
ar
X

iv
:1

71
2.

05
98

2v
1 

 [
m

at
h.

A
G

] 
 1

6 
D

ec
 2

01
7

ALGEBRAIC CYCLES ON A VERY SPECIAL EPW SEXTIC

ROBERT LATERVEER

ABSTRACT. Motivated by the Beauville–Voisin conjecture about Chow rings of powers of K3

surfaces, we consider a similar conjecture for Chow rings of powers of EPW sextics. We prove

part of this conjecture for the very special EPW sextic studied by Donten–Bury et alii. We also

prove some other results concerning the Chow groups of this very special EPW sextic, and of

certain related hyperkähler fourfolds.

1. INTRODUCTION

For a smooth projective variety X over C, let A
i(X) = CH

i(X)Q denote the Chow group

of codimension i algebraic cycles modulo rational equivalence with Q–coefficients. Intersection

product defines a ring structure on A
∗(X) = ⊕iA

i(X). In the case of K3 surfaces, this ring

structure has an interesting property:

Theorem 1.1 (Beauville–Voisin [8]). Let S be a K3 surface. Let Di, D
′

i ∈ A
1(S) be a finite

number of divisors. Then

∑
i

Di ⋅D
′

i = 0 in A
2(S) ⇔ ∑

i

Di ⋅D
′

i = 0 in H
4(S,Q) .

Conjecturally, a similar property holds for self–products of K3 surfaces:

Conjecture 1.2 (Beauville–Voisin). Let S be a K3 surface. For r ≥ 1, let D
∗(Sr) ⊂ A

∗(Sr) be

the Q–subalgebra generated by (the pullbacks of) divisors and the diagonal of S. The restriction

of the cycle class map induces an injection

D
i(Sr) → H

2i(Sr
,Q)

for all i and all r.

(cf. [53], [54], [56], [58] for extensions and partial results concerning conjecture 1.2.)

Beauville has asked which varieties have behaviour similar to theorem 1.1 and conjecture 1.2.

This is the problem of determining which varieties verify the “weak splitting property” of [7].

We briefly state this problem here as follows:
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2 ROBERT LATERVEER

Problem 1.3 (Beauville [7]). Find a nice class C of varieties (containing K3 surfaces and

abelian varieties), such that for any X ∈ C, the Chow ring of X admits a multiplicative bi-

grading A
∗

(∗)(X), with

A
i(X) = ⨁

j≥0

A
i
(j)(X) for all i .

This bigrading should split the conjectural Bloch–Beilinson filtration, in particular

A
i
hom(X) = ⨁

j≥1

A
i
(j)(X) .

It has been conjectured that hyperkähler varieties are in C [7, Introduction]. Also, not all

Calabi–Yau varieties can be in C [7, Example 1.7(b)]. An interesting novel approach of problem

1.3 (as well as a reinterpretation of theorem 1.1) is provided by the concept of multiplicative

Chow–Künneth decomposition (cf. [43], [50], [44] and subsection 2.3 below).

In this note, we ask whether EPW sextics might be in C. An EPW sextic is a special sextic

X ⊂ P
5(C) constructed in [18]. EPW sextics are not smooth; however, a generic EPW sextic is a

quotient X = X0/(σ0), where X0 is a smooth hyperkähler variety (called a double EPW sextic)

and σ0 is an anti–symplectic involution [35, Theorem 1.1], [36]. Quotient varieties behave like

smooth varieties with respect to intersection theory with rational coefficients, so the following

conjecture makes sense:

Conjecture 1.4. Let X be an EPW sextic, and assume X is a quotient variety X = X0/G with

X0 smooth and G ⊂ Aut(X0) a finite group. Then X ∈ C.

There are two reasons why conjecture 1.4 is likely to be true: first, because an EPW sextic is a

Calabi–Yau hypersurface (and these are probably in C); secondly, because the hyperkähler variety

X0 should be in C, and the involution σ0 should behave nicely with respect to the bigrading on

A
∗

(∗)(X0). Let us optimistically suppose conjecture 1.4 is true, and see what consequences this

entails for the Chow ring of EPW sextics. We recall that Chow groups are expected to satisfy a

weak Lefschetz property, according to a long–standing conjecture:

Conjecture 1.5 (Hartshorne [24]). Let X ⊂ P
n+1(C) be a smooth hypersurface of dimension

n ≥ 4. Then the cycle class map

A
2(X) → H

4(X,Q)
is injective.

Conjecture 1.5 is notoriously open for all hypersurfaces of degree d ≥ n + 2. Since quotient

varieties behave in many ways like smooth varieties, it seems reasonable to expect that conjecture

1.5 extends to hypersurfaces that are quotient varieties. This would imply that an EPW sextic X

as in conjecture 1.4 has A
2
hom(X) = 0. That is, conjecturally we have that

A
i(X) = A

i
(0)(X) for all i ≤ 2 .

For any r ≥ 1, let us now define

E
∗(Xr) ⊂ A

∗(Xr)
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as the Q–subalgebra generated by (pullbacks of) elements of A
1(X) and A

2(X) and the class of

the diagonal of X . The above remarks imply a conjectural inclusion

E
∗(Xr) ⊂ A

∗

(0)(Xr) = A
∗(Xr)/A∗

hom(Xr) .
We thus arrive at the following concrete, falsifiable conjecture:

Conjecture 1.6. Let X be an EPW sextic as in conjecture 1.4. Then restriction of the cycle class

map

E
i(Xr) → H

2i(Xr
,Q)

is injective for all i and all r.

Conjecture 1.6 is the analogon of conjecture 1.2 for EPW sextics; the role of divisors on the

K3 surface is played by (the hyperplane section and) codimension 2 cycles on the sextic. The

main result in this note provides some evidence for conjecture 1.6: we can prove it is true for

0–cycles and 1–cycles on one very special EPW sextic:

Theorem (=theorem 4.7). Let X be the very special EPW sextic of [16]. Let r ∈ N. The

restriction of the cycle class map

E
i(Xr) → H

2i(Xr
,Q)

is injective for i ≥ 4r − 1.

The very special EPW sextic of [16] (cf. section 2.7 below for a definition) is not smooth,

but it is a “Calabi–Yau variety with quotient singularities”. The very special EPW sextic X is

very symmetric; it is also remarkable for providing the only example known so far of a complete

family of 20 pairwise incident planes in P
5(C) [16]. As resumed in theorem 2.28 below, the

very special EPW sextic X is related to hyperkähler varieties in two different ways: (a) X is

rationally dominated via a degree 2 map by the Hilbert scheme S
[2]

where S is a K3 surface of

Picard number 20; (b) X admits a double cover that is the quotient of an abelian variety by a

finite group of group automorphisms, and this quotient admits a hyperkähler resolution X0.

To prove theorem 4.7, we first prove (proposition 3.3) that the very special EPW sextic X has

a multiplicative Chow–Künneth decomposition, in the sense of Shen–Vial [43], and so the Chow

ring of X has a bigrading. Next, we establish (proposition 3.8) that

(1) A
2(X) = A

2
(0)(X) .

Both these facts are proven using description (b), via the theory of symmetrically distinguished

cycles [37].

Note that equality (1) might be considered as evidence for conjecture 1.5 for X . In order to

prove conjecture 1.5 for the very special EPW sextic X , it remains to prove that

A
2
(0)(X)∩ A

2
hom(X) ??

= 0 .

Likewise, in order to prove the full conjecture 1.6 for the very special EPW sextic X , it remains

to prove that

A
i
(0)(Xr)∩ A

i
hom(Xr) ??

= 0 for all i, r .
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We are not able to prove these equalities outside of the range i ≥ 4r − 1; this is related to some

of the open cases of Beauville’s conjecture on Chow rings of abelian varieties (remarks 4.4 and

4.8).

On the positive side, we establish a precise relation between the Chow ring of the very special

EPW sextic X and the Chow ring of the hyperkähler fourfold X0 mentioned in description (b)

(theorem 4.9). This relation provides an alternative description of the splitting of the Chow ring

of X0 coming from a multiplicative Chow–Künneth decomposition (corollary 4.10). In proving

this relation, we exploit description (a); a key ingredient in the proof is a strong version of the

generalized Hodge conjecture for X and X0 (proposition 3.1), which crucially relies on the fact

that the K3 surface S has maximal Picard number.

We also obtain some results concerning Bloch’s conjecture (subsection 5.1), as well as a con-

jecture of Voisin (subsection 5.2), for the very special EPW sextic. The application to Bloch’s

conjecture relies on description (b) (via the theory of symmetrically distinguished cycles), but

also on description (a) (via the surjectivity result proposition 3.12).

We end this introduction with a challenge: can one prove theorem 4.7 for other (not very

special) EPW sextics ?

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite

type over C. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we denote by AjX the Chow group of

j–dimensional cycles on X with Q–coefficients; for X smooth of dimension n the notations AjX

and A
n−j

X will be used interchangeably.

The notations A
j

hom(X), A
j
num(X), A

j

AJ(X) will be used to indicate the subgroups of homo-

logically trivial, resp. numerically trivial, resp. Abel–Jacobi trivial cycles. The contravariant

category of Chow motives (i.e., pure motives with respect to rational equivalence as in [42], [34])

will be denoted Mrat.

We will write H
j(X) and Hj(X) to indicate singular cohomology H

j(X,Q), resp. Borel–

Moore homology Hj(X,Q).

2. PRELIMINARY MATERIAL

2.1. Quotient varieties.

Definition 2.1. A projective quotient variety is a variety

X = Y /G ,

where Y is a smooth projective variety and G ⊂ Aut(Y ) is a finite group.

Proposition 2.2 (Fulton [22]). Let X be a projective quotient variety of dimension n. Let A
∗(X)

denote the operational Chow cohomology ring. The natural map

A
i(X) → An−i(X)

is an isomorphism for all i.

Proof. This is [22, Example 17.4.10]. �
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Remark 2.3. It follows from proposition 2.2 that the formalism of correspondences goes through

unchanged for projective quotient varieties (this is also noted in [22, Example 16.1.13]). We

can thus consider motives (X, p, 0) ∈ Mrat, where X is a projective quotient variety and p ∈

A
n(X×X) is a projector. For a projective quotient variety X = Y /G, one readily proves (using

Manin’s identity principle) that there is an isomorphism

h(X) ≅ h(Y )G ∶= (Y,∆G
Y , 0) in Mrat ,

where ∆
G
Y denotes the idempotent 1

∣G∣∑g∈GΓg.

2.2. Finite–dimensionality. We refer to [32], [4], [34], [26], [30] for basics on the notion of

finite–dimensional motive. An essential property of varieties with finite–dimensional motive is

embodied by the nilpotence theorem:

Theorem 2.4 (Kimura [32]). Let X be a smooth projective variety of dimension n with finite–

dimensional motive. Let Γ ∈ A
n(X × X) be a correspondence which is numerically trivial.

Then there is N ∈ N such that

Γ
◦N

= 0 ∈ A
n(X ×X) .

Actually, the nilpotence property (for all powers of X) could serve as an alternative definition

of finite–dimensional motive, as shown by a result of Jannsen [30, Corollary 3.9]. Conjecturally,

all smooth projective varieties have finite–dimensional motive [32]. We are still far from knowing

this, but at least there are quite a few non–trivial examples:

Remark 2.5. The following varieties have finite–dimensional motive: abelian varieties, vari-

eties dominated by products of curves [32], K3 surfaces with Picard number 19 or 20 [38],

surfaces not of general type with pg = 0 [23, Theorem 2.11], certain surfaces of general type

with pg = 0 [23], [40], [55], Hilbert schemes of surfaces known to have finite–dimensional mo-

tive [13], generalized Kummer varieties [57, Remark 2.9(ii)], [21], threefolds with nef tangent

bundle [27], [47, Example 3.16], fourfolds with nef tangent bundle [28], log–homogeneous va-

rieties in the sense of [12] (this follows from [28, Theorem 4.4]), certain threefolds of general

type [49, Section 8], varieties of dimension ≤ 3 rationally dominated by products of curves [47,

Example 3.15], varieties X with A
i
AJ(X) = 0 for all i [46, Theorem 4], products of varieties

with finite–dimensional motive [32].

Remark 2.6. It is an embarassing fact that up till now, all examples of finite-dimensional motives

happen to lie in the tensor subcategory generated by Chow motives of curves, i.e. they are

“motives of abelian type” in the sense of [47]. On the other hand, there exist many motives that

lie outside this subcategory, e.g. the motive of a very general quintic hypersurface in P
3

[14,

7.6].

The notion of finite–dimensionality is easily extended to quotient varieties:

Definition 2.7. Let X = Y /G be a projective quotient variety. We say that X has finite–

dimensional motive if the motive

h(Y )G ∶= (Y,∆G
Y , 0) ∈ Mrat

is finite–dimensional. (Here, ∆
G
Y denotes the idempotent 1

∣G∣∑g∈GΓg ∈ A
n(Y × Y ).)
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Clearly, if Y has finite–dimensional motive then also X = Y /G has finite–dimensional mo-

tive. The nilpotence theorem extends to this set–up:

Proposition 2.8. Let X = Y /G be a projective quotient variety of dimension n, and assume X

has finite–dimensional motive. Let Γ ∈ A
n
num(X ×X). Then there is N ∈ N such that

Γ
◦N

= 0 ∈ A
n(X ×X) .

Proof. Let p∶ Y → X denote the quotient morphism. We associate to Γ a correspondence ΓY ∈

A
n(Y × Y ) defined as

ΓY ∶=
t
Γp ◦ Γ ◦ Γp ∈ A

n(Y × Y ) .
By Lieberman’s lemma [47, Lemma 3.3], there is equality

ΓY = (p × p)∗Γ in A
n(Y × Y ) ,

and so ΓY is G ×G–invariant:

∆
G
Y ◦ ΓY ◦∆

G
Y = ΓY in A

n(Y × Y ) .
This implies that

ΓY ∈ ∆
G
Y ◦ A

n(Y × Y ) ◦∆
G
Y ,

and so

ΓY ∈ EndMrat
(h(Y )G) .

Since clearly ΓY is numerically trivial, and h(Y )G is finite–dimensional (by assumption), there

exists N ∈ N such that

(ΓY )◦N =
t
Γp ◦ Γ ◦ Γp ◦

t
Γp ◦⋯ ◦ Γp = 0 in A

n(Y × Y ) .
Using the relation Γp ◦

t
Γp = d∆X , this boils down to

d
N−1 t

Γp ◦ Γ
◦N

◦ Γp = 0 in A
n(Y × Y ) .

From this, we deduce that also

Γ
◦N

=

1

dN+1
Γp ◦ (dN−1 t

Γp ◦ Γ
◦N

◦ Γp) ◦ t
Γp = 0 in A

n(X ×X) .
�

2.3. MCK decomposition.

Definition 2.9 (Murre [33]). Let X be a projective quotient variety of dimension n. We say that

X has a CK decomposition if there exists a decomposition of the diagonal

∆X = Π0 + Π1 +⋯+ Π2n in A
n(X ×X) ,

such that the Πi are mutually orthogonal idempotents and (Πi)∗H∗(X) = H
i(X).

Remark 2.10. The existence of a CK decomposition for any smooth projective variety is part of

Murre’s conjectures [33], [29]. If a quotient variety X has finite–dimensional motive, and the

Künneth components are algebraic, then X has a CK decomposition (this can be proven just as

[29], where this is stated for smooth X).
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Definition 2.11 (Shen–Vial [43]). Let X be a projective quotient variety of dimension n. Let

∆
X
sm ∈ A

2n(X ×X ×X) be the class of the small diagonal

∆
X
sm ∶= {(x, x, x) ∣ x ∈ X} ⊂ X ×X ×X .

An MCK decomposition of X is a CK decomposition {Πi} of X that is multiplicative, i.e. it

satisfies

Πk ◦∆
X
sm ◦ (Πi × Πj) = 0 in A

2n(X ×X ×X) for all i + j /= k .

(NB: the acronym “MCK” is shorthand for “multiplicative Chow–Künneth”.)

Remark 2.12. The small diagonal (seen as a correspondence from X × X to X) induces the

multiplication morphism

∆
X
sm∶ h(X)⊗ h(X) → h(X) in Mrat .

Suppose X has a CK decomposition

h(X) =
2n

⨁
i=0

h
i(X) in Mrat .

By definition, this decomposition is multiplicative if for any i, j the composition

h
i(X)⊗ h

j(X) → h(X)⊗ h(X) ∆
X
sm

−−−→ h(X) in Mrat

factors through h
i+j(X).

The property of having an MCK decomposition is severely restrictive, and is closely related to

Beauville’s “weak splitting property” [7]. For more ample discussion, and examples of varieties

with an MCK decomposition, we refer to [43, Section 8] and also [50], [44], [21].

Lemma 2.13. Let X,X
′
be birational hyperkähler varieties. Then X has an MCK decomposition

if and only if X
′
has one.

Proof. This is noted in [50, Introduction]; the idea is that Rieß’s result [41] implies that X and

X
′

have isomorphic Chow motives and the isomorphism is compatible with the multiplicative

structure.

More precisely: let γ∶X ⇢ X
′
be a birational map between hyperkähler varieties of dimension

n, and suppose {ΠX
i } is an MCK decomposition for X . Let ∆

X
sm,∆

X
′

sm denote the small diagonal

of X resp. X
′
. As explained in [43, Section 6], the argument of [41] gives the equality

Γγ ◦∆
X
sm ◦

t
Γγ×γ = ∆

X
′

sm in A
2n(X ′

×X
′

×X
′) .

The prescription

Π
X

′

i ∶= Γγ ◦ π
X
i ◦

t
Γγ ∈ A

n(X ′

×X
′)

defines a CK decomposition for F
′
. (The Π

X
′

i are orthogonal idempotents thanks to Rieß’s result

that Γγ ◦
t
Γγ = ∆X ′ and

t
Γγ ◦ Γγ = ∆X [41].)
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To see this CK decomposition {ΠX
′

i } is multiplicative, let us consider integers i, j, k such that

i + j /= k. It follows from the above equalities that

Π
X

′

k ◦∆
X

′

sm ◦ (ΠX
′

i × Π
X

′

j ) = Γγ ◦Π
X
k ◦

t
Γγ ◦ Γγ ◦∆

X
sm ◦

t
Γγ×γ ◦ Γγ×γ ◦ (ΠX

i × Π
X
j ) ◦ t

Γγ

= Γγ ◦Π
X
k ◦∆

X
sm ◦ (ΠX

i ×Π
X
j ) ◦ t

Γγ

= 0 in A
2n(X ′

×X
′) .

(Here we have again used Rieß’s result that Γγ ◦
t
Γγ = ∆X ′ and

t
Γγ ◦ Γγ = ∆X .) �

2.4. Niveau filtration.

Definition 2.14 (Coniveau filtration [10]). Let X be a quasi–projective variety. The coniveau

filtration on cohomology and on homology is defined as

N
c
H

i(X,Q) = ∑ Im(H i
Y (X,Q) → H

i(X,Q)) ;
N

c
Hi(X,Q) = ∑ Im(Hi(Z,Q) → Hi(X,Q)) ,

where Y runs over codimension≥ c subvarieties of X , and Z over dimension≤ i−c subvarieties.

Vial introduced the following variant of the coniveau filtration:

Definition 2.15 (Niveau filtration [48]). Let X be a smooth projective variety. The niveau filtra-

tion on homology is defined as

Ñ
j
Hi(X) = ∑

Γ∈Ai−j(Z×X)
Im(Hi−2j(Z) → Hi(X)) ,

where the union runs over all smooth projective varieties Z of dimension i − 2j, and all corre-

spondences Γ ∈ Ai−j(Z ×X). The niveau filtration on cohomology is defined as

Ñ
c
H

i
X ∶= Ñ

c−i+n
H2n−iX .

Remark 2.16. The niveau filtration is included in the coniveau filtration:

Ñ
j
H

i(X) ⊂ N
j
H

i(X) .
These two filtrations are expected to coincide; indeed, Vial shows this is true if and only if the

Lefschetz standard conjecture is true for all varieties [48, Proposition 1.1].

Using the truth of the Lefschetz standard conjecture in degree ≤ 1, it can be checked [48, page

415 ”Properties”] that the two filtrations coincide in a certain range:

Ñ
j
H

i(X) = N
j
H

i
X for all j ≥

i − 1

2
.
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2.5. Refined CK decomposition.

Theorem 2.17 (Vial [48]). Let X be a smooth projective variety of dimension n ≤ 5. Assume

the Lefschetz standard conjecture B(X) holds (in particular, the Künneth components πi ∈

H
2n(X ×X) are algebraic). Then there is a splitting into mutually orthogonal idempotents

πi = ∑
j

πi,j ∈ H
2n(X ×X) ,

such that

(πi,j)∗H∗(X) = gr
j

Ñ
H

i(X) .
(Here, the graded gr

j

Ñ
H

i(X) can be identified with a Hodge substructure of H
i(X) using the

polarization.) In particular,

(π2,1)∗Hj(X) = H
2(X)∩ F

1
,

(π2,0)∗Hj(X) = H
2
tr(X) .

(Here F
∗

denotes the Hodge filtration, and H
2
tr(X) is the orthogonal complement to H

2(X)∩F 1

under the pairing

H
2(X)⊗H

2(X) → Q ,

a⊗ b ↦ a ∪ h
n−2

∪ b .)
Proof. This is [48, Theorem 1]. �

Theorem 2.18 (Vial [48]). Let X be as in theorem 2.17. Assume in addition X has finite–

dimensional motive. Then there exists a CK decomposition Πi ∈ A
n(X × X), and a splitting

into mutually orthogonal idempotents

Πi = ∑
j

Πi,j ∈ A
n(X ×X) ,

such that

Πi,j = πi,j in H
2n(X ×X) ,

and

(Π2i,i)∗Ak(X) = 0 for all k /= i .

The motive hi,0(X) = (X,Πi,0, 0) ∈ Mrat is well–defined up to isomorphism.

Proof. This is [48, Theorem 2]. The last statement follows from [48, Proposition 1.8] combined

with [31, Theorem 7.7.3]. �

Remark 2.19. In case X is a surface with finite–dimensional motive, there is equality

h2,0(X) = t2(X) in Mrat ,

where t2(X) is the “transcendental part of the motive” constructed for any surface (not neces-

sarily with finite–dimensional motive) in [31].
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Lemma 2.20. Let X be a smooth projective variety as in theorem 2.18, and assume

dimH
2(X,OX) = 1 .

Then the motive

h2,0(X) ∈ Mrat

is indecomposable, i.e. any non–zero submotive M ⊂ h2,0(X) is equal to h2,0(X).

Proof. (This kind of argument is well–known, cf. for instance [55, Corollary 3.11] or [39, Corol-

lary 2.10] where this is proven for K3 surfaces with finite–dimensional motive.) The idea is

that there are no non–zero Hodge substructures strictly contained in H
2
tr(X). Since the motive

M ⊂ h2,0(X) defines a Hodge substructure

H
∗(M) ⊂ H

2
tr(X) ,

we must have H
∗(M) = H

2
tr(X) and thus an equality of homological motives

M = h2,0(X) in Mhom .

Using finite–dimensionality of X , it follows there is an equality of Chow motives

M = h2,0(X) in Mrat .

�

Lemma 2.21. Let X1, X2 be two projective quotient varieties of dimension 4. Assume X1, X2

have finite–dimensional motive, verify the Lefschetz standard conjecture and

N
1
HH

4(Xj) = Ñ
1
H

4(Xj) for j = 1, 2 ,

where N
∗

H is the Hodge coniveau filtration. Let Γ ∈ A
4(X1 ×X2) and Ψ ∈ A

4(X2 ×X1). The

following are equivalent:

(i)

Γ∗∶ H
0,4(X1) → H

0,4(X2)
is an isomorphism, with inverse Ψ∗;

(ii)

Γ∗∶ H
4
tr(X1) → H

4
tr(X2)

is an isomorphism, with inverse Ψ∗;

(iii)

Γ∶ h4,0(X1) → h4,0(X2) in Mrat

is an isomorphism, with inverse Ψ.

Proof. Assume (i), i.e.

Ψ∗Γ∗ = id∶ H
0,4(X1) → H

0,4(X1) .
Using the hypothesis N

1
H = Ñ

1
, this implies

Ψ∗Γ∗ = id∶ H
4(X1)/Ñ1

→ H
4(X1)/Ñ1

,

and so

(2) (Ψ ◦ Γ ◦Π
X1

4,0)∗ = (ΠX1

4,0)∗∶ H
∗(X1) → H

∗(X1) .
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Considering the action on H
4
tr(X1), this implies

Ψ∗Γ∗ = id∶ H
4
tr(X1) → H

4
tr(X1) .

Switching the roles of X1 and X2, one finds that likewise Γ∗Ψ∗ = id on H
4
tr(X2), and so the

isomorphism of (ii) is proven.

Next, we note that it formally follows from equality (2) that Ψ is left–inverse to

Γ∶ h4,0(X1) → h4,0(X2) in Mhom .

Switching roles of X1 and X2, one finds Ψ is also right–inverse to Γ and so

Γ∶ h4,0(X1) → h4,0(X2) in Mhom

is an isomorphism, with inverse Ψ. By finite–dimensionality, the same holds in Mrat, establish-

ing (iii). �

Remark 2.22. The equality

N
1
HH

4(Xj) = Ñ
1
H

4(Xj)
in the hypothesis of lemma 2.21 is the conjunction of the generalized Hodge conjecture N

1
H = N

1

and Vial’s conjecture N
1
= Ñ

1
.

2.6. Symmetrically distinguished cycles on abelian varieties.

Definition 2.23 (O’Sullivan [37]). Let A be an abelian variety. Let a ∈ A
∗(A) be a cycle. For

m ≥ 0, let

Vm(a) ⊂ A
∗(Am)

denote the Q–vector space generated by elements

p∗((p1)∗(ar1) ⋅ (p2)∗(ar2) ⋅ . . . ⋅ (pn)∗(arn)) ∈ A
∗(Am) .

Here n ≤ m, and rj ∈ N, and pi∶A
n
→ A denotes projection on the i–th factor, and p∶A

n
→ A

m

is a closed immersion with each component A
n
→ A being either a projection or the composite

of a projection with [−1]∶A → A.

The cycle a ∈ A
∗(A) is said to be symmetrically distinguished if for every m ∈ N the

composition

Vm(a) ⊂ A
∗(Am) → A

∗(Am)/A∗

hom(Am)
is injective.

Theorem 2.24 (O’Sullivan [37]). The symmetrically distinguished cycles form a Q–subalgebra

A
∗

sym(A) ⊂ A
∗(A), and the composition

A
∗

sym(A) ⊂ A
∗(A) → A

∗(A)/A∗

hom(A)
is an isomorphism. Symmetrically distinguished cycles are stable under pushforward and pull-

back of homomorphisms of abelian varieties.

Remark 2.25. For discussion and applications of the notion of symmetrically distinguished cy-

cles, in addition to [37] we refer to [43, Section 7], [50], [3], [20].
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Lemma 2.26. Let A be an abelian variety of dimension g.

(i) There exists an MCK decomposition {ΠA
i } that is self–dual and consists of symmetrically

distinguished cycles.

(ii) Assume g ≤ 5, and let {ΠA
i } be as in (i). There exists a further splitting

Π
A
2 = Π

A
2,0 + Π

A
2,1 in A

g(A × A) ,
where the Π

A
2,i are symmetrically distinguished and Π

A
2,i = π

A
2,i in H

2g(A × A).

Proof. (i) An explicit formula for {ΠA
i } is given in [43, Section 7 Formula (45)].

(ii) The point is that Π
A
2,1 is (by construction) a cycle of type

∑
j

Cj ×Dj in A
g(A × A) ,

where Dj ⊂ A is a symmetric divisor and Cj ⊂ A is a curve obtained by intersecting a symmetric

divisor with hyperplanes. This implies Π
A
2,1 is symmetrically distinguished. By assumption, Π

A
2

is symmetrically distinguished and hence so is Π
A
2,0. �

2.7. The very special EPW sextic. This subsection introduces the main actor of this tale: the

very symmetric EPW sextic discovered in [16].

Definition 2.27 ([5]). A hyperkähler variety is a simply–connected smooth projective variety X

such that H
0(X,Ω

2
X) is spanned by a nowhere degenerate holomorphic 2–form.

Theorem 2.28 (Donten–Bury et alii [16]). Let X ⊂ P
5(C) be defined by the equation

x
6
0+x

6
1 + x

6
2 + x

6
3 + x

6
4 + x

6
5 + (x4

0x
2
1 + x

4
0x

2
2 +⋯+ x

2
4x

4
5)

+ (x2
0x

2
1x

2
2 + x

2
0x

2
1x

2
3 +⋯+ x

2
3x

2
4x

2
5) + x0x1x2x3x4x5 = 0 .

(Note that the parentheses are symmetric functions in the variables x0, . . . , x5.)

(i) The hypersurface X is an EPW sextic (in the sense of [18], [35]).

(ii) Let S be the K3 surface obtained from a certain Del Pezzo surface in [51], and let S
[2]

denote

the Hilbert scheme of 2 points on S. Then there is a rational map (of degree 2)

φ∶ S
[2]

⇢ X .

There exists a commutative diagram

S
[2] flops

9999K S[2]
−→ X

′
∶= E

4/(G′) ←− X0

φ g ↙ g

X

Here all horizontal arrows are birational maps. E is an elliptic curve and X
′
∶= E

4/(G′)
is a quotient variety, and X0 is a hyperkähler variety with b2(X0) = 23 which is a symplectic

resolution of X
′
. The morphism g is a double cover; X is a projective quotient varietyX = E

4/G
where G = (G′

, i) with i
2
∈ G

′
. The groups G

′
and G consist of automorphisms that are group

homomorphisms.

(iii) S
[2]

and X0 have finite–dimensional motive and a multiplicative CK decomposition.
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Proof. (i) [16, Proposition 2.6].

(ii) This is a combination of [16, Proposition 1.1] and [16, Sections 5 and 6]. (Caveat: the group

that we denote G
′
is written G in [16].)

(iii) Vinberg’s K3 surface has Picard number 20; as such, it is a Kummer surface and has finite–

dimensional motive. This implies (using [13]) that S
[2]

has finite–dimensional motive. As bi-

rational hyperkähler varieties have isomorphic Chow motives [41], X0 has finite–dimensional

motive. The Hilbert scheme S
[2]

of any K3 surface S has an MCK decomposition [43, Theo-

rem 13.4]. As the isomorphism of [41] is an isomorphism of algebras in the category of Chow

motives, X0 also has an MCK decomposition (lemma 2.13). �

Remark 2.29. The singular locus of the very special EPW sextic X consists of 60 planes. Among

these 60 planes, there is a subset of 20 planes which form a complete family of pairwise incident

planes in P
5(C) [16]. This is the maximal number of elements in a complete family of pairwise

incident planes, and this seems to be the only known example of a complete family of 20 pairwise

incident planes.

Remark 2.30. The variety X0 is not unique. In [17, Section 6], it is shown there exist 81
16

symplectic resolutions of E
4/(G′) (some of them non–projective). One noteworthy consequence

of theorem 2.28 is that the varieties X0 are of K3
[2]

type (this was not a priori clear from [17]).

Remark 2.31. For a generic EPW sextic X , there exists a hyperkähler fourfold X0 (called a

“double EPW sextic”) equipped with an anti–symplectic involution σ0 such that X = X0/(σ0)
[35, Theorem 1.1 (2)]. For the very special EPW sextic X , I don’t know whether such X0 exists.

(For this, one would need to show that the Lagrangian subspace A defining the very special EPW

sextic is in the Zariski open LG(∧3
V )0 ⊂ LG(∧3

V ) defined in [35, page 3].)

3. SOME INTERMEDIATE STEPS

3.1. A strong version of the generalized Hodge conjecture. For later use, we record here a

proposition, stating that the very special EPW sextic, as well as some related varieties, satisfy

the hypothesis of lemma 2.21:

Proposition 3.1. Let X0 be any hyperkähler variety as in theorem 2.28 (i.e., X0 is a symplectic

resolution of E
4/(G′)). Then

N
1
HH

4(X0) = Ñ
1
H

4(X0) .
(Here N

∗

H denotes the Hodge coniveau filtration and Ñ
∗

denotes the niveau filtration (definition

2.15).)

The same holds for X
′
∶= E

4/(G′) and for the very special EPW sextic X:

N
1
HH

4(X ′) = Ñ
1
H

4(X ′) ,
N

1
HH

4(X) = Ñ
1
H

4(X) .
Proof. The point is that Vinberg’s K3 surface S has Picard number 20, and so the corresponding

statement is easily proven for S
[2]

:
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Lemma 3.2. Let S be a smooth projective surface with q = 0 and pg(S) = 1. Assume S is

ρ–maximal (i.e. dimH
2
tr(S) = 2). Then

N
1
HH

4(S[2]) = Ñ
1
H

4(S[2]) .
Proof. Let S̃ × S → S × S denote the blow–up of the diagonal. As is well–known, there are

isomorphisms of homological motives

h(S[2]) ≅ h(S̃ × S)S2 ,

h(S̃ × S) ≅ h(S × S)⊕ h(S)(1) in Mhom ,

where S2 denotes the symmetric group on 2 elements acting by permutation. It follows there is

a correspondence–induced injection

H
4(S[2]) ↪ H

4(S × S)⊕H
2(S) .

It thus suffices to prove the statement for S × S. Let us write

H
2(S) = N ⊕ T ∶= NS(S)⊕H

2
tr(S) .

We have

N
1
HH

4(S × S) = H
4(S × S)∩ F

1

= H
0(S)⊗H

4(S)⊕H
4(S)⊗H

0(S)⊕N ⊗N ⊕N ⊗ T ⊕ T ⊗N

⊕ (T ⊗ T ) ∩ F
1
.

All but the last summand are obviously in Ñ
1
. As to the last summand, we have that

(T ⊗ T ) ∩ F
1
= (T ⊗ T ) ∩ F

2
.

Since the Hodge conjecture is true for S × S (indeed, S is a Kummer surface and the Hodge

conjecture is known for powers of abelian surfaces [1, 7.2.2], [2, 8.1(2)]), there is an inclusion

(T ⊗ T ) ∩ F
2
⊂ N

2
H

4(S × S) = Ñ
2
H

4(S × S) ,
and so the lemma is proven.

�

Since birational hyperkähler varieties have isomorphic cohomology rings [25, Corollary 2.7],

and the isomorphism (being given by a correspondence) respects Hodge structures, this proves

the result for X0. Since X0 dominates X
′
and X , the result for X

′
and X follows. Proposition

3.1 is now proven. �

3.2. MCK for quotients of abelian varieties.

Proposition 3.3. Let A be an abelian variety of dimension n, and let G ⊂ AutZ(A) be a finite

group of automorphisms of A that are group homomorphisms. The quotient

X = A/G
has a self–dual MCK decomposition.
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Proof. A first step is to show there exists a self–dual CK decomposition for X induced by a CK

decomposition on A:

Claim 3.4. Let A and X be as in proposition 3.3, and let p∶A → X denote the quotient mor-

phism. Let {ΠA
i } be a CK decomposition as in lemma 2.26(i). Then

Π
X
i ∶=

1

d
Γp ◦ Π

A
i ◦

t
Γp ∈ A

n(X ×X) , i = 0, . . . , 2n

defines a self–dual CK decomposition for X .

To prove the claim, we remark that clearly the given Π
X
i lift the Künneth components of X ,

and their sum is the diagonal of X . We will make use of the following property:

Lemma 3.5. Let A be an abelian variety of dimension n, and let {ΠA
i } be an MCK decomposition

as in lemma 2.26(i). For any g ∈ AutZ(A), we have

Π
A
i ◦ Γg = Γg ◦Π

A
i in A

n(A × A) .
Proof. Because g∗H

i(A) ⊂ H
i(A), we have a homological equivalence

Π
A
i ◦ Γg − Γg ◦Π

A
i = 0 in H

2n(A × A) .
But the left–hand side is a symmetrically distinguished cycle, and so it is rationally trivial. �

To see that Π
X
i is idempotent, we note that

Π
X
i ◦Π

X
i =

1

d2
Γp ◦Π

A
i ◦

t
Γp ◦ Γp ◦Π

A
i ◦

t
Γp

=

1

d
Γp ◦ Π

A
i ◦ (∑

g∈G

Γg) ◦Π
A
i ◦

t
Γp

=

1

d
Γp ◦ Π

A
i ◦Π

A
i ◦ (∑

g∈G

Γg) ◦ t
Γp

=
1

d
Γp ◦ Π

A
i ◦ (∑

g∈G

Γg) ◦ t
Γp

=

1

d
Γp ◦ Π

A
i ◦

t
Γp ◦ Γp ◦

t
Γp

=

1

d
Γp ◦ Π

A
i ◦

t
Γp ◦ d∆X

= Γp ◦Π
A
i ◦

t
Γp = Π

X
i in A

n(X ×X) .
(Here, the third equality is an application of lemma 3.5, and the fourth equality is because Π

A
i

is idempotent.) The fact that the Π
X
i are mutually orthogonal is proven similarly; one needs to

replace Π
X
i ◦Π

X
i by Π

X
i ◦Π

X
j in the above argument. This proves claim 3.4.

Now, it only remains to see that the CK decomposition {ΠX
i } of claim 3.4 is multiplicative.

Claim 3.6. The CK decomposition {ΠX
i } given by claim 3.4 is an MCK decomposition.
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To prove claim 3.6, let us consider the composition

Π
X
k ◦∆

X
sm ◦ (ΠX

i × Π
X
j ) ∈ A

n(X ×X) ,
where we suppose i + j /= k. There are equalities

Π
X
k ◦∆

X
sm ◦ (ΠX

i × Π
X
j ) =

1

d3
Γp ◦Π

A
k ◦

t
Γp ◦∆

X
sm ◦ Γp×p ◦ (ΠA

i × Π
A
j ) ◦ t

Γp×p

=

1

d
Γp ◦Π

A
k ◦∆

G
A ◦∆

A
sm ◦ (∆G

A ×∆
G
A) ◦ (ΠA

i × Π
A
j ) ◦ t

Γp×p

=

1

d
Γp ◦∆

G
A ◦Π

A
k ◦∆

A
sm ◦ (ΠA

i × Π
A
j ) ◦ (∆G

A ×∆
G
A) ◦ t

Γp×p

= 0 in A
2n(X ×X ×X) .

Here, the first equality is by definition of the Π
X
i , the second equality is lemma 3.7 below, the

third equality follows from lemma 3.5, and the fourth equality is the fact that {ΠA
i } is an MCK

decomposition for A (lemma 2.26).

Lemma 3.7. There is equality

t
Γp ◦∆

X
sm ◦ Γp×p =

1

d
(∑
g∈G

Γg) ◦∆
A
sm ◦ ((∑

g∈G

Γg) × (∑
g∈G

Γg))

= d
2
∆

G
A ◦∆

A
sm ◦ (∆G

A ×∆
G
A) in A

2n(A × A × A) .

Proof. The second equality is just the definition of ∆
G
A. As to the first equality, we first note that

∆
X
sm =

1

d
(p× p × p)∗(∆A

sm) =
1

d
Γp ◦∆

A
sm ◦

t
Γp×p in A

2n(X ×X ×X) .
This implies that

t
Γp ◦∆

X
sm ◦ Γp×p =

1

d

t
Γp ◦ Γp ◦∆

A
sm ◦

t
Γp×p ◦ Γp×p .

But
t
Γp ◦ Γp = ∑g∈G Γg, and thus

t
Γp ◦∆

X
sm ◦ Γp×p =

1

d
(∑
g∈G

Γg) ◦∆
A
sm ◦ ((∑

g∈G

Γg) × (∑
g∈G

Γg)) in A
2n(A ×A × A) ,

as claimed. �

This ends the proof of proposition 3.3. �

In the set–up of proposition 3.3, one can actually say more about certain pieces A
i
(j)(X):

Proposition 3.8. Let X = A/G be as in proposition 3.3. Assume n = dimX ≤ 5 and

H
2(X,OX) = 0. Assume also there exists X

′
= A/(G′) where G = (G′

, i) with i
2
∈ G

′
,
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and the action of i on H
2(X ′

,OX ′) is minus the identity. Then any CK decomposition {Πi} of X

verifies

(Π2)∗Aj(X) = 0 for all j /= 1 ,

(Π6)∗Aj(X) = 0 for all j /= 3 .

Proof. It suffices to prove this for one particular CK decomposition, in view of the following

lemma:

Lemma 3.9. Let X = A/G be as in proposition 3.3. Let Π,Π
′
∈ A

n(X ×X) be idempotents,

and assume Π − Π
′
= 0 in H

2n(X ×X). Then

(Π)∗Ai(X) = 0 ⇔ (Π′)∗Ai(X) = 0 .

Proof. This follows from [48, Lemma 1.14]. Alternatively, here is a direct proof. Let p∶A → X

denote the quotient morphism, and let d ∶= ∣G∣. One defines

ΠA ∶=
1

d

t
Γp ◦Π ◦ Γp ∈ A

n(A × A) ,

Π
′

A ∶=
1

d

t
Γp ◦Π

′

◦ Γp ∈ A
n(A × A) .

It is readily checked ΠA,Π
′

A are idempotents, and they are homologically equivalent.

Let us assume (Π)∗Ai(X) = 0 for a certain i. Then also

(ΠA)∗p∗Ai(X) = (1
d

t
Γp ◦Π ◦ Γp ◦

t
Γp)∗Ai(X) = (tΓp ◦ Π)∗Ai(X) = 0 .

By finite–dimensionality of A, the difference ΠA − Π
′

A ∈ A
n
hom(A × A) is nilpotent, i.e. there

exists N ∈ N such that

(ΠA − Π
′

A)◦N = 0 in A
n(A ×A) .

Upon developing, this implies

Π
′

A = (Π′

A)◦N = Q1 +⋯+QN in A
n(A × A) ,

where each Qj is a composition

Qj = Q
1
j ◦Q

2
j ◦⋯ ◦Q

N
j ,

with Q
k
j ∈ {ΠA,Π

′

A}, and at least one Q
k
j is ΠA. Since by assumption (ΠA)∗p∗Ai(X) = 0, it

follows that

(Qj)∗ = (something)∗(ΠA)∗((Π′

A)◦r)∗ = 0∶ p
∗

A
i(X) → p

∗

A
i(X) for all j .

But then also

(Π′

A)∗p∗Ai(X) = (Q1 +⋯+QN)∗p∗Ai(X) = 0 .

�
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Now, let us take a projector for A of the form

Π
A
2 = Π

A
2,0 + Π

A
2,1 ∈ A

n(A × A) ,
where Π

A
2,0,Π

A
2,1 are as in lemma 2.26.

Lemma 3.10. Let A be an abelian variety of dimension n ≤ 5, and let G ⊂ AutZ(A) be a finite

subgroup. Let Π
A
2,0 be as in lemma 2.26. Then

Π
A
2,0 ◦∆

G
A = ∆

G
A ◦Π

A
2,0 ∈ A

n(A × A)
is idempotent. (Here, as before, we write ∆

G
A ∶=

1

∣G∣∑g∈GΓg ∈ A
n(A × A).)

Proof. For any g ∈ G, we have the commutativity

Π
A
2,0 ◦ Γg = Γg ◦Π

A
2,0 in A

n(A × A) , for all g ∈ G ,

established in lemma 2.26(ii). (Indeed, these cycles are symmetrically distinguished by lemma

2.26(ii), and their difference is homologically trivial because an automorphism g ∈ G respects

the niveau filtration.)

This commutativity clearly implies the equality

Π
A
2,0 ◦∆

G
A = ∆

G
A ◦Π

A
2,0 ∈ A

n(A × A) .
To check that Π

A
2,0 ◦∆

G
A is idempotent, we note that

Π
A
2,0 ◦∆

G
A ◦Π

A
2,0 ◦∆

G
A = Π

A
2,0 ◦ Π

A
2,0 ◦∆

G
A ◦∆

G
A = Π

A
2,0 ◦∆

G
A in A

n(A × A) .
�

Let us write G = G
′
× {1, i}. Since by assumption, i∗ = −id on H

2,0(X ′), we have equality

1

2
(ΠA

2,0 ◦∆
G

′

A + Π
A
2,0 ◦∆

G
′

A ◦ Γi) = 0 in H
2n(A × A) .

On the other hand, the left–hand side is equal to the idempotentΠ
A
2,0◦∆

G
A. By finite–dimensionality,

it follows that

Π
A
2,0 ◦∆

G
A = 0 in A

n(A × A) .
Using Poincaré duality, we also have i∗ = −id on H

2,4(X ′), and so (defining Π
A
6,2 as the trans-

pose of Π
A
2,0) there is also an equality

Π
A
6,2 ◦∆

G
A =

1

2
(ΠA

6,2 ◦∆
G

′

A + Π
A
6,2 ◦∆

G
′

A ◦ Γi) = 0 in H
2n(A ×A) ,

and hence, by finite–dimensionality

Π
A
6,2 ◦∆

G
A = 0 in A

n(A × A) .
Since Π

A
2,1 does not act on A

j(A) for j /= 1 (theorem 2.18), we find in particular that

(ΠA
2 )∗ = 0∶ A

j(A)G → A
j(A)G for all j /= 1 .
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Likewise, since Π
A
6,3 =

t
Π

A
2,1 does not act on A

j(A) for j /= 3 (theorem 2.18), we also find that

(ΠA
6 )∗ = 0∶ A

j(A)G → A
j(A)G for all j /= 3 .

We now consider the CK decomposition for X defined as in lemma 3.4:

Π
X
i ∶=

1

d
Γp ◦ Π

A
i ◦

t
Γp ∈ A

n(X ×X) .
This CK decomposition has the required behaviour:

(ΠX
2 )∗Aj(X) = (1

d
Γp ◦Π

A
2 ◦

t
Γp)∗Aj(X)

= (1
d
Γp)∗(ΠA

2 )∗p∗Aj(X)

= (1
d
Γp)∗(ΠA

2 )∗Aj(A)G = 0 for all j /= 1 ,

and likewise

(ΠX
6 )∗Aj(X) = 0 for all j /= 3 .

This proves proposition 3.8. �

For later use, we record here a corollary of the proof of proposition 3.8:

Corollary 3.11. Let A be an abelian variety of dimension n ≤ 5, and let Π
A
2,0,Π

A
2,1 be as in

lemma 2.26(ii). Let p∶A → X = A/G be a quotient variety with G ⊂ AutZ(A). The prescription

Π
X
2,i ∶= Γp ◦ Π

A
2,i ◦

t
Γp in A

n(X ×X)
defines a decomposition in orthogonal idempotents

Π
X
2 = Π

X
2,0 + Π

X
2,1 in A

n(X ×X) .
The Π

X
2,i verify the properties of the refined CK decomposition of theorem 2.18.

Proof. One needs to check the Π
X
2,i are idempotent and orthogonal. This easily follows from the

fact that the Π
A
2,i commute with Γg for g ∈ G (lemma 3.10). �

3.3. A surjectivity statement.

Proposition 3.12. Let X0 be a hyperkähler fourfold as in theorem 2.28. Let A
∗

(∗)(X0) be the

bigrading defined by the MCK decomposition. Then the intersection product map

A
2
(2)(X0)⊗ A

2
(2)(X0) → A

4
(4)(X0)

is surjective.

The same holds for X
′
∶= E

4/(G′) as in theorem 2.28: X
′
has an MCK decomposition, and

the intersection product map

A
2
(2)(X ′)⊗ A

2
(2)(X ′) → A

4
(4)(X ′)

is surjective.
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Proof. The result of Rieß [41] implies there is an isomorphism of bigraded rings

A
∗

(∗)(S[2]) ≅

−→ A
∗

(∗)(X0) .
For the Hilbert scheme of any K3 surface S, the intersection product map

A
2
(2)(S[2])⊗ A

2
(2)(S[2]) → A

4
(4)(S[2])

is known to be surjective [43, Theorem 3]. This proves the first statement.

For the second statement, the existence of an MCK decomposition for X
′

is a special case

of proposition 3.3. To prove the surjectivity statement for X
′
, we note that φ∶X0 → X

′
is a

symplectic resolution and so there are isomorphisms

φ
∗

∶ H
p,0(X ′) ≅

−→ H
p,0(X0) (p = 2, 4) .

Using lemma 2.21 (which is possible thanks to proposition 3.1), this implies there are isomor-

phisms

φ
∗

∶ H
p
tr(X ′) ≅

−→ H
p
tr(X0) (p = 2, 4) .

This means there is an isomorphism of homological motives

t
Γφ∶ hp,0(X ′) ≅

−→ hp,0(X0) in Mhom (p = 2, 4) .
By finite–dimensionality, there are isomorphisms of Chow motives

t
Γφ∶ hp,0(X ′) ≅

−→ hp,0(X0) in Mrat (p = 2, 4) .
Taking Chow groups, this implies there are isomorphisms

(3) (ΠX0

p ◦
t
Γφ ◦Π

X
′

p )∗∶ (ΠX
′

p )∗Ai(X ′) → (ΠX0

p )∗Ai(X0) (p = 2, 4) .
Let us now consider the diagram

A
2
(2)(X0)⊗ A

2
(2)(X0) → A

4
(4)(X0)

↑ ↑

A
2(X0)⊗ A

2(X0) → A
4(X0)

↑ ↑

A
2
(2)(X ′)⊗ A

2
(2)(X ′) → A

4
(4)(X ′)

Here, the vertical arrows in the upper square are given by projecting to direct summand; the

vertical arrows in the lower square are given by φ
∗
. Since pullback and intersection product

commute, the lower square commutes. Since A
∗

(∗)(X0) is a bigraded ring, the upper square

commutes.

The composition of vertical arrows is an isomorphism by (3). The statement for X
′

now

follows from the statement for X0. �
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4. MAIN RESULTS

4.1. Splitting of A
∗(X).

Theorem 4.1. Let X be the very special EPW sextic of theorem 2.28. The Chow ring of X is a

bigraded ring

A
∗(X) = A

∗

(∗)(X) ,
where

A
1(X) = A

1
(0)(X) = Q ,

A
2(X) = A

2
(0)(X) ,

A
3(X) = A

3
(0)(X)⊕ A

3
(2)(X) = Q⊕ A

3
hom(X) ,

A
4(X) = A

4
(0)(X)⊕ A

4
(4)(X) = Q⊕ A

4
hom(X) .

Proof. It follows from theorem 2.28 that X is a quotient variety X = E
4/G with G ⊂ AutZ(A).

Moreover, there is another quotient variety X
′
= E

4/(G′) where G = (G′
, i) and i

2
∈ G

′
and

such that i acts on H
2(X ′

,OX ′) as −id. Applying proposition 3.3, it follows that X has an MCK

decomposition {ΠX
i }. Applying proposition 3.8, it follows that

(ΠX
2 )∗Aj(X) = 0 for all j /= 1 ,

(ΠX
6 )∗Aj(X) = 0 for all j /= 3 .

The projectors Π
X
i are 0 for i odd. (Indeed, X has no odd cohomology so the Π

X
i are homologi-

cally trivial. Using finite–dimensionality, they are rationally trivial.)

The projectors {ΠX
i } define a multiplicative bigrading

A
∗(X) = A

∗

(∗)(X) ,
where A

j

(i)(X) ∶= (ΠX
2j−i)∗Aj(X). The fact that A

j

(i)(X) = 0 for i < 0 follows from the

corresponding property for abelian fourfolds [6]. Likewise, the fact that

A
j

(0)(X) ∩ A
j

hom(X) = 0 for all j ≥ 3

follows from the corresponding property for abelian fourfolds [6]. �

Corollary 4.2. Let X be the very special EPW sextic. The intersection product maps

A
2(X)⊗ A

2(X) → A
4(X) ,

A
2(X)⊗ A

1(X) → A
3(X)

have image of dimension 1.

Remark 4.3. It is instructive to note that for smooth Calabi–Yau hypersurfaces X ⊂ P
n+1(C),

Voisin has proven that the intersection product map

A
j(X)⊗ A

n−j(X) → A
n(X)
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has image of dimension 1, for any 0 < j < n [54, Theorem 3.4], [56, Theorem 5.25] (cf. also

[19] for a generalization to generic complete intersections).

In particular, the first statement of corollary 4.2 holds for any smooth sextic in P
5(C). The

second statement of corollary 4.2, however, is not known (and maybe not true) for a general

sextic in P
5(C). It might be that the second statement is specific to EPW sextics, and related to

the presence of a hyperkähler fourfold X0 which is generically a double cover.

Remark 4.4. Let F
∗

be the filtration on A
∗(X) defined as

F
i
A

j(X) = ⨁
ℓ≥i

A
j

(ℓ)(X) .

For this filtration to be of Bloch–Beilinson type, it remains to prove that

F
1
A

2(X) ??
= A

2
hom(X) .

This would imply the vanishing A
2
hom(X) = 0 (i.e. the truth of conjecture 1.5 for X).

Unfortunately, we cannot prove this. At least, it follows from the above description that the

conjectural vanishing A
2
hom(X) = 0 would follow from the truth of Beauville’s conjecture

A
2
hom(E4) ??

= A
2
(1)(E4)⊕ A

2
(2)(E4) ,

where E is an elliptic curve.

4.2. Splitting of A
∗(Xr).

Definition 4.5. Let X be a projective quotient variety. For any r ∈ N, and any 1 ≤ i < j < k ≤ r,

let

pj∶ X
r
→ X ,

pij∶ X
r
→ X ×X ,

pijk∶ X
r
→ X ×X ×X

denote projection on the j-th factor, resp. projection on the i-th and j-th factor, resp. projection

on the i-th and j-th and k-th factor.

We define

E
∗(Xr) ⊂ A

∗(Xr)
as the Q–subalgebra generated by (pj)∗A1(X) and (pj)∗A2(X) and (pij)∗(∆X) ∈ A

4(Xr)
and (pijk)∗(∆X

sm) ∈ A
8(Xr).

As explained in the introduction, the hypothesis that EPW sextics that are quotient varieties

are in the class C leads to the following concrete conjecture:

Conjecture 4.6. Let X ⊂ P
5(C) be an EPW sextic which is a projective quotient variety. Let

r ∈ N. The restriction of the cycle class map

E
i(Xr) → H

2i(Xr)
is injective for all i.

For the very special EPW sextic, we can prove conjecture 4.6 for 0–cycles and 1–cycles:
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Theorem 4.7. Let X be the very special EPW sextic of definition 2.28. Let r ∈ N. The restriction

of the cycle class map

E
i(Xr) → H

2i(Xr)
is injective for i ≥ 4r − 1.

Proof. The product X
r

has an MCK decomposition (since X has one, and the property of having

an MCK decomposition is stable under taking products [43, Theorem 8.6]). Therefore, there is

a bigrading on the Chow ring of X
r
. As we have seen (theorem 4.1), A

1(X) = A
1
(0)(X) and

A
2(X) = A

2
(0)(X). Also, it is readily checked that

∆X ∈ A
4
(0)(X ×X) .

(Indeed, this follows from the fact that

∆X =

8

∑
i=0

Π
X
i =

8

∑
i=0

Π
X
i ◦∆X ◦Π

X
i =

8

∑
i=0

(ΠX
i × Π

X
8−i)∗∆X in A

4(X ×X) ,

where we have used the fact that the CK decomposition is self–dual.) The fact that X has an

MCK decomposition implies that

∆
X
sm ∈ A

8
(0)(X ×X ×X)

[43, Proposition 8.4].

Clearly, the pullbacks under the projections pi, pij, pijk respect the bigrading. (Indeed, suppose

a ∈ A
ℓ
(0)(X), which means a = (ΠX

2ℓ)∗(a). Then the pullback (pi)∗(a) can be written as

X ×⋯×X × (ΠX
2ℓ)∗(a)×X ×⋯×X ∈ A

ℓ(Xr) ,
which is the same as

(ΠX
0 ×⋯× Π

X
0 × Π

X
2ℓ × Π

X
0 ×⋯× Π

X
0 )∗(X ×⋯×X × a ×X ×⋯×X) .

This implies that

(pi)∗(a) ∈ (ΠX
r

2ℓ )∗Aℓ(Xr) = A
ℓ
(0)(Xr) ,

where Π
X

r

∗ is the product CK decomposition. Another way to prove the fact that the projections

pi, pij, pijk respect the bigrading is by invoking [44, Corollary 1.6].)

It follows there is an inclusion

E
∗(Xr) ⊂ A

∗

(0)(Xr) .
The finite morphism p

×r
∶A

r
→ X

r
induces a split injection

(p×r)∗∶ A
i
(0)(Xr) ∩ A

i
hom(Xr) → A

i
(0)(Ar) ∩ A

i
hom(Ar) for all i.

But the right–hand side is known to be 0 for i ≥ 4r − 1 [6], and so

E
i(Xr) ∩ A

i
hom(Xr) ⊂ A

i
(0)(Xr)∩ A

i
hom(Xr) = 0 for all i ≥ 4r − 1 .

�



24 ROBERT LATERVEER

Remark 4.8. As is clear from the proof of theorem 4.7, there is a link with Beauville’s conjectures

for abelian varieties: let E be an elliptic curve, and suppose one knows that

A
i
(0)(E4r) ∩ A

i
hom(E4r) = 0 for all i and all r .

Then conjecture 4.6 is true for the very special EPW sextic.

4.3. Relation with some hyperkähler fourfolds.

Theorem 4.9. Let X be the very special EPW sextic of definition 2.28. Let X0 be one of the hy-

perkähler fourfolds of [17, Corollary 6.4], and let f ∶X0 → X be the generically 2 ∶ 1 morphism

constructed in [16]. Then X0 has an MCK decomposition, and there is an isomorphism

f
∗

∶ A
4
hom(X) ≅

−→ A
4
(4)(X0) .

Proof. The MCK decomposition for X0 was established in theorem 2.28. The morphism f ∶X0 →

X of [16] is constructed as a composition

f ∶ X0

φ
−→ X

′

∶= E
4/(G′) g

−→ X ,

where φ is a symplectic resolution and g is the double cover associated to an anti–symplectic

involution. This implies f induces an isomorphism

f
∗

∶ H
4,0(X) ≅

−→ H
4,0(X ′) ≅

−→ H
4,0(X0) .

In view of the strong form of the generalized Hodge conjecture (proposition 3.1), X0 and X
′
and

X verify the hypotheses of lemma 2.21. Applying lemma 2.21, we find isomorphisms of Chow

motives

t
Γf ∶ h4,0(X) ≅

−→ h4,0(X ′) ≅

−→ h4,0(X0) in Mrat .

Since (ΠX
4,i)∗A4(X) = 0 for i ≥ 1 for dimension reasons, we have

(ΠX
4 )∗A4(X) = (ΠX

4,0)∗A4(X) ,

and the same goes for X
′
and X0. It follows that

f
∗

∶A
4
hom(X) = A

4(h4,0(X)) ≅

−→ A
4(h4,0(X0)) =∶ A4

(4)(X0) .
�

As a corollary, we obtain an alternative description of the splitting A
∗

(∗)(X0) for the hy-

perkähler fourfolds X0:
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Corollary 4.10. Let f ∶X0 → X be as in theorem 4.9. The splitting A
∗

(∗)(X0) (given by the MCK

decomposition of X0) verifies

A
4(X0) = A

4
(4)(X0)⊕ A

4
(2)(X0)⊕ A

4
(0)(X0)

= f
∗

A
4
hom(X)⊕ ker(A4(X0)

f∗
−→ A

4(X))⊕Q ;

A
3(X0) = A

3
(2)(X0)⊕ A

3
(0)(X0)

= A
3
hom(X0)⊕H

3,3(X0) ;
A

2(X0) = A
2
(2)(X0)⊕ A

2
(0)(X0)

= ker(A2
hom(X0)

f∗
−→ A

2(X))⊕ A
2
(0)(X0) .

Remark 4.11. Just as we noted for the EPW sextic X (remark 4.4), for this filtration to be of

Bloch–Beilinson type one would need to prove that

A
2
(0)(X0)∩ A

2
hom(X0) ??

= 0 ,

which I cannot prove. This situation is similar to that of the Fano varieties F of lines on a

very general cubic fourfold: thanks to work of Shen–Vial [43] there is a multiplicative bigrading

A
∗

(∗)(F ) which has many good properties and interesting alternative descriptions. The main

open problem is to prove that

A
2
(0)(F )∩ A

2
hom(F ) ??

= 0 ,

which doesn’t seem to be known for any single F .

Remark 4.12. Conjecturally, the relations of corollary 4.10 should hold for any double EPW

sextic X0 (with X being the quotient of X0 under the anti–symplectic involution). However,

short of knowing X0 has finite–dimensional motive (as is the case here, thanks to the presence of

the abelian variety E
4
), this seems difficult to prove. Note that at least, for a general double EPW

sextic X0, the relations of corollary 4.10 give a concrete description of a filtration on A
∗(X0)

that should be the Bloch–Beilinson filtration.

5. FURTHER RESULTS

5.1. Bloch conjecture.

Conjecture 5.1 (Bloch [9]). Let X be a smooth projective variety of dimension n. Let Γ ∈

A
n(X ×X) be a correspondence such that

Γ∗ = 0∶ H
p,0(X) → H

p,0(X) for all p > 0 .

Then

Γ∗ = 0∶ A
n
hom(X) → A

n
hom(X) .

A weak version of conjecture 5.1 is true for the very special EPW sextic:
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Proposition 5.2. Let X be the very special EPW sextic. Let Γ ∈ A
4(X×X) be a correspondence

such that

Γ∗ = 0∶ H
4,0(X) → H

4,0(X) .
Then there exists N ∈ N such that

(Γ◦N)∗ = 0∶ A
4
hom(X) → A

4
hom(X) .

Proof. As is well–known, this follows from the fact that X has finite–dimensional motive; we

include a proof for completeness’ sake.

By assumption, we have

Γ∗ = 0∶ H
4(X,C)/F 1

→ H
4(X,C)/F 1

(where F
∗

is the Hodge filtration). Thanks to the “strong form of the generalized Hodge conjec-

ture” (proposition 3.1), this implies that also

Γ∗ = 0∶ H
4(X,Q)/Ñ1

→ H
4(X,Q)/Ñ1

.

Using Vial’s refined CK projectors (theorem 2.18), this means

Γ ◦Π
X
4,0 = 0 in H

8(X ×X) ,
or, equivalently,

Γ − ∑
(k,ℓ)/=(4,0)

Γ ◦ Π
X
k,ℓ = 0 in H

8(X ×X) .

By finite–dimensionality, this implies there exists N ∈ N such that

(Γ − ∑
(k,ℓ)/=(4,0)

Γ ◦Π
X
k,ℓ)

◦N

= 0 in A
4(X ×X) .

Upon developing, this gives an equality

(4) Γ
◦N

= Q1 +⋯+QN in A
4(X ×X) ,

where each Qj is a composition of correspondences

Qj = Q
1
j ◦Q

2
j ◦⋯ ◦Q

r
j ∈ A

4(X ×X) ,
and for each j, at least one Q

i
j is equal to Π

X
k,ℓ with (k, ℓ) /= (4, 0). Since (for dimension reasons)

(ΠX
k,ℓ)∗A4

hom(X) = 0 for all (k, ℓ) /= (4, 0) ,
it follows that

(Qj)∗A4
hom(X) = 0 for all j .

In view of equality (4), we thus have

(Γ◦N)∗ = 0∶ A
4
hom(X) → A

4
hom(X) .

�

For special correspondences, one can do better:
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Proposition 5.3. Let X be the very special EPW sextic. Let Γ ∈ A
4(X×X) be a correspondence

such that

Γ
∗

= 0∶ H
4,0(X) → H

4,0(X) .
Assume moreover that Γ can be written as

Γ =

r

∑
i=1

ciΓσi
in A

4(X ×X) ,

with ci ∈ Q and σi ∈ Aut(X) induced by a G–equivariant automorphism σ
E
i ∶E

4
→ E

4
, where

X = E
4/(G) and σ

E
i is a group homomorphism. Then

Γ
∗

= 0∶ A
4
hom(X) → A

4
hom(X) .

Proof. Let us write A = E
4
, and X

′
∶= A/(G′) for the double cover of X with dimH

2,0(X ′) =
1. The projection g∶X

′
→ X induces an isomorphism

g
∗

∶ H
4,0(X) ≅

−→ H
4,0(X ′) ,

with inverse given by 1

d
g∗. Let σ

′

i∶X
′
→ X

′
(i = 1, . . . , r) be the automorphism induced by σ

E
i .

For each i = 1, . . . , r, there is a commutative diagram

H
4,0(X ′) (σ′

i)∗
−−−→ H

4,0(X ′)
g
∗ ↑ ↓ g∗

H
4,0(X) (σi)∗

−−−→ H
4,0(X)

Defining a correspondence

Γ
′

=

r

∑
i=1

ciΓσ′

i
in A

4(X ′

×X
′) ,

we thus get a commutative diagram

H
4,0(X ′) (Γ′)∗

−−−→ H
4,0(X ′)

g
∗ ↑ ↓ g∗

H
4,0(X) Γ

∗

−→ H
4,0(X)

The assumption on Γ
∗

thus implies that

(Γ′)∗ = 0∶ H
4,0(X ′) → H

4,0(X ′) .
Since (by construction of X

′
) the cup–product map

H
2,0(X ′)⊗H

2,0(X ′) → H
4,0(X ′)

is an isomorphism of 1–dimensional C–vector spaces, we must have that

(Γ′)∗ = 0∶ H
2,0(X ′) → H

2,0(X ′) .
It is readily seen this implies

(5)
t
Γ
′

◦Π
X

′

2,0 = 0 in H
8(X ′

×X
′) .
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Let ΓA denote the correspondence

ΓA ∶=

r

∑
i=1

ciΓσE
i

in A
4(A × A) .

Let p
′
∶A → X

′
= A/(G′) denote the quotient morphism. There are relations

t
Γσ′ =

1

∣G′∣ Γp′ ◦
t
ΓA ◦

t
Γp′ in A

4(X ′

×X
′) ,

Π
X

′

2,0 =
1

∣G′∣ Γp′ ◦ Π
A
2,0 ◦

t
Γp′ in A

4(X ′

×X
′)

(6)

(the first relation is by construction of the automorphisms σ
′

i; the second relation can be taken as

definition, cf. corollary 3.11). Plugging in these relations in equality (5), one obtains

Γp′ ◦
t
ΓA ◦

t
Γp′ ◦ Γp′ ◦ Π

A
2,0 ◦

t
Γp′ = 0 in H

8(X ′

×X
′) .

Composing with
t
Γp′ on the left and Γp′ on the right, this implies in particular that

t
Γp′ ◦ Γp′ ◦

t
ΓA ◦

t
Γp′ ◦ Γp′ ◦ Π

A
2,0 ◦

t
Γp′ ◦ Γp′ = 0 in H

8(A ×A) .
Using the standard relation

t
Γp′ ◦ Γp′ =

1

∣G′∣ ∑g∈G′ Γg, this simplifies to

(∑
g∈G′

Γg) ◦ t
ΓA ◦ (∑

g∈G′

Γg) ◦ Π
A
2,0 = 0 in H

8(A × A) .

The left–hand side is a symmetrically distinguished cycle which is homologically trivial, and so

it is rationally trivial (theorem 2.24). That is,

(∑
g∈G′

Γg) ◦ t
ΓA ◦ (∑

g∈G′

Γg) ◦Π
A
2,0 = 0 in A

4(A × A) ,

in other words
t
Γp′ ◦ Γp′ ◦

t
ΓA ◦

t
Γp′ ◦ Γp′ ◦ Π

A
2,0 = 0 in A

4(A ×A) .
Now we descend again to X

′
by composing some more on both sides:

Γp′ ◦
t
Γp′ ◦ Γp′ ◦

t
ΓA ◦

t
Γp′ ◦ Γp′ ◦ Π

A
2,0 ◦

t
Γp′ = 0 in A

4(X ′

×X
′) .

Using the relations (6), this shimmers down to

(tΓ′) ◦ Π
X

′

2,0 = 0 in A
4(X ′

×X
′) .

This implies that

(Γ′)∗ = 0∶ A
2
hom(X ′) → A

2
hom(X ′) .

Since A
4
(4)(X ′) equals the image of the intersection product A

2
hom(X ′)⊗ A

2
hom(X ′) → A

4(X ′)
(proposition 3.12), we also have that

(Γ′)∗ = 0∶ A
4
(4)(X ′) → A

4
(4)(X ′) .
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The commutative diagram

A
4
(4)(X ′) (Γ′)∗

−−−→ A
4
(4)(X ′)

g
∗ ↑ ↑ g

∗

A
4
hom(X) Γ

∗

−→ A
4
hom(X) ,

in which vertical arrows are isomorphisms (proof of theorem 4.9), now implies that

Γ
∗

= 0∶ A
4
hom(X) → A

4
hom(X) .

�

5.2. Voisin conjecture. Motivated by the Bloch–Beilinson conjectures, Voisin formulated the

following conjecture:

Conjecture 5.4 (Voisin [52]). Let X be a smooth Calabi–Yau variety of dimension n. Let a, a
′
∈

A
n
hom(X) be two 0–cycles of degree 0. Then

a × a
′

= (−1)na′ × a in A
2n(X ×X) .

It seems reasonable to expect this conjecture to go through for Calabi–Yau’s that are quo-

tient varieties. In particular, conjecture 5.4 should be true for all EPW sextics that are quotient

varieties. We can prove this for the very special EPW sextic:

Proposition 5.5. Let X be the very special EPW sextic. Let a, a
′
∈ A

4
hom(X). Then

a × a
′

= a
′

× a in A
8(X ×X) .

Proof. As we have seen, there is a finite morphism p∶A → X , where A is an abelian fourfold

and

p
∗

∶ A
4
hom(X) → A

4
(4)(A) = (ΠA

4 )∗A4(A)
is a split injection. (The inverse to p

∗
is given by a multiple of p∗.) Proposition 5.5 now follows

from the following fact: any c, c
′
∈ A

4
(4)(A) verify

c × c
′

= c
′

× c in A
8(A × A) ;

this is [56, Example 4.40]. �
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2003/2004, Astérisque 299 Exp. No. 929, viii, 115—145,

[5] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18

(4) (1984), 755—782,

[6] A. Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), 647—651,
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[28] J. Iyer, Absolute Chow–Künneth decomposition for rational homogeneous bundles and for log homoge-

neous varieties, Michigan Math. Journal Vol.60, 1 (2011), 79—91,

[29] U. Jannsen, Motivic sheaves and filtrations on Chow groups, in: Motives (U. Jannsen et alii, eds.), Pro-

ceedings of Symposia in Pure Mathematics Vol. 55 (1994), Part 1,

[30] U. Jannsen, On finite–dimensional motives and Murre’s conjecture, in: Algebraic cycles and motives (J.

Nagel et alii, eds.), Cambridge University Press, Cambridge 2007,

[31] B. Kahn, J. P. Murre and C. Pedrini, On the transcendental part of the motive of a surface, in: Algebraic

cycles and motives (J. Nagel et alii, eds.), Cambridge University Press, Cambridge 2007,

[32] S. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173—201,

[33] J. Murre, On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II, Indag.

Math. 4 (1993), 177—201,

[34] J. Murre, J. Nagel and C. Peters, Lectures on the theory of pure motives, Amer. Math. Soc. University

Lecture Series 61, Providence 2013,

[35] K. O’Grady, Irreducible symplectic 4–folds and Eisenbud–Popescu–Walter sextics, Duke Math. J. 134(1)

(2006), 99—137,

[36] K. O’Grady, Double covers of EPW–sextics, Michigan Math. J. 62 (2013), 143—184,

[37] P. O’Sullivan, Algebraic cycles on an abelian variety, J. f. Reine u. Angew. Math. 654 (2011), 1—81,

[38] C. Pedrini, On the finite dimensionality of a K3 surface, Manuscripta Mathematica 138 (2012), 59—72,

[39] C. Pedrini, Bloch’s conjecture and valences of correspondences for K3 surfaces, arXiv:1510.05832v1,

[40] C. Pedrini and C. Weibel, Some surfaces of general type for which Bloch’s conjecture holds, to appear

in: Period Domains, Algebraic Cycles, and Arithmetic, Cambridge Univ. Press, 2015,

[41] U. Rieß, On the Chow ring of birational irreducible symplectic varieties, Manuscripta Math. 145 (2014),

473—501,

[42] T. Scholl, Classical motives, in: Motives (U. Jannsen et alii, eds.), Proceedings of Symposia in Pure

Mathematics Vol. 55 (1994), Part 1,

[43] M. Shen and C. Vial, The Fourier transform for certain hyperKähler fourfolds, Memoirs of the AMS 240

(2016), no.1139,

[44] M. Shen and C. Vial, The motive of the Hilbert cube X
[3]

, Forum Math. Sigma 4 (2016),

[45] C. Vial, Algebraic cycles and fibrations, Documenta Math. 18 (2013), 1521—1553,

[46] C. Vial, Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793—822,

[47] C. Vial, Remarks on motives of abelian type, to appear in Tohoku Math. J.,

[48] C. Vial, Niveau and coniveau filtrations on cohomology groups and Chow groups, Proceedings of the

LMS 106(2) (2013), 410—444,
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