d5 671bdcca.

Let us feed these values into SHA-256 again. This time, the results are
special: seen as integers, they are less than 2224.

SHA-256(x) = 00000000 1a3d266d 0cce284a 21ee2b70

730f8603 62b84219 9af220b9 bdaee2a7,

SHA-256(y) = 00000000 1a2dea9c 30f58ff7 24f4533a

e2485711 a143b883 0db5cd0a efa96f60,

SHA-256(z) = 00000000 0010ccf1 3c3ba7bd 051a784a

efb83f87 a5a87be7 51873c64 aac9340b.

Let ∆ ← SHA-256(x) ⊕ SHA-256(y) ⊕ SHA-256(z), where ⊕ denotes the
XOR operation, we finally obtain:

∆ = 00000000 00000000 00000000 00000000

7effee95 6653817d c6c0d1d7 f8ceb9cc.

Fig. 1. The result: a 128-bit 3XOR on SHA-256.



knew of that could potentially be miner-accelerated. The two other ingredients
are fast algorithms for the 3XOR problem and efficient parallel implementations
thereof.

We spent 7 calendar months “mining” in order to build an instance of the
3XOR problem, using two bitcoin mining devices. In a second step, we solved
this instance of the 3XOR problem in three calendar days using 65536 cores
simultaneously, on an IBM BlueGene/Q computer, a massively parallel machine.
This required about 264.2 CPU cycles.

Related Work. Cryptographic attacks using dedicated ASICs are rare. The
only example know to us is the “Deep Crack” machine designed in 1998 to break
the DES by exhaustive search. It had 1856 custom ASICs. We note that we have
not designed nor implemented any custom hardware, but we found a way to use
“almost dedicated” ASICs for our own purposes. Many cryptographic algortihms
and actual cryptanalytic attacks targeting real cryptographic constructions have
been run on GPUs (see [25] for instance). Several cryptanalytic algorithms have
also been run on FPGAs, for instance using the COPACOBANA machine [15].

The 3XOR problem has recently seen a renewed interest. Joux proposed an
incremental improvement on the naive 2n/2 algorithm in [10]. Motivated by a
generic attack [20] against the COPA [4] mode of operation for authenticated
encryption, several new algorithms were discovered [21, 8]. A recent attack [17]
against the two-round single-key Even-Mansour cipher works by reducing it to
a 3XOR computation.

Several other cryptographic constructions can be attacked by solving in-
stances of the generalized birthday problem with more than three lists. An
example is [7], which describes an actual implementation of an attack against
(reduced version of) the FSB hash function.

Outline. The algorithms we used to solve the 3XOR problem are described in
section 2. Section 3 provides some background on bitcoin mining and how (aging)
bitcoin mining devices can be exploited for cryptanalytic purposes. Section 4
dwells into the detail of our parallel implementation of a 3XOR algorithm and
its tuning to the (aging) parallel computer at hand. Section 5 discusses the
outcome of the computation and gives a summary of the whole experience.

2 Algorithms for the 3XOR Problem

Most of the algorithmic groundwork had been done in [8]. In this section, we give
a high-level view of the algorithmic techniques used to carry out the computation.
The precise details of tuning these algorithms to the actual hardware we used
are given in section 4.

We seek a 3XOR triplet on SHA-256 truncated to n = 128 bits. For this,
we use a two-step process: first we build three arrays of hashes A, B and C (of
respective sizes A,B and C), then in a second time we look for 3XOR triplets



(x, y, z) ∈ A × B × C such that x ⊕ y ⊕ z = 0. We are free to choose the sizes of
the arrays, and the existence of a solution is guaranteed with high probability
as soon as ABC ≥ 2128.

To actually find these triplets, we considered the algorithms listed in Table 1 ;
we deliberately disregarded the algorithm of Nikolić and Sasaki [21] because it
is inferior to Joux’s.

Algorithm Ref. Asymptotic running time Size of input arrays
Quadratic AB + C any

Joux [10]
√

2n/n A = B =
√

2n/n,C = n/2

Generalized Joux [8]
(A+B)C

n− log2 min{A,B} any

Table 1. Generic algorithms for the 3XOR problem.

Data Volume and Clamping. Dealing with lists of size 264 is intractable:
it would require at least 128 exabyte, which much more space than even the
biggest computer installation in the world could offer. This disqualifies Joux’s
algorithm.

Instead, we used a well-known trick: we “clamped” the first 32 bits of all
hashes to zero. More precisely, to build each of the input arrays A, B and C, we
evaluated SHA-256 ≈ 264 times on arbitrary inputs and kept only the preimages
whose hashes begin with 32 zero bits (this is visible on x, y, z in fig. 1). This
results in three arrays of size 232 containing a single 3XOR triplet on average.

This reduces our storage requirements to 96GByte, a much more practical
amount. We exploited ad hoc hardware accelerators (bitcoin miners) to speed-up
this “data-collection” phase, as discussed in section 3.

Making the Problem Parallel. Finding the 3XOR triplets in lists of size
232 is going to require ≈ 264 operations, which is a large computation that
can only be carried out on a parallel computing infrastructure. This in turn
requires a parallel algorithm. We considered implementing a parallel version of
algorithm G (see fig. 2): this would require distributing A, B and C amongst many
compute nodes, and we believe that this would have made partitioning (step J2)
very impractical because of the cost of communications between nodes that this
would require. In addition, This step has to be repeated many times.

Instead, we used a simple divide-and-conquer approach: we split each input
array in two according to the most significant bit of the hashes. This splits the
original problem into four sub-problems of half the size: a 3XOR triplet in (A, B, C)
belongs to either (A0, B0, C0), (A0, B1, C1), (A1, B0, C1) or (A1, B1, C0). Note that this
is equivalent to the quadratic algorithm, because doing this recursively results
in a time complexity governed by T (n) = 4T (n/2), which yields T (n) = O

(
n2

)
.



Doing this divide-and-conquer step k times recursively splits each input ar-
ray into 2k smaller arrays and splits the input problem into 22k independent
subproblems. This makes computing the 3XOR triplets embarrassingly parallel,
which is exactly what we wanted. We chose k = 15 according to the hardware
specifications of the compute nodes that we have access to. This resulted in a
billion independent subproblems in which each input array has expected size
131,072.

Vector Length. Clamping and parallelizing yields instances of the 3XOR
problem with 80-bit hashes. This is not very practical because most computers
have registers whose size is a power of two. Therefore, we adopted the following
strategy: we compute all the 217 triplets that are 3XOR on the first 64 bits.
Then, amongst all these, we expect to find one which is in fact 3XOR on the
whole 80 bits.

As such, the actual 3XOR subproblems we need to solve are the following:
three input arrays of size 217 each containing 64-bit random values; the expected
number of 3XOR triplets in each instance is 2−13 and they all have to be found.
Of course, the most likely outcome is that a single subproblem does not contain
any 3XOR triplet on 64 bits.

Solving the Independent Subproblems. To solve a subproblem confined
in a single compute node, we essentially have the choice between the quadratic
algorithm and the generalized Joux algorithm. Asymptotically, the latter should
be more efficient ; its designers found it to be roughly 3 times faster than a
well-optimized implementation of the quadratic algorithm. It is the algorithm
we used in practice. We recall it in fig. 2.

A side advantage of only solving small subproblems is that it increases the
advantage of algorithm G compared to the quadratic algorithm: the number
of iterations it has to do is reduced when A,B are small compared to n. If the
subproblems become too small, on the other hand, the “administrative overhead”
is going to dominate.

The main algorithmic trick of algorithm G, which is due to Joux [10], consists
in doing a linear change of variable (in step G3) which in turn reduces finding
all the 3XOR triplets in A × B × Ci to a (linear) join computation, done by
algorithm J. To reduce the number of iterations in algorithm G, the partitioning
step should produce the smallest possible number of partitions of C, along with
the corresponding changes of variables.

In theory, the optimal value of k is dlog2 min(A,B)e, which in our case should
be 17. In practice we used k = 19: this results in (slightly) more iterations, but
it makes algorithm J faster and easier to implement (it divides by 4 the number
of times step J6 is executed).

The value of ` used in algorithm J should be tuned to the underlying hard-
ware. We used ` = 10. We used cuckoo hashing as a static hash table to hold
C and linear probing for H. The matrix-matrix product is done using the “four
Russians” trick.



Algorithm G (3XOR by linear changes of variables). Given A, B and C, return all
3XOR triplets (x, y, z) ∈ A× B× C. Let 0 < k < n be a parameter of the algorithm.
G1. [Partition C.] Using algorithm P (below), partition C into C1, . . . , Cm with associ-

ated matrices M1, . . . ,Mm such that:

CiMi =

0 . . . 0 ? . . . ?
...

...
...

...
0 . . . 0 ? . . . ?


k n− k

≥ n− k

G2. [Main loop.] For all 1 ≤ i ≤ m, perform steps G3–G4 then stop.
G3. [Matrix product.] Set A′ ← AMi, B′ ← BMi and C′ ← CiMi.
G4. [Join] Use algorithm J (below) to find all 3XOR triplets (x′, y′, z′) in A′ × B′ × C′

such that x′[0..k] = y′[0..k]. For each such triplet, emit
(
x′M−1

i , y′M−1
i , z′M−1

i

)
,

which is a solution of the original problem.

Algorithm P (Partitioning by simultaneous linear approximations). Partition C into
slices C1, . . . , Cm. In each slice, all vectors satisfy k simultaneous linear equations, given
by matrices M1, . . . ,Mm.
P1. [Setup.] Let i← 0.
P2. [All finished?] If C contains less than n− k elements, then do: Ci ← C ; find Mi by

solving a linear system; terminate the algorithm.
P3. [Start new slice.] Initialize j ← 0, S ← C and let Mi be the zero matrix.
P4. [Decoding.] Find a low-weight linear combination of the columns of T using an

Information Set Decoding (ISD) algorithm (y =
∑n

k=1 xkS
t
k, where y has low

hamming weight).
P5. [Update Slice.] Remove from T all rows where y is non-zero. Store x1, . . . , xn in

the j-th column of Mj .
P6. [Finalize slice?] If j < k, return to step P4. Otherwise, pad Mj with linearly

independent columns; Ci ← T ; C ← C − T ; increment i and go back to step
P2.

Algorithm J (3XOR with special C using a partitioned hash join). Given three arrays
A, B, C, where all z ∈ C are such that z[0..k] = 0, returns all 3XOR triplets in A× B× C.
The algorithm is given k and also another parameter 0 ≤ ` < k.
J1. [Setup.] Initialize a (static) hash table with the content of C.
J2. [Partition input.] Partition A and B according to their first ` bits into A0, . . . , A2`−1

and B0, . . . , B2`−1 (Ai contains all x ∈ A such that x[0..`] = i).
J3. [Loop on partitions.] For all 0 ≤ i < 2`, do steps J4–J6 then stop.
J4. [Build H.] Let H be an empty hash table. For all x ∈ Ai, append x[k..n]

to H[x[`..k]].
J5. [Probe H.] For all y ∈ Bi, do: probe y[`..k] in H and retrieve all associated x’s.
J6. [Probe C.] For each matching x, do: z ← x⊕ y ; if z ∈ C, then emit (x, y, z).

Fig. 2. Algorithm used to solve the actual 3XOR sub-problems.



Slicing C. In each partition Ci, all vectors satisfy k simultaneous linear equations
(given by the first k columns ofMi). Finding such a partition of C is done greedily:
the largest possible C1 is found, then the algorithm tries to partition C− C1, and
so on.

Finding such a slice of C is also done greedily: a single equations satisfied by
as many vectors of C as possible is found (this is a decoding problem), and the
process is iterated on vectors satisfying this equation.

We used the Lee-Brickell [16] algorithm to find low-weight codewords. It is
not the most efficient decoding algorithm, but it had the advantage of being
relatively easy to implement. It is an iterative procedure in which each iteration
has some chance of finding low-weights linear combinations. We could precisely
control the running time of the procedure by choosing the number of iterations.
This does not result in the best possible result — but decoding up to the Gilbert-
Varshamov bound is computationally intractable given the problem sizes.
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Fig. 3. Slice sizes after running algorithm P for 4 hours on each subproblem.

Fig. 3 shows the distribution of the sizes of partitions resulting from running
algorithm P for 4 hours on each subproblem. The average size of slices obtained
this way was 59. If only simple linear algebra was used to compute the change-of-
basis matrices, then all slices would have had size 45. Using algorithm P instead



of a more naive procedure therefore results in a ≈ 30% reduction in the number
of iterations of algorithm G (and therefore on the time needed to solve the 3XOR
problem). Less than 3.5% of the total running time was spent in algorithm P.

We refer to [8] for more algorithmic details.

3 “Dedicated” Hardware Accelerators

As mentioned in section 2, we chose to compute a 3XOR on 128 bits by accu-
mulating three lists of 232 bit strings each, whose hash starts with 32 zero bits.
This presumably requires 3×264 evaluations of SHA-256. The speed benchmark
of OpenSSL tells us that an average current CPU core (an Intel Core i7 6600U
at 2.6Ghz) can do about 5 millions SHA-256 per second. Thus, building the lists
would take ≈ 350,000 CPU years on a single core. This was nevertheless accom-
plished in 7 calendar months using two inexpensive (and aging) bitcoin mining
devices.

3.1 The SHA-256 Hash Function

The SHA-256 hash function is fully specified in [22]. We only describe the aspects
relevant to our work. In particular, we do not describe the compression function.
SHA-256 follows the Merkle-Damgård construction: the message is split into
512-bit blocks that are hashed interatively. If the last block is incomplete, it is
padded to a multiple of 512 bits. The final hash value is obtained by iterating
the compression function: with h−1 = IV (given by the specification), let hi =
F (hi−1,mi), where F is the compression function, mi is the i-th message block
and hi is the i-th intermediate chaining value. The last chaining value is the
hash.

In particular, evaluating SHA-256 over an 80-byte message requires two invo-
cations of the compression function; evaluating SHA-256 over a 32-byte message
requires a single compression function call.

3.2 Generalities on Bitcoin Mining

Without going too much into details (interested readers are referred to the orig-
inal bitcoin paper [19]), the bitcoin network maintain a public secure ledger (the
blockchain) that records all transactions: this allows the network to check the
validity of transactions and prevent double-spending.

Bitcoin Puzzle. This relies on a proof-of-work system similar to HashCash [5]:
to incorporate pending transactions to the blockchain,miners must solve the cur-
rent bitcoin puzzle. This essentially amounts to finding a partial preimage on the
SHA-256d hash function, which is defined as SHA-256d(x) = SHA-256(SHA-256(x)).
More precisely, to extend the blockchain, miners must produce a valid 80-byte
transaction header block, depicted in figure 4.



Byte range Length (bits) Content
0:4 32 Version
4:36 256 hash of the previous block header
36:68 256 hash of the transactions in this block
68:72 32 current network time
72:76 32 (encoded) current network difficulty
76:80 32 arbitrary nonce

Fig. 4. Format of a bitcoin transaction header block.

A block is valid if its hash by SHA-256d, seen as an integer, is less than
2224/D, where D is the current network difficulty. Essentially, this forces the
hash of the block to begin with many zero bits. Solving the bitcoin puzzle is
done by brute force. Doing it naively would require three invocations of the
compression function of SHA-256 per trial, but this can be reduced to two.
Indeed, let header = payload ‖ nonce. Recall that the goal consists in finding
the nonce (if it exists) that solves the bitcoin puzzle, given the payload. We find
that

SHA-256d(header) = SHA-256(SHA-256(header))
= F (IV,SHA-256(header) ‖ padding)

SHA-256(header) = F (midstate, payload[64:76] ‖ nonce ‖ padding)
midstate = F (IV, payload[0:64])

The point is that the midstate is independent from the nonce: for each
nonce, computing SHA-256d(header) requires only two compression function
invocations (the midstate does not have to be recomputed).

A a new bitcoin header block is found every 10 minutes or so, and the current
network difficulty is adjusted every 2016 blocks (two weeks) to enforce this rule.
On September 21st, 2019, D = 243.4, so that finding a new valid block by brute
force presently requires 275.4 evaluation of SHA-256d. This roughly happens ev-
ery 10 minutes, so all the miners in the bitcoin network perform 85 exa-hashes
per second (266.2 / s) at this time.

The transactions are hashed using a Merkle hash tree, with a single applica-
tion of SHA-256d at each node. Miners are incentivized: the first transaction of
each block is a coinbase transaction. It has no origin (it creates currency) and
the miner is free to direct to its own bitcoin wallet.

To find a valid block, miners are free to choose the 32-bit nonce at the
end, and they can choose arbitrarily an uninterpreted value in the coinbase
transaction.

Mining Pools. Miners are essentially playing a game of chance: they invest
resources (equipment, electricity, ...); if and only if they succeed in extending the



blockchain, they gain newly minted bitcoins and transaction fees. Their chance
of success is proportional to their computing power.

To reduce risk, miners can join forces and form a mining pool. In a pool, min-
ers are remunerated much more regularly (typically, daily) and proportionally
to their hashrate. Concretely, this means that in a pool, when a miner solves
the current bitcoin puzzle, it reports the solution to the pool manager; the pool
manager uses it to extend the blockchain, and cashes in the reward. Pool op-
erators take the risk of having to remunerate the miners participating in the
pool regularly, while they themselves only receive the benefits of extending the
blockchain irregularly (they typically perceive a fee). Pooled mining requires a
communication protocol between a pool server that dispatches work, and the
miners who actually perform it.

Miners receive work and submit shares. A share is a solution to the current
bitcoin puzzle, which is valid for a lower difficulty than the network difficulty.
Each share stands some chance of being a full solution to the current bitcoin
puzzle. Shares with a higher difficulty stand more chance. By sending shares to
the pool manager, the miners simultaneously prove that they are working on
the problem, and potentially reveal its solution to the pool manager. Miners are
typically remunerated a fixed amount per share of a given difficulty. If a miner
finds a solution to the current bitcoin puzzle, she cannot claim the reward for
herself, because the pool server does not reveal enough information (in particular,
it does not reveal the pending transactions).

In early protocols, a “job” would consist of the 76-byte of a transaction block
header, and the miners would return a valid 32-bit nonce that complete the block.
As the hashing power of miners increased, this system ceased to be practical.

The Stratum Protocol. The most widely used pool mining protocol at this
time seems to be the stratum pool mining protocol [2], and it is designed to work
around this issue. The idea is to let miners choose freely the uninterpreted part
of the coinbase transaction.

To let miners choose freely one specific transactions without revealing them
all the pending transactions included in the block, the stratum protocol uses
partially-evaluated merkle trees (cf. fig. 5). A job sent by the pool server to the
miners is composed of an incomplete transaction header block in which both the
nonce and the hash of all transactions is missing. In addition, a coinbase prefix
and a coinbase suffix are given, as well as the so-called “Merkle hash roots”,
which are values h1, h2, h3, . . . in fig. 5.

The miner may choose the hole in the coinbase transaction arbitrarily. Once a
value is chosen, the hash of all transactions can be computed quickly by finishing
the evaluation of the Merkle tree. The miner then has to find a nonce valid at
the expected difficulty. If no such value exists, a new value of the hole can be
tried. A share is composed of the value of the hole in the coinbase transaction
and the nonce.
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Fig. 5. Partially-evaluated Merkle trees to assemble the hash of all transactions without
knowing them, while choosing a part of the coinbase transaction.



3.3 Bitcoin Mining Rigs

At the time of this writing, commercial high-end bitcoin mining devices im-
plement the stratum protocol. They present themselves as standalone devices,
which only require a power cable and Ethernet connectivity. They have some
kind of configuration interface in which the URL of a stratum pool server can be
specified (as well as credentials on said server). Operations are mostly automatic
and require almost no supervision.

In June 2017, we bought a second-hand bitcoin mining device, an Antminer
S7 from Bitmain, which completely fits the above description (see Fig. 6). It con-
tains three boards (see Fig. 8), each holding 45 custom “BM1385” 28nm ASICs
clocked at 600MHz. The whole device is capable of doing 4.7×109 evaluations of
SHA-256d per second (meaning 233.13 SHA-256 compression function evaluation
per second). It was no longer top-notch when we bought it, and it presently
stands absolutely no chance of potentially turning in a profit in bitcoin mining.

Fig. 6. An AntMiner S7 from Bitmain. The device is made of a small ARM computer
(visible on top), and contains three “hashboards” inside an aluminium casing.

We gather from their very partial specification [1] that the ASICs in each
board seem to be linked in a chain. They communicate with their controller using
a standard serial protocol. We gather that the ASICs take as input: the chaining
value after the first invocation of the compression function (the “midstate”),
bytes 64–76 of the block and a zero-bit count. They likely return nonces such
that SHA-256d(block ‖ nonce) starts with the prescribed number of zero bits.
Thus, trying a new nonce requires two compression function evaluations.

The AntMiner S7 also contains a small ARM cortex-A8 CPU with 512MB of
RAM running Linux. It hosts the web interface and the mining program. There
is also an FPGA which is presumably an interface between the mining program
and the mining ASICs. We measured a power consumption of 1450W at the
plug.



Fig. 7. An AntMiner S7 from Bitmain (side view without the fan). The three hash-
boards are visible.



Fig. 8. A “Hashboard” containing 45 custom ASICs. The mining device contains three
of those.

Given the hashing power of this mining rig, in the best case we could expect
to find ≈ 1094 valid blocks per second. If this were true, three lists of size 232

could potentially be assembled in only 136 days.

3.4 A Cryptanalytic Mining Pool

We first attempted to put the computing power of this bitcoin mining rig to
good use by creating a custom mining pool. A custom pool server sends special
work to miners; miners submit shares; each share yields an item in one of the
three lists A,B or C, whose hash starts with at least 32 zero bits.

This had the obvious advantage that we could use any bitcoin mining de-
vice without modification, even remotely. In the stratum mining protocol, the
pool server actually has a lot of control over the work done by the miners. In-
deed, byte ranges [0:36] and [68:76] are directly given by the pool server. The
hash of transactions and the nonce will unpredictably depends on the miner’s
implementation.

We thus implemented a functional stratum server in Python, using the twisted
asynchronous network library. This required about 1000 lines of (verbose) code.
The whole setup (server+miner) was fully functional. Our code is available here:

https://github.com/cbouilla/3sum-pool

Results were disappointing, as illustrated by fig. 9. The rate at which shares
are produced is in principle a decreasing function of the difficulty. But other
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Fig. 9. Rate of share production according to the chosen difficulty on an AntMiner S7.
It shows that some components of the miner are badly implemented, and performs
poorly for non-power of two difficulties.

phenomenons were clearly at play (including an apparent implementation error
for non-power of two difficulties...). All-in-all, the best we could obtain was
roughly 45 share/s at difficulty 16, a far cry from the 1000+ share/s that we
hoped for. In particular, shares are produced at a higher rate at difficulty 16
than at difficulty one, even though it requires 16 times more hashing work!

This lead us to speculate that the stratum protocol incurred a lot of overhead,
and that the low-cost ARM CPU was not powerful enough to deal with it at
high share rate. Indeed, we could check that the mining program controlling the
ASICs had 100% CPU utilization at low difficulty.

We nevertheless started a first mining campaign in December 2017, mining at
difficulty 16. A 116-bit 3XOR was computed in February 2018. While we initially
hoped that we could use some funding to buy more mining devices and carry
our 128-bit project using this simple solution, this turned out to be impossible,
if only for administrative reasons. We eventually gave up on the process in May
2018. At that point, 780 million blocks had been mined, enough to obtain a
3XOR on 119–120 bits.

3.5 Digging Deeper

In order to circumvent the bottleneck that the stratum protocol imposed upon
us, we tried to examine the inner workings of the mining device. The SSH access
that it exposes with the usual root / admin credentials turned out to be very
useful.



We found out that it runs a well-known mining program, cgminer, whose
source code (in C) is available at:

https://github.com/bitmaintech/cgminer

The code running on the S7 corresponds to the bitmain_fan-ctrl git branch.
This code could be cross-compiled for ARM devices and the resulting binary
could be copied to the device and run. We were therefore capable of altering the
control software of the mining operations. Subsequent mining devices such as
the S9 use a different program and work differently.

After reading its code, we realized that the original cgminer program works
in a somewhat modular way, centered around a concurrent (blocking) work queue
of finite capacity. A work item in this queue is essentially composed of a 76-byte
transaction header block missing its nonce.

– The “stratum component” interacts with the pool server: it receives updates
about the current bitcoin puzzle which changes every 10 minutes (it then
flushes the work queue) and is responsible for sending back shares to the
pool.

– The program runs into an infinite loop that generates new work items for
the current bitcoin puzzle and pushes them into the work queue.

– Each active “device component” pops work items from the work queue and
feed them to the mining hardware it controls. A callback from the stratum
component is invoked for each solution found.

Of course, each component has several threads, several internal queues (both
in software and hardware for the device), etc.

We essentially scrapped the stratum component and replaced both its work
generator and networking code with our own. We used a simple protocol: the
miner connects to a server; the server answers with a prefix (FOO, BAR or FOOBAR)
and a 64-bit counter value. Instead of receiving stratum work and generating
the corresponding blocks as described above, the miner generates simple blocks
by assembling the prefix and the counter value in hexadecimal. The counter is
incremented for each new block. When a valid nonce is found, the pair (counter,
nonce) is reported back to the server. We tried to make the code path as direct
as possible (for instance we removed all correctness checks in all components).

To deal with networking, we initially used the ∅MQ library [9]. It is a C++
library; cross-compiling it for the embedded Linux on the mining device was
complicated, because it had an old libc. Compiling it on the embedded Linux
was not possible because it does not have enough RAM. In any case, we ditched
∅MQ because it did not handle network disconnects gracefully (even though
it is supposed to be possible, we have not been able to make it re-establish the
connection automatically). We instead used the nanomsg [26] library, which offers
comparable features (and is written in plain C). It also works around networks
problem more gracefully.

The corresponding server is a 220-line C program that mostly stores the
(counter, nonce) pairs it receives in a file, and keep the current value of the
counter up to date.



Using this setup, we were able to collect about 550 share/s at difficulty 2. We
could not “mine” at difficulty 1 to obtain the 1000+ share/s we hoped for; this
was crashing the hardware for some reason. We ran a second mining campaign
between October 15th, 2018 and May 15th, 2019. This resulted in three lists of
232 blocks whose hash begin with 33 zero bits. Using a single AntMiner S7, the
process would have taken 10 full months, but on 15th February, 2019 we put a
second one in production to speed things up. We bought it on eBay for 80e.

Accumulating the “clamped” hashes finished on May 16th: three lists of 232
(counter, nonce) pairs had been accumulated. This was enough to expect two
solutions on 128 bits (and made us confident that at least one would be found).
In total, 267.6 (this is 2 × 3 × 232 × 233) compression function evaluations have
been performed by these two mining devices.

4 Computing the 3XOR

This section details how we have managed the computation of the solution to the
large instance of the 3XOR problem accumulated by our bitcoin mining devices.

4.1 Hardware

The computationally expensive parts of the whole computation have been run on
a massively parallel (and aging) IBM BlueGene/Q computer, named turing and
located at IDRIS (“Institut du développement et des ressources en informatique
scientifique”), a french national computation center. The machine had been in
production since 2012 and it has been has been decommissioned on October 1st,
2019. We had been granted 10 million CPU hours. The whole computation took
5 million CPU hours in May 2019.

This machine is a “small” installation, made of only 6 racks, each with 32
boards, each with 32 nodes. The nodes are connected by a very fast custom
5D torus network. Each node contains a special 64-bit PowerPC A2 processor
running at 1.6Ghz and 16GB of RAM. The processor has 18 cores, but only 16
are available for applications (one is dedicated to the OS, one is a spare). The
cores run a lightweight variant of Linux with only partial support for the POSIX
specification (for instance, fork is not supported). The programs may use the
usual POSIX functions to read and write files. They may also communicate using
MPI functions (the MPI environment is the only way to run programs).

The processors do not support paging nor virtual memory: all memory ad-
dresses are physical. An advantage is that TLB faults and page walks cannot
happen. The CPU cores are in-order and support 4 hardware threads: a core
can execute at most one instruction per CPU cycle, taken amongst the four
threads. Therefore, actually executing one Instruction per Cycle (IPC= 1) may
potentially be challenging.

Each core has 16Kb of L1 cache (256 cache lines of 64 bytes), shared between
the threads. The L1 cache is write-through (writes do not cause cache miss) and
has a 4-cycle latency (in case of a cache hit), therefore using more than one



hardware thread may help keeping the CPU busy. It is in fact required to reach
near-peak performance. A 32MB L2 cache (with an 80-cycle latency) is shared
between the 16 cores. It was therefore critical to exploit the L1 cache as much
as possible.

These CPUs are simple and relatively slow, which is to some extent an advan-
tage: it is quite difficult to saturate the memory bandwidth, for instance (which
is roughly 25GB/s). We used up to 4096 nodes (65536 cores) simultaneously.
The specificities of this platform dictated some algorithmic choices and tuning,
as discussed below.

The only supported programming languages are C and Fortran, via IBM’s xlc
compilers. We used C... We tried to keep the programs running on this machine
as simple as possible and avoided relying on external libraries (we initially used
M4RI [3] to do linear algebra over F2 but eventually recoded several functions
because it was simpler). Because we had to write multi-thread code, we used
OpenMP.

In order to make sure that everything was going according to plan, we tried
our code on instances of increasing size, and checked that the results were con-
sistent with our expectations.

We ran algorithm P on the k = 32768 independent parts of C using 32768
cores simultaneously for 4 hours. The corresponding self-contained C program
is 750 lines long. We then ran algorithm G using four 20-hours jobs on 65536
cores. The corresponding self-contained C program is 1100 lines long, with only
a few dozens concentrating all the performance issues.

4.2 Preprocessing and Data Management

The mining server program generates preimage files composed of 12-byte (nonce,
counter) pairs. At 550 share/s, this means roughly 550 Mbyte per day of fresh
data. Every few days, we restarted the server so that a new preimage file would
be created.

The preimage files must be checked (i.e. the corresponding hashes must actu-
ally have 33 zero bits). The bitcoin miners occasionally produced incorrect results
(one of the bitcoin mining device produced a proportion ≈ 10−8 of wrong results,
while the second one errs more frequently with a proportion ≈ 10−6 of incorrect
results).

Each preimage is associated to a 256-bit full hash (by applying SHA-256d),
in which bits [0:33] are zero. From this full hash, we extract a subset of 64
(uniformly distributed) bits (bits [33:97]) that we call the hash. Furthermore, we
extract a k-bit partitioning key from the full hash by taking bits [97:97+k].

For various reasons, we enforce that the 64-bit hashes are unique in A, B and
C. For each list, we actually maintain a dictionary hash→ preimage. A diction-
nary file is simply a list of pair. Because the 3XOR code actually produces
the three hashes that XOR to zero, the dictionaries are useful to retrieve the
corresponding preimages.



1. When a new preimage file is ready, we split it into 2k sub-dictionaries using
the partitioning key. Potential duplicate preimages are now confined into a
single sub-dictionary.

2. We sort the sub-dictionaries by hash. This is easily done, since they are quite
small and fit in RAM.

3. For each partitioning key, we perform a multi-way merge on all sub-dictionaries.
Duplicate hashes are detected and removed (they were mostly the results of
“human errors”). We write down the unique hashes in order into a single hash
file per partitioning key.

4. For the C list, we ran algorithm P (cf. fig. 2) on all the 2k parts, which results
in as many slice files. A slice file contains a sequence of slices of C, along with
the corresponding M matrices and their inverse (therefore the actual 3XOR
code does not have to compute the inverses).

All these tasks were accomplished by a collection of small (and inasmuch as
possible, simple) C programs to split, sort, merge all these files. More impor-
tantly, we tried to have another collection of programs to check the correctness
of each step. All-in-all, this represent ≈ 2300 additional lines of C code.

4.3 Tuning the Algorithms to the Underlying Hardware

From a performance point of view, we quickly identified three critical sections in
algorithm G: matrix multiplication (step G3), partitioning (step J2) and subjoins
(steps J4–J6). These represent 39%, 18% and 41% of the whole running time,
respectively.

Matrix Multiplication. Recall that we have to multiply am×64 matrix (with
large m) by a 64× 64 matrix M . We use a variant of the “four Russians trick”.
Given M , we precompute 8 tables of 256 entries, after which the vector-matrix
product x ·M can be computed as:

static inline u64 gemv(u64 x, const struct matmul_table_t *M)
{

u64 r = 0;
r ^= M->tables[0][x & 0x00ff];
r ^= M->tables[1][(x >> 8) & 0x00ff];
r ^= M->tables[2][(x >> 16) & 0x00ff];
r ^= M->tables[3][(x >> 24) & 0x00ff];
r ^= M->tables[4][(x >> 32) & 0x00ff];
r ^= M->tables[5][(x >> 40) & 0x00ff];
r ^= M->tables[6][(x >> 48) & 0x00ff];
r ^= M->tables[7][(x >> 56) & 0x00ff];
return r;

}

The tables fit exactly into the available 16KB of L1 cache. Each access to the
tables entails a latency of 4 cycles, which can only be partially overlapped by



other instructions. Running this function using a single hardware thread results
in only 0.5 instructions per cycle. Fortunately, using more hardware threads
allows to overcome the latency of the L1 cache without much programming
effort. With 2 threads, we obtain IPC= 0.8, and with the whole 4 threads we
obtain IPC=0.95. The matrxi multiplication step is thus CPU-bound.

Doing the vector-matrix product requires 34 cycles, so the throughput is 46.6
millions products per second. Amongst these 34 cycles, 28 instructions seem
mandatory: 8 loads, 8 XORs, 8 combined rotations/mask (rlwinm), 4 additional
shifts (rldicl), so this is not bad.

Partitioning. This operations essentially consists in moving data around in
memory, and it is memory-bound. This is essentially equivalent as doing one
pass of radix-sort / bucket-sort. It runs the following code:

for (u32 i = 0; i < n; i++) {
u64 x = L[i];
u64 h = x >> (64 - l);
u32 idx = count[h]++;
scratch[idx] = x;

}

Before this loop runs, the count array is correctly initialized. To avoid using
an additional counting pass to count the size of each partition beforehand, we
use Chernoff bounds to over-allocate individual partitions (the input lists are
hashes, so they are fairly “random”).

The hardware characteristics of the BlueGene/Q processor are actually quite
helpful here: a) because the cache is write-through, writing in scratch does
not pollute it and b) because there is no paging, there are no TLB faults. TLB
faults are usually a problem in this kind of code in databases servers (see for
instance [6]) and special techniques are deployed to avoid them, such as software
write-combining buffers. Here, this is simply not necessary.

The cache will only contain (useless) chunks of L and the count array that
requires 2`+2 bytes. If ` is too large, then the count array will no longer fit
in cache. In addition, to amortize the 4-cycle latencies of reading L and count,
we need to run at least two hardware threads, each with its own count array.
Indeed, the threads write in distinct locations inside the scratch array: this way
we avoid the need to synchronize them, which would be expensive.

A few experiments led us to use two hardware threads per core with ` =
10. On the whole processor (16 cores), this reaches a memory bandwidth of
23.5GB/s, which is very close to the maximum (this makes 16 cycles per item,
with IPC=0.8 instructions per cycle, or nearly 100 million items dispatched per
second per core). Again, this is close to the peak performance of the hardware.

Using more threads would be detrimental: since memory bandwidth is the
problem, it would likely not improve anything; in addition the threads would be
competing for the L1 cache. The two count occupy half of the L1 cache; because
the cache uses a LRU replacement strategy, when a cache line has to be evicted



to make room for the next L[i], there is little chance that a portion of count
will be evicted.

It follows that partitions of A and B in algorithm J are 1024 times smaller
than the input subproblems. By choosing the size of the input subproblems, we
can tune the expected size of partitions in algorithm J.

Subjoins. This involves building and probing hash tables containing 64-bit
integers. We considered cuckoo hash tables and “classic” linear probing: we found
that probing a cuckoo table is about 67% faster than linear probing, when the
fill ratio is 40%. However, inserting a new value into a cuckoo table is slower and
more complicated (it may fail). Therefore we used linear probing for the H table
in steps J4–J5. The main parameter affecting performance is the fill ratio, which
depends on partition size and on the number of concurrent hardware threads we
want to run.

We settled for 3 hardware threads, each with a 4KB table (512 entries of
64 bits), which leaves some leg room in the L1 cache for fetching inputs. This
means that we have to extract a 9-bit hash from x to insert x in a table. This
mandates that k = `+ 9, hence k = 19, which is the value we used.

Because the input subproblems have size 217, this means that the hash
tables are only 25% full (smaller fill ratios are expected to result in faster
probes/insertions). We verified experimentally that input problems of size 216

and 218 do not give better results.
In steps J5–J6, two probes to two different hash tables are chained. The size

of C is quite small, but L1 cache is very scarce. As a result, it turned out to be
faster to “materialize” the output of the join in memory, instead of probing C
on the fly. In other terms, it is faster to write all the x resulting from step J5
to memory instead of doing J6 right away. Then, step J6 can be done for all
elements of this array, for all partitions Ci in a second time. This results in a
15% speedup.

All-in-all, building and probing H requires about 32 cycles per item inserted
and probed with IPC=0.75 instructions per cycle (47.7 millions items/s). Then,
probing C runs at ≈ 20 cycles per item probed; because the number of concerned
items is smaller, it requires 10× less wall-clock time.

Comparison with the Quadratic Algorithm. In average, the whole com-
putations runs at 0.85 instructions per cycle, which is close to optimal. When
the code runs on 65536 cores at 1.6Ghz, this make a not-very-impressing “90
TFLOPS” (except that these were not floating point but only integers instruc-
tions). After all, this is aging hardware. All-in-all, the computation required
about 264.2 CPU cycles in total.

The tuned implementation of algorithm G “solves” a subproblem with input
size 217 in about 33.5s on a single PowerPC A2 core. For the sake of comparison,
we ported the well-optimized implementation of the quadratic algorithm used
in [8] to the BlueGene/Q and ran it on a few subproblems. With a bit of tuning



and using 4 hardware threads, we obtain a performance of 178s per subproblem
(there are 234 pairs to process, and each pair requires 16 cycles).

The optimized implementation of algorithm G is thus found to be 5.3× faster
than the quadratic algorithm on the BlueGene/Q — in fact, the quadratic algo-
rithm benefits from vectorized instructions available on more conventional CPUs
but not on this particular PowerPC.

4.4 Managing the Computation

We had to organize the computation of one billion independent subproblems
which each require their own input data (roughly 5MB) and take about 30s. We
arranged tasks in a 2D grid: the “task” (u, v) consists in solving the subproblem
(Au, Bv, Cu⊕v). Because 30s is too short, we grouped these tasks into 2D task
groups of 8 × 8 tasks. Each task group requires about 35 minutes of wall-clock
time and 41.5MB of data. There is therefore a 2D grid of 4096×4096 tasks group
to solve.

Each core loads the data required for a task group, finds all the solutions of
all tasks in the task group and communicate the results to a master processor
(using MPI functions) which writes it in a file. Therefore, if anything fails, we
lose 30 minutes of computation in the worst case. All task groups on the same
row/column/“diagonal” require the same portions of A/B/C; we therefore avoided
loading the same data multiple time: in each row/column/diagonal only one
processor loads the data and broadcasts it to the other ones (again using MPI
functions).

It must be noted that in this shared computing environment, we have to
commit to a maximum wall-clock running time (of up to 20h), after which com-
puting jobs are forcefully stopped. Therefore we were careful to voluntarily stop
before the deadline. Our implementation of algorithm P explicitly manages the
remaining running time. When running algorithm G, we calibrated the jobs to
make sure that they would not extend past the deadline.

We used the biggest possible jobs allowed by the computing center (we found
out that the bigger the jobs are, the higher their priority in the task scheduler...):
4096 nodes (65536 cores) for 20 hours. In each job, each core is affected 30 task
groups. After three such jobs, a 128-bit 3XOR was found. We actually ran a
fourth job. About 46.875% of the search space was explored, which is consistent
with our expectation to have two potential solutions.

5 The Solutions

The main result of the computation is shown in fig. 1. It has a striking feature:
while the hashes of x and y begin with 35 zero bits (as expected), the hash of z
begins with 43 zero bits. This seems to be a coincidence. In any case, we have
not been able to detect any significant bias, either in the input list or in the
other solution triplets.



A total of 62,006 3XOR triplets on at least 112 bits have been found, versus
an expected number of 61,440 after exploring 46.875% of the search space. As
such, we feel confident that our code actually finds all solutions — at the very
minimum, it does not “miss” a significant fraction thereof. The numbers of 3XOR
triplets of each size are shown in table 2.

The most interesting 3XOR triplets are completely described by table 3. The
complete list of all triplets can be obtained from the authors.

3XOR bits # triplets found # expected
112 31011 30720
113 15523 15360
114 7752 7680
115 3835 3840
116 1959 1920
117 974 960
118 478 480
119 244 240
120 118 120
121 50 60
122 34 30
123 14 15
124 7 7.5
125 2 3.75
126 3 1.88
127 1 0.9375
128 0 0.47
129 1 0.23

Table 2. Number of 3XOR triplets on k bits.

Cost and Energy. The whole computation (mining + solving) required ≈
40MWh of energy, which is about 144GJ. This is enough energy to boil 430m3 of
water (a 25× 10× 1.72 swimming pool) starting from 20°C. The bitcoin miners
ate 10.8MWh over 7 months, while the BlueGene/Q consumed the remaining
30MWh over three days. Given the electricity rates at our institution, this makes
roughly 3000e of electricity. Given the electricity mix of the country where
the computation took place, about 2 tons of CO2 have been released into the
atmosphere just because of us.

In addition, the computation center that granted us 10 million core hours on
the IBM BlueGene/Q machine told us that this was worth 50 000e. In total, the
cost of the attack can be estimated to ≈ 55, 000e (including hardware and a few
other expenses).



bits FOO BAR FOOBAR
Counter Nonce Counter Nonce Counter Nonce

129 0x000000003B1BD2039 dd3ff46f 0x00000000307238E22 a80da323 0x000000001BB6C4C9F b01d7c21

127 0x000000001AB6DDDFF 7afc826e 0x0000000010ABABA5E b6672ea4 0x000000000F8F3875C 3a0a14c6

126
0x0000000025250647B 8df9eed3 0x0000000031597C736 261e4a9d 0x000000003145B7B70 763631e3

0x00000000381486C57 34b306a5 0x0000000011949F2D5 0bc08b4d 0x00000000325A69F32 283c42cd

0x000000002553FC59C 9ca5b9d5 0x0000000019621F89B 88b9abab 0x0000000002FBEC230 dce8e58d

125 0x000000002C0EB67D9 6f8c288b 0x0000000004698FDA4 da53d324 0x000000001725E4711 d7f0b552

0x00000000298CFE96D d21c6e19 0x000000007A25D587B 472e9a07 0x000000003367F04FD 972896a1

124

0x000000004075FBBB7 527b4fd5 0x000000001E8172DE2 6a871455 0x000000003DE71816A c66d621d

0x000000003664BCFAE c8de11aa 0x000000001B6BAB522 d7be4e48 0x000000001DF323250 d22bd184

0x0000000004A83643B dd7bf7c3 0x000000001ED54A5B8 88a9b853 0x0000000011E3CFD59 11cba187

0x0000000019DA7AF6C 6ed71499 0x000000002B5CCB0C2 41b7f0f0 0x000000001D7BAB763 52740071

0x00000000033EE88AA 5ab7d84e 0x0000000009CD025FE 394db949 0x00000000395231517 1ca5e9e5

0x0000000023F38452B c641562a 0x00000000035DBA65D aac3f8f1 0x00000000052A54276 b76a496b

0x000000002ABED77A3 cdb244c8 0x000000002012ADB2D c330a430 0x000000000D41BF9A0 2f58802f

Table 3. Most interesting 3XOR triplets. The “counter” is the string that appears at
the beginning of a, b and c in fig. 1 (the letters have to be in uppercase). The “nonce”
is the 32-bit value appended at the end of a, b and c.

Comparison with Other Practical Attacks. The 2017 practical collision
attack on SHA-1 [25] required an effort equivalent to 263.1 and compression
function evaluations. It used GPUs to speed things up. The attack required
about 6500 core years, plus an additional ≈ 100 high-end GPU years. Running
the attack on the Amazon public cloud would have cost $560,000.

The 2016 computation of a 768-bit discrete logarithm [12] required between
4000 and 5300 years on a single core of a 2.2GHz Xeon E5 2660. This is estimated
to be equivalent to 260.6 SHA-1 calls. Before that, the 2009 factorization of a
768 bits RSA modulus [11] required about 2000 core years on a 2.2GHz AMD
Opteron processor, with about 267 instructions executed. This required about
500MWh of energy.

Evaluating the compression function of SHA-256 takes approximately twice
as long as evaluating that of SHA-1, and we did evaluate it 267.6 times. In total,
we thus did about 45 times more “total work” than [25] and about 250 times
more than [12].

In reality, we got away with it using a much smaller amount of computa-
tional resources, as well as much less money and energy, thanks to the efficient
dedicated (and aging) ASICs available in bitcoin mining devices. The two other
attacks discussed above [25, 12, 11] are definitely much more difficult to carry
out in practice than the computation described in this paper.

Comparison with a Simple Collision Search. Finding a 128-bit collision on
SHA-256 would require about 264 compression function evaluations (less than we
did), and could be done memory-less using the rho method. It can be parallelized



using the algorithm of van Oorshot and Wiener [27]. However, it is most likely
much more difficult in practice than the computation described in this paper:
we do not see how bitcoin miners could be used to accelerate it.

Summary. This computation is the result of a two-year effort. Now that we
have reached the result we were targeting, we may ask: “what have we gained
by doing this? ”. From a personal and professional point of view, the answer is
mostly a clear sharpening of our algorithmic and programming skills.

From an algorithmic point of view, “The Art of Computer Programming” has
been the single most useful reference for us (especially volume 3, “Searching and
Sorting” [14]).

We occasionally used literate programming [13]: we found it helpful to write
some of our C programs by slicing them down into small chunks and focusing on
one single chunk at a time. We notably used this to write the “mining server”
described in section 3.5 and all the “preprocessing” programs described in sec-
tion 4.2. We found noweb [24] to be the friendliest literate programming tool
available.

Lastly, trying to actually implement several 3XOR algorithms and run a
large-scale computation reinforced our awareness of practicality issues: some nice
algorithms had to be summarily dispatched because of their space requirements,
for instance. We now have a clearer understanding of the kind of obstructions
that may fail to make an attack “practical”.
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A Python Script To Verify the Result

from hashlib import sha256
from binascii import hexlify

inputs = [
b"FOO-0x000000003B1BD2039" + b" " * 53 + b"\xdd\x3f\xf4\x6f",
b"BAR-0x00000000307238E22" + b" " * 53 + b"\xa8\x0d\xa3\x23",
b"FOOBAR-0x000000001BB6C4C9F" + b" " * 50 + b"\xb0\x1d\x7c\x21"

]

h = [sha256(sha256(x).digest()).digest() for x in inputs]
xor = bytes([h[0][i] ^ h[1][i] ^ h[2][i] for i in range(32)])

print(' sha256({})'.format(sha256(inputs[0]).hexdigest()))
print('^ sha256({})'.format(sha256(inputs[1]).hexdigest()))
print('^ sha256({})'.format(sha256(inputs[2]).hexdigest()))
print(' =====================================================')
print(' {}'.format(hexlify(xor).decode()))


