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Self-similar measures and the Rajchman

property

Julien Brémont

Université Paris-Est Créteil, avril 2020

Abstract

For Bernoulli convolutions, the convergence to zero of the Fourier transform at infinity was
characterized by successive works of Erdös [4] and Salem [17]. We provide a quasi-complete
extension of these results for general self-similar measures on the real line.

1 Introduction

Rajchman measures. In the present article we consider the question of extending some classical
results concerning Bernoulli convolutions to a more general context of self-similar measures. For a
Borel probability measure µ on R, define its Fourier transform as :

µ̂(t) =

∫
R
e2iπtx dµ(x), t ∈ R.

We say that µ is Rajchman, whenever µ̂(t) → 0, as t → +∞. When µ is a Borel probability
measure on the torus T = R\Z, we introduce its Fourier coefficients, defined as :

µ̂(n) =

∫
T
e2iπnx dµ(x), n ∈ Z.

In this study, starting from a Borel probability measure µ on R, Borel probability measures on T
will naturally appear, quantifying the non-Rajchman character of µ.

For a Borel probability measure µ on R, the Rajchman property holds for example if µ has a
density with respect to Lebesgue measure LR, by the Riemann-Lebesgue lemma. The situation can
be more subtle and for instance there exist Cantor sets of zero Lebesgue measure and even of zero-
Hausdorff dimension which support a Rajchman measure; cf Menshov [13], Bluhm [2]. Questions
on the Rajchman property of a measure naturally arise in Harmonic Analysis, for example when
studying sets of multiplicity for trigonometric series; cf Lyons [12] or Zygmund [28]. We shall say
a word on this topic at the end of the article. A classical counter-example is the uniform measure
µ on the standard middle-third Cantor set, which is a continuous singular measure, not Rajchman
(due to µ̂(3n) = µ̂(n), n ∈ Z). As in this last example, the obstructions for a measure to be
Rajchman are often seen to be of arithmetical nature. The present work goes in this direction.

As it concerns t → +∞, the Rajchman character of a measure µ on R is an information of local
regularity. As is well-known, it says for example that µ has no atom; if ever the convergence
to zero is fast enough, then µ has a density; etc. Stricto sensu, the Rajchman character can be
reformulated as an equidistribution property modulo 1. Since µ̂(t)→ 0 is equivalent to µ̂(mt)→ 0
for any integer m 6= 0, if X is a real random variable with law µ, then µ is Rajchman if and only
if the law of tX mod 1 converges, as t→ +∞, to Lebesgue measure LT on T.

AMS 2010 subject classifications : 11K16, 37A45, 42A38, 42A61, 60K20.
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Self-similar measures. Let us now recall standard notions on self-similar measures on the real
line R, with a probabilistic point of view. We write L(X) for the law of a real random variable X.
Let N ≥ 0 and real affine maps ϕk(x) = rkx + bk, with rk > 0, for 0 ≤ k ≤ N , and at least one
rk < 1. We call (C) the condition that the (ϕk)0≤k≤N are all strict contractions, in other words :

(C) : 0 < rk < 1, for all 0 ≤ k ≤ N.

Introduce the vectors r = (rk)0≤k≤N and b = (bk)0≤k≤N . Notice for what follows that for n ≥ 0,
a composition ϕkn−1

◦ · · · ◦ ϕk0 has the explicit form :

ϕkn−1
◦ · · · ◦ ϕk0(x) = rkn−1

· · · rk0x+

n−1∑
l=0

bklrkn−1
· · · rkl+1

.

Consider the open convex set CN = {p = (p0, · · · , pN ) | ∀j, pj > 0,
∑
j pj = 1} and its closure C̄N .

Define DN (r) = {p ∈ C̄N |
∑

0≤j≤N pj log rj < 0}. This is a non-empty open subset of C̄N , for the

relative topology. Notice that DN (r) = C̄N , when condition (C) holds.

Fixing a probability vector p ∈ DN (r), we now compose the contractions at random, independently,
according to p. Precisely, let X0 be any real random variable and (εn)n≥0 be independent and
identically distributed random variables (i.i.d.), independent from X0, and with law p, in other
words P(ε0 = k) = pk, 0 ≤ k ≤ N . We consider the Markov chain (Xn)n≥0 on R defined by :

Xn = ϕεn−1 ◦ · · · ◦ ϕε0(X0), n ≥ 0.

The condition p ∈ DN (r) is a hypothesis of contraction on average, rewritten as E(log rε0) < 0.
Classically, it implies that (Xn)n≥0 has a unique stationary (time invariant) measure, written as
ν. This follows for example from the fact that L(Xn) = L(Yn), where :

Yn := ϕε0 ◦ · · · ◦ ϕεn−1
(X0) = rε0 · · · rεn−1

X0 +

n−1∑
l=0

bεlrε0 · · · rεl−1
.

As a standard fact, (Yn) is more stable than (Xn). Using the Law of Large Numbers, we obtain
n−1 log(rε0 · · · rεn−1)→ E(log rε0) < 0, a.-s., as n→ +∞, so Yn converges a.-s., as n→ +∞, to :

X :=
∑
l≥0

bεlrε0 · · · rεl−1
.

Setting ν = L(X), we obtain that L(Xn) weakly converges to ν. By construction, we have
L(Xn+1) =

∑
0≤j≤N pjL(Xn) ◦ ϕ−1

j . Taking the limit as n→ +∞, the measure ν verifies :

ν =
∑

0≤j≤N

pjν ◦ ϕ−1
j . (1)

The previous convergence implies that the solution of this “stable fixed point equation” is
unique among Borel probability measures. Also, ν has to be of pure type, i.e. either purely atomic
or absolutely continuous with respect to Lebesgue measure LR or else singular continuous, since
each term in its Radon-Nikodym decomposition with respect to LR verifies (1). A few remarks :

i) If p ∈ CN , the measure ν is purely atomic if and only if the ϕj have a common fixed point c,
in which case ν is the Dirac mass at c. Indeed, consider the necessity and suppose that ν has an
atom. Let a > 0 be the maximal mass of an atom and E the finite set of points having mass
a. Fixing any c ∈ E, the relation ν({c}) =

∑
j pjν({ϕ−1

j (c)}) furnishes ϕ−1
j (c) ∈ E, 0 ≤ j ≤ N .

Hence ϕ−nj (c) ∈ E, n ≥ 0, for all j. If ϕj 6= id, then ϕ−1
j (c) = c, the set {ϕ−nj (c), n ≥ 0} being

infinite otherwise. If ϕj = id, it fixes all points.

ii) The equation for a potential density f of ν with respect to LR, coming from (1) is :

f =
∑

0≤j≤N

pjr
−1
j f ◦ ϕ−1

j .

2



This is essentially an “unstable fixed point equation”, difficult to solve directly. It can be equiv-
alently reformulated into the fact that ((r−1

εn−1
· · · r−1

ε0 )f ◦ ϕ−1
εn−1
· · · ◦ ϕ−1

ε0 (x))n≥0 is a non-negative
martingale (for its natural filtration), for Lebesgue a.-e. x ∈ R. When f exists and is bounded,
then pj ≤ rj for all j, because pjr

−1
j ‖f‖∞ = ‖pjr−1

j f ◦ ϕ−1
j ‖∞ ≤ ‖f‖∞ and ‖f‖∞ 6= 0.

iii) Let f(x) = ax + b be an affine map, with a 6= 0. With the same p ∈ DN (r), consider the
conjugate system (ψj)0≤j≤N , with ψj(x) = f ◦ ϕj ◦ f−1(x) = rjx + b(1 − rj) + abj . It has an
invariant measure w = L(aX + b) verifying the relation ŵ(t) = ν̂(at)e2iπtb, t ∈ R. In particular ν
is Rajchman if and only if w is Rajchman.

iv) When supposing condition (C), some self-similar set F can be introduced, where F ⊂ R is
the unique non-empty compact set verifying the self-similarity relation F = ∪0≤k≤Nϕk(F ). See
for example Huchinson [7] for general properties of such sets. Introducing N = {0, 1, · · · } and
the compact S = {0, · · · , N}N, condition (C) implies that F is a continuous (and even hölderian)
image of S, in other words we have the following description :

F =

∑
l≥0

bxlrx0
· · · rxl−1

, (x0, x1, · · · ) ∈ S

 .

Whereas in the general case a self-similar invariant measure can have R as topological support,
under condition (C) the compact self-similar set F exists and supports any self-similar measure.

Background and content of the article. Back to the general case, we assume in the sequel that
the (ϕj)0≤j≤N do not have a common fixed point; in particular N ≥ 1. A difficult problem is to
characterize the absolute continuity of ν in terms of the parameters r, b and p. An example with a
long and well-known history is that of Bernoulli convolutions, corresponding to N = 1, the affine
contractions ϕ0(x) = λx− 1, ϕ1(x) = λx+ 1, 0 < λ < 1, and the probability vector p = (1/2, 1/2).
Notice that when the ri are equal (to some real in (0, 1)), the situation is a little simplified, as ν is
an infinite convolution (this is not true in general). Although we discuss below some works in this
context, we will not present here the vast subject of Bernoulli convolutions, addressing the reader
to detailed surveys, Peres-Schlag-Solomyak [15] or Solomyak [21].

For general self-similar measures, an important aspect of the problem, that we shall not enter,
and an active line of research, concerns the Hausdorff dimension of the measure ν, cf the funda-
mental work of Hochman [6] for example. In a large generality, cf for example Falconer [5] and
more recently Jaroszewska and Rams [9], there is an “entropy/Lyapunov exponent” upper-bound :

DimH(ν) ≤ min{1, s(p, r)}, where s(p, r) :=
−
∑N
i=0 pi log pi

−
∑N
i=0 pi log ri

.

The quantity s(p, r) is called the singularity dimension of the measure and can be > 1. The equality
DimH(ν) = 1 does not mean that ν is absolutely continuous, but the inequality s(p, r) < 1 implies
that ν is singular. The interesting domain of parameters for the question of the absolute continuity
of the invariant measure therefore corresponds to s(p, r) ≥ 1.

We focus in this work on another fundamental tool, the Fourier transform ν̂. If ν is not
Rajchman, the Riemann-Lebesgue lemma implies that ν is singular. This property was used by
Erdös [4] in the context of Bernoulli convolutions. Erdös proved that if 1/2 < λ < 1 is such that
1/λ is a Pisot number, then ν is not Rajchman. The reciprocal statement was next shown by Salem
[17]. As a result, for Bernoulli convolutions the Rajchman property always holds, except for a very
particular set of parameters. Some works have next focused on the decay on average of the Fourier
transform for general self-similar measures (supposing condition (C)), cf Strichartz [24, 25], Tsuji
[26]. In the same context, the non-Rajchman character was recently shown to hold for only a very
small set of parameters. Li and Sahlsten [11] showed that ν is Rajchman when some log ri/ log rj
is irrational, with moreover some logarithmic decay of ν̂ at infinity, under a Diophantine condition.
Next Solomyak [22] proved that outside a set of r of zero-Hausdorff dimension, ν̂ even has a power
decay at infinity.
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The aim of the present article is to study for general self-similar measures the exceptional
set of parameters where the Rajchman property is not true, trying to follow the line of [4] and
[17]. We essentially show that r and b have to be very specific, as for Bernoulli convolutions.
We shall first prove a general extension of the result of Salem [17], drastically reducing the set of
parameters where the Rajchman property does not hold. Focusing then on this particular case, we
provide a general characterization of the Rajchman character. Next, restricting to condition (C),
we prove a partial extension of the theorem of Erdös [4]. We finally give some complements, first
rather surprising numerical simulations involving the Plastic number, then an application to sets
of uniqueness for trigonometric series.

2 Statement of the results

Let us place in the general situation considered in the Introduction. Pisot numbers will play
a central role in the analysis. Let us introduce a few definitions concerning Algebraic Number
Theory; cf for example Samuel [19] for more details.

Definition 2.1
A Pisot number is a real algebraic integer θ > 1, with conjugates (the other roots of its minimal
unitary polynomial) of modulus strictly less than 1. Fixing such a θ > 1, denote its minimal
polynomial as Q = Xs+1 + asX

s + · · · + a0 ∈ Z[X], of degree s + 1, with s ≥ 0. If s = 0, then
θ is an integer ≥ 2. The images of µ ∈ Q[θ] by the s + 1 Q-homomorphisms Q[θ] → C are the
conjugates of µ corresponding to the field Q[θ], in general denoted by µ = µ(0), µ(1), · · · , µ(s).

i) For α ∈ Q[θ], the trace Trθ(α) is the trace of the linear operator x 7−→ αx of multiplication,
considered from Q[θ] to itself. As a general fact, Trθ(α) ∈ Q.

ii) Let Z[θ] = Zθ0 + · · ·+Zθs be the subring generated by θ of the ring of algebraic integers of Q[θ].
We write D(θ) for its Z-dual (as a Z-lattice) :

D(θ) = {α ∈ Q[θ], T rθ(θ
nα) ∈ Z, for 0 ≤ n ≤ s}.

It can be shown that D(θ) = (1/Q′(θ))Z[θ]. Classically, Trθ(θ
nα) ∈ Z, for all n ≥ 0, if this holds

for 0 ≤ n ≤ s. Define :

T (θ) = {α ∈ Q[θ], T rθ(θ
nα) ∈ Z, for large n ≥ 0} = ∪n≥0θ

−nD(θ) =
1

Q′(θ)
Z[θ, 1/θ],

where Z[θ, 1/θ] is the subring of Q[θ] generated by θ and 1/θ.

Remark. — In the context of the previous definition, introduce the integer-valued (s+1)× (s+1)-
companion matrix M of Q :

M =


0 1 · · · 0
...

. . .
. . .

...
...

... 0 1
−a0 · · · −as−1 −as

 .

One may show that for any µ ∈ Q[θ], setting V = (Trθ(θ
0µ), · · · , T rθ(θsµ)), then µ ∈ T (θ) if and

only if there exists n ≥ 0 such that VMn has integral entries.

We introduce some families of affine maps, that will play the role of canonical models for the
analysis of the Rajchman property.

Definition 2.2
Let N ≥ 1. A system of real affine maps ϕk(x) = rkx+ bk, with rk > 0, for 0 ≤ k ≤ N , is in Pisot
form, if there exist a Pisot number 1/λ > 1, relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ),
0 ≤ k ≤ N , such that ϕj(x) = λnjx+ µj, for all 0 ≤ j ≤ N .
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Remark. — If a family (ϕj)0≤j≤N is in Pisot form, then the (λ, (nj), (µj)) are uniquely determined.
Indeed, if the (λ′, (n′j), (µ

′
j)) also convene, it suffices to show that λ = λ′. Taking some collection

of integers (aj) realizing a Bezout relation for the (nj), we have :

λ = λ
∑
j ajnj = λ′

∑
j ajn

′
j = λ′p,

for some p ≥ 1. Idem, λ′ = λq, for some q ≥ 1. Hence pq = 1, giving p = q = 1 and λ = λ′.

As a first result, extending [17], the analysis of the non-Rajchman character of the invariant
measure necessitates to consider families in Pisot form.

Theorem 2.3
Let N ≥ 1, p ∈ CN and affine maps ϕk(x) = rkx + bk, rk > 0, for 0 ≤ k ≤ N , with no common
fixed point and

∑
0≤j≤N pj log rj < 0. The invariant measure ν is not Rajchman if and only if

there exists f(x) = ax + b, a 6= 0, such that the conjugate system (f ◦ ϕj ◦ f−1)0≤j≤N is in Pisot
form, for some Pisot number 1/λ > 1, with invariant measure w verifying ŵ(λ−k) 6→k+∞ 0.

In particular, rj = λnj , for all j. Up to an affine change of variables, the non-Rajchman
character can thus be read on the sequence (λ−k), as in [4]. In a second step, we provide a general
analysis of families in Pisot form.

Fix a Pisot number 1/λ > 1, N ≥ 1, relatively prime integers (nk)0≤k≤N and (µk)0≤k≤N ∈
T (1/λ)N+1, such that ϕk(x) = λnkx+ µk, 0 ≤ k ≤ N . Let p ∈ CN be such that

∑
0≤j≤N pjnj > 0

and i.i.d. random variables (εn)n∈Z, with P(ε0 = k) = pk, 0 ≤ k ≤ N . We introduce cocycle
notations S0 = 0 and Sl = nε0 + · · ·+ nεl−1

, S−l = −nε−l − · · · − nε−1
, for l ≥ 1.

An important preliminary remark is that when µ ∈ T (1/λ) and k ≥ 0 is large enough, we have :

λ−kµ+
∑

1≤j≤s

αkjµ
(j) = Tr1/λ(λ−kµ) ∈ Z,

where the (αj)0≤j≤s are the conjugates of 1/λ = α0 and the (µ(j))0≤j≤s that of µ = µ(0), cor-
responding to the field Q[λ]. Since |αj | < 1, for 1 ≤ j ≤ s, and (Sl) is a.-s. transient with a
non-zero linear speed to −∞, as l → −∞, this ensures that for any k ∈ Z, the random variable∑
l∈Z µεlλ

k+Sl mod 1 is a well-defined T-valued random variable.

In the sequel we use standard inner products and Euclidean norms on all spaces Rn.

Theorem 2.4
Let 1/λ > 1 be a Pisot number of degree s + 1. Let N ≥ 1, relatively prime integers (nk)0≤k≤N
and (µk)0≤k≤N ∈ T (1/λ)N+1, such that ϕk(x) = λnkx + µk, 0 ≤ k ≤ N . Let p ∈ CN be such
that

∑
0≤j≤N pjnj > 0 and i.i.d. random variables (εn)n∈Z, with law p. Let (Sl)l∈Z be the cocycle

notations associated to the (nεi). The real random variable X =
∑
l≥0 µεlλ

Sl has law ν.

i) Let the T-valued random variables Zk =
∑
l∈Z µεlλ

k+Sl , k ∈ Z. Then λ−nX mod 1 converges,
as n→ +∞, to a probability measure m on T, verifying, for all f ∈ C(T,R) and all k ∈ Z :∫

T
f(x) dm(x) =

1

E(nε0)

∑
0≤r<n∗

E
[
f (Zk+r) 1S−u<−r,u≥1

]
,

where n∗ = max0≤k≤N nk. More generally, λ−n(X,λ−1X, · · · , λ−sX) mod Zs+1 converges in law,
as n→ +∞, to a probability measure M on Ts+1, with one-dimensional marginals m, verifying :

∫
Ts+1

f(x) dM(x) =
1

E(nε0)

∑
0≤r<n∗

E
[
f (Zk+r, Zk+r−1, · · · , Zk+r−s) 1S−u<−r,u≥1

]
,

for all f ∈ C(Ts+1,R) and all k ∈ Z.

ii) If the (ϕk)0≤k≤N do not have a common fixed point (i.e. ν is continuous), denoting by Z a
Ts+1-valued random variable with law M, then for any 0 6= n = (n0, · · · , ns)t ∈ Zs+1, 〈Z, n〉 has a
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continuous law; hence m and M are continuous measures. If the (ϕk)0≤k≤N have a common fixed
point, there exists a rational number p/q such that m = δp/q and M = (δp/q)

⊗(s+1).

iii) Either M⊥ LTs+1 or M = LTs+1 . One has M = LTs+1 ⇔ ν is Rajchman ⇔ ν � LR.

As a corollary of the previous theorem, ν and M are always of the same nature, with respect
to the uniform measure of the space they live on. In particular,M is also of pure type. We finally
consider families in Pisot form, under condition (C).

Theorem 2.5
Let N ≥ 1 and ϕk(x) = λnkx+ µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number, relatively prime
integers (nk)0≤k≤N , with nk ≥ 1 and µk ∈ T (1/λ), for 0 ≤ k ≤ N . When p ∈ CN is fixed, we
denote by m the measure on T of Theorem 2.4, i).

i) For any p ∈ CN , if the invariant measure ν is Rajchman, then it has a density, bounded and
with compact support, with respect to LR.

ii) There exists 0 6= a ∈ Z such that for any k 6= 0, for any p ∈ CN outside finitely many real-
analytic graphs of dimension ≤ N − 1 (points if N = 1), we have m̂(ak) 6= 0. In this case, m 6= LT
and ν is not Rajchman.

Remark. — Part ii) of Theorem 2.5 relies on an indirect argument, based on the analysis of the
regularity of m̂(n), for some fixed n ∈ Z, as a function of p ∈ CN . Arrived at a real-valued real
analytic non constant function h on a open neighborhood CδN of C̄N , we use Lojasiewicz’s stratifica-
tion theorem (cf Krantz-Park [8], theorem 5.2.3), giving the local structure of {p ∈ CδN | h(p) = 0}.
In an elementary and classical way, using the implicit function theorem, one can show that the
previous set is included in a countable union of connected real-analytic graphs of dimension N −1.
In Theorem 2.5, making k vary, for all p ∈ CN outside a countable number of real-analytic graphs
of dimension ≤ N − 1 (points if N = 1), m̂(ak) 6= 0, for all k ∈ Z. On the existence of singular
measures in the non-homogeneous case, we were previously aware of the non-explicit examples,
using algebraic curves, of Neunhäuserer [14].

Remark. — It would be important to determine all the exceptional parameters where ν has a
density. Let us give some examples where the exceptional set is be non-empty :

1) Let 1/λ = N ≥ 1 and ϕk(x) = (x+ k)/(N + 1), with pk = 1/(N + 1), for 0 ≤ k ≤ N ; then ν is
Lebesgue measure on [0, 1].

2) Take for 1/λ > 1 the Plastic number, i.e. the real root of X3 − X − 1. This is the smallest
Pisot number; cf Siegel [20]. Let N = 1 and ϕ0(x) = λ2x, ϕ1(x) = λ3x+ 1. One verifies that the
similarity dimension is < 1 for all p ∈ C1, except for p = (λ2, λ3), where it equals one. Hence the
invariant measure ν is singular for p ∈ C1 with p 6= (λ2, λ3). Another way, if ν has a density, then it
has to be bounded by Theorem 2.5, so p0 ≤ λ2 and p1 ≤ λ3, using the remark in the Introduction.
Since λ2 + λ3 = 1, we have p0 = λ2 and p1 = λ3. As a result, when p = (p0, p1) 6= (λ2, λ3)
and p0 > 0, p1 > 0, then ν is continuous singular and not Rajchman. When p = (λ2, λ3), set
I = [0, 1 + λ] and notice that ϕ0(I) = [0, 1], ϕ1(I) = [1, 1 + λ]. Hence, Lebesgue a.-e. :

1I = 1ϕ0(I) + 1ϕ1(I) = p0λ
−21ϕ0(I) + p1λ

−31ϕ1(I),

meaning that ν = 1
1+λLI . Taking for 1/λ the supergolden ratio (the real root of X3 −X2 − 1; the

fourth Pisot number), one gets the same situation with the system (λx + 1, λ3x), the exceptional
parameters being then (λ, λ3), giving for ν the uniform probability measure on [0, λ−3]. With
N = 1 and 1/λ the Plastic number, we will show in the last section that for ϕ0(x) = λx and
ϕ1(x) = λ2x+ 1, then ν is singular and not Rajchman, for all p ∈ C1.

3) When 1/λ > 1 is the Plastic number, N = 2, ϕ0(x) = λ2x, ϕ1(x) = λ3x + 1, ϕ2(x) = λ3x + 1
and p0 = λ2, p1 = λ3α, p2 = λ3(1 − α), then ν = 1

1+λL[0,1+λ], for all 0 < α < 1. This is an
example, a little degenerated, of a one-dimensional real analytic graph where ν has a density.

In the context of Theorem 2.5, it would be interesting to find more developed examples, when
overlaps occur, where ν has a density. This could be delicate, as the probability vector p may have
to be chosen in accordance with the polynomial equations verified by λ.
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3 Proof of Theorem 2.3

For the sequel, introduce i.i.d. random variables (εn)n≥0 with law p, to which P and E refer.
Recall that ν is the law of the random variable

∑
l≥0 bεlrε0 · · · rεl−1

. Without loss of generality, we
also assume that 0 < r0 ≤ r1 ≤ · · · ≤ rN , with necessarily r0 < 1.

Step 1. We prove that if log ri/ log rj 6∈ Q, for some 0 ≤ i 6= j ≤ N , then ν is Rajchman, as shown
in [11], under condition (C). We simplify their proof.

For n ≥ 1, consider the random walk Sn = − log rε0 − · · · − log rεn−1 , with S0 = 0. For a
real s ≥ 0, introduce the finite stopping time τs = min{n ≥ 0, Sn > s} and write Ts for the
corresponding sub-σ-algebra of the underlying σ-algebra. Taking α > 0 and s ≥ 0 :

ν̂(αes) = E
(
e2πiαes

∑
l≥0 bεle

−Sl
)

= E
(
e2πiαes

∑
0≤l<τs bεle

−Sl
e2πiαe−Sτs+s∑

l≥τs bεle
−Sl+Sτs

)
.

In the expectation, the first exponential term is Ts-measurable. Also, the conditional expectation
of the second exponential term with respect to Ts is just ν̂(αe−Sτs+s), as a consequence of the
strong Markov property. It follows that :

ν̂(αes) = E
(
ν̂(αe−Sτs+s)e2πiαes

∑
0≤l<τs bεle

−Sl
)
.

This gives |ν̂(αes)| ≤ E
(
|ν̂(αe−Sτs+s)|

)
, so by the Cauchy-Schwarz inequality and a safe Fubini

theorem consecutively :

|ν̂(αes)|2 ≤ E
(
|ν̂(αe−Sτs+s)|2

)
= E

(∫
R2

e2πiαe−Sτs+s(x−y) dν(x)dν(y)

)
=

∫
R2

E
(
e2πiαe−Sτs+s(x−y)

)
dν(x)dν(y).

Let Y := − log rε0 . As the law of Y is non-lattice (since some log ri/ log rj 6∈ Q and pk > 0 for all
0 ≤ k ≤ N) and with 0 < E(Y ) <∞, it is a well-known consequence of the Blackwell theorem on
the law of the overshoot that (see for instance Woodroofe [27], chap. 2, thm 2.3), that :

E(g(Sτs − s))→
1

E(Sτ0)

∫ +∞

0

g(x)P(Sτ0 > x) dx, as s→ +∞,

for any Riemann-integrable g on R+. Here, all Sτs − s, s ≥ 0, (in particular Sτ0) have support in
some [0, A]. Thus, also, P(Sτ0 > x) = 0 for large x > 0. By dominated convergence, for any α > 0 :

lim sup
t→+∞

|ν̂(t)|2 ≤ 1

E(Sτ0)

∫
R2

∣∣∣∣∫ +∞

0

e2πiαe−u(x−y)P(Sτ0 > u)du

∣∣∣∣ dν(x)dν(y).

The inside term (in the modulus) is uniformly bounded with respect to (x, y) ∈ R2. We shall
use dominated convergence once more, this time with α → +∞. It is sufficient to show that for
ν⊗2-almost every (x, y), the inside term goes to zero. Since ν is non-atomic, ν⊗2-almost-surely,
x 6= y. If for example x > y :∫ +∞

0

e2πiαe−u(x−y)P(Sτ0 > u)du =

∫ x−y

0

e2πiαtP(Sτ0 > log((x− y)/t)
dt

t
,

making the change of variable t = e−u(x− y). The last integral now converges to 0, as α→ +∞,
by the Riemann-Lebesgue lemma. Hence, limt→+∞ ν̂(t) = 0. This ends the proof of this step.
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Step 2. Assuming ν not Rajchman, from Step 1, log ri/ log rj ∈ Q, for all (i, j). Hence rj = r
pj/qj
0 ,

with integers pj ∈ Z, qj ≥ 1, for 1 ≤ j ≤ N . Let :

n0 =
∏

1≤l≤N

ql ≥ 1 and nj = pj
∏

1≤l≤N,l 6=j

ql ∈ Z, 1 ≤ j ≤ N.

Recall that 0 < r0 < 1. Setting λ = r
1/n0

0 ∈ (0, 1), one has rj = λnj , 0 ≤ j ≤ N . Up to taking
some positive integral power of λ, one can assume that gcd(n0, · · · , nN ) = 1. Recall in passing
that the set of Pisot numbers is stable under positive integral powers. The condition E(log rε0) < 0
rewrites into E(nε0) > 0 and we have nN ≤ · · · ≤ n0, with n0 ≥ 1.

Using now some sub-harmonicity, one can reinforce the assumption that ν̂(t) is not converging
to 0, as t→ +∞.

Lemma 3.1
There exists 1 ≤ α ≤ 1/λ and c > 0 such that ν̂(αλ−k) = cke

2iπθk , written in polar form, verifies
ck → c, as k → +∞.

Proof of the lemma :
Let us write this time Sn = nε0 + · · · + nεn−1

, for n ≥ 1, with S0 = 0. Since E(nε0) > 0, (Sn)
is transient to +∞. Introduce the random ladder epochs 0 = σ0 < σ1 < · · · , where inductively
σk+1 is the first time n ≥ 0 with Sn > Sσk . Let S′k = Sσk . The (S′k − S′k−1)k≥1 are i.i.d. random
variables with law L(Sτ0) and support in {1, · · · , n0}. Since gcd(n0, · · · , nN ) = 1, the support of
the law of Sτ0 generates Z as an additive group (cf for example Woodroofe [27], thm 2.3, second
part). For an integer u ≥ 1 large enough, we can fix integers r ≥ 1 and s ≥ 1 such that the support
of the law of S′r contains u and that of S′s contains u + 1, both supports being included in some
{1, · · · ,M}, with therefore 1 ≤ u ≤ u+ 1 ≤M . Proceeding as in Step 1, for any t ∈ R :

ν̂(t) = E
(
e2πit

∑
l≥0 bεlλ

Sl
)

= E
(
ν̂(tλS

′
r )e2πit

∑
0≤l<σr bεlλ

Sl
)
.

Doing the same thing with S′s and taking modulus gives :

|ν̂(t)| ≤ E
(
|ν̂(tλS

′
r )|
)

and |ν̂(t)| ≤ E
(
|ν̂(tλS

′
s)|
)
. (2)

In particular, |ν̂(t)| ≤ max1≤l≤M |ν̂(λlt)|. We now set :

Vα(k) := max
k≤l<k+M

|ν̂(αλl)|, k ∈ Z, α > 0.

The previous remarks imply that Vα(k) ≤ Vα(k + 1), k ∈ Z, α > 0.

Since ν is not Rajchman, |ν̂(tl)| ≥ c′ > 0, along some sequence tl → +∞. Write tl = αlλ
−kl ,

with 1 ≤ αl ≤ 1/λ and kl → +∞. Up to taking a subsequence, αl → α ∈ [1, 1/λ]. Fixing k ∈ Z :

c′ ≤ Vαl(−kl) ≤ Vαl(−k),

as soon as l is large enough. By continuity, letting l → +∞, we get c′ ≤ Vα(−k), k ∈ Z. As
k 7−→ Vα(−k) is non-increasing, Vα(−k) → c ≥ c′, as k → +∞. We now show that necessarily
|ν̂(αλ−k)| → c, as k → +∞.

If this were not true, there would exist ε > 0 and (mk)→ +∞, with |ν̂(αλ−mk)| ≤ c− ε. Using
Vα(−k)→ c and |ν̂(αλ−mk)| ≤ c− ε, as k → +∞, consider (2) with r and t = αλ−mk−u and next
with s and t = αλ−mk−u−1. Since u is in the support of the law of S′r and u+ 1 is in the support
of the law of S′s, we obtain the existence of some c1 < c such that for k large enough :

max{|ν̂(αλ−mk−u)|, |ν̂(αλ−mk−u−1)|} ≤ c1 < c.

Again via (2), with successively r and t = αλ−mk−2u, next r and t = αλ−mk−2u−1 and finally s
and t = αλ−mk−2u−2, still using that u is in the support of the law of S′r and u+ 1 in the support
of the law of S′s, we get some c2 < c such that for k large enough :
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max{|ν̂(αλ−mk−2u)|, |ν̂(αλ−mk−2u−1)|, |ν̂(αλ−mk−2u−2)|} ≤ c2 < c.

Etc, for some cM−1 < c and k large enough :

max{|ν̂(αλ−mk−(M−1)u)|, · · · , |ν̂(αλ−mk−(M−1)u−(M−1))|} ≤ cM−1 < c.

This contradicts the fact that Vα(−k)→ c, as k →∞. We conclude that |ν̂(αλ−k)| → c, as k →∞,
and this ends the proof of the lemma.

�

Step 3. We complete the proof of Theorem 2.3. In this part, introduce the notation ‖x‖ = dist(x,Z),
for x ∈ R. Let us consider any 1 ≤ α ≤ 1/λ, with ν̂(αλ−k) = cke

2iπθk , verifying ck → c > 0, as
k → +∞. We start from the relation :

ν̂(αλ−k) =
∑

0≤j≤N

pje
2iπαλ−kbj ν̂(αλ−k+nj ),

obtained by conditioning with respect to the value of ε0. This furnishes for k ≥ 0 :

ck =
∑

0≤j≤N

pje
2iπ(αλ−kbj+θk−nj−θk)ck−nj .

We rewrite this as :

∑
0≤j≤N

pj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
ck−nj = ck −

∑
0≤j≤N

pjck−nj =
∑

0≤j≤N

pj(ck − ck−nj ).

Let K > 0 be such that ck−nj ≥ c/2 > 0, for k ≥ K and all 0 ≤ j ≤ N . For L > n∗, where
n∗ = max0≤j≤N |nj |, we sum the previous equality on K ≤ k ≤ K + L :

∑
0≤j≤N

pj

K+L∑
k=K

ck−nj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
=

∑
0≤j≤N

pj

K+L∑
k=K

ck −
K+L−nj∑
k=K−nj

ck

 .

Observe that the right-hand side involves a telescopic sum and is bounded by 2n∗ (using that
|ck| ≤ 1), uniformly in K and L. In the left hand-hand side, we take the real part and use that
1 − cos(2πx) = 2(sinπx)2, which, as is well-known, has the same order as ‖x‖2. We obtain, for
some constant C, that for K and L large enough :

c

2

∑
0≤j≤N

pj

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C.

Introducing the constants p∗ = min0≤j≤N pj > 0 and C ′ = 2C/(cp∗), we get that for all 0 ≤ j ≤ N
and K,L large enough :

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C ′. (3)

In the sequel, we distinguish two cases : there is a non-zero translation (case 1) or not (case 2).

- Case 1. For any non-zero-translation ϕj(x) = x+ bj , we have nj = 0 and bj 6= 0. Then (3) gives
that for K,L large enough :

K+L∑
k=K

‖αλ−kbj‖2 ≤ C ′.
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This implies that (‖αbjλ−k‖)k≥0 ∈ l2(N). By a classical theorem of Pisot, cf Cassels [3], chap. 8,
Theorems I and II, we obtain that 1/λ is a Pisot number and bj = (1/α)µj , with µj ∈ T (1/λ).
Consider now the non-translations ϕj(x) = λnjx+ bj , nj 6= 0. By (3), for any r ≥ 0 and K,L large
enough (depending on r) :

K+L∑
k=K

‖αλ−k+rnj bj + θk−(r+1)nj − θk−rnj‖
2 ≤ C ′.

Fixing lj ≥ 1 and summing over 0 ≤ r ≤ lj − 1, making use of the triangular inequality and of
(x1 + · · ·+ xn)2 ≤ n(x2

1 + · · ·+ x2
n), we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λljnj
1− λnj

)
+ θk−ljnj − θk

∥∥∥∥2

≤ ljC ′. (4)

Changing k into k + ljnj , we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λ−ljnj
1− λnj

)
+ θk+ljnj − θk

∥∥∥∥2

≤ ljC ′. (5)

Let 1 =
∑

0≤j≤N ljnj be a Bezout relation and J ⊂ {0, · · · , N} be the subset where ljnj 6= 0,
equipped with its natural order. Using successively for j ∈ J either (4) or (5), according to the
sign of lj , we obtain with :

b =
∑
j∈J

bjλ
∑
k∈J,k<j lknk

(
1− λljnj
1− λnj

)
, (6)

the following relation, for a new constant C ′ and all K,L large enough :

K+L∑
k=K

‖αλ−kb+ θk−1 − θk‖2 ≤ C ′.

Now, for any nj 6= 0, whatever the sign of nj is, we arrive at, for some constant C ′ and all K,L
large enough :

K+L∑
k=K

‖αλ−kb
(

1− λnj
1− λ

)
+ θk−nj − θk‖2 ≤ C ′.

Set b′ = b/(1− λ). Hence, for any 0 ≤ j ≤ N with nj 6= 0, for some new constant C ′ and all K,L
large enough, using (3) :

K+L∑
k=K

‖αλ−k(bj − b′(1− λnj ))‖2 ≤ C ′.

Let 0 ≤ j ≤ N , with nj 6= 0. If bj 6= b′(1− λnj ), then we deduce again that 1/λ is a Pisot number
and bj = b′(1− λnj ) + (1/α)µj , with µj ∈ T (1/λ). The other case is bj = b′(1− λnj ). In any case,
we obtain that for all 0 ≤ j ≤ N :

ϕj(x) = b′ + λnj (x− b′) + (1/α)µj , (7)

for some µj ∈ T (1/λ). Finally, remark that (7) says that the (ϕj)0≤j≤N are conjugated with the
(ψj)0≤j≤N , where ψj(x) = λnjx+ µj ; precisely ϕj = f ◦ ψj ◦ f−1, with f(x) = x/α+ b′.

- Case 2. Any ϕj with nj = 0 is the identity. The conclusion is the same, because there now
necessarily exists some 0 ≤ j ≤ N with nj 6= 0 and bj 6= b′(1 − λnj ), otherwise b′ is a common
fixed point for all (ϕj)0≤j≤N .

This ends the proof of the theorem.
�
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4 Proof of Theorem 2.4

Let N ≥ 1 and affine maps ϕk(x) = λnkx+ µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number,
relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ), for 0 ≤ k ≤ N . Let p ∈ CN and denote by
(εn)n∈Z i.i.d. random variables with law p, to which the probability P and the expectation E refer.
We suppose that E(nε0) > 0. Without loss of generality, nN ≤ · · · ≤ n0. Thus n0 ≥ 1. For general
background on Markov chains, cf Spitzer [23].

Recall the cocycle notations introduced before the statement of the theorem and denote by θ
the formal shift such that θεl = εl+1, l ∈ Z. We have for all k and l in Z :

Sk+l = Sk + θkSl.

Then ν is the law of X =
∑
l≥0 µεlλ

Sl . We write Q ∈ Z[X] for the minimal polynomial of 1/λ,
of degree s + 1, with roots α0 = 1/λ, α1, · · · , αs, where |αk| < 1, for 1 ≤ k ≤ s. The case s = 0
corresponds to 1/λ an integer ≥ 2 (using then usual conventions regarding sums or products).
Recall that for any k ∈ Z,

∑
l∈Z µεlλ

k+Sl mod 1 is a well-defined T-valued random variable.

Step 1. In order to prove the convergence in law of (λ−nX,λ−n−1X, · · · , λ−n−sX) mod Zs+1, as
n→ +∞, it is enough to prove, for any (m0, · · · ,ms) ∈ Zs+1, the convergence of :

E
(
e2iπ

∑
0≤u≤smuλ

−n−uX
)

= E
(
e2iπ

∑
l≥0(αµεl )λ

−n+Sl
)
,

with α =
∑

0≤u≤smuλ
−u. Notice that αµj ∈ T (1/λ), for 0 ≤ j ≤ N . We make the proof when

α = 1, the one for α being obtained by changing (µj) into (αµj).

Since
∑
l<0 µεlλ

−n+Sl mod 1 converges a.-s. to 0 in T, as n → +∞, it is enough to consider
expectations with

∑
l∈Z µεlλ

−n+Sl mod 1 in the exponential. Let k ∈ Z be a fixed integer. Looking
at (Sl)l∈Z and the first q ∈ Z such that Sq ≥ n, we have :

E
(
e2iπ

∑
l∈Z µεlλ

k−n+Sl
)

=
∑

0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

(k−n+Sq)+(Sl−Sq)
1Sq−u<n,u≥1,Sq=n+r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

k+r+θqSl−q
1θqS−u<−r,u≥1,θqS−q=−n−r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεl−qλ

k+r+Sl−q
1S−u<−r,u≥1,S−q=−n−r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1,S−q=−n−r

)
.

For each 0 ≤ r < n0, we can move the sum
∑
q∈Z inside the expectation, using the theorem of

Fubini, if we for example show the finiteness of :

∑
q∈Z

E
(
1S−q=−n−r

)
= E

∑
q≥0

1S−q=−n−r

+ E

∑
q≥1

1Sq=−n−r

 .

This is true, since, as soon as n is larger than some constant (because of the missing term for
q = 0 in the second sum), this equals G−(0,−n− r) +G+(0,−n− r) < +∞, where G−(x, y) and
G+(x, y) are the Green functions, finite for every integers x and y, respectively associated to the
i.i.d. transient random walks (S−q)q≥0 and (Sq)q≥0. Let σ+

k , for k ∈ Z, be the first time ≥ 0 when
(Sq)q≥0 touches k. We have G+(x, y) = P0(σ+

y−x <∞)G+(0, 0). With some symmetric quantities,

one has G−(x, y) = P0(σ−y−x <∞)G−(0, 0).

We therefore obtain :
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E
(
e2iπ

∑
l∈Z µεlλ

k−n+Sl
)

=
∑

0≤r<n0

E

e2iπ
∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1

∑
q∈Z

1S−q=−n−r

 .

Let us now fix 0 ≤ r < n0 and consider the corresponding term of the right-hand side. First of all,
for n > 0 larger than some constant :

E

(∑
q<0

1S−q=−n−r

)
= P0(σ+

−n−r <∞)G+(0, 0)→ 0, (8)

as n→ +∞, since (Sq)q≥0 is transient to the right. We thus only need to consider :

T (−n) := E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1N(−n− r)

)
,

where we set N(−k− r) =
∑
q≥0 1S−q=−n−r. Consider an integer M0, that we will let tend to +∞

at the end. The difference of T (−n) with the following expression :

E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0N(−n− r)
)

is bounded by A+B, where, first :

A = E
[∣∣∣e2iπ

∑
l∈Z µεlλ

k+r+Sl − e2iπ
∑
l≥−M0

µεlλ
k+r+Sl

∣∣∣N(−n− r)
]

= E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣N(−n− r)
]

≤
(
E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣2])1/2 (
E(N(−n− r)2)

)1/2
≤

(
E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣2])1/2 (
E(N(0)2)

)1/2
,

because N(−n − r) is stochastically dominated by N(0). Notice that N(0) is square integrable,
as it has exponential tail. The first term on the right-hand side also goes to 0, as M0 → +∞, by
dominated convergence. The other term B is :

B = E
(
1S−u<−r,1≤u≤M0,∃v>M0,S−v≥−rN(−n− r)

)
≤ P(∃v > M0, S−v ≥ −r)1/2

(
E(N(−n− r)2)

)1/2
≤ P(∃v > M0, S−v ≥ −r)1/2

(
E(N(0)2)

)1/2
,

as before. The first term on the right-hand side goes to 0, as M0 → +∞, since (S−v) is transient
to −∞, as v → +∞. As a result :

T (−n) = E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0N(−n− r)
)

+ oM0(1),

where oM0
(1) goes to 0, as M0 → +∞, uniformly in n. Now, when n > 0 is large enough,

N(−k − r) =
∑
q≥0 1S−q=−n−r =

∑
q≥M0

1S−q=−n−r, for all ω. Taking inside the expectation the
conditional expectation with respect to the σ-algebra generated by the (εl)l≥−M0

, we obtain :

T (−n) = E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0G
−(S−M0 ,−n− r)

)
+ oM0(1).
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Now, things are simpler because G−(S−M0 ,−n− r) is bounded by the constant G−(0, 0). Hence,
for some new oM0(1), with the same properties :

T (−n) = E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1G

−(S−M0
,−n− r)

)
+ oM0

(1).

Since G−(S−M0
,−n − r) → 1/E(nε0), as n → ∞, by renewal theory (since the (nj) are relatively

prime and pj > 0, for all 0 ≤ j ≤ N ; cf Woodroofe [27], chap. 2, thm 2.1), staying bounded by
G−(0, 0), we get by dominated convergence and next M0 → +∞ :

limn→+∞T (−n) =
1

E(nε0)
E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1

)
.

From the initial expression, the limit, if existing, had to be independent on the parameter k. So
this gives the announced convergence and invariance, hence proving item i) in Theorem 2.4.

Step 2. In the proof of Theorem 2.4, we now consider ii) and suppose that ν is continuous. We
first show that m is a continuous measure. For a continuous f : T→ R+ and any k ∈ R, we have :∫

T
f(x) dm(x) ≤ 1

E(nε0)

∑
0≤r<n∗

E [f(Zk+r)] .

Now Zk =
∑
l<0 µεlλ

k+Sl + λkX mod 1. Since L(λkX) on R is continuous, L(λkX mod 1) on

T is continuous. Since
∑
l<0 µεlλ

k+Sl mod 1 and λkX mod 1 are independent random variables,
for any k ∈ Z, the law of Zk on T is continuous. Thus m is a continuous measure (hence M).

More generally, if 0 6= n = (n0, · · · , ns)t ∈ Zs+1 and if Z is random variable with law M, then
the law of 〈Z, n〉 on T is mα, measure corresponding to m when replacing the (µj) by (αµj), thus
the (ϕj) by the (ψj), with ψj(x) = λnjx+ αµj , where α =

∑
0≤u≤s nuλ

−u. Since α 6= 0, because

(λ−u)0≤u≤s is a basis of Q[λ] over Q, the (ψj) do not have a common fixed point and thus mα is
continuous, by the previous reasoning.

Suppose now that the (ϕj) have a common fixed point c. Hence µj = c(1 − λnj ), 0 ≤ j ≤ N ,
and ν = δc. Necessarily c ∈ Q[λ], since the nj are not all zero. We shall show that λ−nc mod 1
converges to a rational number in T, as n→ +∞. First of all, for n large enough, for all 0 ≤ j ≤ N :

Tr1/λ(cλ−n)− Tr1/λ(cλ−n+nj ) = Tr1/λ(λ−nµj) ∈ Z.

Hence, for any fixed sequence (kj)0≤j≤N , for n large enough, for all 0 ≤ j ≤ N :

Tr1/λ(cλ−n)− Tr1/λ(cλ−n+kjnj ) ∈ Z.

Supposing that
∑

0≤j≤N kjnj = 1, using the previous expression successively n replaced by n, n−
k0n0, · · · , n −

∑
0≤j≤N−1 kjnj , respectively with j = 0, j = 1, · · · , j = N , and finally adding the

results, we obtain that for some large K > 0, for all n > K :

Tr1/λ(cλ−n)− Tr1/λ(cλ−n+1) ∈ Z.

Let Tr1/λ(cλ−K) = p/q. For n > K, there exists an integer ln such that Tr1/λ(cλ−n) = p/q + ln.
As a result, denoting by c = c0, c1, · · · , cs the conjugates of c corresponding to Q[λ], we get :

cλ−n = p/q + ln −
∑

1≤j≤N

cjα
n
j .

Consequently λ−nc mod 1 converges to p/q in T, as announced.

Consider iii). We prove that when ν is Rajchman, thenM = LTs+1 . Fix any 0 6= (n0, · · · , ns)t ∈
Zs+1 and set β =

∑
0≤u≤s nuλ

−u. Again β 6= 0. We have :
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∑
0≤u≤s

nu(λ−n−uX) = βλ−nX.

Since ν is Rajchman, E(e2iπβλ−nX) → 0, as n → +∞. As a result, the Fourier coefficient of M
corresponding to (n0, · · · , ns) is zero. Hence M = LTs+1 . Also m = LT.

To complete the proof of iii), we show that ν ⊥ LR implies M ⊥ LTs+1 . Recall that Zk =∑
l∈Z µεlλ

k+Sl mod 1. For any f ∈ C(Ts+1,R) and k ∈ Z :

1

E(nε0)

∑
0≤r<n∗

E
[
f(Z−k+r, Z−k+r−1, · · · , Z−k+r−s)1S−v<−r,v≥1

]
=

∫
Ts+1

f(x) dM(x),

with n∗ = max0≤j≤N nj . We now fix k ≥ n∗ so that Tr1/λ(λ−lµj) ∈ Z, 0 ≤ j ≤ N , l ≥ k − n∗.

For 0 ≤ j ≤ N , denote by (µ
(t)
j )0≤t≤s the conjugates of µj = µ

(0)
j corresponding to the field Q[λ].

Let 0 ≤ r < n∗. Taking any 0 ≤ u ≤ s and l < 0, we have :

µεlλ
−u−k+r+Sl = Tr1/λ(µεlλ

−u−k+r+Sl)−
∑

1≤t≤s

µ(t)
εl
αu+k−r−Sl
t .

The role of the indicator function is now fundamental. On the event {S−v < −r, v ≥ 1}, we have
Tr1/λ(µεlλ

−u−k+r+Sl) ∈ Z, by our choice of k. As a result, introducing the real random variables :

Y (r)
u = λ−u

∑
l≥0

µεlλ
−k+r+Sl −

∑
1≤t≤s

αu+k−r
t

∑
l<0

µ(t)
εl
α−Slt ,

together with Y (r) = (Y
(r)
0 , · · · , Y (r)

s ), we obtain that for any f ∈ C(Ts+1,R) :

1

E(nε0)

∑
0≤r<n∗

E
[
f(Y (r))1S−v<−r,v≥1

]
=

∫
Ts+1

f(x) dM(x). (9)

Hence, for any f ∈ C(Ts+1,R+) :∫
Ts+1

f(x) dM(x) ≤ 1

E(nε0)

∑
0≤r<n∗

E
[
f(Y (r))

]
. (10)

Fix any 0 ≤ r < n∗ and let X0 =
∑
l≥0 µεlλ

−k+r+Sl and for 1 ≤ j ≤ s, Xj = −
∑
l<0 µ

(j)
εl α

k−r−Sl
j .

By definition, (Y (r))t = V (X0, · · · , Xs)
t, where V is the Vandermonde matrix :

V =


1 1 · · · 1
λ−1 α1 · · · αs

...
...

...
...

λ−s αs1 · · · αss

 .

The matrix V is invertible (as the roots of the minimal polynomial Q of 1/λ are simple). By
Cramer’s formula :

X0 =
∑

0≤i≤s

γiY
(r)
i ,

with γi = det(V (i))/det(V ), where V (i) is obtained from V by replacing the first column by ei,
denoting by (ei)0≤i≤s the canonical basis of Rs+1.

Notice that each γi is real (first, 1/λ is a real root of Q. Next, regrouping the other roots in
conjugate pairs, when conjugating γi, one gets permutations in the numerator det(V (i)) and the
denominator det(V ), the same ones, so γ̄i = γi). As V is invertible, γ := (γi)0≤i≤s 6= 0.
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We have X0 = 〈Y (r), γ〉. Since ν is singular, we also have L(X0) ⊥ LR. As γ 6= 0, we get that
L(Y (r)) ⊥ LRs+1 . Hence L(Y (r) mod Zs+1) ⊥ LTs+1 . By (10), we obtain M⊥ LTs+1 , as desired.

Finally, suppose that condition (C) holds and that ν has a density. Thus M = LTs+1 . The
event {S−v < 0, v ≥ 1} has probability one. Looking at (9), at r = 0, we get that Y (0) mod Zs+1

has a density with respect to LTs+1 , bounded by E(nε0). Hence Y (0) has a density with respect
to LRs+1 , also bounded by E(nε0). Under condition (C), the random variable Y (0) is trivially
bounded, thus its density is bounded and with compact support in Rs+1. Hence this is also the
case of X0 = 〈Y (0), γ〉, taking r = 0 above. Thus this is also true for X, showing Theorem 2.5 i).

�

5 Proof of Theorem 2.5

Assume now that condition (C) holds. Precisely, let N ≥ 1 and affine contractions ϕk(x) =
λnkx+µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number, relatively prime integers (nk)0≤k≤N , with
nk ≥ 1 and µk ∈ T (1/λ), for 0 ≤ k ≤ N . We shall suppose that n0 ≥ · · · ≥ nN ≥ 1.

Step 1. Considering p ∈ CN , denote by (εn)n∈Z a sequence of i.i.d. random variables with law
p. We fix an integer n 6= 0, whose exact value will be precised at the end. We focus on the
Fourier coefficient m̂(n) of the measure m appearing in Theorem 2.4 i). Removing the normalizing
constant E(nε0) and observing that it has a simplified expression under condition (C), we introduce
the following quantity, which is a constant multiple of it :

∆p = ∆p(k) =
∑

0≤r<n0

E
(
e2iπn

∑
l∈Z µεlλ

k+r+Sl
1nε−1

>r

)
,

which is independent of k ∈ Z and where we mark the dependence in p ∈ CN . We now focus on
the regularity of p 7−→ ∆p on CN . For any k ∈ Z, observe first that ∆p(k) is well-defined, with the
same formula as above, on the closure C̄N . Fixing k ∈ Z, the map p 7−→ ∆p(k) is continuous on
C̄N , as this function is the uniform limit on C̄N , as L→ +∞, of the continuous maps :

p 7−→
∑

0≤r<n0

E
(
e2iπn

∑
−L≤l≤L µεlλ

k+r+Sl
1nε−1

>r

)
.

It thus follows that p 7−→ ∆p(k) = ∆p is well-defined on C̄N , is continuous and independent on
k. We shall now prove using standard methods that it is in fact real-analytic in a classical sense,
precised below. Let us take k = 0 and fix 0 ≤ r < n0. Using independence, write :

E
(
e2iπn

∑
l∈Z µεlλ

r+Sl
1nε−1

>r

)
= E

(
e2iπn

∑
l≥0 µεlλ

r+Sl
)
E
(
e2iπn

∑
l≤−1 µεlλ

r+Sl
1nε−1

>r

)
.

Let us call F (p) and G(p) respectively the terms appearing in the right-hand side. We shall show
that both functions are real-analytic functions of p. This property will be inheritated by p 7−→ ∆p.
We treat the case of p 7−→ F (p), the case of G(p) needing only to rewrite first the µεlλ

r+Sl ,
appearing in the definition of G(p) and as soon as l < 0 is large enough (depending only the

(µj)0≤j≤N , since nk ≥ 1, for all k), as −
∑

1≤j≤s α
−r−Sl
j µ

(j)
εl , quantity equal to µεlλ

r+Sl in T,

where the (µ
(j)
k )1≤j≤s are the conjugates of µk corresponding to the field Q[λ].

Fix now p ∈ C̄N . Let N = {0, 1, · · · } and the symbolic space S = {0, · · · , N}N, equipped with
the left shift σ. For x = (x0, x1, · · · ) ∈ S, we define :

g(x) = e
2iπn

(∑
l≥0 µxlλ

r+nx0
+···+nxl−1

)
.

Introducing the product measure µp = (
∑

0≤j≤N pjδj)
⊗N on S, we can write :

F (p) =

∫
S

g dµp.
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Denote by C(S) the space of continuous functions f : S → C and introduce the operator Pp :
C(S)→ C(S) defined by :

Pp(f)(x) =
∑

0≤j≤N

pjf((j, x)), x ∈ S,

where (j, x) ∈ S is the word obtained by the left concatenation of the symbol j to x. The operator
Pp is Markovian, i.e. f ≥ 0 ⇒ Pp(f) ≥ 0 and verifies Pp1 = 1, where 1(x) = 1, x ∈ S. The
measure µp has the invariance property

∫
S
Pp(f) dµp =

∫
S
f dµp, f ∈ C(S). For f ∈ C(S) and

k ≥ 0, introduce the variation :

Vark(f) = sup{|f(x)− f(y)|, (x, y) ∈ S2, xi = yi, 0 ≤ i < k}.

For any 0 < α < 1, let |f |α = sup{α−kVark(f), k ≥ 0}, as well as ‖f‖α = |f |α+‖f‖∞. We denote
by Fα the complex Banach space of fonctions f on S such that ‖f‖α < ∞. Any Fα is preserved
by Pp. Observe now that g ∈ Fα for λ ≤ α < 1. We fix α = λ.

As a classical fact from Spectral Theory, cf for example Baladi [1], the operator Pp : Fλ → Fλ
satisfies a Perron-Frobenius theorem. Let us show this elementarily. For f ∈ Fλ, we have :

Pnp f(x) =
∑

0≤j1,··· ,jn≤N

pj1 · · · pjnf((j1, · · · , jn, x)).

This furnishes Vark(Pnp f − 1
∫
S
f dµp) = Vark(Pnp f) ≤ Vark+n(f), therefore :∣∣∣∣Pnp (f)− 1

∫
S

f dµp

∣∣∣∣
λ

≤ λn|f |λ.

In a similar way, we can write :

(Pnp f − 1

∫
S

f dµp)(x) = Pnp (f)(x)− 1(x)

∫
S

Pnp (f) dµp

=
∑

0≤j1,··· ,jn≤N

pj1 · · · pjn
∫
S

(f((j1, · · · , jn, x))− f((j1, · · · , jn, y))) dµp(y).

Consequently, ‖Pnp f − 1
∫
S
f dµp‖∞ ≤ Varn(f) ≤ λn|f |λ. Putting things together, finally :

‖Pnp (f − 1

∫
S

f dµp)‖λ ≤ 2λn‖f‖λ.

This shows that 1 is a simple eigenvalue 1 and that the rest of the spectrum of Pp is contained in
the closed disk of radius λ < 1. Remark that this holds uniformly on p ∈ C̄N .

Fix some circle Γ centered at 1 and with radius 0 < r < 1−λ. By standard functional holomorphic
calculus, cf Kato [10], for any p ∈ C̄N , the following operator, involving the resolvent, is a continuous
(Riesz) projector on Vect(1) :

Πp =

∫
Γ

(zI − Pp)−1dz. (11)

Moreover Πp(Fλ) and (I − Πp)(Fλ) are closed Pp-invariant subspaces, with Fλ = Πp(Fλ) ⊕ (I −
Πp)(Fλ), and in restriction to (I −Πp)(Fλ), the spectral radius of Pp is less than λ.

Recall that N ≥ 1. We view a function of p ∈ C̄N in terms of the first N variables (p0, · · · , pN−1) ∈
RN . Let η′ = (η0, · · · , ηN−1) and η = (η0, · · · , ηN−1,−(η0 + · · ·+ ηN−1)). For any p ∈ C̄N and η′,
even if p+ η 6∈ C̄N , we can define the continuous operator Pp+η : Fλ → Fλ. It verifies :

Pp+η = Pp +
∑

0≤j≤N−1

ηjQj ,
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where Qj(f)(x) = f(j, x)−f(N, x). Denote by BN (0, δ) the open Euclidean ball in RN of radius δ.
Let λ < λ′ < 1− r. For any p in C̄N , there exists δ > 0 such that when η′ ∈ BN (0, δ), then 1 is still
a simple eigenfunction of Pp+η, with Pp+η1 = 1, the rest of the spectrum of Pp+η being contained
in the disk of radius λ′ and Πp+η, also defined by (11), is a continuous projector on Vect(1); this
follows from the implicit function theorem, cf Rosenbloom [16], Kato [10]. By compacity of C̄N
and Γ, δ > 0 can be chosen uniformly on p ∈ C̄N . This defines the open δ-neighborhood CδN of C̄N .

When p ∈ C̄N , we have
∫
S
f dµp = 0 when f ∈ (I −Πp)(Fλ). Thus for any f ∈ Fλ :

Πp(f) =

(∫
S

f dµp

)
1.

Applying this to the function g of interest to us, we obtain that when p ∈ C̄N :

F (p)1 =

∫
Γ

(zI − Pp)−1(g)dz.

The function F is extended to CδN by the previous formula. Recall the following definition :

Definition 5.1
A function h : CδN → C, seen as a function of (p0, · · · , pN−1), admits a development in series
around p ∈ CδN , if there exists ε > 0 such that for η′ = (η0, · · · , ηN−1) ∈ BN (0, ε) and writing
η = (η′,−(η0 + · · ·+ ηN−1)), then h(p+ η) is given by an absolutely converging series :

h(p+ η) =
∑

l0≥0,··· ,lN−1≥0

Al0,··· ,lN−1
ηl00 · · · η

lN−1

N−1 .

A function is real-analytic in CδN if it admits a development in series around all p ∈ CδN .

Let us now check that p 7−→ F (p) is real-analytic on CδN . Let p ∈ CδN . For z ∈ Γ and η′ small
enough, we can write :

(zI − Pp+η)−1 =

I − (zI − Pp)−1
∑

0≤j≤N−1

ηjQj

−1

(zI − Pp)−1

=
∑
n≥0

∑
0≤j1,··· ,jn≤N−1

ηj1 · · · ηjn(zI − Pp)−1Qj1 · · · (zI − Pp)−1Qjn(zI − Pp)−1.

This is clearly absolutely convergent in the Banach operator algebra, for small enough η′, uniformly
in z ∈ Γ. We rewrite it as :

(zI − Pp+η)−1 =
∑

l0≥0,··· ,lN−1≥0

Bl0,··· ,lN−1
(z)ηl00 · · · η

lN−1

N−1 ,

converging for the operator norm, uniformly in z ∈ Γ. This leads to :

F (p+ η)1 =

∫
Γ

(zI − Pp+η)−1(g) dz =
∑

l0≥0,··· ,lN−1≥0

ηl00 · · · η
lN−1

N−1

∫
Γ

Bl0,··· ,lN−1
(z)(g) dz.

Applying this equality at some particular x ∈ S, we obtain the desired development in series around
p. This completes this step.

Step 2. Maybe restricting δ > 0, we get that p 7−→ ∆p is real-analytic on CδN . We shall show that
if n 6= 0 has been appropriately chosen at the beginning, then ∆p is not zero at some extremal
points of C̄N . If ∆p has a zero on C̄N , then p 7−→ Re(∆p) or p 7−→ Im(∆p) is non-constant on CδN .
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Now if h : CδN → R is real-analytic and non-constant, by Lojasiewicz’s stratification theorem (cf
[8], theorem 5.2.3) the real-analytic set {p ∈ CδN | h(p) = 0} is locally a finite union of real-analytic
graphs of dimension ≤ N − 1 (points if N = 1). By compacity of C̄N , the set {p ∈ C̄N | h(p) = 0}
is included in a finite union of real-analytic graphs of dimension ≤ N − 1.

For the sequel, we write x ≡ y for equality of x and y in T.

Lemma 5.2
Let d ≥ 1 and µ ∈ T (1/λ). The series

∑
l∈Z µλ

ld mod 1, well-defined as an element of T, equals
a rational number modulo 1.

Proof of the lemma :
Let l0 ≥ 1 be such that Tr1/λ(λ−lµ) ∈ Z, for l > l0. Denote by (µ(j))0≤j≤s the conjugates of µ,

with µ(0) = µ, and α1, · · · , αs that of α0 = 1/λ. We have the following equalities on the torus :

∑
l∈Z

µλld ≡ µλ−l0d

1− λd
+
∑
l>l0

µλ−ld ≡ µλ−l0d

1− λd
−
∑

1≤i≤s

µ(i)
∑
l>l0

αldi ≡
µλ−l0d

1− λd
−
∑

1≤i≤s

µ(i)α
(l0+1)d
i

1− αdi

≡ −

µλ−(l0+1)d

1− λ−d
+
∑

1≤i≤s

µ(i)α
(l0+1)d
i

1− αdi

 = −Tr1/λ

(
µλ−(l0+1)d

1− λ−d

)
∈ Q.

�

We conclude the argument. Fixing 0 ≤ j ≤ N and pj = (0, · · · , 0, 1, 0, · · · , 0), where the 1 is at
place j, we have for k ∈ Z, recalling that 1 ≤ nj ≤ n0 :

∆pj = ∆pj (k) =
∑

0≤r<n0

e2iπn
∑
l∈Z µjλ

k+r+lnj
1nj>r =

∑
0≤r<nj

e2iπn
∑
l∈Z µjλ

k+r+lnj
.

Notice that the invariance with respect to k is now obvious, as we sum over r on a full period of
length nj . Now, taking k = 0, we have :

∆pj =
∑

0≤r<nj

e2iπn(Aj,r/Bj,r),

for rational numbers Aj,r/Bj,r, making use of the previous lemma, since λrµj ∈ T (1/λ), for any r.
If for example n is a multiple of Bj,r for any 0 ≤ r < nj , we get ∆pj = nj ≥ 1, which gives what
was desired. This ends the proof of the theorem.

�

Remark. — In the general case, without condition (C), the method seems to reach some limit.
Considering the regularity of p 7−→ F (p) on DN ((λnk)0≤k≤N ), it is not difficult to show continuity,
using some standard coupling argument. The real-analytic character, if ever true, a priori requires
more work. Still setting S = {0, · · · , N}N and µp = (

∑
0≤j≤N pjδj)

⊗N on S, we again have :

F (p) =

∫
S

g dµp,

with g(x) = e
2iπn

(∑
l≥0 µxlλ

r+nx0
+···+nxl−1

)
, but this function is not continuous on S and in fact

only defined µp-almost-everywhere.
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6 Complements

6.1 A numerical example

Considering an example as simple as possible which is not homogeneous, take N = 1 and the
two contractions ϕ0(x) = λx, ϕ1(x) = λ2x+ 1, where 1/λ > 1 is a Pisot number, with probability
vector p = (p0, p1). Then n0 = 1, n1 = 2 and ν is the law of

∑
l≥0 εlλ

nε0+···+nεl−1 , with (εn)n≥0

i.i.d., with common law Ber(p1), i.e. P(ε0 = 1) = p1 and P(ε0 = 0) = 1 − p1. We shall take
0 ≤ p1 ≤ 1 as parameter for simulations. Notice that E(nε0) = p0 + 2p1 = 1 + p1,

Taking n = 1, k ∈ Z and r ∈ {0, 1}, let us define :

Fp(k) = E
(
e2iπλk

∑
l≥0 εlλ

nε0
+···+nεl−1

)
, Gp(k, r) = E

(
e2iπ

∑
l≥0 εlλ

k−(nε0
+···+nεl )

1nε0>r

)
,

leading to ∆p = Fp(k)Gp(k, 0) +Fp(k+ 1)Gp(k+ 1, 1), for all k ∈ Z. Writing mp in place of m for
the measure on T in Theorem 2.4 i) (defined when 0 < p1 < 1), we get m̂p(1) = ∆p/(1 + p1). Let
us first discuss the choice of probability vector p = (1− p1, p1) and Pisot number 1/λ.

A degenerated example (the invariant measure being automatically singular) is for instance
given by λ = (3 −

√
5)/2 < 1/2. Nevertheless, it is interesting to notice that λ−n ≡ −λn, n ≥ 0.

Taking p1 = 1/2, one can check that ∆p = |Fp(1)|2 + |Fp(2)|2/2. Necessarily ∆p > 0. Indeed,
k 7−→ Fp(k) verifying a linear recurrence of order two, the equality ∆p = 0 would give Fp(k) = 0
for all k, but Fp(k) → 1, as k → +∞. Notice that (3 −

√
5)/2 is the largest λ with this property

(it has to be a root of some X2 − aX + 1, for some integer a ≥ 0). Mention that in general ∆p is
not real; cf the pictures below.

To study an interesting example, we take into account the similarity dimension s(p, r), rewritten
here as s(p, λ) :

s(p, λ) :=
(1− p1) ln(1− p1) + p1 ln p1

(1− p1) lnλ+ p1 ln(λ2)
.

The condition s(p, λ) ≥ 1 is equivalent to (1 − p1) ln(1 − p1) + p1 ln p1 − (1 + p1) lnλ ≤ 0. As a
function of p1, the left-hand side has a minimum value − ln(λ + λ2), attained at p1 = λ/(1 + λ).
As a first attempt, taking for 1/λ the golden mean (

√
5 + 1)/2 = 1, 618... appears in fact not to be

a good idea, as in this case λ+ λ2 = 1, giving s(p, λ) ≤ 1.

We instead take (as in the Introduction) for 1/λ the Plastic number, i.e. the unique real root
of X3 −X − 1. Approximately, 1/λ = 1.324718.... For this λ :

s(p, λ) > 1⇐⇒ 0, 203... < p0 < 0, 907....

The other roots of X3−X−1 = 0 are conjugate numbers ρe±iθ. From the relations 1/λ+2ρ cos θ =
0 and (1/λ)ρ2 = 1, we deduce ρ =

√
λ and cos θ = −1/(2λ3/2), thus θ = ±2.43... rad. For

computations, the relations λ−n + ρneinθ + ρne−inθ ∈ Z, n ≥ 0, furnish λ−n ≡ −2(
√
λ)n cos(nθ).

Let us finally compute the extreme values of p1 7−→ m̂p(1), abusively written as m̂(1,0)(1) and
m̂(0,1)(1), since mp has only been defined for 0 < p1 < 1. We first observe that m̂(1,0)(1) =
∆(1,0) = F(1,0)(0)G(1,0)(0, 0) = 1. At the other extremity :

∆(0,1) = F(0,1)(0)G(0,1)(0, 0) + F(0,1)(1)G(0,1)(1, 1)

= e2iπ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

−2(l+1)

+ e2iπλ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

1−2(l+1)

= e
2iπ
(

1
1−λ2

−2
∑
l≥0(
√
λ)2l cos(2lθ)

)
+ e

2iπ
(

λ
1−λ2

−2
∑
l≥0(
√
λ)2l+1 cos((2l+1)θ)

)
= e

2iπ
(

1
1−λ2

−2Re
(

λe2iθ

1−λe2iθ

))
+ e

2iπ
(

λ
1−λ2

−2Re
( √

λeiθ

1−λe2iθ

))
.

19



A not difficult computation, shortened by the observation that (1 − λe2iθ)(1 − λe−2iθ) = 1/λ,
shows that the arguments in the exponential terms (after the 2iπ) are respectively equal to 3 and
0, leading to ∆(0,1) = 2 and therefore m̂(0,1)(1) = 1.

Recalling that p = (1 − p1, p1), below are respectively drawn the real-analytic maps p1 7−→
Re(m̂p(1)), p1 7−→ Im(m̂p(1)) and the parametric curve p1 7−→ m̂p(1), 0 ≤ p1 ≤ 1.

The first two pictures indicate that p1 7−→ m̂p(1) spends a rather long time near 0, with Re(m̂p(1))
and Im(m̂p(1)) both around 10−4. Let us precise here that one can exploit the product form (given
by the exponential) inside the expectation appearing in Fp(k) and Gp(k, r) and make a determin-
istic numerical computation of m̂p(1), with nearly an arbitrary precision, based on a dynamical
programming (using a binomial tree). For example, one can obtain the rather remarquable value :

m̂(1/2,1/2)(1) = 0, 0001186...+ i0, 0000327...,

where all digits are exact. In this case, s((1/2, 1/2), λ) = 1, 64... > 1. The above pictures were
drawn with 1000 points, each one determined with a sufficient precision. This allows to safely
zoom on the neighbourhood of 0 of p1 7−→ m̂p(1), the interesting region. We obtain the following
surprising pictures, the one on the right-hand side containing around 500 points :

There are probably profound reasons behind these pictures, that would in particular clarify the
condition of non-nullity of the Fourier coefficient m̂p(1) and more generally of m̂p(n), n ∈ Z.
Further investigations are necessary, but we can conclude that the curve p1 7−→ m̂p(1) is rather
convincingly not touching 0. It may certainly be possible to build a rigorous numerical proof of
this fact, but this is not the purpose of the present paper. Being confident in this, we state :
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Numerical Theorem 6.1
Let N = 1, 0 < λ < 1, with 1/λ > 1 the Plastic number, and ϕ0(x) = λx, ϕ1(x) = λ2x+ 1. Then
for all p ∈ C1, the invariant measure ν is continuous singular and not Rajchman.

Remark. — For the same system, but taking for 1/λ the supergolden ratio, i.e. the fourth Pisot
number (the real root of X3 −X2 − 1), one essentially gets the same pictures.

Still taking for 1/λ the Plastic number, but for the system ϕ0(x) = λ2x and ϕ1(x) = λ3x+ 1,
mentioned in Section 2, recall that the invariant measure ν is continuous singular and not Rajchman
for all p ∈ C1, except when p = (λ2, λ3), in which case ν = 1

1+λL[0,1+λ]. We have drawn below the

real analytic curve p1 7−→ m̂p(1), with next a zoom at 10−3 near the origin. This is also interesting,
since this time the curve is not self-intersecting, being almost linear near zero and passing at zero
exactly for the sole parameter p1 = λ3.

6.2 Applications to sets of uniqueness for trigonometric series

Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, with reals (rk) and
(bk), with 0 < rk < 1 for all k (i.e. condition (C) holds). As a general fact, Theorem 2.3 has
some consequences in terms of sets of multiplicity for trigonometric series, cf for example Salem
[18] or Zygmund [28] for details. As in the introduction, let F ⊂ R be the unique non-empty
compact set, verifying the self-similarity relation F = ∪0≤k≤Nϕk(F ). With N = {0, 1, · · · } and
S = {0, · · · , N}N, recall that :

F =

∑
l≥0

bxlrx0
· · · rxl−1

, (x0, x1, · · · ) ∈ S

 .

Let us place on the torus T and consider trigonometric series. Recall that a subset E of T is
a set of uniqueness (U -set), if whenever a trigonometric series

∑
n≥0(an cos(2πx) + bn sin(2πx)),

with complex numbers (an) and (bn), converges to 0 for all x 6∈ E, then an = bn = 0 for all n ≥ 0.
Otherwise E is said of multiplicity (M -set).

Theorem 6.1
Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, where 0 < rk < 1, with no
common fixed point. Suppose that the system (ϕk)0≤k≤N is not conjugated to a family in Pisot
form. Then F mod 1 ⊂ T is a M -set.
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Proof of the theorem :
Taking any p ∈ CN gives a Rajchman invariant probability measure ν supported by F ⊂ R. Hence
F mod (1) ⊂ T supports the probability measure ν̃, image of ν under the projection x 7−→ x
mod 1, from R to T. The measure ν̃ is thus a Rajchman measure on T, so, cf Salem [18] (chap.
V), F mod 1 is a M -set.

�

The analysis in the other direction is in general more delicate. We shall simply apply existing
results. For the following statement, fixing 0 < λ < 1 and integers nk ≥ 1, for 0 ≤ k ≤ N , notice
that for any (x0, x1, · · · ) ∈ S we have

∑
l≥0 λ

nx0+···+nxl−1 (1− λnxl ) = 1.

Theorem 6.2
Let N ≥ 1 and suppose that the (ϕk) are affine contractions of the form ϕk(x) = λnkx + bk, with
bk = bak + c(1 − λnk), for some 0 < λ < 1 with 1/λ a Pisot number > N + 2, relatively prime
positive integers nk ≥ 1, 0 ≤ ak ∈ Q[λ] and real numbers b ≥ 0 and c. Then the non-empty compact
self-similar set F = ∪0≤k≤Nϕk(F ) ⊂ R can be written as F = bG+ c, where G is the compact set :

G =

∑
l≥0

axlλ
nx0+···+nxl−1 , (x0, x1, · · · ) ∈ S

 .

Assume that bG ⊂ [0, 1), so that bG and F can be seen as subsets of T. Then F is U -set.

Proof of the theorem :
Up to replacing b and the (ak) respectively by br and (ak/r), for some r > 1 in Q, we may assume
that 0 ≤ ak < 1/(1− λ), for all 0 ≤ k ≤ N . Then :

G ⊂ H :=

∑
l≥0

ηlλ
l, ηl ∈ {0, a0, · · · , aN}, l ≥ 0

 ⊂ [0, 1).

Since 1/λ > N + 2 is a Pisot number and all a0, · · · , aN are in Q[λ], it follows from the Salem-
Zygmund theorem, cf Salem [18], chap. VII, paragraph 3, on perfect homogeneous sets, that H is a
perfect U -set. Mention that in this theorem, one also assumes that max0≤k≤N ak = 1/(1− λ) and
that successive au < av in [0, 1) verify av − au ≥ λ. These conditions serve to give a geometrical
description of the perfect homogeneous set H in terms of dissection, without overlaps. They are
in fact not used in the proof, where only the above description of H is important (one can indeed
start reading Salem [18], chap. VII, paragraph 3, directly from line 9 of the proof).

As a subset of a U -set, G is also a U -set. This is also the case of bG, by hypothesis a subset of
[0, 1), using Zygmund, Vol. I, chap. IX, Theorem 6.18 (the proof, not obvious, is in Vol. II, chap.
XVI, 10.25, and relies on Fourier integrals). Hence, F = bG+ c is also a U -set, as any translate on
T of a U -set is a U -set. This ends the proof of the theorem.

�

Remark. — As a general fact, the hypothesis 1/λ > N + 2 ensures that H and F have zero
Lebesgue measure, which is a necessary condition for a set to be a U -set. If overlaps happen in H,
it would be interesting to consider extensions of the previous theorem, when the above condition
on λ not necessarily holds.
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Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris-Est, Faculté des
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