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Self-similar measures and the Rajchman

property

Julien Brémont

Université Paris-Est Créteil, janvier 2020

Abstract

For classical Bernoulli convolutions, the convergence to zero at infinity of the Fourier trans-
form was characterized by successive works of Erdös [4] and Salem [15]. We provide a quasi-
complete extension of these results for general self-similar measures on the real line.

1 Introduction

Rajchman measures. In the present article we consider the extension of some well-known results
concerning Bernoulli convolutions to a more general context of self-similar measures. For a Borel
probability measure µ on R, define its Fourier transform as :

µ̂(t) =

∫
R
e2iπtx dµ(x), t ∈ R.

We shall say that µ is Rajchman, whenever µ̂(t)→ 0, as t→ +∞. When µ is a Borel probability
measure on the torus T = R\Z, we introduce its Fourier coefficients, defined as :

µ̂(n) =

∫
T
e2iπnx dµ(x), n ∈ Z.

In this study, starting from a Borel probability measure µ on R, Borel probability measures on T
will naturally appear, quantifying the non-Rajchman character of µ.

For a Borel probability measure µ on R, the Rajchman property holds for example if µ has a
density with respect to Lebesgue measure LR, by the Riemann-Lebesgue lemma. It can be verified
without density and for instance there exist Cantor sets of zero Lebesgue measure and even of zero-
Hausdorff dimension which support a Rajchman measure; cf Menshov [12], Bluhm [2]. Questions
on the Rajchman property of a measure naturally arise in Harmonic Analysis, for example when
studying sets of multiplicity for trigonometric series, cf Lyons [11] or Zygmund [23]. We shall
say a word on this topic at the end of the article. Mention the classical counter-example of the
uniform measure µ on the standard triadic Cantor set, which is a singular continuous measure, not
Rajchman (because µ̂(3n) = µ̂(n), n ∈ Z). As in this last example, the obstructions for a measure
to be Rajchman are often of arithmetical nature. The present work goes in this direction.

Naively, as it concerns t→ +∞, the Rajchman character of a measure µ on R is an information of
local regularity. As is well-known, it says for example that µ has no atom; if ever the convergence
to zero is fast enough, then µ has a density; etc. Stricto sensu, the Rajchman character can be
reformulated as an equidistribution property modulo 1. Since µ̂(t)→ 0 is equivalent to µ̂(mt)→ 0
for any integer m 6= 0, if X is a real random variable with law µ, then µ is Rajchman if and only
if the law of tX mod 1 converges, as t→ +∞, to Lebesgue measure LT on T.

AMS 2010 subject classifications : 11K16, 37A45, 42A38, 42A61, 60K20.
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Self-similar measures. Let us now recall standard notions on self-similar measures on the real
line R, with a probabilistic point of view. We write L(X) for the law of a real random variable X.
Let N ≥ 0 and real affine maps ϕk(x) = rkx + bk, with rk > 0, for 0 ≤ k ≤ N , and at least one
rk < 1. We call (C) the condition that the (ϕk)0≤k≤N are all strict contractions, in other words :

(C) : 0 < rk < 1, for all 0 ≤ k ≤ N.

Introduce the vectors r = (rk)0≤k≤N and b = (bk)0≤k≤N . Notice for what follows that for n ≥ 0,
a composition ϕkn−1

◦ · · · ◦ ϕk0 has the form :

ϕkn−1 ◦ · · · ◦ ϕk0(x) = rkn−1 · · · rk0x+

n−1∑
l=0

bklrkn−1 · · · rkl+1
.

Consider the convex set CN = {p = (p0, · · · , pN ) | pi ≥ 0,
∑
i pi = 1} and CoN as the subset where

pj > 0, for all 0 ≤ j ≤ N . Define :

DN (r) =

p ∈ CN | ∑
0≤j≤N

pj log rj < 0

 .

This is a non-empty open subset of CN , for the relative topology. Notice that DN (r) = CN , when
condition (C) holds. Fixing a probability vector p ∈ DN (r), we now compose the contractions at
random, independently, according to p. Precisely, let X0 be any real random variable and (εn)n≥0

be independent and identically distributed random variables (i.i.d.), independent from X0, and
with law p, in other words P(ε0 = k) = pk, 0 ≤ k ≤ N . We consider the Markov chain (Xn)n≥0 on
R defined by Xn = ϕεn−1 ◦ · · · ◦ ϕε0(X0), n ≥ 0.

The condition p ∈ DN (r) is a hypothesis of contraction on average, rewritten as E(log rε0) < 0.
Classically, it implies that (Xn)n≥0 has a unique invariant (or stationary) measure, written as ν.
This for example follows from the fact that L(Xn) = L(Yn), where :

Yn := ϕε0 ◦ · · · ◦ ϕεn−1
(X0) = rε0 · · · rεn−1

X0 +

n−1∑
l=0

bεlrε0 · · · rεl−1
.

As a standard fact, (Yn) is more stable than (Xn). Using the Law of Large Numbers, we obtain
n−1 log(rε0 · · · rεn−1)→ E(log rε0) < 0, a.-s., as n→ +∞, so Yn converges a.-s., as n→ +∞, to :

X :=
∑
l≥0

bεlrε0 · · · rεl−1
.

Setting ν = L(X), we obtain that L(Xn) weakly converges to ν. By construction, L(Xn+1) =∑
0≤j≤N pjL(Xn) ◦ ϕ−1

j , hence, taking the limit as n→ +∞, the measure ν verifies :

ν =
∑

0≤j≤N

pjν ◦ ϕ−1
j . (1)

The previous convergence implies that the solution of this “stable fixed point equation” is unique
among Borel probability measures. Also, ν has to be of pure type, i.e. either purely atomic or
absolutely continuous with respect to Lebesgue measure LR or else singular continuous, since each
term in its Radon-Nikodym decomposition with respect to LR verifies (1). A few remarks :

i) The measure ν is purely atomic if and only if the ϕj with pj > 0 have a common fixed point c,
in which case ν is the Dirac mass at c. Indeed (considering the necessity), suppose that ν has an
atom. Let a > 0 be the maximal mass of an atom and E the finite set of points having mass a.
Fixing any c ∈ E, the relation ν({c}) =

∑
j pjν({ϕ−1

j (c)}) furnishes ϕ−1
j (c) ∈ E, whenever pj > 0.

Hence ϕ−nj (c) ∈ E, n ≥ 0. If ϕj 6= id, then ϕ−1
j (c) = c, the set {ϕ−nj (c), n ≥ 0} being infinite

otherwise. If ϕj = id, it fixes all points.

ii) The equation for a potential density f of ν with respect to LR, coming from (1) is :
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f =
∑

0≤j≤N

pjr
−1
j f ◦ ϕ−1

j .

This is essentially an “unstable fixed point equation”, difficult to solve directly, equivalently refor-
mulated into the fact that ((r−1

εn−1
· · · r−1

ε0 )f ◦ ϕ−1
εn−1
· · · ◦ ϕ−1

ε0 (x))n≥0 is a non-negative martingale
(for its natural filtration), for Lebesgue a.-e. x ∈ R.

iii) Let f(x) = ax+ b be an affine map, with a 6= 0. With the same p ∈ CN , consider the conjugate
system (ψj)0≤j≤N , with ψj(x) = f ◦ϕj ◦f−1(x) = rjx+b(1−rj)+abj . It has an invariant measure
w = L(aX + b) verifying the relation ŵ(t) = ν̂(at)e2iπtb, t ∈ R. In particular ν is Rajchman if and
only if w is Rajchman.

iv) When supposing condition (C), some self-similar set F can be introduced, where F ⊂ R is the
unique non-empty compact set verifying the self-similarity relation :

F = ∪0≤k≤Nϕk(F ).

See for example Huchinson [7] for general properties of such sets. Introducing N = {0, 1, · · · } and
the compact S = {0, · · · , N}N, condition (C) implies that F is a continuous (and even hölderian)
image of S, in other words we have the following description :

F =

∑
l≥0

bxlrx0
· · · rxl−1

, (x0, x1, · · · ) ∈ S

 .

Whereas in the general case a self-similar invariant measure can have R as topological support,
under condition (C) the compact self-similar set F exists and supports any self-similar measure.

Background and content of the article. Back to the general case, we assume in the sequel that
the ϕj with pj > 0 do not have a common fixed point; in particular N ≥ 1. A difficult problem is
to characterize the absolute continuity of ν in terms of the parameters r, b and p. An example with
a long and well-known history is that of Bernoulli convolutions, corresponding to N = 1, the affine
contractions ϕ0(x) = λx− 1, ϕ1(x) = λx+ 1, 0 < λ < 1, and the probability vector p = (1/2, 1/2).
Notice that when the ri are equal (to some real in (0, 1)), the situation is a little simplified, as ν is
an infinite convolution (this is not true in general). Although we discuss below some works in this
context, we will not present here the vast subject of Bernoulli convolutions, addressing the reader
to detailed surveys, Peres-Schlag-Solomyak [14] or Solomyak [19].

For general self-similar measures, an important aspect of the problem, that we shall not enter,
and an active line of research, concerns the Hausdorff dimension of the measure ν, cf Hochman
[6]. In a large generality, cf for example Falconer [5] and more recently Jaroszewska and Rams [8],
there is an “entropy/Lyapunov exponent” upper-bound :

DimH(ν) ≤ min{1, s(p, r)}, where s(p, r) :=
−
∑N
i=0 pi log pi

−
∑N
i=0 pi log ri

.

The quantity s(p, r) is called the singularity dimension of the measure and can be > 1. The equality
DimH(ν) = 1 does not mean that ν is absolutely continuous, but the inequality s(p, r) < 1 implies
that ν is singular. The interesting domain of parameters for the question of the absolute continuity
of the invariant measure therefore corresponds to s(p, r) ≥ 1.

We focus in this work on another fundamental tool, the Fourier transform ν̂. If ν is not
Rajchman, the Riemann-Lebesgue lemma implies that ν is singular. This property was used by
Erdös [4] in the context of Bernoulli convolutions. Erdös proved that if 1/2 < λ < 1 is such that
1/λ is a Pisot number, then ν is not Rajchman. The reciprocal statement was next shown by
Salem [15]. As a result, for Bernoulli convolutions the Rajchman property always holds, except
for a very particular set of parameters. For general self-similar measures, supposing condition (C),
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the non-Rajchman character was recently shown to hold for only a very small set of parameters,
by Solomyak [20] : if p ∈ CoN , N ≥ 1, and the (ϕk)0≤k≤N do not have a common fixed point, then
outside a set of r of zero-Hausdorff dimension, ν̂ even has a power decay at infinity.

The aim of the present article is to study for general self-similar measures the exceptional set
of parameters where the Rajchman property is not true. We essentially show that r and b have to
be very specific, as for Bernoulli convolutions. We shall first prove a general extension of the result
of Salem [15], drastically reducing the set of parameters where the Rajchman property does not
hold. Focusing then on this particular case, we provide a general characterization of the Rajchman
character. Next, restricting to condition (C), we prove a partial extension of the theorem of Erdös
[4]. We next give some complements, first rather surprising numerical simulations involving the
Plastic number, then an application to sets of uniqueness for trigonometric series.

2 Statement of the results

Let us place in the general situation considered in the introduction. Without surprise, Pisot
numbers come out of the analysis. Let us introduce a few definitions concerning Algebraic Number
Theory; cf for example Samuel [17] for more details.

Definition 2.1
A Pisot number is a real algebraic integer θ > 1, with conjugates (i.e. the other roots of its minimal
unitary polynomial) of modulus strictly less than 1. We fix such a θ > 1 and denote as :

Q = Xs+1 + asX
s + · · ·+ a0 ∈ Z[X],

its minimal polynomial, of degree s+ 1, with s ≥ 0. If s = 0, then θ is an integer ≥ 2. The images
of µ ∈ Q[θ] by the s+ 1 Q-homomorphisms Q[θ]→ C are called conjugates of µ and are in general
denoted by µ(0) = µ, µ(1), · · · , µ(s). Let us also introduce :

i) For α ∈ Q[θ], the trace Tr(α) is the trace of the linear multiplication operator x 7−→ αx,
considered from Q[θ] to itself. As a general fact, Tr(α) ∈ Q.

ii) Let Z[θ] = Zθ0 + · · ·+ Zθs, the subring generated by θ of the ring of algebraic integers of Q[θ].
We write D(θ) for its Z-dual, as a Z-lattice :

D(θ) = {α ∈ Q[θ], T r(θnα) ∈ Z, for 0 ≤ n ≤ s}

It can be shown that D(θ) = (1/Q′(θ))Z[θ].

iii) Classically, Tr(θnα) ∈ Z, for all n ≥ 0, if this holds for 0 ≤ n ≤ s. Let us define :

T (θ) = {α ∈ Q[θ], T r(θnα) ∈ Z, for large n ≥ 0} = ∪n≥0θ
−nD(θ) =

1

Q′(θ)
Z[θ, 1/θ],

where Z[θ, 1/θ] is the subring of Q[θ] generated by θ and 1/θ.

Let us now introduce special families of affine maps, that will somehow play the role of canonical
models for the analysis of the Rajchman property.

Definition 2.2
Let N ≥ 1. A family of real affine maps ϕk(x) = rkx + bk, with rk > 0, for 0 ≤ k ≤ N , and at
least one rk < 1 and no common fixed point, is in reduced Pisot form, if there exist a Pisot number
1/λ > 1, relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ), 0 ≤ k ≤ N , such that :

ϕj(x) = λnjx+ µj, for all 0 ≤ j ≤ N,

with moreover some Bezout relation 1 =
∑

0≤j≤N,nj 6=0 ljnj verifying the following condition :
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0 =
∑

0≤j≤N,nj 6=0

(
µj

1− λnj

)
λ
∑

0≤k<j,nk 6=0 lknk(1− λljnj ).

We call such an identity a Bezout centering relation.

Remark. — If a family (ϕj)0≤j≤N is in reduced Pisot form, then the (λ, (nj), (µj)) are uniquely
determined. Indeed, if (λ′, (n′j), (µ

′
j)) also convenes, it suffices to show that λ = λ′. Taking some

collection of integers (aj) realizing a Bezout relation for the (nj), we have :

λ = λ
∑
j ajnj = λ′

∑
j ajn

′
j = λ′p,

for some p ≥ 1. Idem, λ′ = λq, for some q ≥ 1. Hence pq = 1, giving p = q = 1 and λ = λ′. Notice
that if some Bezout relation satisfies a centering condition, it may not be the case for another one.

As a first result, extending [15], the analysis of the non-Rajchman character of the invariant
measure necessitates to consider families in reduced Pisot form.

Theorem 2.3
Let N ≥ 1, p ∈ CoN and affine maps ϕk(x) = rkx + bk, rk > 0, for 0 ≤ k ≤ N , with no common
fixed point and

∑
0≤j≤N pj log rj < 0. The invariant measure ν is not Rajchman if and only if

there exists f(x) = ax+ b, a 6= 0, such that the conjugate system (f ◦ϕj ◦ f−1)0≤j≤N is in reduced
Pisot form, for some Pisot number 1/λ > 1, with invariant measure w verifying ŵ(λ−k) 6→k+∞ 0.

As above and in [4], sequences of the form (αλ−k)k≥0, α 6= 0, will play a central role. In a
second step, we provide a general analysis of families in reduced Pisot form, specifying when we
require the existence of a Bezout centering relation.

Fixing a Pisot number 1/λ > 1, an important preliminary remark is that when µ ∈ T (1/λ) and
k ≥ 0 is large enough, we have :

λ−kµ+
∑

1≤j≤s

αkjµ
(j) = Tr(λ−kµ) ∈ Z,

where the (αj)0≤j≤s are the other conjugates of 1/λ = α0 and the (µ(j))1≤j≤s that of µ = µ(0), in
the field Q[λ]. Since |αj | < 1, for 1 ≤ j ≤ s, and (Sl) is a.-s. transient with a non-zero linear speed
to −∞, as l→ −∞, this ensures that for any k ∈ Z, the random variable

∑
l∈Z µεlλ

k+Sl mod 1 is
a well-defined T-valued random variable.

Theorem 2.4
Let N ≥ 1 and ϕk(x) = λnkx + µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number of degree s + 1,
relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ), for 0 ≤ k ≤ N .

Let p ∈ CoN be such that
∑

0≤j≤N pjnj > 0 and i.i.d. random variables (εn)n∈Z, with P(ε0 = k) = pk,
0 ≤ k ≤ N . Set Sl = nε0 + · · ·+ nεl−1

, l > 0, S0 = 0 and Sl = −nεl − · · · − nε−1
, l < 0. With this

notation, the real random variable X =
∑
l≥0 µεlλ

Sl has law ν.

i) Introduce the T-valued random variables Zk =
∑
l∈Z µεlλ

k+Sl , k ∈ Z. Then λ−nX mod 1
converges to a probability measure m on T, verifying, for all f ∈ C(T,R) and all k ∈ Z :∫

T
f(x) dm(x) =

1

E(nε0)

∑
0≤r<n∗

E
[
f (Zk+r) 1S−u<−r,u≥1

]
,

where n∗ = max0≤k≤N nk. More generally, (λ−nX,λ−n−1X, · · · , λ−n−sX) mod Zs+1 converges
in law, as n→ +∞, to a probability measure M on Ts+1, with marginals m, verifying :

∫
Ts+1

f(x) dM(x) =
1

E(nε0)

∑
0≤r<n∗

E
[
f (Zk+r, Zk+r−1, · · · , Zk+r−s) 1S−u<−r,u≥1

]
,
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for all f ∈ C(Ts+1,R) and all k ∈ Z.

ii) Let P = {α ∈ Q[λ], α 6= 0 and αµj ∈ T (1/λ), for all 0 ≤ j ≤ N}. For α ∈ P, let mα and
Mα be the measures corresponding to m and M, when replacing the (µj) by the (αµj).

a) If ν is Rajchman, then Mα = LTs+1 , for all α ∈ P.

b) If ν is continuous and M|Ts+1\{0} � LTs+1 , for example if ν is Rajchman, then ν � LR.

c) If some Bezout centering relation holds and mα = LT, α ∈ P ∩ [1, 1/λ], then ν is Rajchman.

A general analysis of m and M has to be done. A corollary of Theorem 2.4 is for example
that wheneverM� LTs+1 , then in factM = LTs+1 . We finally consider families in reduced Pisot
form, without the condition of existence of a Bezout centering relation, under condition (C).

Theorem 2.5
Let N ≥ 1 and ϕk(x) = λnkx+ µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number, relatively prime
integers (nk)0≤k≤N , with nk ≥ 1 and µk ∈ T (1/λ), for 0 ≤ k ≤ N .

i) For any p ∈ CoN , the invariant measure ν is Rajchman if and only if it has a density, bounded
and with compact support, with respect to Lebesgue measure LR.

ii) There exists 0 6= a ∈ Z such that for any k 6= 0, for all p ∈ CoN outside a finite set (depending
on k), m̂(ak) 6= 0, where m is the measure of Theorem 2.4, i). Thus, ν is not Rajchman, for any
p ∈ CoN outside a finite set. Moreover, for all p ∈ CoN outside a countable set, m̂(ak) 6= 0, k ∈ Z.

Remark. — Part ii) of Theorem 2.5 relies on an indirect argument, based on the analysis of the
regularity of m̂(n), for some fixed n ∈ Z, as a function of p ∈ CoN . We give very concrete examples
in the last section, with N = 1 and 1/λ the Plastic number, where ν is not Rajchman for all p ∈ C1.
On the existence of singular measures in the inhomogeneous case, we were previously essentially
aware of the non-explicit examples, using algebraic curves, of Neunhäuserer [13].

Remark. — Still on Theorem 2.5 ii), under condition (C), observe that when the Pisot number
1/λ is an integer ≥ 2, then the involved finite set can be non-empty. For instance, if N ≥ 1
and ϕk(x) = (x + k)/(N + 1), for 0 ≤ k ≤ N , with p = (1/(N + 1), · · · , 1/(N + 1)), then ν is
Lebesgue measure on [0, 1]. It would be important to find examples (if there are some) when the
Pisot number 1/λ is irrational and more generally to determine, in the context of Theorem 2.5,
the exceptional parameters where ν is Rajchman.

Remark. — Some number theoretic question appears in Theorem 2.4 ii). Fix a Pisot number
θ > 1 and a non-zero family (µj)0≤j≤N ∈ T (θ)N+1. Since θMµj ∈ D(θ), for all 0 ≤ j ≤ N , as soon
as M ≥ 0 is large enough, assume for example that (µj)0≤j≤N ∈ D(θ)N+1.

• For µ ∈ Q[θ], define den(µ) as the lcm of the denominators of the vector of irreducible
fractions (Tr(θlµ))0≤l≤s. Then den(µ)µ ∈ D(θ). Taking any 0 6= α ∈ Q[θ], introduce
q = lcm{den(αµj), 0 ≤ j ≤ N}. Then nαµj ∈ D(θ), for all 0 ≤ j ≤ N , if and only if n ∈ qZ.

• Another approach is to take some other family 0 6= (µ′j)0≤j≤N ∈ D(θ)N+1. There exists α 6= 0
(necessarily in Q[θ]) such that µ′j = αµj , for all 0 ≤ j ≤ N , if and only if µiµ

′
j−µ′iµj = 0, for

all 0 ≤ i 6= j ≤ N . Since D(θ) = (1/Q′(θ))Z[θ], where Q(x) = Xs+1 +asX
s+ · · ·+a0 ∈ Z[X]

is the minimal polynomial of θ, consider the equality yz′ − y′z = 0, for elements y, y′, z, z′

in Z[θ]. Let y =
∑

0≤u≤s nuθ
u and z =

∑
0≤v≤smvθ

v, with similar expressions with ′ for y′

and z′. Introduce the integer-valued (s+ 1)× (s+ 1)-companion matrix M of Q :

M =


0 1 · · · 0
...

. . .
. . .

...
...

... 0 1
−a0 · · · −as−1 −as

 .

If y has coordinates (n0, · · · , ns) in the basis (θ0, · · · , θs) of Q[θ], then in the same basis θy
has coordinates (n0, · · · , ns)M . From this it is not difficult to infer that the conditions on
the (nu), (mu), (n′u), (m′u) for the equality yz′ − y′z = 0 can be reformulated as :
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(n0, · · · , ns)
∑

0≤u≤s

m′uM
u − (n′0, · · · , n′s)

∑
0≤u≤s

muM
u = 0.

In the same fashion, observe that for any µ ∈ Q[θ] and when setting V = (Tr(θ0µ), · · · , T r(θsµ)),
then µ ∈ T (θ) if and only if there exists n ≥ 0 such that VMn has integral entries.

3 Proof of Theorem 2.3

For the sequel, introduce i.i.d. random variables (εn)n≥0 with law p, to which P and E refer.
Recall that ν is the law of the random variable

∑
l≥0 bεlrε0 · · · rεl−1

. Without loss of generality, we
also assume that 0 < r0 ≤ r1 ≤ · · · ≤ rN , with necessarily r0 < 1.

Step 1. We prove that if log ri/ log rj 6∈ Q, for some 0 ≤ i 6= j ≤ N , then ν is Rajchman. This
was shown by Li and Sahlsten [10], under condition (C). We simplify their proof. In [10], some
logarithmic decay at infinity of ν̂ is also established, under an additional Diophantine condition.

For n ≥ 1, consider the random walk Sn = − log rε0 − · · · − log rεn−1 , with S0 = 0. For a
real s ≥ 0, introduce the finite stopping time τs = min{n ≥ 0, Sn > s} and write Ts for the
corresponding sub-σ-algebra of the underlying σ-algebra. Taking α > 0 and s ≥ 0 :

ν̂(αes) = E
(
e2πiαes

∑
l≥0 bεle

−Sl
)

= E
(
e2πiαes

∑
0≤l<τs bεle

−Sl
e2πiαe−Sτs+s∑

l≥τs bεle
−Sl+Sτs

)
.

In the expectation, the first exponential term is Ts-measurable. Also, the conditional expectation
of the second exponential term with respect to Ts is just ν̂(αe−Sτs+s), as a consequence of the
strong Markov property. It follows that :

ν̂(αes) = E
(
ν̂(αe−Sτs+s)e2πiαes

∑
0≤l<τs bεle

−Sl
)
.

This gives |ν̂(αes)| ≤ E
(
|ν̂(αe−Sτs+s)|

)
, so by the Cauchy-Schwarz inequality and a safe Fubini

theorem consecutively :

|ν̂(αes)|2 ≤ E
(
|ν̂(αe−Sτs+s)|2

)
= E

(∫
R2

e2πiαe−Sτs+s(x−y) dν(x)dν(y)

)
=

∫
R2

E
(
e2πiαe−Sτs+s(x−y)

)
dν(x)dν(y).

Let Y := − log rε0 . As the law of Y is non-lattice (since some log ri/ log rj 6∈ Q and pk > 0 for all
0 ≤ k ≤ N) and with 0 < E(Y ) <∞, it is a well-known consequence of the Blackwell theorem on
the law of the overshoot that (see for instance Woodroofe [22], chap. 2, thm 2.3), that :

E(g(Sτs − s))→
1

E(Sτ0)

∫ +∞

0

g(x)P(Sτ0 > x) dx, as s→ +∞,

for any Riemann-integrable g on R+. Here, all Sτs − s, s ≥ 0, (in particular Sτ0) have support in
some [0, A]. Thus, also, P(Sτ0 > x) = 0 for large x > 0. By dominated convergence, for any α > 0 :

lim sup
t→+∞

|ν̂(t)|2 ≤ 1

E(Sτ0)

∫
R2

∣∣∣∣∫ +∞

0

e2πiαe−u(x−y)P(Sτ0 > u)du

∣∣∣∣ dν(x)dν(y).

The inside term (in the modulus) is uniformly bounded with respect to (x, y) ∈ R2. We shall
use dominated convergence once more, this time with α → +∞. It is sufficient to show that for
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ν⊗2-almost every (x, y), the inside term goes to zero. Since ν is non-atomic, ν⊗2-almost-surely,
x 6= y. If for example x > y :∫ +∞

0

e2πiαe−u(x−y)P(Sτ0 > u)du =

∫ x−y

0

e2πiαtP(Sτ0 > log((x− y)/t)
dt

t
,

making the change of variable t = e−u(x− y). The last integral now converges to 0, as α→ +∞,
by the Riemann-Lebesgue lemma. Hence, limt→+∞ ν̂(t) = 0. This ends the proof of this step.

Step 2. Assuming ν not Rajchman, from Step 1, log ri/ log rj ∈ Q, for all (i, j). Hence rj = r
pj/qj
0 ,

with integers pj ∈ Z, qj ≥ 1, for 1 ≤ j ≤ N . Let :

n0 =
∏

1≤l≤N

ql ≥ 1 and nj = pj
∏

1≤l≤N,l 6=j

ql ∈ Z, 1 ≤ j ≤ N.

Recall that 0 < r0 < 1. Setting λ = r
1/n0

0 ∈ (0, 1), one has rj = λnj , 0 ≤ j ≤ N . Up to taking
some positive integral power of λ, one can assume that gcd(n0, · · · , nN ) = 1. Recall in passing
that the set of Pisot numbers is stable under positive integral powers. The condition E(log rε0) < 0
rewrites into E(nε0) > 0 and we have nN ≤ · · · ≤ n0, with n0 ≥ 1.

Using now some sub-harmonicity, one can reinforce the assumption that ν̂(t) is not converging
to 0, as t→ +∞.

Lemma 3.1
There exists 1 ≤ α ≤ 1/λ and c > 0 such that ν̂(αλ−k) = cke

2iπθk , written in polar form, verifies
ck → c, as k → +∞.

Proof of the lemma :
Let us write this time Sn = nε0 + · · · + nεn−1 , for n ≥ 1, with S0 = 0. Since E(nε0) > 0, (Sn)
is transient to +∞. Introduce the random ladder epochs 0 = σ0 < σ1 < · · · , where inductively
σk+1 is the first time n ≥ 0 with Sn > Sσk . Let S′k = Sσk . The (S′k − S′k−1)k≥1 are i.i.d. random
variables with law L(Sτ0) and support in {1, · · · , n0}. Since gcd(n0, · · · , nN ) = 1, the support of
the law of Sτ0 generates Z as an additive group (cf for example Woodroofe [22], thm 2.3, second
part). For an integer u ≥ 1 large enough, we can fix integers r ≥ 1 and s ≥ 1 such that the support
of the law of S′r contains u and that of S′s contains u + 1, both supports being included in some
{1, · · · ,M}, with therefore 1 ≤ u ≤ u+ 1 ≤M . Proceeding as in Step 1, for any t ∈ R :

ν̂(t) = E
(
e2πit

∑
l≥0 bεlλ

Sl
)

= E
(
ν̂(tλS

′
r )e2πit

∑
0≤l<σr bεlλ

Sl
)
.

Doing the same thing with S′s and taking modulus gives :

|ν̂(t)| ≤ E
(
|ν̂(tλS

′
r )|
)

and |ν̂(t)| ≤ E
(
|ν̂(tλS

′
s)|
)
. (2)

In particular, |ν̂(t)| ≤ max1≤l≤M |ν̂(λlt)|. We now set :

Vα(k) := max
k≤l<k+M

|ν̂(αλl)|, k ∈ Z, α > 0.

The previous remarks imply that Vα(k) ≤ Vα(k + 1), k ∈ Z, α > 0.

Since ν is not Rajchman, |ν̂(tl)| ≥ c′ > 0, along some sequence tl → +∞. Write tl = αlλ
−kl ,

with 1 ≤ αl ≤ 1/λ and kl → +∞. Up to taking a subsequence, αl → α ∈ [1, 1/λ]. Fixing k ∈ Z :

c′ ≤ Vαl(−kl) ≤ Vαl(−k),

as soon as l is large enough. By continuity, letting l → +∞, we get c′ ≤ Vα(−k), k ∈ Z. As
k 7−→ Vα(−k) is non-increasing, Vα(−k) → c ≥ c′, as k → +∞. We now show that necessarily
|ν̂(αλ−k)| → c, as k → +∞.
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If this were not true, there would exist ε > 0 and (mk)→ +∞, with |ν̂(αλ−mk)| ≤ c− ε. Using
Vα(−k)→ c and |ν̂(αλ−mk)| ≤ c− ε, as k → +∞, consider (2) with r and t = αλ−mk−u and next
with s and t = αλ−mk−u−1. Since u is in the support of the law of S′r and u+ 1 is in the support
of the law of S′s, we obtain the existence of some c1 < c such that for k large enough :

max{|ν̂(αλ−mk−u)|, |ν̂(αλ−mk−u−1)|} ≤ c1 < c.

Again via (2), with successively r and t = αλ−mk−2u, next r and t = αλ−mk−2u−1 and finally s
and t = αλ−mk−2u−2, still using that u is in the support of the law of S′r and u+ 1 in the support
of the law of S′s, we get some c2 < c such that for k large enough :

max{|ν̂(αλ−mk−2u)|, |ν̂(αλ−mk−2u−1)|, |ν̂(αλ−mk−2u−2)|} ≤ c2 < c.

Etc, for some cM−1 < c and k large enough :

max{|ν̂(αλ−mk−(M−1)u)|, · · · , |ν̂(αλ−mk−(M−1)u−(M−1))|} ≤ cM−1 < c.

This contradicts the fact that Vα(−k)→ c, as k →∞. We conclude that |ν̂(αλ−k)| → c, as k →∞,
and this ends the proof of the lemma.

�

Step 3. We complete the proof of Theorem 2.3. In this part, introduce the notation ‖x‖ = dist(x,Z),
for x ∈ R. Let us consider any 1 ≤ α ≤ 1/λ, with ν̂(αλ−k) = cke

2iπθk , verifying ck → c > 0, as
k → +∞. We start from the relation :

ν̂(αλ−k) =
∑

0≤j≤N

pje
2iπαλ−kbj ν̂(αλ−k+nj ),

obtained by conditioning with respect to the value of ε0. This furnishes for k ≥ 0 :

ck =
∑

0≤j≤N

pje
2iπ(αλ−kbj+θk−nj−θk)ck−nj .

We rewrite this as :

∑
0≤j≤N

pj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
ck−nj = ck −

∑
0≤j≤N

pjck−nj =
∑

0≤j≤N

pj(ck − ck−nj ).

Let K > 0 be such that ck−nj ≥ c/2 > 0, for k ≥ K and all 0 ≤ j ≤ N . For L > n∗, where
n∗ = max0≤j≤N |nj |, we sum the previous equality on K ≤ k ≤ K + L :

∑
0≤j≤N

pj

K+L∑
k=K

ck−nj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
=

∑
0≤j≤N

pj

K+L∑
k=K

ck −
K+L−nj∑
k=K−nj

ck

 .

Observe that the right-hand side involves a telescopic sum and is bounded by 2n∗ (using that
|ck| ≤ 1), uniformly in K and L. In the left hand-hand side, we take the real part and use that
1 − cos(2πx) = 2(sinπx)2, which, as is well-known, has the same order as ‖x‖2. We obtain, for
some constant C, that for K and L large enough :

c

2

∑
0≤j≤N

pj

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C.

Introducing the constants p∗ = min0≤j≤N pj > 0 and C ′ = 2C/(cp∗), we get that for all 0 ≤ j ≤ N
and K,L large enough :
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K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C ′. (3)

In the sequel, we distinguish two cases : there is a non-zero translation (case 1) or not (case 2).

- Case 1. For any non-zero-translation ϕj(x) = x+ bj , we have nj = 0 and bj 6= 0. Then (3) gives
that for K,L large enough :

K+L∑
k=K

‖αλ−kbj‖2 ≤ C ′.

This implies that (‖αbjλ−k‖)k≥0 ∈ l2(N). By a classical theorem of Pisot, cf Cassels [3], chap. 8,
Theorems I and II, we obtain that 1/λ is a Pisot number and bj = (1/α)µj , with µj ∈ T (1/λ).
Consider now the non-translations ϕj(x) = λnjx+ bj , nj 6= 0. By (3), for any r ≥ 0 and K,L large
enough (depending on r) :

K+L∑
k=K

‖αλ−k+rnj bj + θk−(r+1)nj − θk−rnj‖
2 ≤ C ′.

Fixing lj ≥ 1 and summing over 0 ≤ r ≤ lj − 1, making use of the triangular inequality and of
(x1 + · · ·+ xn)2 ≤ n(x2

1 + · · ·+ x2
n), we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λljnj
1− λnj

)
+ θk−ljnj − θk

∥∥∥∥2

≤ ljC ′. (4)

Changing k into k + ljnj , we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λ−ljnj
1− λnj

)
+ θk+ljnj − θk

∥∥∥∥2

≤ ljC ′. (5)

Let 1 =
∑

0≤j≤N ljnj be a Bezout relation and J ⊂ {0, · · · , N} be the subset where ljnj 6= 0,
equipped with its natural order. Using successively for j ∈ J either (4) or (5), according to the
sign of lj , we obtain with :

b =
∑
j∈J

bjλ
∑
k∈J,k<j lknk

(
1− λljnj
1− λnj

)
, (6)

the following relation, for a new constant C ′ and all K,L large enough :

K+L∑
k=K

‖αλ−kb+ θk−1 − θk‖2 ≤ C ′.

Now, for any nj 6= 0, whatever the sign of nj is, we arrive at, for some constant C ′ and all K,L
large enough :

K+L∑
k=K

‖αλ−kb
(

1− λnj
1− λ

)
+ θk−nj − θk‖2 ≤ C ′.

Set b′ = b/(1− λ). Hence, for any 0 ≤ j ≤ N with nj 6= 0, for some new constant C ′ and all K,L
large enough, using (3) :

K+L∑
k=K

‖αλ−k(bj − b′(1− λnj ))‖2 ≤ C ′.
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Let 0 ≤ j ≤ N , with nj 6= 0. If bj 6= b′(1− λnj ), then we deduce again that 1/λ is a Pisot number
and bj = b′(1− λnj ) + (1/α)µj , with µj ∈ T (1/λ). The other case is bj = b′(1− λnj ). In any case,
we obtain that for all 0 ≤ j ≤ N :

ϕj(x) = b′ + λnj (x− b′) + (1/α)µj , (7)

for some µj ∈ T (1/λ). Finally, remark that (7) says that the (ϕj)0≤j≤N are conjugated with the
(ψj)0≤j≤N , where ψj(x) = λnjx+ µj ; precisely ϕj = f ◦ ψj ◦ f−1, with f(x) = x/α+ b′.

- Case 2. Any ϕj with nj = 0 is the identity. The conclusion is the same, because there now
necessarily exists some 0 ≤ j ≤ N with nj 6= 0 and bj 6= b′(1 − λnj ), otherwise b′ is a common
fixed point for all (ϕj)0≤j≤N .

Let us finally check the Bezout centering relation. From relation (6), injecting the value of each
bj = b(1−λnj )/(1−λ) + (1/α)µj , we get a telescopic sum and it is immediate that the (µj)0≤j≤N
are centered. Reciprocally, if starting from a centered family (bj)0≤j≤N , one can choose the Bezout
relation giving the centering. In this case, b = 0, b′ = 0, so bj = (1/α)µj , for all 0 ≤ j ≤ N .

This ends the proof of the theorem and shows a part of the third item of ii) in Theorem 2.4.
�

4 Proof of Theorem 2.4

Let N ≥ 1 and affine maps ϕk(x) = λnkx+ µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number,
relatively prime integers (nk)0≤k≤N and µk ∈ T (1/λ), for 0 ≤ k ≤ N . Let p ∈ CN , with pj > 0 for
all 0 ≤ j ≤ N , and denote by (εn)n∈Z i.i.d. random variables with law p, to which the probability
P and the expectation E refer. We suppose that E(nε0) > 0. Without loss of generality, we assume
that nN ≤ · · · ≤ n0. Thus n0 ≥ 1. For general background on Markov chains, cf Spitzer [21].

Recall the cocycle notations introduced in the statement of the theorem and denote by θ the
formal shift such that θεl = εl+1, l ∈ Z. We have for all k and l in Z :

Sk+l = Sk + θkSl.

Recall that ν is the law of X =
∑
l≥0 µεlλ

Sl . We write Q ∈ Z[X] for the minimal polynomial of
1/λ, of degree s + 1, with roots α0 = 1/λ, α1, · · · , αs, where |αk| < 1, for 1 ≤ k ≤ s. Recall that
the case s = 0 corresponds to 1/λ an integer ≥ 2 (using then usual conventions regarding sums or
products). As explained before the statement of Theorem 2.4, for any k ∈ Z, the random variable∑
l∈Z µεlλ

k+Sl mod 1 is a well-defined T-valued random variable.

Step 1. In order to prove the convergence in law of (λ−nX,λ−n−1X, · · · , λ−n−sX) mod Zs+1, as
n→ +∞, it is enough to prove, for any (m0, · · · ,ms) ∈ Zs+1, the convergence of :

E
(
e2iπ

∑
0≤u≤smuλ

−n−uX
)

= E
(
e2iπ

∑
l≥0(αµεl )λ

−n+Sl
)
,

with α =
∑

0≤u≤smuλ
−u. Notice that αµj ∈ T (1/λ), for 0 ≤ j ≤ N . We make the proof when

α = 1, the one for α being obtained by changing (µj) into (αµj).

Next, since
∑
l<0 µεlλ

−n+Sl mod 1 converges a.-s. to 0 in T, as n→ +∞, it is enough to consider
expectations with

∑
l∈Z µεlλ

−n+Sl mod 1. Let k ∈ Z be a fixed integer. Looking at (Sl)l∈Z and
the first q ∈ Z such that Sq ≥ n, we have :
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E
(
e2iπ

∑
l∈Z µεlλ

k−n+Sl
)

=
∑

0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

(k−n+Sq)+(Sl−Sq)
1Sq−u<n,u≥1,Sq=n+r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

k+r+θqSl−q
1θqS−u<−r,u≥1,θqS−q=−n−r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεl−qλ

k+r+Sl−q
1S−u<−r,u≥1,S−q=−n−r

)
=

∑
0≤r<n0

∑
q∈Z

E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1,S−q=−n−r

)
.

For each 0 ≤ r < n0, we can move the sum
∑
q∈Z inside the expectation, using the theorem of

Fubini, if we for example show the finiteness of :

∑
q∈Z

E
(
1S−q=−n−r

)
= E

∑
q≥0

1S−q=−n−r

+ E

∑
q≥1

1Sq=−n−r

 .

This is true, since, as soon as n is larger than some constant (because of the missing term for
q = 0 in the second sum), this equals G−(0,−n− r) +G+(0,−n− r) < +∞, where G−(x, y) and
G+(x, y) are the Green functions, finite for every integers x and y, respectively associated to the
i.i.d. transient random walks (S−q)q≥0 and (Sq)q≥0. Let σ+

k , for k ∈ Z, be the first time ≥ 0 when
(Sq)q≥0 touches k. Then G+(x, y) = P0(σ+

y−x <∞)G+(0, 0). With some symmetric quantities, we

have G−(x, y) = P0(σ−y−x <∞)G−(0, 0).

We therefore obtain :

E
(
e2iπ

∑
l∈Z µεlλ

k−n+Sl
)

=
∑

0≤r<n0

E

e2iπ
∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1

∑
q∈Z

1S−q=−n−r

 .

Let us now fix 0 ≤ r < n0 and consider the corresponding term of the right-hand side. First of all,
for n > 0 larger than some constant :

E

(∑
q<0

1S−q=−n−r

)
= P0(σ+

−n−r <∞)G+(0, 0)→ 0, (8)

as n→ +∞, since (Sq)q≥0 is transient to the right. We thus only need to consider :

T (−n) := E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1N(−n− r)

)
,

where we set N(−k− r) =
∑
q≥0 1S−q=−n−r. Consider an integer M0, that we will let tend to +∞

at the end. The difference of T (−n) with the following expression :

E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0
N(−n− r)

)
is bounded by A+B, where, first :
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A = E
[∣∣∣e2iπ

∑
l∈Z µεlλ

k+r+Sl − e2iπ
∑
l≥−M0

µεlλ
k+r+Sl

∣∣∣N(−n− r)
]

= E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣N(−n− r)
]

≤
(
E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣2])1/2 (
E(N(−n− r)2)

)1/2
≤

(
E
[∣∣∣1− e2iπ

∑
l<−M0

µεlλ
k+r+Sl

∣∣∣2])1/2 (
E(N(0)2)

)1/2
,

because N(−n − r) is stochastically dominated by N(0). Notice that N(0) is square integrable,
as it has exponential tail. The first term on the right-hand side also goes to 0, as M0 → +∞, by
dominated convergence. The other term B is :

B = E
(
1S−u<−r,1≤u≤M0,∃v>M0,S−v≥−rN(−n− r)

)
≤ P(∃v > M0, S−v ≥ −r)1/2

(
E(N(−n− r)2)

)1/2
≤ P(∃v > M0, S−v ≥ −r)1/2

(
E(N(0)2)

)1/2
,

as before. The first term on the right-hand side goes to 0, as M0 → +∞, since (S−v) is transient
to −∞, as v → +∞. As a result :

T (−n) = E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0N(−n− r)
)

+ oM0(1),

where oM0
(1) goes to 0, as M0 → +∞, uniformly in n. Now, when n > 0 is large enough,

N(−k − r) =
∑
q≥0 1S−q=−n−r =

∑
q≥M0

1S−q=−n−r, for all ω. Taking inside the expectation the
conditional expectation with respect to the σ-algebra generated by the (εl)l≥−M0

, we obtain :

T (−n) = E
(
e2iπ

∑
l≥−M0

µεlλ
k+r+Sl

1S−u<−r,1≤u≤M0G
−(S−M0 ,−n− r)

)
+ oM0(1).

Now, things are simpler because G−(S−M0 ,−n− r) is bounded by the constant G−(0, 0). Hence,
for some new oM0(1), with the same properties :

T (−n) = E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1G

−(S−M0
,−n− r)

)
+ oM0

(1).

Since G−(S−M0
,−n − r) → 1/E(nε0), as n → ∞, by renewal theory (since the (nj) are relatively

prime and pj > 0, for all 0 ≤ j ≤ N ; cf Woodroofe [22], chap. 2, thm 2.1), staying bounded by
G−(0, 0), we get by dominated convergence and next M0 → +∞ :

limn→+∞T (−n) =
1

E(nε0)
E
(
e2iπ

∑
l∈Z µεlλ

k+r+Sl
1S−u<−r,u≥1

)
.

From the initial expression, the limit, if existing, had to be independent on the parameter k. So
this gives the announced convergence and invariance, hence proving item i) in Theorem 2.4.

Step 2. In the proof of Theorem 2.4, we now consider ii). Recall that α 6= 0 is in P if αµj ∈ T (1/λ),
for 0 ≤ j ≤ N . Suppose that ν is Rajchman and let 0 6= α ∈ P. Fix any 0 6= (m0, · · · ,ms) ∈ Zs+1

and set β =
∑

0≤u≤smuλ
−u. We have β 6= 0, since (λ−u)0≤u≤s is a basis of Q[λ] over Q. Now :∑

0≤u≤s

mu(λ−n−uαX) = αβλ−nX.

Since αβ 6= 0 and ν is Rajchman, E(e2iπαβλ−nX) → 0, as n → +∞. As a result, the Fourier
coefficient of Mα corresponding to (m0, · · · ,ms) is zero. Hence Mα = LTs+1 . Also, mα = LT.
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Considering the third item, suppose that a Bezout centering relation is satisfied and that for
all α ∈ P ∩ [1, 1/λ], we have mα = LT. If the (ϕj)0≤j≤N have a common fixed point c, then X = c
a.-s. and the law of λ−kc mod 1 is a Dirac mass on T, which cannot converge to LT, as k → +∞.
This contradicts the hypothesis when α = 1. We are thus in the context of Theorem 2.3. If ν is
not Rajchman, it was shown in Step 2 of this theorem (Lemma 3.1) that there exists 1 ≤ α ≤ 1/λ
such that ν̂(αλ−k) 6→ 0. It was then detailed at the end of Step 3 of the proof of the same theorem
that α ∈ P. This is a contradiction, so ν is Rajchman.

Focusing on the second item, suppose that ν is continuous and M|Ts+1\{0} � LTs+1 , with
density h in restriction to Ts+1\{0}. This holds in particular if ν is Rajchman. Recall that
Zk =

∑
l∈Z µεlλ

k+Sl mod 1. For any f ∈ C(Ts+1,R) and k ∈ Z :

1

E(nε0)

∑
0≤r<n∗

E
[
f(Z−k+r, Z−k+r−1, · · · , Z−k+r−s)1S−v<−r,v≥1

]
=

∫
Ts+1

f(x) dM(x).

Recall that n∗ = max0≤j≤N nj and fix k ≥ n∗ so that Tr(λ−lµj) ∈ Z, 0 ≤ j ≤ N , l ≥ k − n∗.

For 0 ≤ j ≤ N , denote by (µ
(t)
j )0≤t≤s the conjugates of µj = µ

(0)
j in the field Q[λ]. Taking any

0 ≤ u ≤ s and l < 0, we have :

µεlλ
−u−k+r+Sl = Tr(µεlλ

−u−k+r+Sl)−
∑

1≤t≤s

µ(t)
εl
αu+k−r−Sl
t .

The role of the indicator function is now fundamental. On the event {S−v < −r, v ≥ 1}, we have
Tr(µεlλ

−u−k+r+Sl) ∈ Z, by our choice of k. As a result, introducing the real random variables :

Y (r)
u = λ−u

∑
l≥0

µεlλ
−k+r+Sl −

∑
1≤t≤s

αu+k−r
t

∑
l<0

µ(t)
εl
α−Slt ,

we obtain that for any f ∈ C(Ts+1,R) :

1

E(nε0)

∑
0≤r<n∗

E
[
f(Y

(r)
0 , · · · , Y (r)

s )1S−v<−r,v≥1

]
=

∫
Ts+1

f(x) dM(x).

Let B = {S−v < 0, v ≥ 1}, which verifies P(B) > 0. In the previous formula, taking some f ≥ 0 in
C(Ts+1,R), we obtain, conserving only the term for r = 0 :

1

E(nε0)
E
[
f(Y

(0)
0 , · · · , Y (0)

s )1B

]
≤
∫
Ts+1

f(x) dM(x).

If moreover f(0) = 0, then :

1

E(nε0)
E
[
f(Y

(0)
0 1B , · · · , Y (0)

s 1B)
]
≤
∫
Ts+1

f(x)h(x) dx.

Hence, in restriction to Ts+1\{0}, the law of (Y
(0)
0 1B , · · · , Y (0)

s 1B) mod Zs+1 has a density with
respect to LTs+1 , bounded by E(nε0)h(x), x ∈ Ts+1\{0}.
Hence, in restriction to Rs+1\Zs+1, the law on Rs+1 of (Y

(0)
0 1B , · · · , Y (0)

s 1B) has a density with
respect to LRs+1 , bounded by E(nε0)h(x mod Zs+1), x ∈ Rs+1\Zs+1.

Let now X0 =
∑
l≥0 µεlλ

−k+Sl and for 1 ≤ j ≤ s, Xj = −
∑
l<0 µ

(j)
εl α

k−Sl
j . Notice first that :

Y
(0)
0 = X0 +

∑
1≤j≤s

Xj = λ−kX +
∑

1≤j≤s

Xj .

As ν = L(X) is continuous, it has no atom. Since X is independent from
∑

1≤j≤sXj , the law of

Y
(0)
0 is continuous. Hence, restricted to Rs+1\{0}, the law on Rs+1 of (Y

(0)
0 1B , · · · , Y (0)

s 1B) has a
density bounded by E(nε0)h(x mod Zs+1), x ∈ Rs+1\Zs+1, with respect to LRs+1 .
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Introducing the Vandermonde matrix :

V =


1 1 · · · 1
λ−1 α1 · · · αs

...
...

...
...

λ−s αs1 · · · αss

 , by definition, Y (0) :=


Y

(0)
0
...

Y
(0)
s

 = V

 X0

...
Xs

 .

The matrix V is invertible (the roots of the minimal polynomial Q of 1/λ are simple), so, by

Cramer’s rule, X0 =
∑

0≤i≤s Y
(0)
i γi, with γi = det(V (i))/det(V ), where V (i) is obtained from V

by replacing the first column by ei, denoting by (ei)0≤i≤s the canonical basis of Rs+1.

Notice that each γi is real (1/λ is a real root of Q and regrouping the other roots in conjugate
pairs, when conjugating γi, one gets permutations in the numerator and the denominator, the same
ones, so γ̄i = γi). Evidently, γ = (γi)0≤i≤s 6= 0.

Since X0 = λ−kX, it is enough to show that X0 has a density with respect to LR. Recall that
L(X0) is continuous. Let now A be a Borel set of R, such that 0 6∈ A. Since X0 and the set
B = {S−v < 0, v ≥ 1} are independent, we can write :

P(X0 ∈ A) =
P(X01B ∈ A)

P(B)
=

1

P(B)
P

 ∑
0≤i≤s

Y
(0)
i 1Bγi ∈ A

 =
P(〈Y (0)1B , γ〉 ∈ A)

P(B)
.

Using the Euclidean norm on Rs+1, let M = (f0 = γ/‖γ‖, f1, · · · , fs) be the matrix of an or-
thonormal basis of Rs+1, written in the canonical basis. Then, in restriction to Rs+1\{0}, the law
of Z := M−1Y (0)1B on Rs+1 has a density g with respect to LR. Then :

P(X0 ∈ A) =
P(〈Z, tMγ〉 ∈ A)

P(B)
=

P(〈Z, e0〉 ∈ A/‖γ‖)
P(B)

=
1

P(B)

∫
R

1A(x0)

(∫
Rs
g(x0/‖γ‖, x1, , · · · , xs) dx1 · · · dxs

)
dx0

‖γ‖
.

We conclude that the law of X0 has a density with respect to LR. In the special case when
M = LTs+1 , for example when ν is Rajchman, then h = 1 and g is bounded. If moreover condition
(C) holds, then P(B) = 1. In the previous proof 1B can be removed and both Y (0) and Z have a
law with a density with respect to LRs+1 . Since in this case Y (0) and Z are obviously bounded, we
deduce that the density g of Z is then bounded and with compact support. The previous formula
for the density of X0 easily furnishes that the latter is bounded and with compact support. This
ends the proof of Theorem 2.4 and of Theorem 2.5 i).

�

5 Proof of Theorem 2.5

Assume now that condition (C) holds. Precisely, let N ≥ 1 and affine contractions ϕk(x) =
λnkx+µk, for 0 ≤ k ≤ N , with 1/λ > 1 a Pisot number, relatively prime integers (nk)0≤k≤N , with
nk ≥ 1 and µk ∈ T (1/λ), for 0 ≤ k ≤ N . We shall suppose that n0 ≥ · · · ≥ nN ≥ 1.

Step 1. Considering p ∈ CN , with pj > 0, for 0 ≤ j ≤ N , denote by (εn)n∈Z a sequence of i.i.d.
random variables with law p. We fix an integer n 6= 0, whose exact value will be precised at the
end. We focus on the Fourier coefficient m̂(n) of the measure m appearing in Theorem 2.4 i).
Removing the normalizing constant E(nε0) and observing that it has a simplified expression under
condition (C), we introduce the following quantity (a constant multiple of it) :

∆p = ∆p(k) =
∑

0≤r<n0

E
(
e2iπn

∑
l∈Z µεlλ

k+r+Sl
1nε−1

>r

)
,
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which is independent of k ∈ Z and where we mark the dependence in p ∈ CoN . We now focus on the
regularity of p 7−→ ∆p on CoN . For any k ∈ Z, observe first that ∆p(k) is well-defined, with the same
formula as above, on the whole set CN , even on the boundary. Fixing k ∈ Z, the map p 7−→ ∆p(k)
is continuous, as this function is the uniform limit on CN , as L→ +∞, of the continuous maps :

p 7−→
∑

0≤r<n0

E
(
e2iπn

∑
−L≤l≤L µεlλ

k+r+Sl
1nε−1

>r

)
.

It thus follows that p 7−→ ∆p(k) = ∆p is well-defined on CN , is continuous and independent on
k. We shall now prove using standard methods that it is in fact real-analytic on CN , in a classical
sense (precised below). Let us take k = 0 and fix 0 ≤ r < n0. Using independence, write :

E
(
e2iπn

∑
l∈Z µεlλ

r+Sl
1nε−1

>r

)
= E

(
e2iπn

∑
l≥0 µεlλ

r+Sl
)
E
(
e2iπn

∑
l≤−1 µεlλ

r+Sl
1nε−1

>r

)
.

Let us call F (p) and G(p) respectively the terms appearing in the right-hand side. We shall show
that both functions are real-analytic functions (in the below sense) of p. This property will be
inheritated by p 7−→ ∆p. We treat the case of p 7−→ F (p), the case of G(p) needing only to
rewrite first the µεlλ

r+Sl , appearing in the definition of G(p) and as soon as l < 0 is large enough

(depending only the (µj)0≤j≤N , since nk ≥ 1, for all k), as −
∑

1≤j≤s α
−r−Sl
j µ

(j)
εl , quantity equal

to µεlλ
r+Sl in T, where the (µ

(j)
k )1≤j≤s are the conjugates of µk in the field Q[1/λ].

Fix now p ∈ CN . Let N = {0, 1, · · · } and the symbolic space S = {0, · · · , N}N, equipped with
the left shift σ. For x = (x0, x1, · · · ) ∈ S, we define :

g(x) = e
2iπn

(∑
l≥0 µxlλ

r+nx0
+···+nxl−1

)
.

Introducing the product measure µp = (
∑

0≤j≤N pjδj)
⊗N on S, we can write :

F (p) =

∫
S

g dµp.

Denote by C(S) the space of continuous functions f : S → C and introduce the operator Pp :
C(S)→ C(S) defined by :

Pp(f)(x) =
∑

0≤j≤N

pjf((j, x)), x ∈ S,

where (j, x) ∈ S is the word obtained by the left concatenation of the symbol j to x. The operator
Pp is Markovian, i.e. f ≥ 0 ⇒ Pp(f) ≥ 0 and verifies Pp1 = 1, where 1(x) = 1, x ∈ S. The
measure µp has the invariance property

∫
S
Pp(f) dµp =

∫
S
f dµp, f ∈ C(S). For f ∈ C(S) and

k ≥ 0, introduce the variation :

Vark(f) = sup{|f(x)− f(y)|, (x, y) ∈ S2, xi = yi, 0 ≤ i < k}.

For any 0 < θ < 1, let |f |θ = sup{θ−kVark(f), k ≥ 0}, as well as ‖f‖θ = |f |θ + ‖f‖∞. We denote
by Fθ the complex Banach space of fonctions f on S such that ‖f‖θ <∞. Any Fθ is preserved by
Pp. Observe now that g ∈ Fθ for λ ≤ θ < 1. We fix θ = λ.

As a classical fact from Spectral Theory, cf for example Baladi [1], the operator Pp : Fλ → Fλ
satisfies a Perron-Frobenius theorem. Let us show this elementarily. For f ∈ Fλ, we have :

Pnp f(x) =
∑

0≤j1,··· ,jn≤N

pj1 · · · pjnf((j1, · · · , jn, x)).

This furnishes Vark(Pnp f − 1
∫
S
f dµp) = Vark(Pnp f) ≤ Vark+n(f), therefore :∣∣∣∣Pnp (f)− 1

∫
S

f dµp

∣∣∣∣
λ

≤ λn|f |λ.
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In a similar way, we can write :

(Pnp f − 1

∫
S

f dµp)(x) = Pnp (f)(x)− 1(x)

∫
S

Pnp (f) dµp

=
∑

0≤j1,··· ,jn≤N

pj1 · · · pjn
∫
S

(f((j1, · · · , jn, x))− f((j1, · · · , jn, y))) dµp(y).

Consequently, ‖Pnp f − 1
∫
S
f dµp‖∞ ≤ Varn(f) ≤ λn|f |λ. Putting things together, finally :

‖Pnp (f − 1

∫
S

f dµp)‖λ ≤ 2λn‖f‖λ.

This shows that the eigenvalue 1 is simple and that the rest of the spectrum of Pp is contained
in the closed disk of radius λ < 1, independent on p ∈ CN . By standard functional holomorphic
calculus, cf Kato [9], fixing some circle Γ centered at 1 and with radius 0 < r < 1−λ, the following
operator, involving the resolvent, is a continuous (Riesz) projector on Vect(1) :

Πp =

∫
Γ

(zI − Pp)−1dz.

Notice that the formula is valid for any p ∈ CN . Classically, Πp(Fλ) and (I − Πp)(Fλ) are closed
Pp-invariant subspaces with Fλ = Πp(Fλ) ⊕ (I − Πp)(Fλ). In restriction to (I − Πp)(Fλ), the
spectral radius of Pp is less than λ. In particular

∫
S
f dµp = 0, for f ∈ (I −Πp)(Fλ). We therefore

deduce that for any f ∈ Fλ :

Πp(f) =

(∫
S

f dµp

)
1.

Applying this to the function g of interest to us, we obtain that :

F (p)1 =

∫
Γ

(zI − Pp)−1(g)dz.

Recall now that N ≥ 1. Let η′ = (η0, · · · , ηN−1) and η = (η0, · · · , ηN−1,−(η0 + · · · + ηN−1)).
The condition on η′ for p+ η ∈ CN is written as η′ ∈ DN (p). Explicitly the condition is :

−pi ≤ ηi ≤ 1− pi, 0 ≤ i ≤ N − 1, and pN − 1 ≤ η0 + · · ·+ ηN−1 ≤ pN .

For the sequel, let BN (0, R) be the open Euclidean ball in RN centered at 0, of radius R.

Definition 5.1
A function h : CN → C admits a development in series around a point p ∈ CN , if there exists ε > 0
such that for η′ = (η0, · · · , ηN−1) ∈ DN (p) ∩BN (0, ε) and writing η = (η0, · · · , ηN−1,−(η0 + · · ·+
ηN−1)), then h(p+ η) is given by an absolutely converging series :

h(p+ η) =
∑

l0≥0,··· ,lN−1≥0

Al0,··· ,lN−1
ηl00 · · · η

lN−1

N−1 .

A function is real-analytic in CN if it admits a development in series around every p ∈ CN .

For such a function, when non-constant, its zeroes are in finite number in CN , by the standard
argument that the set of points where there is a null development in series is open and closed for
the relative topology and thus equal to CN by connexity if non-empty. In case of infinitely many
zeros, any accumulation point (which exists, as CN is compact) is such a point.

We now check that p 7−→ F (p) is real-analytic in the previous sense. As already indicated, this
property will be inheritated by p 7−→ ∆p. In this direction, notice that :
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Pp+η = Pp +
∑

0≤j≤N−1

ηjQj ,

where Qj(f)(x) = f(j, x)− f(N, x). For z ∈ Γ and η′ small enough :

(zI − Pp+η)−1 =

I − (zI − Pp)−1
∑

0≤j≤N−1

ηjQj

−1

(zI − Pp)−1

=
∑
n≥0

∑
0≤j1,··· ,jn≤N−1

ηj1 · · · ηjn(zI − Pp)−1Qj1 · · · (zI − Pp)−1Qjn(zI − Pp)−1.

This is clearly absolutely convergent in the Banach operator algebra, for small enough η′, uniformly
in z ∈ Γ. We rewrite it as :

(zI − Pp+η)−1 =
∑

l0≥0,··· ,lN−1≥0

Bl0,··· ,lN−1
(z)ηl00 · · · η

lN−1

N−1 ,

converging for the operator norm, uniformly in z ∈ Γ. This leads to :

F (p+ η)1 =

∫
Γ

(zI − Pp+η)−1(g) dz =
∑

l0≥0,··· ,lN−1≥0

ηl00 · · · η
lN−1

N−1

∫
Γ

Bl0,··· ,lN−1
(z)(g) dz.

Applying this equality at some particular x ∈ S, we obtain the desired development in series around
p. This completes this step.

Step 2. If ever ∆p = 0 for infinitely many p ∈ CN , then by Step 1, p 7−→ ∆p has to be constant and
equal to zero on CN . We shall show that if n 6= 0 has been appropriately chosen at the beginning
it is not possible. We start with a lemma. We write as x ≡ y equality of x and y in T.

Lemma 5.2
Let d ≥ 1 and µ ∈ T (1/λ). The series

∑
l∈Z µλ

ld, well-defined as an element of T, equals a rational
number modulo 1.

Proof of the lemma :
Let l0 ≥ 1 be such that Tr(λ−lµ) ∈ Z, for l > l0. Denote by (µ(j))0≤j≤s the conjugates of µ, with
µ(0) = µ, and α1, · · · , αs that of α0 = 1/λ. Then, we have the following equalities on the torus :

∑
l∈Z

µλld ≡ µλ−l0d

1− λd
+
∑
l>l0

µλ−ld ≡ µλ−l0d

1− λd
−
∑

1≤i≤s

µ(i)
∑
l>l0

αldi ≡
µλ−l0d

1− λd
−
∑

1≤i≤s

µ(i)α
(l0+1)d
i

1− αdi

≡ −

µλ−(l0+1)d

1− λ−d
+
∑

1≤i≤s

µ(i)α
(l0+1)d
i

1− αdi

 = −Tr
(
µλ−(l0+1)d

1− λ−d

)
∈ Q.

�

We conclude the argument. Fixing 0 ≤ j ≤ N and pj = (0, · · · , 0, 1, 0, · · · , 0), where the 1 is at
place j, we have for k ∈ Z, recalling that 1 ≤ nj ≤ n0 :

∆pj = ∆pj (k) =
∑

0≤r<n0

e2iπn
∑
l∈Z µjλ

k+r+lnj
1nj>r =

∑
0≤r<nj

e2iπn
∑
l∈Z µjλ

k+r+lnj
.

Notice that the invariance with respect to k is now obvious, as we sum over r on a full period of
length nj . Now, taking k = 0, we have :
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∆pj =
∑

0≤r<nj

e2iπn(Aj,r/Bj,r),

for rational numbers Aj,r/Bj,r, making use of the previous lemma, since λrµj ∈ T (1/λ), for any r.
If for example n is a multiple of Bj,r for any 0 ≤ r < nj , we get ∆pj = nj ≥ 1, which gives what
was desired. This ends the proof of the theorem.

�

Remark. — In the general case, without condition (C), the method seems to reach some limit.
When trying to analyze the regularity of p 7−→ F (p) on DN ((λnk)0≤k≤N ), continuity seems rather
clear, but the real-analytic character, if ever true, certainly requires more work. Still setting
S = {0, · · · , N}N and µp = (

∑
0≤j≤N pjδj)

⊗N on S, we again have :

F (p) =

∫
S

g dµp,

with g(x) = e
2iπn

(∑
l≥0 µxlλ

r+nx0
+···+nxl−1

)
, for x = (x0, x1, · · · ) ∈ S. However, this function is not

continuous on S and in fact only defined µp-almost-everywhere.

6 Complements

6.1 A numerical example

Considering an example as simple as possible which is not homogeneous, take N = 1 and the
two contractions ϕ0(x) = λx, ϕ1(x) = λ2x+ 1, where 1/λ > 1 is a Pisot number, with probability
vector p = (p0, p1). Then n0 = 1, n1 = 2 and ν is the law of

∑
l≥0 εlλ

nε0+···+nεl−1 , with (εn)n≥0

i.i.d., with common law Ber(p1), i.e. P(ε0 = 1) = p1 and P(ε0 = 0) = 1 − p1. We shall take
0 ≤ p1 ≤ 1 as parameter for simulations. Notice that E(nε0) = p0 + 2p1 = 1 + p1,

Taking n = 1, k ∈ Z and r ∈ {0, 1}, let us define :

Fp(k) = E
(
e2iπλk

∑
l≥0 εlλ

nε0+···+nεl−1
)
, Gp(k, r) = E

(
e2iπ

∑
l≥0 εlλ

k−(nε0
+···+nεl )

1nε0>r

)
,

leading to ∆p = Fp(k)Gp(k, 0) +Fp(k+ 1)Gp(k+ 1, 1), for all k ∈ Z. Writing mp in place of m for
the measure on T in Theorem 2.4 i), when 0 < p1 < 1, we get m̂p(1) = ∆p/(1 + p1). Let us first
discuss the choice of probability vector p = (1− p1, p1) and Pisot number 1/λ.

A degenerated example (the invariant measure being automatically singular) is for instance
given by λ = (3 −

√
5)/2 < 1/2. Nevertheless, it is interesting to notice that λ−n ≡ −λn, n ≥ 0.

Taking p1 = 1/2, one can check that ∆p = |Fp(1)|2 + |Fp(2)|2/2. Necessarily ∆p > 0. Indeed,
k 7−→ Fp(k) verifying a linear recurrence of order two, the equality ∆p = 0 would give Fp(k) = 0
for all k, but Fp(k) → 1, as k → +∞. Notice that (3 −

√
5)/2 is the largest λ with this property

(it has to be a root of some X2 − aX + 1, for some integer a ≥ 0). Mention that in general ∆p is
not real; cf the pictures below.

To study an interesting example, we take into account the similarity dimension s(p, r), rewritten
here as s(p, λ) :

s(p, λ) =
(1− p1) ln(1− p1) + p1 ln p1

(1− p1) lnλ+ p1 ln(λ2)
.

The condition s(p, λ) ≥ 1 is equivalent to (1 − p1) ln(1 − p1) + p1 ln p1 − (1 + p1) lnλ ≤ 0. As a
function of p1, the left-hand side has a minimum value − ln(λ + λ2), attained at p1 = λ/(1 + λ).
As a first attempt, taking for 1/λ the golden mean (

√
5 + 1)/2 = 1, 618... appears in fact not to be

a good idea, as in this case λ+ λ2 = 1, giving s(p, λ) ≤ 1.
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We instead take for 1/λ the Plastic number, the smallest Pisot number (cf Siegel [18]). It is
defined as the unique real root of X3 −X − 1. Approximately, 1/λ = 1.324718.... For this λ :

s(p, λ) > 1⇐⇒ 0, 203... < p0 < 0, 907....

The other roots of X3−X−1 = 0 are conjugate numbers ρe±iθ. From the relations 1/λ+2ρ cos θ =
0 and (1/λ)ρ2 = 1, we deduce ρ =

√
λ and cos θ = −1/(2λ3/2), thus θ = ±2.43... rad. For

computations, the relations λ−n + ρneinθ + ρne−inθ ∈ Z, n ≥ 0, furnish λ−n ≡ −2(
√
λ)n cos(nθ).

Let us finally compute the extreme values of p1 7−→ m̂p(1), abusively written as m̂(1,0)(1) and
m̂(0,1)(1), since mp has only been defined for 0 < p1 < 1. We first observe that m̂(1,0)(1) =
∆(1,0) = F(1,0)(0)G(1,0)(0, 0) = 1. At the other extremity :

∆(0,1) = F(0,1)(0)G(0,1)(0, 0) + F(0,1)(1)G(0,1)(1, 1)

= e2iπ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

−2(l+1)

+ e2iπλ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

1−2(l+1)

= e
2iπ
(

1
1−λ2

−2
∑
l≥0(
√
λ)2l cos(2lθ)

)
+ e

2iπ
(

λ
1−λ2

−2
∑
l≥0(
√
λ)2l+1 cos((2l+1)θ)

)
= e

2iπ
(

1
1−λ2

−2Re
(

λe2iθ

1−λe2iθ

))
+ e

2iπ
(

λ
1−λ2

−2Re
( √

λeiθ

1−λe2iθ

))
.

A not difficult computation, shortened by the observation that (1 − λe2iθ)(1 − λe−2iθ) = 1/λ,
shows that the arguments in the exponential terms (after the 2iπ) are respectively equal to 3 and
0, leading to ∆(0,1) = 2 and therefore m̂(0,1)(1) = 1.

Recalling that p = (1 − p1, p1), below are respectively drawn the real-analytic maps p1 7−→
Re(m̂p(1)), p1 7−→ Im(m̂p(1)) and the parametric curve p1 7−→ m̂p(1), 0 ≤ p1 ≤ 1.

The first two pictures indicate that p1 7−→ m̂p(1) spends a rather long time near 0, with Re(m̂p(1))
and Im(m̂p(1)) both around 10−4. Let us precise here that one can exploit the product form (given
by the exponential) inside the expectation appearing in Fp(k) and Gp(k, r) and make a determin-
istic numerical computation of m̂p(1), with nearly an arbitrary precision, based on a dynamical
programming (using a binomial tree). For example, one can obtain the rather remarquable value :

m̂(1/2,1/2)(1) = 0, 0001186...+ i0, 0000327...,

where all digits are exact. In this case, s((1/2, 1/2), λ) = 1, 64... > 1. The above pictures were
drawn with 1000 points, each one determined with a sufficient precision. This allows to safely
zoom on the neighbourhood of 0 of p1 7−→ m̂p(1), the interesting region. We obtain the following
surprising pictures, the one on the right-hand side containing around 500 points :
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There are certainly profound reasons behind these pictures, that would in particular clarify the
condition of non-nullity of the Fourier coefficient m̂p(1) and more generally of m̂p(n), n ∈ Z.
Further investigations are necessary.

From the previous numerical analysis, we conclude that the curve p1 7−→ m̂p(1) is rather
convincingly not touching 0. It may certainly be possible to build a rigorous numerical proof of
this fact, but this is not the purpose of the present paper. Being confident in this, we can state :

Numerical Theorem 6.1
Let N = 1 and the two contractions ϕ0(x) = λx and ϕ1(x) = 1 +λ2x, where 1/λ > 1 is the Plastic
number. Then for any probability vector p ∈ C1, the invariant measure ν is not Rajchman.

Remark. — A similar study developed with 1/λ the supergolden ratio, i.e. the fourth Pisot
number (the real root of X3 −X2 − 1) leads to essentially the same pictures. Further numerical
investigations with the family ϕ0(x) = λx, ϕ1(x) = λ2x and ϕ2(x) = λ2x + 1, for 1/λ the Plastic
number, reveal rather clearly the existence of parameters p = (p0, p1, p2) ∈ Co2 for which m̂p(1) = 0.

6.2 Applications to sets of uniqueness for trigonometric series

Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, with reals (rk) and
(bk), with 0 < rk < 1 for all k (i.e. condition (C) holds). As a general fact, Theorem 2.3 has
some consequences in terms of sets of multiplicity for trigonometric series, cf for example Salem
[16] or Zygmund [23] for details. As in the introduction, let F ⊂ R be the unique non-empty
compact set, verifying the self-similarity relation F = ∪0≤k≤Nϕk(F ). With N = {0, 1, · · · } and
S = {0, · · · , N}N, recall that :

F =

∑
l≥0

bxlrx0
· · · rxl−1

, (x0, x1, · · · ) ∈ S

 .

Let us place on the torus T and consider trigonometric series. Recall that a subset E of T is
a set of uniqueness (U -set), if whenever a trigonometric series

∑
n≥0(an cos(2πx) + bn sin(2πx)),

with complex numbers (an) and (bn), converges to 0 for all x 6∈ E, then an = bn = 0 for all n ≥ 0.
Otherwise E is said of multiplicity (M -set).

Theorem 6.1
Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, where 0 < rk < 1, with no
common fixed point. Suppose that the system (ϕk)0≤k≤N is not conjugated to a family in reduced
Pisot form. Then F mod 1 ⊂ T is a M -set.
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Proof of the theorem :
Taking any p ∈ CN with pj > 0, for all 0 ≤ j ≤ N , gives a Rajchman invariant probability measure
ν supported by F ⊂ R. Hence F mod (1) ⊂ T supports the probability measure ν̃, image of ν
under the projection x 7−→ x mod 1, from R to T. The measure ν̃ is thus a Rajchman measure
on T, so, cf Salem [16] (chap. V), F mod 1 is a M -set.

�

The analysis in the other direction is in general more delicate. For the following statement,
fixing 0 < λ < 1 and integers nk ≥ 1, for 0 ≤ k ≤ N , notice that for any (x0, x1, · · · ) ∈ S we have∑
l≥0 λ

nx0+···+nxl−1 (1− λnxl ) = 1.

Theorem 6.2
Let N ≥ 1 and suppose that the (ϕk) are affine contractions of the form ϕk(x) = λnkx + bk, with
bk = bak + c(1 − λnk), for some 0 < λ < 1 with 1/λ a Pisot number > N + 2, relatively prime
positive integers nk ≥ 1, 0 ≤ ak ∈ Q[λ] and real numbers b ≥ 0 and c. Then the non-empty compact
self-similar set F = ∪0≤k≤Nϕk(F ) ⊂ R can be written as F = bG+ c, where G is the compact set :

G =

∑
l≥0

axlλ
nx0+···+nxl−1 , (x0, x1, · · · ) ∈ S

 .

Assume that bG ⊂ [0, 1), so that bG and F can be seen as subsets of T. Then F is U -set.

Proof of the theorem :
Up to replacing b and the (ak) respectively by br and (ak/r), for some r > 1 in Q, we may assume
that 0 ≤ ak < 1/(1− λ), for all 0 ≤ k ≤ N . Then :

G ⊂ H :=

∑
l≥0

ηlλ
l, ηl ∈ {0, a0, · · · , aN}, l ≥ 0

 ⊂ [0, 1).

Since 1/λ > N + 2 is a Pisot number and all a0, · · · , aN are in Q[λ], it follows from the Salem-
Zygmund theorem, cf Salem [16], chap. VII, paragraph 3, on perfect homogeneous sets, that H is a
perfect U -set. Mention that in this theorem, one also assumes that max0≤k≤N ak = 1/(1− λ) and
that successive au < av in [0, 1) verify av − au ≥ λ. These conditions serve to give a geometrical
description of the perfect homogeneous set H in terms of dissection, without overlaps. They are
in fact not used in the proof, where only the above description of H is important (one can indeed
start reading Salem [16], chap. VII, paragraph 3, directly from line 9 of the proof).

As a subset of a U -set, G is also a U -set. This is also the case of bG, by hypothesis a subset of
[0, 1), using Zygmund, Vol. I, chap. IX, Theorem 6.18 (the proof, not obvious, is in Vol. II, chap.
XVI, 10.25, and relies on Fourier integrals). Hence, F = bG+ c is also a U -set, as any translate on
T of a U -set is a U -set. This ends the proof of the theorem.

�

Remark. — As a general fact, the hypothesis 1/λ > N + 2 ensures that H and F have zero
Lebesgue measure, which is a necessary condition for a set to be a U -set. If overlaps happen in H,
it would be interesting to consider extensions of the previous theorem, when the above condition
on λ not necessarily holds.
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