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ALGEBRAIC CYCLES AND TRIPLE K3 BURGERS

ROBERT LATERVEER

ABSTRACT. We consider surfaces of geometric genus 3 with the property that their transcendental

cohomology splits into 3 pieces, each piece coming from a K3 surface. For certain families of

surfaces with this property, we can show there is a similar splitting on the level of Chow groups

(and Chow motives).

1. INTRODUCTION

This note is about a class of surfaces which we propose to call triple K3 burgers. These are

complex smooth projective surfaces S of general type of geometric genus 3, with the property

that there exist 3 K3 surfaces Xj such that the transcendental cohomology H2
tr(S) splits

(1) H2
tr(S)

∼= H2
tr(X0)⊕H2

tr(X1)⊕H2
tr(X2) .

(The precise definition of triple K3 burgers is more restrictive, cf. definition 3.1.)

The crystal ball of the Bloch–Beilinson–Murre conjectures [24], [25], [58], [35], [34] predicts

that relation (1) also holds on the level of Chow groups (and provided the Hodge conjecture is

true, the Chow motive of S should be of abelian type, in the sense of [49]). The main result of

this note provides a verification of this prediction in certain cases:

Theorem (=theorem 5.1). Let S be a triple K3 burger. Assume that either

(i) K2
S = 2, or

(ii) K2
S = 3 and the canonical map of S is base point free.

Then there is an isomorphism (induced by a correspondence)

A2
hom(S)

∼=
−→ A2

hom(X0)⊕ A2
hom(X1)⊕A2

hom(X2) ,

where the Xj are the associated K3 surfaces.

(Here A2
hom() denotes the Chow group of 0–cycles of degree 0 with rational coefficients.)

In each of the cases of theorem 5.1, these surfaces do exist (in case (i), they form a family of

dimension at least 6; in case (ii) the moduli dimension is 4).

It is not a coincidence that the surfaces of theorem 5.1 lie on or close to the Noether line

K2 = 2pg − 4. Indeed (as is known since the fundamental work of Horikawa [15], [16], [17],

[18], [19]), the canonical model of a general type surface on or close to the Noether line admits a

neat description as complete intersection in a certain weighted projective space. Thanks to such

a description, surfaces as in theorem 5.1 fit in nicely behaved universal families. Then, one can
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apply the alchemy of Voisin’s method of “spread” [54], [57], [58] to transmute the base metal of

the homological relation (1) into the pure gold of a rational equivalence.

We also prove (subsection 6.1) that a triple K3 burger S as in theorem 5.1 admits a canonical

0–cycle oS ∈ A2(S), such that there is a splitting

A2(S) = Q[oS]⊕ A2
hom(S) .

The cycle oS has the property that the intersection of certain divisors is proportional to oS (propo-

sition 6.8). Another characterization of oS is as follows (proposition 6.4): for any positive integer

k, the cycle koS is the unique degree k 0–cycle z for which the effective orbit Oz has dimension

≥ k. These results are based on similar results for the canonical 0–cycle of a K3 surface [21],

[3], [58], [56].

In a sense, the present note is a sequel to [30], which dealt with certain surfaces of geometric

genus pg = 2. The surfaces S of [30] are also studied in [14] and [37]; they have the property

that their transcendental cohomology decomposes

H2
tr(S)

∼= H2
tr(X0)⊕H2

tr(X1) ,

where X0, X1 are K3 surfaces. In [30], using arguments very similar to the present note, I proved

there exists a similar splitting on the level of Chow groups.

Several open questions remain, which I hope someone will be able to answer (cf. section 7).

Conventions. In this article, the word variety will refer to a reduced irreducible scheme of finite

type over C. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.

By default, all Chow groups will be with rational coefficients: we will denote by Aj(X)
the Chow group of j–dimensional cycles on X with Q–coefficients; for X smooth of dimension

n the notations Aj(X) and An−j(X) are used interchangeably. When dealing with Chow groups

with integral coefficients, we will make this clear by writing Aj(X)Z.

The notations Aj
hom(X), Aj

AJ(X) will be used to indicate the subgroups of homologically

trivial, resp. Abel–Jacobi trivial cycles. For a morphism f : X → Y , we will write Γf ∈
A∗(X × Y ) for the graph of f . The contravariant category of Chow motives (i.e., pure motives

with respect to rational equivalence as in [43], [35]) will be denoted Mrat.

We use Hj(X) to indicate singular cohomology Hj(X,Q), and Hj(X) to indicate Borel–

Moore homology HBM
j (X,Q).

2. PRELIMINARIES

2.1. Relative Künneth projectors.

Lemma 2.1. Let S → B be as in notation 3.13. There exist relative correspondences

πS
0 , πS

2 , πS
4 ∈ A2(S ×B S) ,

with the property that for each b ∈ B, the restriction

πS
i |b := πS

i |Sb×Sb
∈ H4(Sb × Sb)

is the ith Künneth component. Moreover,

(πS
2 |b)∗ = id: A2

hom(Sb) → A2
hom(Sb) .



ALGEBRAIC CYCLES AND TRIPLE K3 BURGERS 3

Proof. This is well–known, and holds more generally for any family of surfaces with H1(Sb) =
0. Let H ∈ A1(S) be a relatively ample divisor, and let d := deg(H2|Sb

). One defines

πS
0 :=

1

d
(p1)

∗(H2) ,

πS
4 :=

1

d
(p2)

∗(H2) ,

πS
2 := ∆S − πS

0 − πS
4 ∈ A2(S ×B S) .

It is readily checked this does the job. �

2.2. Transcendental part of the motive.

Theorem 2.2 (Kahn–Murre–Pedrini [26]). Let S be any smooth projective surface, and let

h(S) ∈ Mrat denote the Chow motive of S. There exists a self–dual Chow–Künneth decom-

position {πi} of S, with the property that there is a further splitting in orthogonal idempotents

π2 = πalg
2 + πtr

2 in A2(S × S) .

The action on cohomology is

(πalg
2 )∗H

∗(S) = N1H2(S) , (πtr
2 )∗H

∗(S) = H2
tr(S) ,

where the transcendental cohomology H2
tr(S) ⊂ H2(S) is defined as the orthogonal complement

of N1H2(S) with respect to the intersection pairing. The action on Chow groups is

(πalg
2 )∗A

∗(S) = N1H2(S) , (πtr
2 )∗A

∗(S) = A2
AJ(S) .

This gives rise to a well–defined Chow motive

htr
2 (S) := (S, πtr

2 , 0) ⊂ h(S) ∈ Mrat ,

the so–called transcendental part of the motive of S.

Proof. Let {πi} be a Chow–Künneth decomposition as in [26, Proposition 7.2.1]. The assertion

then follows from [26, Proposition 7.2.3]. �

3. TRIPLE K3 BURGERS

3.1. Definition.

Definition 3.1. A surface S is called a triple K3 burger if the following conditions are satisfied:

(0) S is minimal, of general type, with q = 0 and pg = 3;

(i) there exist involutions σj : S → S (j = 0, 1, 2) that commute with one another, and such that

the quotients

X̄j := S/ < σj > (j = 0, 1, 2)

are birational to a K3 surface Xj;

(ii) there is an isomorphism
(
(p0)

∗, (p1)
∗, (p2)

∗
)
: H2(X̄0,O)⊕H2(X̄1,O)⊕H2(X̄2,O)

∼=
−→ H2(S,O) ,

where pj : S → X̄j denotes the quotient morphism;
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(iii) the involutions σj respect the canonical divisor:

(σj)
∗KS = KS , j = 0, 1, 2 .

Remark 3.2. Let Ψj ∈ A2(Xj × S) (j = 0, 1, 2) be the correspondence defined by the diagram

S
↓

Xj → X̄j

where Xj → X̄j is a resolution of singularities and Xj is a K3 surface.

Since the X̄j have only quotient singularities and quotient singularities are rational, condition

(ii) of definition 3.1 is equivalent to asking for an isomorphism
(
(Ψ0)∗, (Ψ1)∗, (Ψ2)∗

)
: H2(X0,O)⊕H2(X1,O)⊕H2(X2,O)

∼=
−→ H2(S,O) .

Also, since (Ψj)∗ is a homomorphism of Hodge structures, condition (ii) is equivalent to an

isomorphism
(
(Ψ0)∗, (Ψ1)∗, (Ψ2)∗

)
: H2

tr(X0)⊕H2
tr(X1)⊕H2

tr(X2)
∼=
−→ H2

tr(S) .

(Here, by definition H2
tr() ⊂ H2() is the orthogonal complement of the Néron–Severi group

under the cup product pairing.)

Also, since (pj)
∗H2(X̄j) is contained in the σj–invariant part of H2(S), condition (ii) is equiv-

alent to the condition

(2) H2
tr(S) = H2

tr(S)
+−− ⊕H2

tr(S)
−+− ⊕H2

tr(S)
−−+ ,

where H2
tr(S)

+−− denotes the part of H2
tr(S) where σ0 acts as the identity and σ1, σ2 act as

minus the identity, and the other summands are defined similarly.

(This uses some Hodge theory. E.g., let us consider H2
tr(S)

++−. This is a Hodge substructure

of H2
tr(S), and so if it is non–trivial, it must have Gr0F of dimension ≥ 1. But then, as it is

contained in the image of H2
tr(X0), it must have Gr0F of dimension = 1. This implies that

(Ψ0)∗H
2
tr(X0) = H2

tr(S)
++− ,

as both sides are Hodge substructures of H2
tr(S) with dimGr0F = 1. But for the same reason, we

have

(Ψ1)∗H
2
tr(X1) = H2

tr(S)
++− ,

and so

(Ψ0)∗H
2
tr(X0) = (Ψ1)∗H

2
tr(X1) in H2

tr(S) .

But this is absurd, because it contradicts the surjectivity in condition (ii). We conclude that

H2
tr(S)

++− must be zero. Applying the same reasoning to the other eigenspaces, one arrives at

the isomorphism (2).)

Remark 3.3. Definition 3.1 is directly inspired by the definition of Todorov surfaces [47], [28],

[33], [41].

One could extend definition 3.1 to surfaces of any geometric genus: a surface S is called an

m–tuple K3 burger if pg(S) = m and there exist m involutions σ1, . . . , σm such that the quotients

S/ < σj > are birational to K3 surfaces and their transcendental cohomology generates H2
tr(S)
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as in condition (ii). For m = 1 (i.e., “simple K3 burgers”), one obtains certain Todorov surfaces.

(NB: There is a slight difference with the definition of Todorov surfaces; in the definition of a

Todorov surface one merely asks, instead of (iii), that the involution σ is composed with the

bicanonical map).

Surfaces similar to the case m = 2 of definition 3.1 (i.e., “double K3 burgers”) have been

studied in [14], [37], [30].

Remark 3.4. A closely related construction (which also inspired the present note) appears in

recent work of Garbagnati [14, Section 6.1]. Let S be the minimal model of the surface U10 of

[14, Section 6.1]. Then S satisfies conditions (0), (i) and (ii) of definition 3.1 (and I am not sure

about condition (iii)). Also, it follows from [14, Theorem 3.1] that K2
S = 9, and so S is not

among the cases covered by theorem 5.1.

The fact that K2
S = 9 means that S is quite far from the Noether line; hence there is (as far as

I am aware) not a nice and simple, Horikawa–style description of the canonical model of S as

a weighted complete intersection. Due to the lack of such a description, the method of “spread”

does not seem to apply to S, and I do not know how to handle the Chow groups of S.

Remark 3.5. Condition (iii) in definition 3.1 is admittedly somewhat ad hoc. The reason I have

added condition (iii) is that otherwise, I am not able to prove theorem 5.1.

(More precisely: condition (iii) ensures that the involutions σj come from involutions of the

ambient space (which will be a weighted projective space); as such, the involutions exist family–

wise, which will be crucial to the argument.)

Remark 3.6. Todorov surfaces have been classified: there are 11 irreducible families, each

of dimension 12 [33]. Likewise, it is perhaps possible to classify triple K3 burgers. The next

subsection provides a first step.

3.2. Structural results.

Notation 3.7. Let P be some weighted projective space, with weighted homogeneous coordinates

[x0 : x1 : · · · : xn]. We define involutions sj ∈ Aut(P), j = 0, . . . , n, by

sj[x0 : . . . : xn] = [x0 : · · · : −xj : . . . : xn] .

Similarly, for 0 ≤ i < j ≤ n we define involutions sij ∈ Aut(P) by

sij[x0 : . . . : xn] = [x0 : . . . : −xi : xi+1 : . . . : −xj : xj+1 : . . . : xn] .

Similarly, we define involutions sijk involving 3 minus signs.

Proposition 3.8. Let S be a triple K3 burger with K2 = 2. Then S is isomorphic to a smooth

degree 8 hypersurface in P(13, 4) invariant under G =< σ0, σ1, σ2 >, where {σ0, σ1, σ2} are

one of the following:

(i)

{σ0, σ1, σ2} = {s0, s1, s2} .

(ii)

{σ0, σ1, σ2} = {s0, s1, s01} .



6 ROBERT LATERVEER

(iii)

{σ0, σ1, σ2} = {s01, s02, s0} .

(iv)

{σ0, σ1, σ2} = {s01, s02, s12} .

Conversely, any such surface S is a triple K3 burger with K2 = 2, and the associated K3
surfaces are obtained as X̄j = S/ < σj >, where the σj are as in (i)–(iv).

Proof. Since S is minimal, of general type, with K2 = 2 and pg = 3, we know that S is

isomorphic to a smooth degree 8 hypersurface in P := P(13, 4) [17]. Since the involutions σj

(j = 0, 1, 2) preserve the polarization KS , they are induced by involutions of P. Let [x0 : x1 :
x2 : x3] be weighted homogeneous coordinates for P. After a projective transformation, we may

suppose the involutions are defined by adding a minus sign in front of one or two or three of the

xi, i.e. the σj are of the form si, sij , s012, where i, j ∈ {0, 1, 2}.

Griffiths residue calculus (which also exists for weighted projective hypersurfaces, cf. [11],

[2]) shows that H0,2(S) is generated by the image under the residue map of the holomorphic

forms with poles

(3) x0Ω/f , x1Ω/f , x2Ω/f .

Here, f is a defining equation for S and Ω is the standard 3–form

Ω :=
2∑

i=0

(−1)ixidx0 ∧ . . . d̂xi . . . dx3 − 4x3dx0 ∧ dx1 ∧ dx2

[11, 2.1.3], [2, Example 9.4].

The involution s012 acts as −1 on the form Ω. Hence, the involution s012 acts either as

(+1,+1,+1) or as (−1,−1,−1) on the three generators (3) (depending on whether s012 acts

as +1 or as −1 on f ). As such, the quotient S/ < s012 > can not be a K3 surface, and so s012 is

not among the σj .

Suppose now the σj are all of type si. The involution si acts on Ω as −1, and on f as ±1.

Considering the action on generators (3), clearly the only possibility is (i).

Suppose next that exactly one of the σj is of type sij (and so the others are of type si). Up to

a coordinate change, we may suppose σ2 = s01. The involution s01 acts on Ω as +1, and on f as

±1. Since the quotient S/ < s01 > is K3, the action on f has to be the identity, and so s01 acts

on the generators (3) as (−1,−1,+1). Clearly, the only possibility for {σ0, σ1} is now {s0, s1},

and so we are in case (ii).

Next, let us suppose that exactly two of the σj are of type sij , say σ0 = s01 and σ1 = s02. As

per above, the case sij(f) = −f can be excluded. We conclude that σ0 acts on the generators (3)

as (−1,−1,+1), and σ1 acts as (−1,+1,−1). The remaining involution σ2 = si should act as

(+1,−1,−1), and so σ2 = σ0, and we are in case (iii).

Finally, if all three σj are of type sij , they need to be different (for otherwise, there is a

generator (3) not preserved by any of the σj). Hence, we are in case (iv).

The converse is clear from the above argument. (Note that the involutions σj commute because

they commute as automorphisms of P.) �
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Remark 3.9. Triple K3 burgers as in proposition 3.8(i) form a family of moduli dimension 6.

Indeed, after a change of variables the equation defining S is of the form

(x3)
2 = f(x0, x1, x2) ,

i.e. S is a double cover of the plane branched along an octic f , where x0, x1, x2 occur only in

even degrees. This family has 6 moduli.

(The degree 8 equation

(x3)
2 = f(x0, x1, x2)

(with x0, x1, x2 occurring in even degree) depends on 15 parameters, so smooth hypersurfaces

of this type correspond to an open in P14. The group PGL(3) acts on these hypersurfaces, and

so we get 14− 8 = 6 moduli.)

One element in this family is the weighted Fermat hypersurface

x8
0 + x8

1 + x8
2 + x2

3 = 0 .

The surfaces of proposition 3.8(iii) and (iv) are the same family as that of (i); only the asso-

ciated K3 surfaces are different, so there are different “burger structures” on elements of this

family.

Proposition 3.10. Let S be a triple K3 burger with K2 = 3 and such that the canonical divisor

is base–point free. Then S is isomorphic to a smooth degree 6 hypersurface in P(13, 2) invariant

under G =< σ0, σ1, σ2 >, where {σ0, σ1, σ2} are one of the following:

(i)

{σ0, σ1, σ2} = {s0, s1, s2} .

(ii)

{σ0, σ1, σ2} = {s0, s1, s01} .

(iii)

{σ0, σ1, σ2} = {s01, s02, s0} .

(iv)

{σ0, σ1, σ2} = {s01, s02, s12} .

Conversely, any such surface S is a triple K3 burger with K2 = 3, and the associated K3
surfaces are obtained as X̄j = S/ < σj >, where the σj are as in (i)–(iv).

Proof. Since S is minimal, of general type, with K2 = pg = 3 and base point free canonical

divisor, we know that S is isomorphic to a degree 6 hypersurface in P(13, 2) [23].

To classify the possible involutions, one proceeds exactly as in the proof of proposition 3.8.

�

Remark 3.11. Triple K3 burgers with K2 = 3 and KS base–point free form a family of dimen-

sion 4. (Indeed, under the natural map

P(13, 2) → P(24) ,

the hypersurfaces as in proposition 3.10 correspond to degree 6 hypersurfaces in P(24). But

under the natural isomorphism

P(24)
∼=
−→ P(14) = P3 ,
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the degree 6 hypersurfaces in P(24) correspond to degree 3 hypersurfaces in P3, for which there

are 4 moduli.)

We note that there is a subfamily given by triple covers of the plane, and this subfamily has

moduli dimension 1.

(The degree 6 equation

(x3)
3 = f(x0, x1, x2)

with x0, x1, x2 occurring in even degree depends on 10 parameters. We get 10−1−dimPGL(3) =
1.)

One element in the family (which is also in the subfamily of triple planes) is given by the

weighted Fermat hypersurface

x6
0 + x6

1 + x6
2 + x3

3 = 0 .

Remark 3.12. I have not been able to classify triple K3 burgers with K2 = 3 without the

assumption that KS be base point free. When KS is not base–point free, it is known [23] there is

exactly one base–point, and the canonical model of S is isomorphic to a bidegree (3, 6) complete

intersection in P(13, 2, 3). However, determining the possible involutions σj in this case seems

to get messy.

Similarly, triple K3 burgers with K2 = 4 and KS base point free are complete intersections

in a weighted projective space [40]. I have not been able to classify them.

3.3. Families. This section establishes some notation. The two cases in notation 3.13 corre-

spond to two cases of propositions 3.8 and 3.10.

Notation 3.13. Let

S → B

denote one of the following families:

(i) (Case (i) of proposition 3.8) The family of all smooth hypersurfaces in P := P(13, 4) of type

fb(x0, x1, x2, x3) = 0 ,

where fb is weighted homogeneous of degree 8, and x0, x1, x2 occur only in even degree. Let Sb

denote the fibre of S over b ∈ B.

(ii) (Case (i) of proposition 3.10) The family of all smooth hypersurfaces in P = P(13, 2) of type

fb(x0, x1, x2, x3) = 0 ,

where fb is weighted homogeneous of degree 6, and x0, x1, x2 occur only in even degree. Let Sb

denote the fibre of S over b ∈ B.

Remark 3.14. Let S → B be the family as in notation 3.13(i) (resp. (ii)). Then any fibre Sb is

a triple K3 burger with K2 = 2 (resp. K2 = 3). This is immediate from proposition 3.8 (resp.

proposition 3.10).

Lemma 3.15. Let S → B be one of the two families of notation 3.13. The variety S is a smooth

quasi–projective variety.
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Proof. Let us treat case (i); the other case is similar. By construction, there are morphisms

S
π
−→ P

↓ ν

B

Let S̄ → B̄ denote the universal family of all (not necessarily smooth) hypersurfaces in P of type

fb(x0, x1, x2, x3) = 0 ,

where fb is weighted homogeneous of degree 8 and x0, x1, x2 only occur in even degrees. Then

B̄ is a projective space containing B as a Zariski open.

Lemma 3.16. For any x ∈ P(13, 4), there exists b ∈ B̄ such that x 6∈ Sb.

Proof. There is a (Z/2Z)3 cover

P(13, 4) → P(23, 4) ∼= P(13, 2) =: P′ .

The surfaces in S̄ → B̄ correspond to the complete linear system PH0(P′,OP′(4)) which is

(ample hence) base point free. �

Lemma 3.16 ensures that S̄ is a projective bundle over P(13, 4), in particular it is a projective

quotient variety. Any surface Sb with b ∈ B avoids the singular point of P(13, 4), and so S is

Zariski open inside a projective bundle over the non–singular locus of P(13, 4). It follows that S
is smooth. �

4. TRIVIAL CHOW GROUPS

This intermediate section contains a result asserting the triviality of a certain Chow group.

This result (proposition 4.1) will be the most essential ingredient in the proof of our main result

(theorem 5.1 in the next section). The proof of proposition 4.1 occupies subsection 4.2, and uses

a stratification argument borrowed from [29].

Proposition 4.1. Let S → B be a family of surfaces as in notation 3.13. Let B0 ⊂ B be a

Zariski open, and let S0 → B0 be the family obtained by restriction. Then

A2
hom(S

0 ×B0 S0) = 0 .

4.1. Weak and strong property.

Definition 4.2 (Totaro [48]). For any (not necessarily smooth) quasi–projective variety X , let

Ai(X, j) denote Bloch’s higher Chow groups with rational coefficients (these groups are some-

times written An−i(X, j)Q or CHn−i(X, j)Q, where n = dimX). As explained in [48, Section

4], the relation with algebraic K–theory ensures there are functorial cycle class maps

Ai(X, j) → GrW−2iH2i+j(X) ,

compatible with long exact sequences (here W∗ denotes Deligne’s weight filtration on Borel–

Moore homology [39]).

We say that X has the weak property if the cycle class maps induce isomorphisms

Ai(X)
∼=
−→ W−2iH2i(X)
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for all i.
We say that X has the strong property if X has the weak property, and, in addition, the cycle

class maps induce surjections

Ai(X, 1) ։ GrW−2iH2i+1(X)

for all i.

Lemma 4.3 ([48]). Let X be a quasi–projective variety, and Y ⊂ X a closed subvariety with

complement U = X \ Y . If X has the strong property and Y has the weak property, then U has

the strong property.

Proof. This is [48, Lemma 6]. �

Lemma 4.4. Let X be a quasi–projective variety, and Y ⊂ X a closed subvariety with comple-

ment U = X \ Y . If Y and U have the strong property, then so does X .

Proof. This is the same argument as [48, Lemma 7], which is a slightly different statement. As in

loc. cit., using the localization property of higher Chow groups [7], [31], one finds a commutative

diagram with exact rows

Ai(U, 1) → Ai(Y ) → Ai(X) → Ai(U) → 0
↓ ↓ ↓ ↓

GrW−2iH2i+1(U) → GrW−2iH2i(Y ) → GrW−2iH2i(X) → GrW−2iH2i(U) → 0

A diagram chase reveals that under the assumptions of the lemma, the one but last vertical arrow

is an isomorphism.

Continuing these long exact sequences to the left, there is a commutative diagram with exact

rows

Ai(Y, 1) → Ai(X, 1) → Ai(U, 1) → Ai(Y ) →
↓ ↓ ↓ ↓ ∼=

GrW−2iH2i+1(Y ) → GrW−2iH2i+1(X) → GrW−2iH2i+1(U) → GrW−2iH2i(Y ) →

Chasing some more inside this diagram, one finds that the second vertical arrow is a surjection.

�

Corollary 4.5. Let X be a quasi–projective variety that admits a stratification such that each

stratum is of the form Ak \ L, where L is a finite union of linearly embedded affine subspaces.

Then X has the strong property.

Proof. Affine space has the strong property (this is the homotopy invariance for higher Chow

groups). The subvariety L has the weak property. Doing a diagram chase as in lemma 4.4 (or

directly applying [48, Lemma 6]), it follows that the variety Ak \ L has the strong property. The

corollary now follows from lemma 4.4. �

Lemma 4.6. Let X be a quasi–projective variety with the strong property. Let Y → X be a

projective bundle. Then Y has the strong property.

Proof. This follows from the projective bundle formula for higher Chow groups [6]. �
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4.2. Proof of proposition 4.1.

Proof. (i) (K2 = 2) Let us use the shorthand

P := P(13, 4) ,

M := P× P ,

N :=
{

(fb, p, p
′) ∈ B̄ × P× P | fb(p) = fb(p

′) = 0
}

⊂ B̄ ×M .

The goal is to prove that

(4) A2
hom(N)

??
= 0 .

This implies proposition 4.1 for case (i), because (4) implies triviality of A2 of any open in N ,

and S ×B S is an open in N .

Inside M , we have various “partial diagonals”

∆M = ∆+++ :=
{

(p, p′) ∈ P× P | p = p′
}

,

∆+−+ :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [p′0 : −p′1 : p
′
2 : p

′
3]
}

,

∆−++ :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [−p′0 : p
′
1 : p

′
2 : p

′
3]
}

,

∆++− :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [p′0 : p
′
1 : −p′2 : p

′
3]
}

,

∆+−− :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [p′0 : −p′1 : −p′2 : p
′
3]
}

,

∆−+− :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [−p′0 : p
′
1 : −p′2 : p

′
3]
}

,

∆−−+ :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [−p′0 : −p′1 : p
′
2 : p

′
3]
}

,

∆−−− :=
{

(p, p′) ∈ P× P | [p0 : p1 : p2 : p3] = [p′0 : p
′
1 : p

′
2 : −p′3]

}

,

(Here, we write p = [p0 : p1 : p2 : p3] and p′ = [p′0 : p
′
1 : p

′
2 : p

′
3]. We observe that the various

∆±∓± are just the graphs of the elements of the group (Z/2Z)3 =< σ0, σ1, σ2 >⊂ Aut(P).)
Let us define the Zariski opens

M0 := M \ (∪∆±∓±) ,

N0 := N \ π−1(∪∆±∓±) .

Corollary 4.5 implies that the union ∪∆±∓± has the strong property. Since M = P×P has the

strong property, so does M0 (lemma 4.3). The morphism from N0 to M0 has constant dimension

(lemma 4.7), so it is a projective bundle and N0 also has the strong property (lemma 4.6).

Lemma 4.7. Let

(p, p′) ∈ M \ (∪∆±∓±) .

Then (p, p′) imposes 2 independent conditions on B̄, i.e. there exists b ∈ B̄ such that Sb contains

p but not p′.
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Proof. Consider the map

r × r : M = P× P → P′ × P′ ,

where P′ is as before P(2, 2, 2, 4). The condition (p, p′) 6∈ (∪∆±∓±) implies that r(p) 6= r(p′).
Since P′ is isomorphic to P′′ := P(1, 1, 1, 2) (and sections of OP′(8) correspond under this iso-

morphism to sections of OP′′(4)), lemma 4.8 below shows there exists Sb separating the points p
and p′.

Lemma 4.8. Let P′′ be the weighted projective space P(1, 1, 1, 2). Then the line bundle OP′′(4)
is very ample.

Proof. The coherent sheaf OP′′(4) is locally free, because 4 is a multiple of the weights [11]. To

see that this line bundle is very ample, we use the following numerical criterion:

Proposition 4.9 (Delorme [10]). Let P = P(q0, q1, . . . , qn) be a weighted projective space. Let

m be the least common multiple of the qj . Suppose every monomial

xb0
0 x

b1
1 · · ·xbn

n

of (weighted) degree km (k ∈ N∗) is divisible by a monomial of (weighted) degree m. Then

OP (m) is very ample.

(This is the case E(x) = 0 of [10, Proposition 2.3(iii)].)

Using proposition 4.9, lemma 4.8 is now easily established. �

�

Let us now finish the proof of proposition 4.1 for case (i). Any point

(p, p′) ∈ M1 := (∪∆±∓±) ⊂ M

imposes exactly one condition on B̄; indeed p imposes one condition (lemma 3.16), and since

r(p) = r(p′) in P′ = P(2, 2, 2, 4), any Sb containing p also contains p′. This means that N1

has the structure of a projective bundle over M1. We have seen above that M1 has the strong

property. It follows from lemma 4.6 that

N1 := π−1(M1) ⊂ N

has the strong property. Lemma 4.4 now implies that N has the strong property, and so equality

(4) is proven.

(ii) (K2 = 3). Similar to case (i), except that P is nowP(13, 2) and the degree of the hypersurfaces

is 6. Instead of lemma 4.8, we now use that OP3(3) is very ample.

�

5. MAIN

Theorem 5.1. Let S be a triple K3 burger, and let Xj(j = 0, 1, 2) be the associatedK3 surfaces.

Assume that either

(i) K2
S = 2, or

(ii) K2
S = 3 and the canonical map is base point free.
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Then there is an isomorphism

(Ψ0)∗ + (Ψ1)∗ + (Ψ2)∗ : A2
hom(X0)⊕ A2

hom(X1)⊕A2
hom(X2)

∼=
−→ A2

hom(S) .

Proof. First, a reduction step. Let us define eigenspaces

A2(S)±∓± :=
{
a ∈ A2(S) | (σ0)

∗(a) = ±a , (σ1)
∗(a) = ∓a , (σ2)

∗(a) = ±a
}
.

We now make the following claim:

Claim 5.2. Let S be as in theorem 5.1. Any eigenspace with an odd number of minus signs is

trivial, i.e.

A2(S)−−− = A2(S)−++ = A2(S)+−+ = A2(S)++− = 0 .

Moreover,

A2
hom(S)

+++ = 0 .

Before proving the claim, let us verify that the claim suffices to prove the theorem: the claim

implies there is a decomposition

(5) A2
hom(S) = A2

hom(S)
+−− ⊕ A2

hom(S)
−+− ⊕A2

hom(S)
−−+ .

Also, since necessarily

(Ψ0)∗A
2(S) ⊂ A2(S)+±± ,

the claim implies that

(Ψ0)∗A
2
hom(S) ⊂ A2(S)+−− .

What’s more, since

(Ψ0)∗(Ψ0)
∗ = 2 id: A2(S)+±± → A2(S)+±± ,

there is actually equality

(Ψ0)∗(Ψ0)
∗A2

hom(S) = A2(S)+−− .

(And similarly, for reasons of symmetry,

(Ψ1)∗(Ψ1)
∗A2

hom(S) = A2(S)−+− ,

(Ψ2)∗(Ψ2)
∗A2

hom(S) = A2(S)−−+ .)

Therefore, the decomposition (5) is equivalent to the decomposition

A2
hom(S) = (Ψ0)∗(Ψ0)

∗A2
hom(S)⊕ (Ψ1)∗(Ψ1)

∗A2
hom(S)⊕ (Ψ2)∗(Ψ2)

∗A2
hom(S) .

This proves the surjectivity statement of the theorem

Again using the claim, one deduces that the composition

A2
hom(X0)⊕A2

hom(X1)⊕ A2
hom(X2)

(Ψ0)∗+(Ψ1)∗+(Ψ2)∗
−−−−−−−−−−−→ A2

hom(S)

((Ψ0)∗,(Ψ1)∗,(Ψ2)∗)
−−−−−−−−−−−→ A2

hom(X0)⊕ A2
hom(X1)⊕A2

hom(X2)

equals twice the identity. This proves the injectivity statement of the theorem.
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It remains to prove the claim. First, let us treat case (ii) of propositions 3.8 and 3.10. In this

case, σ2 = σ0 ◦ σ1 (i.e., G :=< σ0, σ1, σ2 >∼= (Z/2Z)2), and so the first part of the claim is

trivially true. The second part of the claim is also true for these cases: indeed, there is equality

A2
hom(S)

+++ = A2
hom(S/G) .

But the surface S/G is a degree 8 hypersurface in P(1, 2, 2, 4) (resp. a degree 6 hypersurface

in P(1, 23)), and so S/G is a surface with quotient singularities and ample anticanonical bundle.

Such surfaces are rational [59, Theorem 2.3], and hence A2
hom(S/G) = 0.

Next, let us consider the cases (i), (iii) and (iv) of propositions 3.8 and 3.10. In this case, the

surfaces Sb are elements of the families of notation 3.13. The argument, in a nutshell, is now as

follows: the correspondences Ψj exist as relative correspondences for the whole family of triple

K3 burgers. Using the trivial Chow groups result (proposition 4.1), one can upgrade a vanishing

in cohomology to a vanishing of Chow groups.

We now proceed to prove claim 5.2 for surfaces as in proposition 3.8(i), (iii) and (iv). (The

cases of proposition 3.10(i), (iii) and (iv) are mostly the same, modulo some mutatis mutandis

which we will indicate below).

Cases (i), (iii), (iv) of proposition 3.8: Let

S → B

denote the universal family of surfaces as in notation 3.13(i). Let {σ0, σ1, σ1} be either {s0, s1, s2}
or {s01, s02, s0}, and let

Xj := S/σj (j = 0, 1, 2)

denote the universal families of associated K3 surfaces as in notation 3.13. For any b ∈ B, we

will write Sb for the fibre of S over b, and X0b (resp. X1b resp. X2b) for the fibre of X0 (resp. X1

resp. X2) over b. Likewise, we will write σ0b, σ1b, σ2b for the restriction of σ0 (resp. σ1 resp. σ2)

to Sb. For a relative correspondence Γ ∈ A∗(S ×B S), we will use the shorthand

Γ|b := Γ|Sb×Sb
∈ A∗(Sb × Sb)

for the restriction (i.e., the image of Γ under the Gysin homomorphism induced by the inclusion

b →֒ B).

By definition (cf. remark 3.2), we know that there is a fibrewise isomorphism

H2
tr(Sb) ∼= H2

tr(Sb)
+−− ⊕H2

tr(Sb)
−+− ⊕H2

tr(Sb)
−−+

∼= H2
tr(X0b)⊕H2

tr(X1b)⊕H2
tr(X2b) ∀b ∈ B .

(6)

That is, there are no eigenspaces with an odd number of minus signs:

(7) H2
tr(Sb)

−−− = H2
tr(Sb)

−++ = H2
tr(Sb)

+−+ = H2
tr(Sb)

++− = 0 ∀b ∈ B .

Also, there is no eigenspace without minus signs:

(8) H2
tr(Sb)

+++ = 0 ∀b ∈ B .
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Let us define a relative correspondence

Γ−−− :=
1

8
(∆S − Γσ0) ◦ (∆S − Γσ1) ◦ (∆S − Γσ2) ◦ π

S
2 ∈ A2(S ×B S) .

(For details on the formalism of relative correspondences and their composition, cf. [35, Chap-

ter 8] whose conventions are met with in our set–up.)

We observe that for any b ∈ B, the restriction

Γ−−−|b ∈ A2(Sb × Sb)

is a projector on H2(Sb)
−−−.

In terms of correspondences, the vanishing H2
tr(Sb)

−−− = 0 in (7) is equivalent to the state-

ment that
(
Γ−−−|b

)
◦ πSb

2,tr = 0 in H4(Sb × Sb) ∀b ∈ B .

(Here, πSb

2,tr is a projector defining the transcendental part of the motive as in theorem 2.2.) This

is in turn equivalent to the statement that for any b ∈ B, there exists a divisor Db ⊂ Sb, and a

cycle γb supported on Db ×Db ⊂ Sb × Sb, such that
(
Γ−−−|b

)
◦ πSb

2 = γb in H4(Sb × Sb) .

Using a Baire category argument as in [54, Proposition 3.7] or [57, Lemma 1.4], these data can

be “spread out” over the base B, i.e. one can find a divisor D ⊂ S and a cycle γ supported on

D ×B D ⊂ S ×B S such that
(
Γ−−− ◦ πS

2

)
|b = γ|b in H4(Sb × Sb) ∀b ∈ B .

In other words, the relative correspondence

Γ := Γ−−− ◦ πS
2 − γ ∈ A2(S ×B S)

is fibrewise homologically trivial:

Γ|b ∈ A2
hom(Sb × Sb) ∀b ∈ B .

The next step is to make Γ globally homologically trivial. Employing a Leray spectral se-

quence argument as in [54, Lemmas 3.11 and 3.12], this can be done by adding a cycle coming

from the ambient space P. More precisely, the argument of [54, Lemmas 3.11 and 3.12] proves

the following: up to shrinking the base (i.e., after replacing B by a dense Zariski open B′ ⊂ B,

and writing B := B′ for simplicity), there exists δ ∈ A2(P× P) such that

Γ + (δ × B)|S×BS ∈ A2
hom(S ×B S) .

In view of the fact that A2
hom(S ×B S) = 0 (proposition 4.1), it follows that

Γ + (δ × B)|S×BS = 0 in A2(S ×B S) .

We know that for any b ∈ B, the restriction δ|b acts trivially on A2
hom(Sb) (the action factors over

A∗
hom(P) = 0). The above thus implies in particular that

(Γ|b)∗ = 0: A2
hom(Sb) → A2

hom(Sb) ∀b ∈ B .

By definition of Γ, this means that
(
Γ−−−|b − γ|b

)

∗ = 0: A2
hom(Sb) → A2

hom(Sb) ∀b ∈ B .
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Since for b ∈ B general, the restriction γ|b will still be supported on (divisor)×(divisor), we

know that

(γ|b)∗ = 0: A2
hom(Sb) → A2

hom(Sb) for general b ∈ B .

Thus, the above simplifies to
(
(Γ−−− ◦ πS

2 )|b
)

∗ = 0: A2
hom(Sb) → A2

hom(Sb) for general b ∈ B .

Using a Baire category argument as in [12, Lemma 3.1], this can be extended to all elements of

the base B: we actually have
(
(Γ−−− ◦ πS

2 |b
)

∗ = 0: A2
hom(Sb) → A2

hom(Sb) ∀b ∈ B ,

where B is now once more (as in the beginning of the proof) the parameter space parametrizing

all triple K3 burgers as in notation 3.13.

By construction Γ−−−|b acts on A2(Sb)
−−− as the identity, and

(Γ−−− ◦ πS
2 )|b = Γ−−−|b ◦ π

Sb

2

acts on A2
hom(Sb)

−−− as the identity. The above thus implies the vanishing

A2
hom(Sb)

−−− = 0 ∀b ∈ B ,

which proves the first part of the claim. The other parts of the claim are proven similarly, by

choosing a different correspondence: e.g., for the second vanishing statement one considers the

relative correspondence

Γ−++ :=
1

8
(∆S − Γσ0) ◦ (∆S + Γσ1) ◦ (∆S + Γσ2) ◦ π

S
2 ∈ A2(S ×B S) .

Cases (i), (iii), (iv) of proposition 3.10: The claim is proven by the same argument as in case (i),

applied to the family S → B as specified in notation 3.13. The weighted projective space P now

has different weights, and the defining equation has a different degree. The trivial Chow groups

statement (proposition 4.1) still holds for this family. �

6. COROLLARIES

6.1. The canonical 0–cycle. In this subsection, we work with integral Chow groups Ai()Z,

instead of Chow groups with rational coefficients. Let S be a triple K3 burger as in theorem

5.1. Thanks to Rojtman’s theorem [42], theorem 5.1 implies that

A2(S)+++
Z

∼= Z .

Definition 6.1. Let S be a triple K3 burger as in theorem 5.1. The canonical 0–cycle oS is

defined as the unique degree 1 cycle such that

A2(S)+++
Z = Z[oS]

(where A2(S)+++
Z denotes as before the subspace where σj acts as the identity for j = 0, 1, 2).

Equivalently, oS is the unique degree 1 cycle z satisfying

(Ψj)
∗(z) = oXj

in A2(Xj)Z (j = 0, 1, 2) ,
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where Xj are the associated K3 surfaces and the correspondences Ψj ∈ A2(Xj × S)Z are as

above.

Equivalently, oS is the unique degree 1 cycle z satisfying

(Ψj)∗(Ψj)
∗(z) = 2z in A2(S)Z (j = 0, 1, 2) .

The equivalences in definition 6.1 are valid because of the following lemma:

Lemma 6.2. Let S be a triple K3 burger as in theorem 5.1. Then

(Ψ0)∗(oX0) = (Ψ1)∗(oX1) = (Ψ2)∗(oX2) ∈ A2(S)Z .

Proof. The point is that there is a commutative diagram of surfaces

S
ւ p0 ↓ p1 ց p2

X̄0 X̄1 X̄2

ց r0 ↓ r1 ւ r2

W

where all arrows are degree 2 morphisms, and A2(W )Z = Z. (In case (i) of theorem 5.1, the sur-

face W is defined as the degree 8 hypersurface in P(23, 4) defined by the equation f(t0, t1, t2, x3) =
0, where f(x2

0, x
2
1, x

2
2, x3) = 0 is a defining equation for S. For cases (ii) and (iii), the construc-

tion is similar.)

Let us pick two divisors D,D′ on W , and set

w := D ·D′ ∈ A2(W ) .

The pullbacks to the various X̄j are intersections of divisors, and so

(rj)
∗(w) = d oX̄j

in A2(X̄j) (j = 0, 1, 2) .

(Here, d = deg(D ·D′), and we define oX̄j
to be (qj)∗(oXj

.) This implies that

(Ψj)∗(d oXj
) = (pj)

∗(d oX̄j
) = (rj ◦ pj)

∗(w) in A2(S)Z (j = 0, 1, 2) ,

and so

d(Ψ0)∗(oX0) = d(Ψ1)∗(oX1) = d(Ψ2)∗(oX2) ∈ A2(S)Z .

Using Rojtman’s theorem [42], this proves the lemma. �

We now recall the definition of the “effective orbit under rational equivalence” of a 0–cycle:

Definition 6.3 (Voisin [56]). Let S be any surface. Given a cycle z ∈ A2(S)Z of degree k ≥ 0,

we define the “effective orbit” Oz as

Oz :=
⋃

z′∈X(k),z′∼ratz

supp(z′) ⊂ X(k) .

(Here, the union is taken over all k–tuples of points z′ such that the 0–cycle associated to z′ is

rationally equivalent to the 0–cycle z in X .)
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One defines

dimOz := sup
V⊂Oz

dim V ,

where the supremum runs over all irreducible components V ⊂ Oz (we note that Oz is known to

be a countable union of closed subvarieties, so this is well–defined).

Inspired by [56], one can give a nice characterization of the canonical 0–cycle oS:

Proposition 6.4. Let S be a triple K3 burger as in theorem 5.1. Let k > 0 be an integer. Then

koS is the unique degree k 0–cycle z ∈ A2(S)Z satisfying dimOz ≥ k.

Proof. We actually prove a somewhat more general statement, which is based on Voisin’s result

[56, Theorem 1.4]. This result of Voisin’s gives an alternative description of O’Grady’s filtration

Sk
d () on the Chow group of 0–cycles of a K3 surface, in terms of effective orbits. We recall that

for any K3 surface X , O’Grady’s filtration [36] is defined as

(9) Sk
d (X) :=

{
z ∈ A2(X)Z | z = z′ + (k − d)oX

}
,

where z′ is effective of degree d and oX is the canonical 0–cycle.

Voisin gives an interesting alternative description of the O’Grady filtration: for any k > d ≥ 0,

she proves [56, Theorem 1.4] that

(10) Sk
d (X) =

{
z ∈ A2(X)Z | Oz ⊂ X(k) 6= ∅ and dimOz ≥ k − d

}
.

Let us now consider a triple K3 burger S as in theorem 5.1. The canonical 0–cycle oS exists,

and so definition (9) makes sense for S.

Step 1 (Unicity): Let z ∈ A2(S)Z of degree k, and let us assume that the orbit Oz ⊂ S(k) is

non–empty of dimension ≥ k−d, for some k > d ≥ 0. According to (the proof of) theorem 5.1,

we can write z uniquely as

z = koS + z0 + z1 + z2 in A2(S)Z ,

where z0 ∈ A2
hom(S)

+−−
Z and z1, z2 are in A2

hom(S)
−+−
Z resp. in A2

hom(S)
−−+
Z .

The assumption on Oz implies that the cycles

(Ψj)
∗(z) = koXj

+ (Ψj)
∗(zj) ∈ A2(Xj)Z (j = 0, 1, 2)

also have orbits Ozj of dimension ≥ k − d. Therefore, Voisin’s result (10) implies that

(Ψj)
∗(z) ∈ Sk

d (Xj) (j = 0, 1, 2) ,

i.e. one can write

(Ψj)
∗(z) = koXj

+ (Ψj)
∗(zj) = z′j + (k − d)oXj

in A2(Xj)Z (j = 0, 1, 2) ,

where z′j is effective of degree d. It follows that

(Ψj)
∗(zj) = z′j − d oXj

in A2(Xj)Z (j = 0, 1, 2) .
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Using the proof of theorem 5.1, we find that

2z = 2k oS + 2z0 + 2z1 + 2z2

= 2k oS + (Ψ0)∗(Ψ0)
∗(z0) + (Ψ1)∗(Ψ1)

∗(z1) + (Ψ2)∗(Ψ2)
∗(z2)

= 2k oS(Ψ0)∗(z
′
0 − d oX0) + (Ψ1)∗(z

′
1 − d oX1) + (Ψ2)∗(z

′
2 − d oX2)

= 2(k − 3d)oS + b0 + b1 + b2 in A2(S)Z ,

where b0 + b1 + b2 is effective of degree 6d. That is, we have

2z ∈ S2k
6d (S) .

In particular, taking d = 0 we obtain the following implication: if z is a degree k cycle with

orbit Oz of dimension ≥ k, then

2z = 2k oS in A2(S)Z .

As A2
hom(S)Z is torsion free, it follows that

z = k oS in A2(S)Z .

Step 2 (Existence): We now prove that the cycle z = k oS has orbit of dimension ≥ k. This is the

easier direction. Take j ∈ {0, 1, 2}, and let C̄ ⊂ X̄j be any rational curve. Using lemma 6.2, one

finds that the curve C := (pj)
−1(C̄) ⊂ S is a constant cycle curve, and any point p ∈ C is such

that (Ψj)
∗(p) = oXj

and so p represents oS . This proves the statement for k = 1. For k > 1, one

notes that C(k) ⊂ S(k) is contained in the orbit of k oS . �

Let Z be any smooth projective variety (say of dimension n), and let z ∈ An
hom(Z) be a degree

0 0–cycle. It is known that z is smash–nilpotent, meaning that

z×(N) :=
︸ ︷︷ ︸

(N times)

z × · · · × z = 0 in ANn(Zn)

for N >> 0 [51], [52]. In the special case of the varieties under consideration in this note, one

can give a precise estimate for the smash–nilpotence index N :

Proposition 6.5. Let S be a triple K3 burger as in theorem 5.1. Let z ∈ A2
hom(S) be a 0–cycle

of the form

z = z′ − doS ∈ A2
hom(S) ,

where z′ is an effective cycle of degree d. Then

z×(3d+1) :=
︸ ︷︷ ︸

((3d + 1) times)

z × · · · × z = 0 in A6d+2(S3d+1) .

Proof. The assumption means that z is in the subgroup S0
d(S) of the O’Grady filtration mentioned

in the proof of proposition 6.4 above. This implies that

(Ψj)
∗(z) ∈ S0

d(Xj) , j = 0, 1, 2 .

For any positive integer r, theorem 6.11 gives an isomorphism of Chow motives

t(Sr) ∼=
⊕

r0+r1+r2=r

t((X0)
r0)⊗ t((X1)

r1)⊗ t((X2)
r2) in Mrat
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(induced by the Ψj), and so there is an isomorphism of Chow groups
∑

r0+r1+r2=r

(
((Ψ0)

r0)∗, ((Ψ1)
r1)∗, ((Ψ2)

r2)∗
)
:

A2r(t(S)⊗r)
∼=
−→

⊕

r0+r1+r2=r

A2r0(t(X0)
⊗r0)⊗A2r1(t(X1)

⊗r1)⊗ A2r2(t(X2)
⊗r2) .

In particular, this implies that there is an injection
∑

r0+r1+r2=r

(
((Ψ0)

r0)∗, ((Ψ1)
r1)∗, ((Ψ2)

r2)∗
)
:

A2r(t(S)⊗r) →֒
⊕

r0+r1+r2=r

A2r0((X0)
r0)⊗ A2r1((X1)

r1)⊗ A2r2((X2)
r2) .

(11)

Consider now the element z×r for r ≥ 3d+ 1. Since z ∈ A2
hom(S) = A2(t(S)), we have

z×r ∈ A2r(t(S)⊗r) .

The image of z×r in the right–hand side of the injection (11) is a sum of 0–cycles on the various

products (X0)
r0 × (X1)

r1 × (X2)
r2 . In each summand, one of the integers r0, r1, r2 must be

≥ d+ 1. The proposition now follows from the following lemma:

Lemma 6.6 (O’Grady [36]). Let X be a K3 surface, and let z ∈ S0
d(X). Then

z×(d+1) = 0 in A2d+2(Xd+1) .

Proof. This is established in [36, (5.0.1)]. The reason is that z can be represented by a degree 0
0–cycle w on a curve C ⊂ X of geometric genus d. This proves the lemma, for it is known since

[52] that w×(d+1) = 0 in Ad+1(Cd+1). �

�

6.2. The canonical 0–cycle, bis.

Definition 6.7. Let S be a triple K3 burger, and let Xj (j = 0, 1, 2) be the associated K3
surfaces. By definition, the subgroup of K3–type divisors A1

K3(S)Z ⊂ A1(S)Z is defined as

A1
K3(S)Z :=

(
(Ψ0)∗A

1(X0)Z ∩ (Ψ1)∗A
1(X1)Z

)
+
(
(Ψ0)∗A

1(X0)Z ∩ (Ψ2)∗A
1(X2)Z

)

+
(
(Ψ1)∗A

1(X1)Z ∩ (Ψ2)∗A
1(X2)Z

)
.

That is,

A1
K3(S)Z = A1(S)+++

Z ⊕ A1(S)++−
Z ⊕A1(S)+−+

Z ⊕A1(S)−++
Z .

Proposition 6.8. Let S be a triple K3 burger as in theorem 5.1. Let D,D′ ∈ A1
K3(S)Z. Then

D ·D′ = deg(D ·D′) oS in A2(S)Z .

Proof. Since A2
hom(S)Z is torsion free [42], it suffices to prove the statement for Chow groups

with Q–coefficients. We have seen that

A1
K3(S) = A1(S)+++ ⊕A1(S)++− ⊕A1(S)+−+ ⊕ A1(S)−++ .
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Assuming that D and D′ are in the same summand of this decomposition, we have

D ·D′ ∈ A2(S)+++ = Q[oS] ,

and we are done.

Next, let us assume D is in the first summand and D′ is in another summand (say the second).

Then

D ·D′ ∈ A2(S)++− .

But A2(S)++− = 0 (proof of theorem 5.1), and so D ·D′ = 0.

Finally, let us assume D and D′ are in two different summands and neither is in the first

summand (say D ∈ A1(S)+−+ and D′ ∈ A1(S)−++). Then

D ·D′ ∈ A2(S)−−+ .

We have seen (proof of theorem 5.1) that A2(S)−−+ is mapped isomorphically (under (Ψ2)
∗) to

A2
hom(X2), and so to prove that D ·D′ = 0, it suffices to prove that

(Ψ2)
∗(D ·D′)

??
= 0 in A2

hom(X2) .

To this end, recall that (by construction) (Ψ2)
∗ = (q2)

∗(p2)∗ (where p2 : S → X̄2 is projection

to the K3 surface with double points, and q2 : X2 → X̄2 is a resolution of singularities). Hence,

(Ψ2)
∗(D ·D′) = (q2)

∗(p2)∗(D ·D′)

= (q2)
∗
(
F̄ · (p2)∗(D

′)
)

= (q2)
∗(F̄ ) · (q2)

∗(p2)∗(D
′)

= 0 in A2
hom(X2) .

Here, F̄ ∈ A1(X̄2) is a divisor such that D = (p2)
∗(F̄ ). The last line follows from the celebrated

Beauville–Voisin result that

(
A1(X2) · A

1(X2)
)
∩ A2

hom(X2) = 0

for any K3 surface X2 [3]. �

Remark 6.9. The behaviour displayed in proposition 6.8 is remarkable, because the dimension

of A1
K3(S) tends to be large. For example, let S be a triple K3 burger with K2 = 2. Then

A1(S)+++ coincides with A1(T ), where

T := S/ < σ0, σ1, σ2 > .

The surface T can be identified with a degree 4 hypersurface in P(13, 2). Hence, T is isomorphic

to the double cover of P2 branched along a quartic curve. In case the quartic curve is smooth,

one has dimA1(T ) = dimH2(T ) = 8 [46], and so

dimA1
K3(S) ≥ dimA1(S)+++ = 8 .
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6.3. Bloch conjecture.

Corollary 6.10. Let S be a triple K3 burger as in theorem 5.1, and let σ0, σ1, σ2 be the three

covering involutions. Let f ∈ Aut(S) be a finite–order automorphism that commutes with the

σj , and such that

f ∗ = id: H2,0(S) → H2,0(S) .

Then also

f ∗ = id: A2(S) → A2(S) .

Proof. Since f commutes with the σj , f induces finite–order automorphisms fj ∈ Aut(Xj), j =
0, 1, 2 that are symplectic. Huybrechts has proven [20] that one has

(fj)
∗ = id: A2(Xj) → A2(Xj) (j = 0, 1, 2) .

Theorem 5.1, combined with the commutative diagram

A2
hom(S)

f∗

−→ A2
hom(S)

↑ (Ψj)∗ ↑ (Ψj)∗

A2
hom(Xj)

(fj)
∗

−−−→ A2
hom(Xj)

(j = 0, 1, 2)

implies that

f ∗ = id: A2
hom(S) → A2

hom(S) .

Since the 1–dimensional subspace A2(S)+++ is fixed by f , this proves the corollary. �

6.4. Finite–dimensionality.

Corollary 6.11. Let S be a triple burger as in theorem 5.1, and let Xj be the associated K3
surfaces. The morphism of Chow motives

(Ψ0,Ψ1,Ψ2) : t(X0)⊕ t(X1)⊕ t(X2) −→ t(S) in Mrat

is an isomorphism. (Here, t() denotes the transcendental part of the motive, as in theorem 2.2.)

Proof. We may suppose S and the Xj are defined over some subfield k ⊂ C which is finitely

generated over Q. To prove the isomorphism of motives, it suffices to prove there is an isomor-

phism
(
(Ψ0)∗, (Ψ1)∗, (Ψ2)∗

)
: A2

hom((X0)K)⊕ A2
hom((X1)K)⊕ A2

hom((X2)K)
∼=
−→ A2

hom(SK)

for all function fields K = k(Z) of varietiesZ defined over k [22, Lemma 1.1]. This is equivalent

to proving claim 5.2 for the surface SK . Since C is a universal domain, one can choose an

embedding K ⊂ C. As is well–known (cf. [5, Appendix to Lecture 1]), this induces an injection

A2(SK) →֒ A2(SC) ,

and so claim 5.2 for SK follows from claim 5.2 for SC. �

Corollary 6.12. Let S be as in theorem 5.1, and assume

dimH2
tr(S) ≤ 7 .

Then S has finite–dimensional motive (in the sense of Kimura [27]). What’s more, S has motive

of abelian type (in the sense of [49]).
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Proof. Let X0, X1, X2 be the associated K3 surfaces. Recall (proposition 3.2) that there is an

isomorphism

H2
tr(S)

∼= H2
tr(X0)⊕H2

tr(X1)⊕H2
tr(X2) .

The Xj being K3 surfaces, the dimension of H2
tr(Xj) is at least 2, and so the assumption on

H2
tr(S) implies that

dimH2
tr(Xj) ≤ 3 (j = 0, 1, 2) .

It follows from [38] that the Xj have finite-dimensional motive. In view of corollary 6.11, the

motive t(S) is isomorphic to t(X0)⊕ t(X1)⊕ t(X2), and so this implies the corollary.

To see that S has motive of abelian type, one remarks that the K3 surfaces Xj either have

a Shioda–Inose structure, or are rationally dominated by a Kummer surface [45], [32]. This

implies that their motive is actually a submotive of the motive of an abelian surface. �

Remark 6.13. In fairness, I hasten to add that I am not sure whether surfaces S as in corollary

6.12 exist. Indeed, one might naively expect that inside the families

Xj → B (j = 0, 1, 2)

of K3 surfaces associated to the family S → B (cf. notation 3.13), ρ–maximal surfaces lie

analytically dense (and so ρ–maximal triple K3 burgers would also be analytically dense). But

to prove this, one would need to know a Torelli result for this type of K3 surfaces.

For this reason, corollary 6.12 is only a conditional result.

7. OPEN QUESTIONS

Question 7.1. Can one prove Torelli type theorems for families of tripleK3 burgers as in theorem

5.1 ? As noted in remark 6.13, this would have interesting consequences for the distribution of

Picard numbers, and for the existence of certain finite–dimensional motives.

Question 7.2. Let S be a triple K3 burger as in theorem 5.1. I wonder whether a stronger

version of proposition 6.8 might be true: is it the case that (as for K3 surfaces)

A1(S)Z · A
1(S)Z = Z[oS] ⊂ A2(S)Z ??

On a related note, does S have a multiplicative Chow–Künneth decomposition, in the sense of

[44] ?

Question 7.3. Let S be a triple K3 burger as in theorem 5.1. Is it the case that (as for K3
surfaces) the second Chern class c2(TS) ∈ A2(S) lies in the subgroup Q[oS] ?

Question 7.4. Let X be a K3 surface, and let F be a simple rigid vector bundle on X . Voisin

has proven [56, Theorem 1.9] that c2(F ) ∈ A2(X) lies in the subgroup Q[oX ]. Can one prove a

similar statement for triple K3 burgers ?

(Presumably, Voisin’s argument for K3 surfaces can be adapted to triple K3 burgers ? At

least the “dimension of orbit” part goes through unchanged (proposition 6.4). However, Voisin’s

argument also involves Riemann–Roch calculations, which rely on having trivial canonical bun-

dle. I have not pursued this.)
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Question 7.5. Let π : S → B be a family of surfaces (i.e., a smooth projective morphism with

2–dimensional fibres). According to Deligne [8], there is a decomposition isomorphism

Rπ∗Q ∼=
⊕

i

Riπ∗Q[−i]

in the derived category of sheaves of Q–vector spaces on B. If the fibres of π are K3 surfaces,

then according to Voisin [53], one can choose an isomorphism that becomes multiplicative after

shrinking the base B. Can one do the same for a family of triple K3 burgers ?

(This is closely related to the existence of a multiplicative Chow–Künneth decomposition, cf.

[50, Section 4].)

Question 7.6. What are the generic and maximal Picard numbers for the families of triple K3
burgers of theorem 5.1 ?

Question 7.7. Constructing quadruple K3 burgers (i.e., surfaces satisfying the m = 4 analogon

of definition 3.1) seems a daunting task.

(For example: if we suppose S is a canonical surface of general type with pg = 4 and K2 = 5,

then we know [15] that S is isomorphic to a quintic in P3 with rational double points. Consider

the involutions

σ0[x0 : x1 : x2 : x3] = [−x0 : x1 : x2 : x3] ,

σ1[x0 : x1 : x2 : x3] = [x0 : −x1 : x2 : x3] ,

σ2[x0 : x1 : x2 : x3] = [x0 : x1 : −x2 : x3] ,

σ3[x0 : x1 : x2 : x3] = [x0 : x1 : x2 : −x3] ,

If S is a hypersurface invariant under σj (i.e., the defining equation of S contains only even

powers of xj), the quotient S/ < σj > is a K3 surface with double points. However, clearly

there is no quintic hypersurface invariant under all 4 involutions σj !)

The following is a weaker question: can one at least find general type surfaces S with pg(S) =
4 such that the transcendental cohomology of S splits in 4 pieces of K3 type ? And what about

pg > 4 ?
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