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On the Rajchman property for self-similar

measures

Julien Brémont

Université Paris-Est Créteil, octobre 2019

Abstract

For classical Bernoulli convolutions, the convergence to zero at infinity of the Fourier trans-
form was characterized by successive works of Erdös [2] and Salem [13]. We prove similar results
for general self-similar measures associated to real affine contractions.

1 Introduction

In the present article we consider the extension of some well-known results concerning Bernoulli
convolutions to a more general context of self-similar measures. For a Borel probability measure
m on the real line, define its Fourier transform as :

m̂(t) =

∫
R
eitx dm(x), t ∈ R.

We say that m is Rajchman, if m̂(t)→ 0, as t→ +∞. This property is very important in Harmonic
Analysis, for example for its key role in the analysis of sets of multiplicity for trigonometric series,
cf Lyons [9]. Let us now recall standard notions on self-similar measures, from a probabilistic angle.

We write L(X) for the law of a real random variable X. Let N ≥ 0 and affine contractions
ϕk(x) = rkx+ bk, with 0 < rk < 1, x ∈ R, 0 ≤ k ≤ N . For n ≥ 0, compositions have the form :

ϕjn−1 ◦ · · · ◦ ϕj0(x) = rjn−1 · · · rj0x+

n−1∑
l=0

bjlrjn−1 · · · rjl+1
.

Introduce the convex set CN = {p = (p0, · · · , pN ) | pi ≥ 0,
∑
i pi = 1} and fix a probability vector

p ∈ CN . We now compose the contractions at random, independently, according to p. Precisely, let
X0 be any real random variable and (εn)n≥0 be independent and identically distributed random
variables (i.i.d.), independent from X0, with P(εn = k) = pk, 0 ≤ k ≤ N . We consider the Markov
chain (Xn)n≥0 on R defined by Xn = ϕεn−1 ◦ · · · ◦ ϕε0(X0), n ≥ 0.

It is classical that (Xn)n≥0 has a unique invariant measure ν. This can be seen for example from

the fact that L(Xn) = L(X̃n), where :

X̃n = ϕε0 ◦ · · · ◦ ϕεn−1
(X0) = rε0 · · · rεn−1

X0 +

n−1∑
l=0

bεlrε0 · · · rεl−1
.

Since X̃n converges almost-surely to X :=
∑
l≥0 bεlrε0 · · · rεl−1

, this implies that νn := L(Xn)
weakly converges to ν := L(X). By construction :

νn+1 =
∑

0≤k≤N

pkνn ◦ ϕ−1
k ,
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so, taking the limit as n→ +∞, we obtain that ν is a solution of the equation :

ν =
∑

0≤k≤N

pkν ◦ ϕ−1
k . (1)

The previous convergence implies that the solution of this equation is unique among Borel proba-
bility measures. Moreover ν has to be of pure type, i.e. either absolutely continuous with respect
to Lebesgue measure or atomic or else singular continuous, since each term in its Radon-Nikodym
decomposition with respect to Lebesgue measure verifies equation (1). Using the repartition func-
tion, it is not difficult to observe that ν is continuous if and only if the fixed points bk/(1 − rk)
of the ϕk, 0 ≤ k ≤ N , are not all equal (see for example Feng-Lau [5]). In case of equality, ν is
the Dirac mass at the common fixed point. This trivial case excluded, a difficult problem is to
characterize absolute continuity in terms of the parameters r := (rk) and (bk).

An example with a long and well-known history is that of Bernoulli convolutions, corresponding
to N = 1, the system of contractions ϕ0(x) = λx−1, ϕ1(x) = λx+1, 0 < λ < 1, and p = (1/2, 1/2).
Notice that when the contraction rates are equal, the situation is a little simplified, as ν is an infinite
convolution (this is not true in general). Although we discuss below some works in this context, we
will not present here the vast subject of Bernoulli convolutions, addressing the reader to detailed
surveys, Peres-Schlag-Solomyak [11] or more recently Solomyak [16].

For general self-similar measures, an important aspect of the problem, that we shall not enter, and
an active line of research, concerns the Hausdorff dimension of the measure ν. In a large generality,
cf for example Falconer [3], one has an “entropy/Lyapunov exponent” upper-bound :

DimH(ν) ≤ min{1, s(p, r)}, where s(p, r) :=
−
∑N
i=0 pi log pi

−
∑N
i=0 pi log ri

.

The quantity s(p, r) is called the singularity dimension of the measure. The equality DimH(ν) = 1
does not mean that ν is absolutely continuous, but the inequality s(p, r) < 1 implies that ν is
singular. The interesting domain of parameters therefore corresponds to s(p, r) ≥ 1.

We focus here on another fundamental tool, the Fourier transform ν̂. If ν is not Rajchman, the
Riemann-Lebesgue lemma implies that ν is singular. This property was used by Erdös [2] in
the context of Bernoulli convolutions. Erdös proved that if 1/2 < λ < 1 is such that 1/λ is a
Pisot number, then ν is not Rajchman. The reciprocal statement was next shown by Salem [13].
As a result, for Bernoulli convolutions the Rajchman property holds except for a very particular
countable set of parameters λ.

The aim of the present article is to study the Rajchman property and prove results in the same
spirit for more general self-similar measures. The non-Rajchman character was recently shown to
hold only for a very small set of parameters by Solomyak [17] : as soon as the (ϕk) do not have
a common fixed point and p is not degenerated, then outside a zero-Hausdorff dimensional set for
the (rk), the Fourier transform even has a power decay at infinity. Our purpose is to focus on the
exceptional set and to show that the parameters (rk) and (bk) have to be rather specific, as for
Bernoulli convolutions. In the sequel, we write νp instead of ν for the invariant measure, in order
to emphasize its dependence with respect to p ∈ CN . We shall first prove the following result.

Theorem 1.1
Let 0 < λ < 1 be such that 1/λ is a Pisot number. Let b ∈ R, c ∈ R, N ≥ 0 and for 0 ≤ k ≤ N
affine contractions ϕk(x) = λnkx+bk, for integers nk ≥ 1 and bk = bak+c(1−λnk), with ak ∈ Q[λ].
Then for p ∈ CN outside a finite set, the invariant measure νp is not Rajchman.

This is a way of producing continuous singular invariant measures. We in fact give very concrete
examples with 1/λ the Plastic number in the last section. Concerning the existence of singular
measures in the inhomogeneous case, we are essentially aware of the non-explicit examples, using
algebraic curves, of Neunhäuserer [10].

Since the set of Pisot numbers contains the integers ≥ 2, one may observe that the previous
theorem is in some sense optimal, as the finite set involved in the conclusion of the theorem can be
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non-empty, as soon as N ≥ 1. Indeed when N ≥ 1, taking ϕk(x) = (x + k)/(N + 1), 0 ≤ k ≤ N ,
with p = (1/(N + 1), · · · , 1/(N + 1)), gives for νp Lebesgue measure on [0, 1], of course Rajchman.

The conditions of Theorem 1.1 seem rather restrictive, but somehow surprisingly we shall show
a full reciprocal statement :

Theorem 1.2
Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, with no common fixed point,
and p ∈ CN , with pj > 0 for all 0 ≤ j ≤ N . If the invariant measure νp is not Rajchman, there exist
0 < λ < 1 with 1/λ Pisot, real numbers b 6= 0 and c, relatively prime positive integers (nk)0≤k≤N
and ak ∈ Q[λ], 0 ≤ k ≤ N , such that for any 0 ≤ j ≤ N : rj = λnj , bj = baj + c(1− λnj ).

The first step in the proof of the theorem is to show that log ri/ log rj ∈ Q, for any 0 ≤ i, j ≤
N . Credit for this is due to Li and Sahlsten [8], who showed that νp is Rajchman whenever
log ri/ log rj 6∈ Q, for some i, j, with moreover some logarithmic decay at infinity of ν̂ under
a Diophantine condition on log ri/ log rj . Their work, involving renewal theory, was one of the
motivation for the present paper. Coming after them, we simplify their proof and relate it to the
standard renewal theorem.

As a general fact, Theorem 1.2 has some consequences in terms of sets of multiplicity for
trigonometric series, cf for example Salem [14], chap. 5 for details. Recall that a subset E of
the torus T = R\Z is a set of uniqueness, if whenever a trigonometric series

∑
n≥0(an cos(2πx) +

bn sin(2πx)) converges to 0, for x 6∈ E, then an = bn = 0 for all n ≥ 0. Otherwise E is a set of
multiplicity. If ever E 6= T supports a Rajchman probability measure, then it is a set of multiplicity.
We thus deduce the following corollary for certain self-similar sets (cf Huchinson [6] for general
properties of such sets) :

Corollary 1.3
Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk from the interval (0, 1)
to itself, with no common fixed point. Suppose that the (rk) and (bk) are not of the form stated
in the conclusion of Theorem 1.2. Then the unique closed self-similar set F 6= ø verifying F =
∪0≤k≤Nϕk(F ) is a set of multiplicity for trigonometric series.

Indeed, taking any p ∈ CN , with pj > 0 for all 0 ≤ j ≤ N , gives a Rajchman invariant measure νp
supported by F 6= T. Reciprocally, when N ≥ 1 and the (ϕk) are affine contractions preserving
(0, 1) and of the form ϕk(x) = λnkx+ bak + c(1−λnk), for some 0 < λ < 1 with 1/λ Pisot, integers
nk ≥ 1 and ak ∈ Q[λ], an interesting question, that we leave open, is whether the self-similar set
F = ∪0≤k≤Nϕk(F ) is a set of uniqueness for trigonometric series.

Plan of the article. In sections 2 and 3, we successively prove Theorems 1.1 and 1.2. In the
last section, we give some complements, first surprising numerical simulations involving the Plastic
number and next a partial analysis in a more general “contracting on average” context.

2 Proof of Theorem 1.1

Recall that a Pisot number is an algebraic integer > 1 with Galois conjugates (the other roots
of its minimal unitary polynomial) of modulus strictly less than 1. We write Q ∈ Z[X] for the
minimal polynomial of 1/λ, of degree s + 1, with roots α0 = 1/λ, α1, · · · , αs, where |αk| < 1,
for 1 ≤ k ≤ s. The case s = 0 corresponds to 1/λ an integer ≥ 2 (using then usual conventions
regarding sums or products). A classical fact, used in Step 2 and Step 3, is that, for n ≥ 0 :

λ−n +
∑

1≤i≤s

αni ∈ Z,

as a symmetric polynomial of the roots of Q. Introduce the torus T = R\Z and write equality in T
as x ≡ y, for x, y ∈ T. Recall that ϕk(x) = λnkx+ bk, with bk = bak + c(1− λnk). The ak ∈ Q[λ]
can be written as :
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ak =
1

q

∑
0≤l≤s

pl,kλ
l,

for integers pl,k and q ≥ 1, with q independent on k. One can also freely assume 1 ≤ n0 ≤ · · · ≤ nN .
As in the introduction, the (εn)n≥0 are i.i.d. random variables with law p ∈ CN . The probability
P and the corresponding expectation E are related to these random variables.

Recall that νp is the law of
∑
l≥0 bεlλ

nε0+···+nεl−1 . As a preliminary computation :

∑
l≥0

bεlλ
nε0+···+nεl−1 = b

∑
l≥0

aεlλ
nε0+···+nεl−1 + c

∑
l≥0

(1− λnεl )λnε0+···+nεl−1

= b
∑
l≥0

aεlλ
nε0+···+nεl−1 + c.

We thus assume b 6= 0 and also N ≥ 1, otherwise νp is a Dirac mass. In the sequel, m 6= 0 is an
integer, fixed at the end of the proof independently on p ∈ CN .

Step 1. We introduce the following quantities, where we mark the dependence in p :

Fp(k) = E
(
e2iπmqλk

∑
l≥0 aεlλ

nε0
+···+nεl−1

)
, k ∈ Z.

Notice that Fp(k) = ν̂p(2πmqλ
k/b)e−2iπmqλkc/b. In a nearly symmetric way, using that λ−n → 0

in T exponentially fast, as n→ +∞, and that qak ∈ Z[λ], we define :

Gp(k, r) = E
(
e2iπm

∑
l≥0(qaεl )λ

k−(nε0
+···+nεl )

1nε0>r

)
, k ∈ Z, r ≥ 0.

When r = 0, the indicator 1nε0>r can be removed. Conditioning now with respect to the value of
ε0, we get recursive relations, for k ∈ Z, r ≥ 0 :

Fp(k) =
∑

0≤j≤N pje
2iπmqλkajFp(k + nj),

Gp(k, r) =
∑

0≤j≤N,nj>r pje
2iπmqλk−njajGp(k − nj , 0).

The following lemma is central in this work. An extended version is given in the last section.

Lemma 2.1
For k ∈ Z, define :

∆p(k) =
∑

0≤r<nN

Fp(k + r)Gp(k + r, r).

Then ∆p(k) = ∆p(k + 1), k ∈ Z.

Proof of the lemma :
Notice that ∆p(k) =

∑
0≤r≤nN Fp(k + r)Gp(k + r, r), since Gp(k + nN , nN ) = 0. Also :

∆p(k + 1) =
∑

0≤r<nN

Fp(k + 1 + r)Gp(k + 1 + r, r) =
∑

1≤r≤nN

Fp(k + r)Gp(k + r, r − 1).

Therefore, using first the second recursive relation (for Gp) and next the first one (for Fp) :
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∆p(k)−∆p(k + 1) = Fp(k)Gp(k, 0) +
∑

1≤r≤nN

Fp(k + r) (Gp(k + r, r)−Gp(k + r, r − 1))

= Fp(k)Gp(k, 0)−
∑

1≤r≤nN

Fp(k + r)
∑

0≤j≤N,nj=r

pje
2iπmqλk+r−njajGp(k + r − nj , 0)

= Fp(k)Gp(k, 0)−
∑

1≤r≤nN

Fp(k + r)
∑

0≤j≤N,nj=r

pje
2iπmqλkajGp(k, 0)

= Fp(k)Gp(k, 0)−Gp(k, 0)
∑

0≤j≤N

pje
2iπmqλkaj

∑
1≤r≤nN

1r=njFp(k + r)

= Gp(k, 0)

Fp(k)−
∑

0≤j≤N

pje
2iπmqλkajFp(k + nj)

 = 0.

This is the desired result. �

As a consequence of this lemma, we set ∆p = ∆p(k). Now, the argument is simply the following.
If νp were Rajchman, we would have limk→−∞ Fp(k) = 0. The quantities appearing in the definition
of ∆p(k) being all bounded by 1, this would imply limk→−∞∆p(k) = 0, hence ∆p = 0. We next
show that this can happen only for finitely many values of p ∈ CN (for a well-chosen m 6= 0).

Step 2. Let us consider the regularity of p 7−→ ∆p on CN . We shall prove using standard methods
that it is continuous and real-analytic on CN , in a sense precised below. This will result from the
same properties for all p 7−→ Fp(k + r) and p 7−→ Gp(k + r, r), the case of the second functions
needing to rewrite the λ−n, n ≥ 0, appearing in the definition of Gp as −

∑
1≤k≤s α

n
k , equal to

λ−n in T. We treat the case of p 7−→ Fp(0), the other ones being exactly similar. Continuity is
immediate, as this function is the uniform limit on CN , as L→ +∞, of the continuous maps :

p 7−→ E
(
e2iπmq

∑L
l=0 aεlλ

nε0
+···+nεl−1

)
.

Fix now p ∈ CN . Let N = {0, 1, · · · } and the symbolic space S = {0, · · · , N}N, equipped with
the left shift σ. For x = (x0, x1, · · · ) ∈ S, we define :

g(x) = e
2iπmq

(∑
l≥0 axlλ

nx0
+···+nxl−1

)
.

Introducing the product measure µp = (
∑

0≤j≤N pjδj)
⊗N on S, we can write :

Fp(0) =

∫
S

g dµp.

Denote by C(S) the space of continuous functions f : S → C and introduce the operator Pp :
C(S)→ C(S) defined by :

Pp(f)(x) =
∑

0≤j≤N

pjf((j, x)), x ∈ S,

where (j, x) ∈ S is the word obtained by the left concatenation of the symbol j to x. The operator
Pp is Markovian, i.e. f ≥ 0 ⇒ Pp(f) ≥ 0 and verifies Pp1 = 1, where 1(x) = 1, x ∈ S. The
measure µp has the invariance property

∫
S
Pp(f) dµp =

∫
S
f dµp, f ∈ C(S). For f ∈ C(S) and

k ≥ 0, introduce the variation :

Vark(f) = sup{|f(x)− f(y)|, xi = yi, 0 ≤ i < k}.

For any 0 < θ < 1, let |f |θ = sup{θ−kVark(f), k ≥ 0}, as well as ‖f‖θ = |f |θ + ‖f‖∞. We denote
by Fθ the complex Banach space of fonctions f on S such that ‖f‖θ <∞. Any Fθ is preserved by
Pp. Observe now that g ∈ Fθ for λ ≤ θ < 1. We take for example θ = λ and write F for Fθ.
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As a classical fact from Spectral Theory, cf Ruelle [12] or Baladi [1], the operator Pp : F → F
satisfies a Perron-Frobenius theorem : the eigenvalue 1 is simple and the rest of its spectrum is
contained in a closed disk of radius ρ < 1. By standard functional holomorphic calculus, cf Kato
[7], when taking for Γ the circle centered at 1 with radius 0 < r < 1 − ρ, the following operator,
involving the resolvent, is a continuous (Riesz) projector on Vect(1) :

Πp =

∫
Γ

(zI − Pp)−1dz.

Moreover, Πp(F) and (I−Πp)(F) are closed Pp-invariant subspaces with F = Πp(F)⊕(I−Πp)(F).
In restriction to (I − Πp)(F), the spectral radius of Pp is less than ρ. In particular

∫
S
f dµp = 0,

for f ∈ (I −Πp)(F). This implies that for any f ∈ F :

Πp(f) =

(∫
S

f dµp

)
1.

Applying this to the function g of interest to us, we obtain that :

Fp(0)1 =

∫
Γ

(zI − Pp)−1(g)dz.

Recall now that N ≥ 1. Let η′ = (η0, · · · , ηN−1) and η = (η0, · · · , ηN−1,−(η0 + · · · + ηN−1)).
The condition on η′ for p+ η ∈ CN is written as η′ ∈ DN (p). Explicitly the condition is :

−pi ≤ ηi ≤ 1− pi, 0 ≤ i ≤ N − 1, and pN − 1 ≤ η0 + · · ·+ ηN−1 ≤ pN .

For the sequel, let BN (0, R) be the open Euclidean ball in RN centered at 0, of radius R.

Definition 2.2
A function h : CN → C admits a development in series around a point p ∈ CN , if there exists ε > 0
such that for η′ = (η0, · · · , ηN−1) ∈ DN (p) ∩BN (0, ε) and writing η = (η0, · · · , ηN−1,−(η0 + · · ·+
ηN−1)), then h(p+ η) is given by an absolutely converging series :

h(p+ η) =
∑

l0≥0,··· ,lN−1≥0

Al0,··· ,lN−1
ηl00 · · · η

lN−1

N−1 .

A function is real-analytic in CN if it admits a development in series around every p ∈ CN .

For such a function, when non-constant, its zeroes are in finite number in CN , by the standard
argument that the set of points where there is a null development in series is open and closed for
the relative topology and thus equal to CN by connexity if non-empty. In case of infinitely many
zeros, any accumulation point (which exists, as CN is compact) is such a point.

We now check below that p 7−→ Fp(0) is real-analytic in the previous sense. As already indi-
cated, this property will be inheritated by p 7−→ ∆p. In this direction, notice that :

Pp+η = Pp +
∑

0≤j≤N−1

ηjQj ,

where Qj(f)(x) = f(j, x)− f(N, x). For z ∈ Γ and η′ small enough :

(zI − Pp+η)−1 =

I − (zI − Pp)−1
∑

0≤j≤N−1

ηjQj

−1

(zI − Pp)−1

=
∑
n≥0

∑
0≤j1,··· ,jn≤N−1

ηj1 · · · ηjn(zI − Pp)−1Qj1 · · · (zI − Pp)−1Qjn(zI − Pp)−1.

This is clearly absolutely convergent in the Banach operator algebra, for small enough η′, uniformly
in z ∈ Γ. We rewrite it as :

6



(zI − Pp+η)−1 =
∑

l0≥0,··· ,lN−1≥0

Bl0,··· ,lN−1
(z)ηl00 · · · η

lN−1

N−1 ,

converging for the operator norm, uniformly in z ∈ Γ. This leads to :

Fp+η(0)1 =

∫
Γ

(zI − Pp+η)−1(g) dz =
∑

l0≥0,··· ,lN−1≥0

ηl00 · · · η
lN−1

N−1

∫
Γ

Bl0,··· ,lN−1
(z)(g) dz.

Applying this equality at some particular x ∈ S, we obtain the desired development in series around
p. This completes this step.

Step 3. We finish the argument. If ever ∆p = 0 for infinitely many p ∈ CN , then by Step 2,
p 7−→ ∆p has to be constant on CN and equal to zero. We shall show that if m 6= 0 has been
appropriately chosen at the beginning it is not possible. We start with a lemma.

Lemma 2.3
Let d ≥ 1 and u ∈ Z. The series

∑
l∈Z λ

ld+u, well-defined as an element of T, verifies, for integers
Ad,u, with Ad,d+u = Ad,u, and Bd 6= 0 :∑

l∈Z
λld+u ≡ −Ad,u

Bd
.

Proof of the lemma :
It is enough to take 0 ≤ u < d. Cutting the sum of the left-hand side in two and next using the
conjugates α1, · · · , αs of α0 = 1/λ, we have the following equalities on the torus :

∑
l∈Z

λld+u ≡ λu

1− λd
+
∑
l≥1

λu−ld ≡ λu

1− λd
−
∑

1≤i≤s

∑
l≥1

αld−ui ≡ λu

1− λd
−
∑

1≤i≤s

αd−ui

1− αdi

≡ −

 (1/λ)d−u

1− (1/λ)d
+
∑

1≤i≤s

αd−ui

1− αdi

 = −
∑

0≤i≤s

αd−ui

1− αdi

≡ −
∑

0≤i≤s α
d−u
i

∏
0≤j≤s,j 6=i(1− αdj )∏

0≤i≤s(1− αdi )
≡ −Ad,u

Bd
,

as the numerator and denominator of the last fraction are symmetric polynomials of the (αi)0≤i≤s,
roots of a polynomial in Z[X].

�

We conclude the argument. Fixing 0 ≤ j ≤ N and pj = (0, · · · , 0, 1, 0, · · · , 0), where the 1 is at
place j, we have for k ∈ Z and r ≥ 0 :

Fpj (k) = e2iπmqλkaj
∑
l≥0 λ

lnj
and Gpj (k, r) = e2iπm

∑
l≥1(qaj)λ

k−lnj
1nj>r.

Summing on 0 ≤ r < nN the Fpj (k + r)Gpj (k + r, r) and making use of the indicator function
1nj>r, we obtain :

∆pj (k) =
∑

0≤r<nj

e2iπm
∑
l∈Z(qaj)λ

k+r+lnj
=

∑
0≤r<nj

e2iπm
∑

0≤u≤s pu,j
∑
l∈Z λ

u+k+r+lnj
.

Notice in passing that the constant character with respect to k is now obvious, as we sum on r on
a full period of length nj . Taking k = 0 and using the previous lemma :

∆pj = ∆pj (0) =
∑

0≤r<nj

e
−2iπm

∑
0≤u≤s pu,j

Anj,u+r

Bnj .
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If for example m is a multiple of Bnj for any 0 ≤ j ≤ N , we get ∆pj = nj ≥ 1, for all 0 ≤ j ≤ N ,
which is more than enough. This ends the proof of the theorem.

�

Remark. — A word on the method. Trying to follow the proof of Erdös [2], probabilistic com-
putations involving the renewal theorem lead to the convergence of some sequence (ν̂p(αλ

−n)), as
n→ +∞. The limit was the product of a positive constant (involving some Green function) with
∆p(0). Replacing n by n − k, one gets a necessarily invariant function of k. It appeared more
efficient (but perhaps more abrupt) to restart the analysis directly from ∆p(k).

Remark. — In the context of Theorem 1.1, it would be important to have an interpretation of the
quantity ∆p, in terms of Hermitian product, or else (cf also the last section). Another question
is whether the condition ∆p = 0 is equivalent to νp Rajchman ? When the Pisot number 1/λ is
irrational, it would be interesting to determine classes of parameters where ∆p 6= 0, for all p ∈ CN .
See the interesting pictures in the last section.

We detail in section 4 concrete examples falling in the interesting domain of parameters. For
the moment we turn to the reverse side of the question.

3 Proof of Theorem 1.2

This time N ≥ 1 and we assume that p ∈ CN with pk > 0 for all 0 ≤ k ≤ N and the
ϕk(x) = rkx+ bk do not all have the same fixed point. The (εn)n≥0 are still i.i.d random variables
with law p, to which P and E refer.

Step 1. We reprove in a simpler form the result of Li-Sahlsten [8], that if for some 0 ≤ i 6= j ≤ N
one has log ri/ log rj 6∈ Q, then νp is Rajchman.

For n ≥ 1, consider the random walk Sn = − log rε0 − · · · − log rεn−1 , with S0 = 0. For a
real s ≥ 0, introduce the finite stopping time τs = min{n ≥ 0, Sn ≥ s} and write Ts for the
corresponding sub-σ-algebra of the underlying σ-algebra. Taking α > 0 and s ≥ 0 :

ν̂p(αe
s) = E

(
eiαe

s∑
l≥0 bεle

−Sl
)

= E
(
eiαe

−Sτs+s∑
0≤l<τs bεle

−Sl+Sτs
eiαe

−Sτs+s∑
l≥τs bεle

−Sl+Sτs
)
.

In the expectation, the first exponential term is Ts-measurable. Also, the conditional expectation
of the second exponential term with respect to Ts is just ν̂p(αe

−Sτs+s), as a consequence of the
strong Markov property. It follows that :

ν̂p(αe
s) = E

(
ν̂p(αe

−Sτs+s)eiαe
−Sτs+s∑

0≤l<τs bεle
−Sl+Sτs

)
.

This gives |ν̂p(αes)| ≤ E
(
|ν̂p(αe−Sτs+s)|

)
, so by the Cauchy-Schwarz inequality and a safe Fubini

theorem consecutively :

|ν̂p(αes)|2 ≤ E
(
|ν̂p(αe−Sτs+s)|2

)
= E

(∫
R2

eiαe
−Sτs+s(x−y) dνp(x)dνp(y)

)
=

∫
R2

E
(
eiαe

−Sτs+s(x−y)
)
dνp(x)dνp(y).

Let Y := − log rε0 and a = 1/E(Y ). As the law of Y is non-lattice and with finite moment, it is a
well-known and easy consequence of the Blackwell theorem on the law of the overshoot, see Feller
[4] (p. 369-370), that for any Riemann-integrable g, E(g(Sτs − s)) → a

∫ +∞
0

g(x)P(Y > x) dx, as
s→ +∞. By dominated convergence, for any α > 0 :
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lim sup
t→+∞

|ν̂p(t)|2 ≤ a
∫
R2

∣∣∣∣∫ +∞

0

eiαe
−u(x−y)P(Y > u)du

∣∣∣∣ dνp(x)dνp(y).

The inside term is uniformly bounded with respect to (x, y) ∈ R2, as Y has finite support, so
P(Y > u) = 0 for large u. We shall use dominated convergence once more, this time with α→ +∞.
It is sufficient to show that for ν⊗2

p -almost every (x, y), the inside term goes to zero. Since νp is
non-atomic, ν⊗2

p -almost-surely, x 6= y. If for example x > y :∫ +∞

0

eiαe
−u(x−y)P(Y > u)du =

∫ x−y

0

eiαtP(Y > log((x− y)/t)
dt

t
,

making the change of variable t = e−u(x − y). Remark that the integrated term is zero for small
enough t > 0. The integral now converges to 0, as α → +∞, by the Riemann-Lebesgue lemma.
This shows that limt→+∞ ν̂p(t) = 0 and completes the proof of this step.

Step 2. From Step 1, if νp is not Rajchman, then log ri/ log rj ∈ Q, for all (i, j), hence rj = r
pj/qj
0 ,

with integers pj ≥ 1, qj ≥ 1, for 1 ≤ j ≤ N . Let :

n0 =
∏

1≤l≤N

ql and nj = pj
∏

1≤l≤N,l 6=j

ql, 1 ≤ j ≤ N.

Setting λ = r
1/n0

0 ∈ (0, 1), one has rj = λnj , 0 ≤ j ≤ N . Up to taking some positive power of
λ, one can assume that gcd(n0, · · · , nN ) = 1. Recall in passing that the set of Pisot numbers is
stable under positive powers. Using now some sub-harmonicity, one can reinforce the assumption
that ν̂p(t) is not converging to 0, as t→ +∞.

Lemma 3.1
There exists 1 ≤ α ≤ 1/λ and c > 0 such that ν̂p(2παλ

−k) = cke
2iπθk , written in polar form,

verifies ck → c, as k → +∞.

Proof of the lemma :
Let us write this time Sn = nε0 + · · ·+nεn−1

, for n ≥ 1, with S0 = 0. Using that gcd(n0, · · · , nN ) =
1, we fix r ≥ 1 and M ≥ 1 such that the support of Sr is included in {1, · · · ,M} and contains two
consecutive integers 1 ≤ u ≤ u+ 1 ≤M . Since for all t ∈ R :

ν̂p(t) = E
(
eit
∑
l≥0 bεlλ

nε0+···+nεl−1
)
,

we get the relation ν̂(t) =
∑

0≤j≤N pje
itbj ν̂(λnj t), hence |ν̂(t)| ≤

∑
0≤j≤N pj |ν̂(λnj t)|. Iterating :

|ν̂(t)| ≤ E
(
|ν̂p(λSr t)|

)
, t ∈ R. (2)

In particular, |ν̂(t)| ≤ max1≤l≤M |ν̂(λlt)|. We now set, for α > 0 :

Vα(k) := max
k≤l<k+M

|ν̂(αλl)|, k ∈ Z.

The previous remarks imply that Vα(k) ≤ Vα(k + 1), k ∈ Z, α > 0.

We now have |ν̂p(2πtl)| ≥ c′ > 0, along some sequence tl → +∞. Write tl = αlλ
−kl , with

1 ≤ αl ≤ 1/λ and kl → +∞. Up to extracting a subsequence, αl → α ∈ [1, 1/λ]. Fixing k ∈ Z :

c′ ≤ V2παl(−kl) ≤ V2παl(−k),

as soon as l is large enough. By continuity, taking l → +∞, we get c′ ≤ V2πα(−k), k ∈ Z. As
k 7−→ V2πα(−k) is non-increasing, V2πα(−k)→ c ≥ c′, as k → +∞. We now show that necessarily,
|ν̂p(2παλ−k)| → c, as k → +∞.
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If this were not true, there would exist ε > 0 and (mk) → +∞, with |ν̂p(2παλ−mk)| ≤ c − ε.
Recalling that V2πα(−k) → c and |ν̂p(2παλ−mk)| ≤ c − ε, as k → +∞, consider (2) with t =
2παλ−mk−u and next t = 2παλ−mk−u−1. Since all pj are > 0, we obtain the existence of some
c1 < c such that for k large enough :

max{|ν̂(2παλ−mk−u)|, |ν̂(2παλ−mk−u−1)|} ≤ c1 < c.

Again via (2), with successively t = 2παλ−mk−2u, t = 2παλ−mk−2u−1 and t = 2παλ−mk−2u−2 and
still using that the pj are all > 0, we obtain some c2 < c such that for k large enough :

max{|ν̂(2παλ−mk−2u)|, |ν̂(2παλ−mk−2u−1)|, |ν̂(2παλ−mk−2u−2)|} ≤ c2 < c.

Etc, for some cM−1 < c and k large enough :

max{|ν̂(2παλ−mk−(M−1)u)|, · · · , |ν̂(2παλ−mk−(M−1)u−(M−1))|} ≤ cM−1 < c.

This contradicts the fact that V2πα(−k)→ c, as k →∞. This allows to conclude that |ν̂p(2παλ−k)| →
c, as k →∞, and this ends the proof of the lemma.

�

Step 3. We complete the proof of Theorem 1.2. In this section, introduce the notation ‖x‖ =
dist(x,Z), for x ∈ R. As in the last lemma, let 1 ≤ α ≤ 1/λ with ν̂p(2παλ

−k) = cke
2iπθk , verifying

ck → c > 0, as k → +∞. We start from the relation :

ν̂p(2παλ
−k) =

∑
0≤j≤N

pje
2iπαλ−kbj ν̂p(2παλ

−k+nj ).

This furnishes for k ≥ 0 :

ck =
∑

0≤j≤N

pje
2iπ(αλ−kbj+θk−nj−θk)ck−nj .

We rewrite this as :

∑
0≤j≤N

pj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
ck−nj = ck −

∑
0≤j≤N

pjck−nj =
∑

0≤j≤N

pj(ck − ck−nj ).

Let K > 0 be such that ck−nj ≥ c/2 > 0 for k ≥ K and all 0 ≤ j ≤ N . For L > max0≤j≤N nj , we
sum the previous equality on K ≤ k ≤ K + L :

∑
0≤j≤N

pj

K+L∑
k=K

ck−nj

[
e2iπ(αλ−kbj+θk−nj−θk) − 1

]
=

∑
0≤j≤N

pj

 K+L∑
k=K+L−nj+1

ck −
K−1∑

k=K−nj

ck

 .

Observe that the right-hand side is bounded, uniformly in K and L. In the left hand-hand side, we
take the real part and use that 1 − cos(2πx) = 2(sinπx)2, which, as is well-known, has the same
order as ‖x‖2. We obtain, for some constant C, that for K and L large enough :

c

2

∑
0≤j≤N

pj

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C.

Let p∗ = min0≤j≤N pj . Since p∗ > 0, we get that for all 0 ≤ j ≤ N and K,L large enough :

K+L∑
k=K

‖αλ−kbj + θk−nj − θk‖2 ≤ C ′,

with C ′ = 2C/(cp∗). Hence, for any r ≥ 0 and K,L large enough (depending on r) :
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K+L∑
k=K

‖αλ−k+rnj bj + θk−(r+1)nj − θk−rnj‖
2 ≤ C ′.

Fixing lj ≥ 1 and summing over 0 ≤ r ≤ lj − 1, making use of the triangular inequality and of
(x1 + · · ·+ xn)2 ≤ n(x2

1 + · · ·+ x2
n), we obtain, for K,L large enough (depending on lj) :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λljnj
1− λnj

)
+ θk−ljnj − θk

∥∥∥∥2

≤ ljC ′.

From the hypothesis, there exist 0 ≤ i 6= j ≤ N , such that bi/(1− λni) 6= bj/(1− λnj ), otherwise
the contractions ϕk have a common fixed point. Taking lj = ni in the previous relation, we deduce
that for K,L large enough :

K+L∑
k=K

∥∥∥∥αλ−kbj (1− λninj
1− λnj

)
+ θk−ninj − θk

∥∥∥∥2

≤ niC ′.

Using the symmetric one when permuting i and j, the triangular inequality and (a+b)2 ≤ 2(a2+b2),
we obtain, for K,L large enough :

K+L∑
k=K

∥∥∥∥α(1− λninj )
(

bj
1− λnj

− bi
1− λni

)
λ−k

∥∥∥∥2

≤ 2(ni + nj)C
′.

This implies that (‖α′λ−k‖)k≥0 ∈ l2(N), for some α′ 6= 0. By a famous theorem of Pisot, cf Salem
[14], Theorem A, chap. 1, we obtain that 1/λ is a Pisot number, with moreover :

α(1− λninj )
(

bj
1− λnj

− bi
1− λni

)
∈ Q[λ], hence α

(
bj

1− λnj
− bi

1− λni

)
∈ Q[λ].

To conclude, let b = 1/α 6= 0. We also fix 0 ≤ i0 ≤ N and set β = bi0/(1 − λni0 ). Then for any
0 ≤ j ≤ N , either bj/(1 − λnj ) = β, in which case bj = (1 − λnj )β, or bj/(1 − λnj ) 6= β and the
previous reasoning for (i0, j) furnishes bj = (1 − λnj )β + baj , for some aj ∈ Q[λ]. This ends the
proof of the theorem.

�

4 Complements

4.1 A numerical example

Considering an example as simple as possible which is not homogeneous, take N = 1 and the
two contractions ϕ0(x) = λx, ϕ1(x) = 1 + λ2x, where 1/λ > 1 is a Pisot number, with probability
vector p = (p0, p1). Then n0 = 1 and n1 = 2 and νp is the law of

∑
l≥0 εlλ

nε0+···+nεl−1 , with
(εn)n≥0 i.i.d., with common law Ber(p1).

Taking m = 1, we have for k ∈ Z, r ∈ {0, 1} :

Fp(k) = E
(
e2iπλk

∑
l≥0 εlλ

nε0
+···+nεl−1

)
, Gp(k, r) = E

(
e2iπ

∑
l≥0 εlλ

k−(nε0+···+nεl )
1nε0>r

)
,

leading to ∆p = ∆p(k) = Fp(k)Gp(k, 0) + Fp(k + 1)Gp(k + 1, 1). We now discuss the choice of p
and Pisot number 1/λ.

A degenerated example (the invariant measure being automatically singular) is for instance
given by λ = (3 −

√
5)/2 < 1/2. Nevertheless, it is interesting to notice that λ−n ≡ −λn, n ≥ 0.

Taking p = (1/2, 1/2), one can check that ∆p = ∆p(1) = |Fp(1)|2 + |Fp(2)|2/2. Necessarily ∆p > 0.
Indeed, k 7−→ Fp(k) verifying a linear recurrence of order two, the equality ∆p = 0 would give
Fp(k) = 0 for all k, but Fp(k)→ 1, as k → +∞. Notice that (3−

√
5)/2 is the largest λ with this
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property (it has to be a root of some X2 − aX + 1, a ≥ 0). Let us mention that in general ∆p is
not a real number; cf the pictures below.

To study an interesting example, we take into account the similarity dimension s(p, r), rewritten
here as s(p, λ) :

s(p, λ) =
p0 ln p0 + p1 ln p1

p0 lnλ+ p1 ln(λ2)
.

The condition s(p, λ) ≥ 1 is equivalent to p0 ln p0 + (1 − p0) ln(1 − p0) − (2 − p0) lnλ ≤ 0. As a
function of p0, the left-hand side has a minimum value − ln(λ + λ2), attained at p0 = 1/(1 + λ).
As a first attempt, taking for 1/λ the golden mean (

√
5 + 1)/2 = 1, 618... appears in fact not to be

a good idea, as in this case λ+ λ2 = 1, giving s(p, λ) ≤ 1.

We instead take for 1/λ the Plastic number, the smallest Pisot number (cf Siegel [15]). It is
defined as the unique real root of X3 −X − 1. Approximately, 1/λ = 1.324718.... For this λ :

s(p, λ) > 1⇐⇒ 0, 203... < p0 < 0, 907....

The other roots of X3−X−1 = 0 are conjugate numbers ρe±iθ. From the relations 1/λ+2ρ cos θ =
0 and (1/λ)ρ2 = 1, we deduce ρ =

√
λ and cos θ = −1/(2λ3/2), thus θ = ±2.43... rad. For

computations, the relations λ−n + ρneinθ + ρne−inθ ∈ Z, n ≥ 0, furnish :

λ−n ≡ −2(
√
λ)n cos(nθ).

Let us finally compute the extreme values of p 7−→ ∆p. We have ∆(1,0) = F(1,0)(0)G(1,0)(0, 0) = 1.
At the other extremity :

∆(0,1) = F(0,1)(0)G(0,1)(0, 0) + F(0,1)(1)G(0,1)(1, 1)

= e2iπ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

−2(l+1)

+ e2iπλ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

1−2(l+1)

= e
2iπ
(

1
1−λ2

−2
∑
l≥0(
√
λ)2l cos(2lθ)

)
+ e

2iπ
(

λ
1−λ2

−2
∑
l≥0(
√
λ)2l+1 cos((2l+1)θ)

)
= e

2iπ
(

1
1−λ2

−2Re
(

λe2iθ

1−λe2iθ

))
+ e

2iπ
(

λ
1−λ2

−2Re
( √

λeiθ

1−λe2iθ

))
.

A not difficult computation, shortened by the observation that (1 − λe2iθ)(1 − λe−2iθ) = 1/λ,
shows that the arguments in the exponential terms (after the 2iπ) are respectively equal to 3
and 0, leading to ∆(0,1) = 2. Recalling that p = (1 − p1, p1), below are respectively drawn the
real-analytic maps p1 7−→ Re(∆p), p1 7−→ Im(∆p) and the parametric curve p1 7−→ ∆p, 0 ≤ p1 ≤ 1.
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The first two pictures indicate that p1 7−→ ∆p spends a rather long time near 0, with Re(∆p) and
Im(∆p) both around 10−4. Let us precise here that one can exploit the product form (given by the
exponential) inside the expectation appearing in Fp(k) and Gp(k, r) and make a deterministic nu-
merical computation of ∆p, with nearly an arbitrary precision, based on a dynamical programming
(using a binomial tree). For example, one can obtain the rather remarquable value :

∆(1/2,1/2) = 0, 000178...+ i0, 0000491...,

where all digits are exact. In this case, s((1/2, 1/2), λ) = 1, 64... > 1. The above pictures were
drawn with 1000 points, each one determined with a sufficient precision. This allows to safely zoom
on the neighbourhood of 0, the interesting region. We obtain the following surprising pictures, the
one on the right-hand side containing around 500 points :

One might guess the existence of profound reasons behind these pictures, that would in particular
clarify the condition ∆p 6= 0. Further investigations are necessary.

From the previous numerical analysis, we conclude that the curve p1 7−→ ∆p is rather convinc-
ingly not touching 0. It may certainly be possible to build a rigorous numerical proof of this fact,
but this is not the purpose of the present paper. Being confident in this, we can state :

Numerical Theorem 4.1
Let N = 1 and the two contractions ϕ0(x) = λx and ϕ1(x) = 1 +λ2x, where 1/λ > 1 is the Plastic
number. Then for any probability vector p ∈ C1, the invariant measure νp is not Rajchman.

4.2 On the extension to a “contracting on average” context

In this last part, we investigate a more general situation. Let N ≥ 0 and affine maps ϕk(x) =
rkx+ bk, with rk > 0 but not necessarily rk < 1, for 0 ≤ k ≤ N . Let p ∈ CN and suppose that the
(rk) and p verify the following “contraction on average” condition :∑

0≤k≤N

pk log rk < 0.

When this holds, as in the introduction, existence, unicity and purity of νp are guaranteed and νp
is the law of

∑
l≥0 bεlrε0 · · · rεl−1

, where (εl)l∈Z are i.i.d. random variables with law p.

Let us now place in a context similar to that of Theorem 1.1. Let 0 < λ < 1 be such that
1/λ is a Pisot number and for all 0 ≤ k ≤ N , rk = λnk , for an integer nk ∈ Z, assuming that
n0 ≤ · · · ≤ nN . The “contraction on average” condition reads as

∑
0≤k≤N pknk > 0. We also

suppose that bk = bak + c(1− λnk), with ak ∈ Q[λ], for all 0 ≤ k ≤ N , with common reals b and c.
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Considering the Birkhoff sums associated to the (nεl), let us introduce cocycle notations (Sl)l∈Z,
where Sl = nε0 + · · ·+ nεl−1

, for l ≥ 1, S0 = 0 and Sl = −nεl − · · · − nε−1 , for l ≤ −1. Denote by
θ the formal shift such that θεl = εl+1, l ∈ Z. We have for all k and l in Z :

Sk+l = Sk + θkSl.

We still write ak = (1/q)
∑

0≤l≤s pl,kλ
l, 0 ≤ k ≤ N , and take some integer m 6= 0. Starting as in

the proof of Theorem 1.1, we introduce :

Fp(k) = E
(
e2iπm

∑
l≥0(qaεl )λ

k+Sl
)
, k ∈ Z.

On the other side define in the same way :

Gp(k, r) = E
(
e2iπm

∑
l≤−1(qaεl )λ

k+Sl
1maxl≥1 S−l<−r

)
, k ∈ Z, r ∈ Z.

We have the following strict extension of Lemma 2.1 :

Lemma 4.1
Let ∆p(k) =

∑
0≤r<nN Fp(k + r)Gp(k + r, r). Then ∆p(k) = ∆p(k + 1), k ∈ Z.

Proof of the lemma :
This is a little more involved than the proof of Lemma 2.1. First of all, we notice that ∆p(k) =∑

0≤r≤nN Fp(k+r)Gp(k+r, r), since again Gp(k+nN , nN ) = 0. We also have as before ∆p(k+1) =∑
1≤r≤nN Fp(k + r)Gp(k + r, r − 1). Introducing :

Hp(k, r) = E
(
e2iπm

∑
l≤−1(qaεl )λ

k+Sl
1maxl≥1 S−l=−r

)
, k ∈ Z, r ∈ Z,

we obtain :

∆p(k)−∆p(k + 1) = Fp(k)Gp(k, 0)−
∑

1≤r≤nN

Fp(k + r)Hp(k + r, r).

Using independence :

∆p(k)−∆p(k + 1) = E
(
e2iπm

∑
l∈Z(qaεl )λ

k+Sl
1maxl≥1 S−l<0

)
−

∑
1≤r≤nN

Lp(k + r, r),

with Lp(k + r, r) = E
(
e2iπm

∑
l∈Z(qaεl )λ

k+r+Sl
1maxl≥1 S−l=−r

)
. For r ≥ 1, introduce the set :

Ar =

{
max
l≥1

S−l < 0 and the first l ≥ 1 with Sl > 0 checks Sl = r

}
.

We shall show that for 1 ≤ r ≤ nN :

Lp(k + r, r) = E
(
e2iπm

∑
l∈Z(qaεl )λ

k+Sl
1Ar

)
. (3)

From this we deduce :

∆p(k)−∆p(k+1) = E
(
e2iπm

∑
l∈Z(qaεl )λ

k+Sl
1maxl≥1 S−l<0

)
−E

(
e2iπm

∑
l∈Z(qaεl )λ

k+Sl
1∪1≤r≤nNAr

)
.

Since ∪1≤r≤nNAr = {maxl≥1 S−l < 0}, we conclude that ∆p(k)−∆p(k + 1) = 0, as desired.

We now show (3). Going to −∞ and looking at the last moment p ≥ 1 when S−p = −r, we
can decompose Lp(k + r, r) into :
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Lp(k + r, r) =
∑
p≥1

E
(
e2iπm

∑
l∈Z(qaεl )λ

k+r+S−p+(Sl−S−p)
1S−1≤−r,··· ,S−p+1≤−r,S−p=−r,S−p−u<−r,u≥1

)
=

∑
p≥1

E
(
e2iπm

∑
l∈Z(qaεl )λ

k+(Sl−S−p)
1S−1−S−p≤0,··· ,S−p+1−S−p≤0,S−p=−r,S−p−u−S−p<0,u≥1

)
=

∑
p≥1

E
(
e2iπm

∑
l∈Z(qaεl )λ

k+θ−pSl+p
1θ−pS−1+p≤0,··· ,θ−pS−p+1+p≤0,θ−pSp=r,θ−pS−p−u+p<0,u≥1

)
.

Using the invariance of the law of (εl)l∈Z with respect to shift of coordinates :

Lp(k + r, r) =
∑
p≥1

E
(
e2iπm

∑
l∈Z(qaεl+p )λk+Sl+p1Sp−1≤0,··· ,S1≤0,Sp=r,S−u<0,u≥1

)
=

∑
p≥1

E
(
e2iπm

∑
l∈Z(qaεl )λ

k+Sl
1Sp−1≤0,··· ,S1≤0,Sp=r,S−u<0,u≥1

)
= E

(
e2iπm

∑
l∈Z(qaεl )λ

k+Sl
1Ar

)
.

This completes the proof of (3) and finishes the proof of the lemma.
�

We thus set again ∆p = ∆p(k). At this point and following the plan of the proof of Theorem
1.1, we try to analyze the regularity of p 7−→ ∆p and as a first step that of p 7−→ Fp(0) on the
convex domain :

D = {p ∈ CN ,
∑

0≤k≤N

pknk > 0}.

Continuity is rather clear, but the real-analytic character a priori requires more work. Introducing
again S = {0, · · · , N}N and µp = (

∑
0≤j≤N pjδj)

⊗N on S, we still have :

Fp(0) =

∫
S

g dµp,

with g(x) = e
2iπmq

(∑
l≥0 axlλ

nx0+···+nxl−1
)
, where x = (x0, x1, · · · ) ∈ S. However this function is

not continuous on S and in fact only defined µp-almost-everywhere.

Mention finally that Step 3. in the proof of Theorem 1.1 directly goes through as there is always
some 0 ≤ j ≤ N , such that pj = (0, · · · , 0, 1, 0 · · · , 0) ∈ D, with the 1 at place j. The extension
of Theorem 1.2 a priori seems less delicate. Upgrading Theorems 1.1 and 1.2 to the more general
“contracting on average” situation deserves a separate study.

Acknowledgments. We thank B. Kloeckner for initial discussions on this topic, J. Printems for his
help in the numerical part of the last section and C. Cuny for important remarks.
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