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On the Rajchman property for self-similar

measures

Julien Brémont

Université Paris-Est Créteil, octobre 2019

Abstract

For classical Bernoulli convolutions, the Rajchman property, i.e. the convergence to zero
at infinity of the Fourier transform, was characterized by successive works of Erdös [2] and
Salem [12]. We prove weak forms of their results for general self-similar measures associated
to affine contractions of the real line.

1 Introduction

In the present work we consider the extension of some well-known results concerning Bernoulli
convolutions to a more general context of self-similar measures. For a Borel probability measure
m on the real line, define its Fourier transform as :

m̂(t) =

∫
R
eitx dm(x), t ∈ R.

We say that m is Rajchman, if m̂(t)→ 0, as t→ +∞. This property is very important in Harmonic
Analysis, cf for example Lyons [8]. Let us now recall standard notions on self-similar measures,
from a probabilistic angle.

We write L(X) for the law of a real random variable X. Let N ≥ 0 and for 0 ≤ k ≤ N affine
contractions ϕk(x) = rkx+ bk, with 0 < rk < 1, x ∈ R. For n ≥ 0, compositions have the form :

ϕjn−1
◦ · · · ◦ ϕj0(x) = rjn−1

· · · rj0x+

n−1∑
l=0

bjlrjn−1
· · · rjl+1

.

Introduce the convex CN = {p = (p0, · · · , pN ) | pi ≥ 0,
∑
i pi = 1} and fix a probability vector

p ∈ CN . We now compose the contractions at random, independently, according to p. Precisely,
let X0 be any random variable and (εn)n≥0 be independent and identically distributed random
variables (i.i.d.), independent from X0, with P(εn = k) = pk, 0 ≤ k ≤ N . We consider the Markov
chain (Xn)n≥0 on R defined by Xn = ϕεn−1

◦ · · · ◦ ϕε0(X0), n ≥ 0.

It is classical that (Xn)n≥0 has a unique invariant measure. This can be seen for example from the

fact that L(Xn) = L(X̃n), where :

X̃n = ϕε0 ◦ · · · ◦ ϕεn−1
(X0) = rε0 · · · rεn−1

X0 +

n−1∑
l=0

bεlrε0 · · · rεl−1
.

Since X̃n converges almost-surely to X :=
∑
l≥0 bεlrε0 · · · rεl−1

, this implies that νn := L(Xn)
weakly converges to ν := L(X). By construction :
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νn+1 =
∑

0≤k≤N

pkνn ◦ ϕ−1
k ,

so, taking the limit as n→ +∞, ν is a solution of the equation :

ν =
∑

0≤k≤N

pkν ◦ ϕ−1
k . (1)

The previous convergence implies that the solution of this equation is unique in the class of Borel
probability measures. Moreover ν has to be of pure type, i.e. either absolutely continuous with
respect to Lebesgue measure or atomic or else singular continuous, since each term in its Radon-
Nikodym decomposition verifies equation (1). Using the repartition function, it is not difficult to
observe that ν is continuous if and only if the fixed points bk/(1 − rk) of the ϕk, 0 ≤ k ≤ N , are
not all equal (see for example Feng-Lau [5]). In case of equality, ν is the Dirac mass at the common
fixed point. This trivial case excluded, a difficult problem is to characterize absolute continuity in
terms of the parameters r := (rk) and (bk).

An example with a long history is that of Bernoulli convolutions, corresponding to N = 1, the
system of contractions ϕ0(x) = λx − 1, ϕ1(x) = λx + 1, 0 < λ < 1, and p = (1/2, 1/2). Notice
that when the contraction rates are equal, ν is an infinite convolution (this is not true in general).
Although we discuss below some works in this context, but we will not present here the vast subject
of Bernoulli convolutions, addressing the reader to detailed surveys, Peres-Schlag-Solomyak [10] or
more recently Solomyak [15].

For general self-similar measures, an important aspect of the problem, that we shall not enter, and
an active line of research, concerns the Hausdorff dimension of the measure ν. In a large generality,
cf for example Falconer [3], one has an “entropy/Lyapunov exponent” upper-bound :

DimH(ν) ≤ min{1, s(p, r)}, where s(p, r) :=
−
∑N
i=0 pi log pi

−
∑N
i=0 pi log ri

.

The quantity s(p, r) is called the singularity dimension of the measure. The equality DimH(ν) = 1
does not mean that ν has a density, but the inequality s(p, r) < 1 implies that ν is singular. The
interesting domain of parameters therefore corresponds to s(p, r) ≥ 1.

We focus here on another fundamental tool, the Fourier transform ν̂. If ν is not Rajchman, the
Riemann-Lebesgue lemma implies that ν is singular. This property was used by Erdös [2] in the
context of Bernoulli convolutions. Erdös proved that if 0 < λ < 1 is such that 1/λ is a Pisot
number, then ν is not Rajchman. The reverse implication was next shown by Salem [12], thus
giving a complete characterization of the Rajchman property for Bernoulli convolutions.

The aim of the present article is to study the Rajchman property in the more general context of
self-similar measures. The non-Rajchman character was shown to hold only for a very small set of
parameters (it is countable for Bernoulli convolutions), by Solomyak [16] : as soon as the (ϕk) do
not have a common fixed point and p is not degenerated, then outside a zero-Hausdorff dimensional
set for the contractions rates, the Fourier transform even has a power decay at infinity. Our purpose
is to focus on the exceptional set. In the sequel, we write νp instead of ν for the invariant measure,
to state its dependence with respect to p ∈ CN . We shall first prove the following result.

Theorem 1.1
Let 0 < λ < 1 be such that 1/λ is a Pisot number. Let b ∈ R, N ≥ 0 and for 0 ≤ k ≤ N affine
contractions ϕk(x) = λnkx + bk, for integers nk ≥ 1 and bk = bak, with ak ∈ Q[λ]. Then for
p ∈ CN outside a finite set, the invariant measure νp is not Rajchman.

This is a way of producing continuous singular invariant measures. We in fact give very concrete
examples in the last section. Concerning the existence of singular measures in the inhomogeneous
case, let us mention the non-explicit examples, using algebraic curves, of Neunhäuserer [9]. To
present the result in the other direction, introduce the following set :
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A = {x > 1 | ∃α > 0, dist(αxn,Z)→ 0, as n→ +∞}.

The set A is countable and contains the set of Pisot numbers. An old problem is whether there is
equality or not, cf Salem [13], chap. I.4. We shall show :

Theorem 1.2
Let N ≥ 1 and for 0 ≤ k ≤ N affine contractions ϕk(x) = rkx + bk, with no common fixed point,
and a probability vector p interior to CN . If the invariant measure νp is not Rajchman, there exist
0 < λ < 1 such that 1/λ ∈ A and relatively prime integers nk ≥ 1 such that rk = λnk , 0 ≤ k ≤ N .

We have nothing to say on the (bk). Credit for the existence of the (nk) in the previous theorem is
due to Li and Sahlsten [7], who showed that νp is Rajchman whenever log ri/ log rj 6∈ Q, for some
i, j, with moreover some logarithmic decay at infinity of ν̂ under a Diophantine condition. Their
work, involving renewal theory, was one of the motivation for the present paper. Coming after
them, we simplify their proof and relate it to the standard renewal theorem.

In sections 2 and 3, we successively prove Theorems 1.1 and 1.2. In the last section, we discuss
the results and show surprising numerical simulations involving the Plastic number. They suggest
the possibility that, at the end of the story, in theorem 1.1 the finite set is actually empty and the
Rajchman property in fact equivalent to the sufficient statement of this theorem. This would then
characterize the Rajchman property in the context of self-similar measures.

2 Proof of Theorem 1.1

We can restrict to N ≥ 1 and b 6= 0, otherwise νp is a Dirac mass. We next recall that a Pisot
number is an algebraic integer > 1 with Galois conjugates (the other roots of its minimal unitary
polynomial) of modulus strictly less than 1. We write Q ∈ Z[X] for the minimal polynomial of
1/λ, of degree s + 1, with roots α0 = 1/λ, α1, · · · , αs, where |αk| < 1, for 1 ≤ k ≤ s. A classical
fact, used in Step 3, is that, for n ≥ 0 :

λ−n +
∑

1≤i≤s

αni ∈ Z,

as a symmetric function of the roots of Q. We introduce the torus T = R\Z and write equality in
T as x ≡ y, for x, y ∈ T. Recall that ϕk(x) = λnkx+ bk, with bk = bak. The ak can be written as :

ak =
1

q

∑
0≤l≤s

pl,kλ
l,

for integers pl,k and q ≥ 1, with q independent on k. One can also freely assume 1 ≤ n0 ≤ · · · ≤ nN .
As in the introduction, the (εn)n≥0 are i.i.d. random variables with law p. The probability P and
the corresponding expectation E are related to these random variables. In the sequel, m 6= 0 is an
integer, fixed at the end of the proof independently on p ∈ CN .

Step 1. We introduce the following quantities, where we mark the dependence in p :

Fp(k) = E
(
e2iπmqλk

∑
l≥0 aεlλ

nε0
+···+nεl−1

)
, k ∈ Z.

Notice that Fp(k) = ν̂p(2πmqλ
k/b). In a nearly symmetric way, using that λ−n → 0 in T expo-

nentially fast and that ak ∈ Q[λ], we define :

Gp(k, r) = E
(
e2iπmq

∑
l≥0 aεlλ

k−(nε0+···+nεl )
1nε0>r

)
, k ∈ Z, r ≥ 0.

When r = 0, the indicator 1nε0>r can be removed. Conditioning now with respect to the value of
ε0, we get recursive relations, for k ∈ Z, r ≥ 0 :
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
Fp(k) =

∑
0≤j≤N pje

2iπmqλkajFp(k + nj),

Gp(k, r) =
∑

0≤j≤N,nj>r pje
2iπmqλk−njajGp(k − nj , 0).

The following lemma is central in this work.

Lemma 2.1
For k ∈ Z, define :

∆p(k) =
∑

0≤r<nN

Fp(k + r)Gp(k + r, r).

Then ∆p(k) = ∆p(k + 1), k ∈ Z.

Proof of the lemma :
Notice that ∆p(k) =

∑
0≤r≤nN Fp(k + r)Gp(k + r, r), since Gp(k + nN , nN ) = 0. Also :

∆p(k) =
∑

0≤r<nN

Fp(k + 1 + r)Gp(k + 1 + r, r) =
∑

1≤r≤nN

Fp(k + r)Gp(k + r, r − 1).

Therefore, using first the second recursive relation (for Gp) and next the first one (for Fp) :

∆p(k)−∆p(k + 1) = Fp(k)Gp(k, 0) +
∑

1≤r≤nN

Fp(k + r) (Gp(k + r, r)−Gp(k + r, r − 1))

= Fp(k)Gp(k, 0)−
∑

1≤r≤nN

Fp(k + r)
∑

0≤j≤N,nj=r

pje
2iπmqλk+r−njajGp(k + r − nj , 0)

= Fp(k)Gp(k, 0)−
∑

1≤r≤nN

Fp(k + r)
∑

0≤j≤N,nj=r

pje
2iπmqλkajGp(k, 0)

= Fp(k)Gp(k, 0)−Gp(k, 0)
∑

0≤j≤N

pje
2iπmqλkaj

∑
1≤r≤nN

1r=njFp(k + r)

= Gp(k, 0)

Fp(k)−
∑

0≤j≤N

pje
2iπmqλkaj

∑
1≤r≤nN

Fp(k + nj)

 = 0.

This is the desired result. �

As a consequence, we can set ∆p = ∆p(k). Now, the argument is simply the following. If νp
were absolutely continuous with respect to Lebesgue measure, we would have limk→−∞ Fp(k) = 0.
The quantities appearing in the definition of ∆p(k) being all bounded by 1, this would imply
limk→−∞∆p(k) = 0, hence ∆p = 0. We shall next show that this can only happen for finitely
many values of p ∈ CN .

Step 2. Let us consider the regularity of p 7−→ ∆p on CN . We shall prove using standard methods
that it is continuous and real-analytic on CN , in a sense precised below. This will result from the
same properties for all p 7−→ Fp(k + r) and p 7−→ Gp(k + r, r). We treat the case of p 7−→ Fp(0),
the other ones being exactly similar. Continuity is immediate, as this function is the uniform limit
on CN , as L→ +∞, of the continuous maps :

p 7−→ E
(
e2iπmq

∑L
l=0 aεlλ

nε0
+···+nεl−1

)
.

Fix now p ∈ CN . Let N = {0, 1, · · · } and the symbolic space S = {0, · · · , N}N, equipped with
the left shift σ. For x = (x0, x1, · · · ) ∈ S, we define :
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g(x) = e
2iπmq

(∑
l≥0 axlλ

nx0
+···+nxl−1

)
.

Introducing the product measure µp = (
∑

0≤j≤N pjδj)
⊗N on S, we can write :

Fp(0) =

∫
S

g dµp.

Denote by C(S) the space of continuous functions f : S → C and introduce the operator Pp :
C(S)→ C(S) defined by :

Pp(f)(x) =
∑

0≤j≤N

pjf((j, x)), x ∈ S,

where (j, x) ∈ S is the word obtained by the left concatenation of the symbol j to x. The operator
Pp is Markovian, i.e. f ≥ 0 ⇒ Pp(f) ≥ 0 and verifies Pp1 = 1, where 1(x) = 1, x ∈ S. The
measure µp has the invariance property

∫
S
Pp(f) dµp =

∫
S
f dµp, f ∈ C(S). For f ∈ C(S) and

k ≥ 0, introduce the variation :

Vark(f) = sup{|f(x)− f(y)|, xi = yi, 0 ≤ i < k}.

For any 0 < θ < 1, let |f |θ = sup{θ−kVark(f), k ≥ 0}, as well as ‖f‖θ = |f |θ + ‖f‖∞. We denote
by Fθ the complex Banach space of fonctions f on S such that ‖f‖θ <∞. Any Fθ is preserved by
Pp. Observe now that g ∈ Fθ for λ ≤ θ < 1. We take for example θ = λ and write F for Fθ.

As a classical fact from Spectral Theory, cf Ruelle [11] or Baladi [1], the operator Pp : F → F
satisfies a Perron-Frobenius theorem : the eigenvalue 1 is simple and the rest of its spectrum is
contained in a closed disk of radius ρ < 1. By standard functional holomorphic calculus, cf Kato
[6], when taking for Γ the circle centered at 1 with radius 0 < r < 1 − ρ, the following operator,
involving the resolvent, is a continuous (Riesz) projector on Vect(1) :

Πp =

∫
Γ

(zI − Pp)−1dz.

Moreover, Πp(F) and (I−Πp)(F) are closed Pp-invariant subspaces with F = Πp(F)⊕(I−Πp)(F).
In restriction to (I − Πp)(F), the spectral radius of Pp is less than ρ. In particular

∫
S
f dµp = 0,

for f ∈ (I −Πp)(F). This implies that for any f ∈ F :

Πp(f) =

(∫
S

f dµp

)
1.

Applying this to the function g of interest to us, we obtain that :

Fp(0)1 =

∫
Γ

(zI − Pp)−1(g)dz.

Recall now that N ≥ 1. Let η′ = (η0, · · · , ηN−1) and η = (η0, · · · , ηN−1, 1− (η0 + · · ·+ ηN−1)).
The condition on η′ for p+ η ∈ CN is written as η′ ∈ DN (p). Explicitly the condition is :

−pi ≤ ηi ≤ 1− pi, 0 ≤ i ≤ N − 1, and pN ≤ η0 + · · ·+ ηN−1 ≤ 1 + pN .

For the sequel, let BN (0, R) be the open Euclidean ball in RN centered at 0, of radius R.

Definition 2.2
A function h : CN → C admits a development in series around a point p ∈ CN , if there exists ε > 0
such that for η′ = (η0, · · · , ηN−1) ∈ DN (p) ∩ BN (0, ε) and writing η = (η0, · · · , ηN−1, 1 − (η0 +
· · ·+ ηN−1)), then h(p+ η) is given by an absolutely converging series :

h(p+ η) =
∑

l0≥0,··· ,lN−1≥0

Al0,··· ,lN−1
ηl00 · · · η

lN−1

N−1 .

A function is real-analytic in CN if it admits a development in series around every p ∈ CN .
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For such a function, when non-constant, its zeroes are in finite number in CN , by the standard
argument that the set of points where there is a null development in series is open and closed for
the relative topology and thus equal to CN by connexity if non-empty. In case of infinitely many
zeros, any accumulation point (which exists, as CN is compact) is such a point.

We now check below that p 7−→ Fp(0) is real-analytic in the previous sense. As already indi-
cated, this property will be inheritated by p 7−→ ∆p. In this direction, notice that :

Pp+η = Pp +
∑

0≤j≤N−1

ηjQj ,

where Qj(f)(x) = f(j, x)− f(N, x). For z ∈ Γ and η small enough :

(zI − Pp+η)−1 =

I − (zI − Pp)−1
∑

0≤j≤N−1

ηjQj

−1

(zI − Pp)−1

=
∑
n≥0

∑
0≤j1,··· ,jn≤N−1

ηj1 · · · ηjn(zI − Pp)−1Qj1 · · · (zI − Pp)−1Qjn(zI − Pp)−1.

This is clearly absolutely convergent in the Banach operator algebra, for small enough η, uniformly
in z ∈ Γ. We rewrite it as :

(zI − Pp+η)−1 =
∑

l0≥0,··· ,lN−1≥0

Bl0,··· ,lN−1
(z)ηl00 · · · η

lN−1

N−1 ,

converging for the operator norm, uniformly in z ∈ Γ. This leads to :

Fp+η(0)1 =

∫
Γ

(zI − Pp+η)−1(g) dz =
∑

l0≥0,··· ,lN−1≥0

ηl00 · · · η
lN−1

N−1

∫
Γ

Bl0,··· ,lN−1
(z)(g) dz.

Applying this equality at some particular x ∈ S, we obtain the desired development in series around
p. This completes this step.

Step 3. We finish the argument. If ever ∆p = 0 for infinitely many p ∈ CN , by Step 2, p 7−→ ∆p

has to be constant on CN and equal to zero. We shall show that if m 6= 0 has been appropriately
chosen at the beginning it is not possible. We start with a lemma.

Lemma 2.3
Let d ≥ 1 and u ∈ Z. The series

∑
l∈Z λ

ld+u is well-defined as an element of T. There exists
integers Ad,u, verifying Ad,d+u = Ad,u, and Bd 6= 0 such that :∑

l∈Z
λld+u ≡ −Ad,u

Bd
.

Proof of the lemma :
It is enough to take 0 ≤ u < d. Cutting the sum of the left-hand side in two and next using the
conjugates α1, · · · , αs of α0 = 1/λ, we have the following equalities on the torus :

∑
l∈Z

λld+u ≡ λu

1− λd
+
∑
l≥1

λu−ld ≡ λu

1− λd
−
∑

1≤i≤s

∑
l≥1

αld−ui ≡ λu

1− λd
−
∑

1≤i≤s

αd−ui

1− αdi

≡ −

 (1/λ)d−u

1− (1/λ)d
+
∑

1≤i≤s

αd−ui

1− αdi

 = −
∑

0≤i≤s

αd−ui

1− αdi

≡ −
∑

0≤i≤s α
d−u
i

∏
0≤j≤s,j 6=i(1− αdj )∏

0≤i≤s(1− αdi )
≡ −Ad,u

Bd
,
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as the numerator and denominator of the last fraction are symmetric functions of the (αi)0≤i≤s,
roots of a polynomial in Z[X].

�

We conclude the argument. Fixing 0 ≤ j ≤ N and pj = (0, · · · , 0, 1, 0, · · · , 0), where the 1 is at
place j, we have for k ∈ Z and r ≥ 0 :

Fpj (k) = e2iπmqλkaj
∑
l≥0 λ

lnj
and Gpj (k, r) = e2iπmq

∑
l≥1 ajλ

k−lnj
1nj>r.

Summing on 0 ≤ r < nN and making use of the indicator function 1nj>r, we obtain :

∆pj (k) =
∑

0≤r<nj

e2iπmq
∑
l∈Z ajλ

k+r+lnj
=

∑
0≤r<nj

e2iπm
∑

0≤u≤s pu,j
∑
l∈Z λ

k+r+lnj
.

Notice in passing that the constant character with respect to k is now obvious, as we sum on r on
a full period of length nj . Taking k = 0 and using the previous lemma :

∆pj = ∆pj (0) =
∑

0≤r<nj

e
−2iπm

∑
0≤u≤s pu,j

Anj,r

Bnj .

If for example m is a multiple of Bnj for any 0 ≤ j ≤ N , we get ∆pj = nj ≥ 1, for all 0 ≤ j ≤ N ,
which is more than enough. This ends the proof of the theorem.

�

Remark. — A word on the method. Trying to follow the proof of Erdös [2], probabilistic com-
putations involving the renewal theorem lead to the convergence of some sequence (ν̂p(αλ

−n)), as
n→ +∞. The limit was the product of a positive constant (involving some Green function) with
∆p(0). Replacing n by n − k, one gets a necessarily invariant function of k. It appeared more
efficient (but perhaps more abrupt) to restart the analysis directly from ∆p(k).

We detail in the last section concrete examples falling in the interesting domain of parameters.
For the moment we turn to the reverse side of the question.

3 Proof of Theorem 1.2

This time N ≥ 1, p is interior to CN and the ϕk(x) = rk + bk do not all have the same fixed
point. The (εn)n≥0 are still i.i.d random variables with law p, to which P and E refer.

Step 1. We reprove in a simpler form the result of Li-Sahlsten [7], that if for some 0 ≤ i 6= j ≤ N
one has log ri/ log rj 6∈ Q, then νp is Rajchman.

For n ≥ 1, consider the random walk Sn = − log rε0 − · · · − log rεn−1 , with S0 = 0. For a
real s ≥ 0, introduce the finite stopping time τs = min{n ≥ 0, Sn ≥ s} and write Ts for the
corresponding sub-σ-algebra of the underlying σ-algebra. Taking α > 0 and s ≥ 0 :

ν̂p(αe
s) = E

(
eiαe

s∑
l≥0 bεle

−Sl
)

= E
(
eiαe

−Sτs+s∑
0≤l<τs bεle

−Sl+Sτs
eiαe

−Sτs+s∑
l≥τs bεle

−Sl+Sτs
)
.

In the expectation, the first exponential term is Ts-measurable. Also, the conditional expectation
of the second exponential term with respect to Ts is just ν̂p(αe

−Sτs+s), as a consequence of the
strong Markov property. It follows that :

ν̂p(αe
s) = E

(
ν̂p(αe

−Sτs+s)eiαe
−Sτs+s∑

0≤l<τs bεl

)
.

This gives |ν̂p(αes)| ≤ E
(
|ν̂p(αe−Sτs+s)|

)
, so by the Cauchy-Schwarz inequality and a safe Fubini

theorem consecutively :
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|ν̂p(αes)|2 ≤ E
(
|ν̂p(αe−Sτs+s)|2

)
= E

(∫
R2

eiαe
−Sτs+s(x−y) dνp(x)dνp(y)

)
≤

∫
R2

E
(
eiαe

−Sτs+s(x−y)
)
dνp(x)dνp(y).

Let Y := − log rε0 and a = 1/E(Y ). As the law of Y is non-lattice and with finite moment, it
is a well-known consequence of the Blackwell theorem on the law of the overshoot, see Feller [4],

that for any Riemann-integrable g, E(g(Sτs − s)) → a
∫ +∞

0
g(x)P(Y > x) dx, as s → +∞. By

dominated convergence, for any α > 0 :

lim sup
t→+∞

|ν̂p(t)|2 ≤ a
∫
R2

∣∣∣∣∫ +∞

0

eiαe
−u(x−y)P(Y > u)du

∣∣∣∣ dνp(x)dνp(y).

The inside term is uniformly bounded with respect to (x, y) ∈ R2, as Y has finite support, so
P(Y > u) = 0 for large u. We shall use dominated convergence once more, this time with α→ +∞.
It is sufficient to show that for ν⊗2

p -almost every (x, y), the inside term goes to zero. Since νp is
non-atomic, ν⊗2

p -almost-surely, x 6= y. If for example x > y :∫ +∞

0

eiαe
−u(x−y)P(Y > u)du =

1

x− y

∫ x−y

0

eiαtP(Y > log((x− y)/t) tdt,

making the change of variable t = e−u(x − y). This now converges to 0, as α → +∞, by the
Riemann-Lebesgue lemma.

Step 2. From Step 1, if νp is not Rajchman, then log ri/ log rj ∈ Q, for all (i, j), hence rj = r
pj/qj
0 ,

with integers pj ≥ 1, qj ≥ 1, for 1 ≤ j ≤ N . Let :

n0 =
∏

1≤l≤N

ql and nj = pj
∏

1≤l≤N,l 6=j

ql, 1 ≤ j ≤ N.

Setting λ = r
1/n0

0 ∈ (0, 1), one has rj = λnj , 0 ≤ j ≤ N . Up to taking some positive power
of λ, one can assume that gcd(n0, · · · , nN ) = 1. Recall in passing that A and the set of Pisot
numbers are stable under positive powers. Using now some sub-harmonicity, one can reinforce the
assumption that ν̂p(t) is not converging to 0, as t→ +∞.

Lemma 3.1
There exists 1 ≤ α ≤ 1/λ and c > 0 such that ν̂p(αλ

−k) = cke
iθk , written in polar form, verifies

ck → c, as k → +∞.

Proof of the lemma :
Let us write this time Sn = nε0 + · · ·+nεn−1

, for n ≥ 1, with S0 = 0. Using that gcd(n0, · · · , nN ) =
1, we fix r ≥ 1 and M ≥ 1 such that the support of Sr is included in [1,M ] and contains two
consecutive points 1 ≤ u ≤ u+ 1 ≤M . Since for all t ∈ R :

ν̂p(t) = E
(
eit
∑
l≥0 bεlλ

nε0
+···+nεl−1

)
,

we get the relation ν̂(t) =
∑

0≤j≤N pje
itbj ν̂(λnj t), hence |ν̂(t)| ≤

∑
0≤j≤N pj |ν̂(λnj t)|. Iterating :

|ν̂(t)| ≤ E
(
|ν̂p(λSr t)|

)
, t ∈ R. (2)

In particular, |ν̂(t)| ≤ max1≤l≤M |ν̂(λlt)|. We now set, for α > 0 :

Vα(k) := max
k≤l<k+M

|ν̂(αλl)|, k ∈ Z.
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The previous remarks imply that Vα(k) ≤ Vα(k + 1), k ∈ Z, α > 0.

We now have |ν̂p(tl)| ≥ c′ > 0, along a sequence tl → +∞. Write tl = αlλ
−kl , with 1 ≤ αl ≤ 1/λ

and kl → +∞. Up to taking a subsequence, αl → α ∈ [1, 1/λ]. Fixing k ∈ Z, we have :

c′ ≤ Vαl(−kl) ≤ Vαl(−k),

as soon as l is large enough. By continuity, taking l → +∞, we get c′ ≤ Vα(−k), k ∈ Z. As
k 7−→ Vα(−k) is non-increasing, Vα(−k) → c ≥ c′, as k → +∞. We now show that necessarily,
|ν̂p(αλ−k)| → c, as k → +∞. If not, there exist ε > 0 and (mk)→ +∞, with |ν̂p(αλ−mk)| ≤ c− ε.

Recalling that Vα(−k)→ c and |ν̂p(αλ−mk)| ≤ c− ε, as k → +∞, consider (2) with t = αλ−mk−u

and next t = αλ−mk−u−1. Since the weights of p are all > 0, we obtain the existence of some
c1 < c such that for k large enough :

max{|ν̂(αλ−mk−u)|, |ν̂(αλ−mk−u−1)|} ≤ c1 < c.

Again via (2), with successively t = αλ−mk−2u, t = αλ−mk−2u−1 and t = αλ−mk−2u−2 and still
using that the weights of p are all > 0, we obtain some c2 < c such that for k large enough :

max{|ν̂(αλ−mk−2u)|, |ν̂(αλ−mk−2u−1)|, |ν̂(αλ−mk−2u−2)|} ≤ c2 < c.

Etc, for some cM−1 < c and k large enough :

max{|ν̂(αλ−mk−(M−1)u)|, · · · , |ν̂(αλ−mk−(M−1)u−(M−1))|} ≤ cM−1 < c.

This contradicts the fact that Vα(−k)→ c, as k →∞. This allows to conclude that |ν̂p(αλ−k)| → c,
as k →∞.

�

Step 3. We complete the argument. As in the lemma, let ν̂p(αλ
−k) = cke

iθk , ck → c > 0, as
k → +∞. We start from the relation :

ν̂p(αλ
−k) =

∑
0≤j≤N

pje
iαλ−kbj ν̂p(αλ

−k+nj ).

This furnishes for large k :

1 =
∑

0≤j≤N

pje
iαλ−kbj+i(θk−nj−θk) ck−nj

ck
.

For all j, we have pj > 0 and ck−nj/ck → 1, as k → +∞. For obvious barycentric reasons, we
obtain that for all 0 ≤ j ≤ N :

αλ−kbj + θk−nj − θk →k→+∞ 0, in T.

Hence, for all r ≥ 0, αλ−k+rnj bj+θk−(r+1)nj−θk−rnj →k→+∞ 0, in T. Fixing lj ≥ 1 and summing
over 0 ≤ r ≤ lj − 1, we obtain :

αλ−kbj

(
1− λljnj
1− λnj

)
+ θk−ljnj − θk →k→+∞ 0, in T.

From the hypothesis, there exist 0 ≤ i 6= j ≤ N , such that bi/(1− λni) 6= bj/(1− λnj ), otherwise
the contractions ϕk have a common fixed point. Taking lj = ni in the previous relation :

αλ−kbj

(
1− λninj
1− λnj

)
+ θk−ninj − θk →k→+∞ 0, in T.

Writing the symmetric one when permuting i and j and subtracting, we obtain :
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α(1− λninj )
(

bj
1− λnj

− bi
1− λni

)
λ−k →k→+∞ 0, in T.

Thus 1/λ ∈ A, as announced, and this completes the proof of the theorem.
�

4 Discussion; examples

4.1 Some questions

In the context of Theorem 1.1, it would be important to have an interpretation of the quantity
∆p, in terms of Hermitian product, or else. Also, is ∆p = 0 equivalent to νp Rajchman ? Is there
an example where ∆p = 0 for some p ? See the interesting pictures at the end of this section.

Concerning the second part of Theorem 1.2, the method is essentially due to Salem [13]. For
Bernoulli convolutions, the condition |ν̂p(tl)| ≥ c > 0, with tl → +∞, leads, using that ν̂p(t) is a
product of cosinus, to

∑
dist(αλ−n,Z)2 <∞, which furnishes 1/λ Pisot. Showing the convergence

of this series would improve the statement of Theorem 1.2.

4.2 A numerical example

Considering an example as simple as possible which is not homogeneous, take N = 1 and the
two contractions ϕ0(x) = λx, ϕ1(x) = 1 + λ2x, where 1/λ > 1 is a Pisot number, with probability
vector p = (p0, p1). Then n0 = 1 and n1 = 2 and νp is the law of

∑
l≥0 εlλ

nε0+···+nεl−1 , with
(εn)n≥0 i.i.d., with common law Ber(p1).

Taking m = 1, we have for k ∈ Z, r ∈ {0, 1} :

Fp(k) = E
(
e2iπλk

∑
l≥0 εlλ

nε0
+···+nεl−1

)
, Gp(k, r) = E

(
e2iπ

∑
l≥0 εlλ

k−(nε0
+···+nεl )

1nε0>r

)
,

leading to ∆p = ∆p(k) = Fp(k)Gp(k, 0) + Fp(k + 1)Gp(k + 1, 1). We now discuss the choice of p
and Pisot number 1/λ.

A degenerated example (the invariant measure being automatically singular) is for instance
given by λ = (3 −

√
5)/2 < 1/2. Nevertheless, it is interesting to notice that λ−n ≡ −λn, n ≥ 0.

Taking p = (1/2, 1/2), one can check that ∆p = ∆p(1) = |Fp(1)|2 + |Fp(2)|2/2. Necessarily ∆p > 0.
Indeed, k 7−→ Fp(k) verifying a linear recurrence of order two, the equality ∆p = 0 would give
Fp(k) = 0 for all k, but Fp(k)→ 1, as k → +∞. Notice that (3−

√
5)/2 is the largest λ with this

property (it has to be a root of some X2 − aX + 1, a ≥ 0). Let us mention that in general ∆p is
not a real number; cf the pictures below.

To study an interesting example, we take into account the similarity dimension s(p, r), rewritten
here as s(p, λ) :

s(p, λ) =
p0 ln p0 + p1 ln p1

p0 lnλ+ p1 ln(λ2)
.

The condition s(p, λ) ≥ 1 is equivalent to p0 ln p0 + (1 − p0) ln(1 − p0) − (2 − p0) lnλ ≤ 0. As a
function of p0, the left-hand side has a minimum value − ln(λ + λ2), attained at p0 = 1/(1 + λ).
As a first attempt, taking for 1/λ the golden mean (

√
5 + 1)/2 = 1, 618... appears in fact not to be

a good idea, as in this case λ+ λ2 = 1, giving s(p, λ) ≤ 1.

We instead take for 1/λ the Plastic number, the smallest Pisot number (cf Siegel [14]). It is
defined as the unique real root of X3 −X − 1. Approximately, 1/λ = 1.324718.... For this λ :

s(p, λ) > 1⇐⇒ 0, 203... < p0 < 0, 907....
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The other roots of X3−X−1 = 0 are conjugate numbers ρe±iθ. From the relations 1/λ+2ρ cos θ =
0 and (1/λ)ρ2 = 1, we deduce ρ =

√
λ and cos θ = −1/(2λ3/2), thus θ = ±2.43... rad. For

computations, the relations λ−n + ρneinθ + ρne−inθ ∈ Z, n ≥ 0, furnish :

λ−n ≡ −2(
√
λ)n cos(nθ).

Let us finally compute the extreme values of p 7−→ ∆p. We have ∆(1,0) = F(1,0)(0)G(1,0)(0, 0) = 1.
At the other extremity :

∆(0,1) = F(0,1)(0)G(0,1)(0, 0) + F(0,1)(1)G(0,1)(1, 1)

= e2iπ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

−2(l+1)

+ e2iπλ
∑
l≥0 λ

2l

e2iπ
∑
l≥0 λ

1−2(l+1)

.

As a result :

∆(0,1) = e
2iπ
(

1
1−λ2

−2
∑
l≥0(
√
λ)2l cos(2lθ)

)
+ e

2iπ
(

λ
1−λ2

−2
∑
l≥0(
√
λ)2l+1 cos((2l+1)θ)

)

= e
2iπ
(

1
1−λ2

−2Re
(

λe2iθ

1−λe2iθ

))
+ e

2iπ
(

λ
1−λ2

−2Re
( √

λeiθ

1−λe2iθ

))
.

A not difficult computation, shortened by the observation that (1−λe2iθ)(1−λe−2iθ) = 1/λ, shows
that the arguments in the exponential terms (after the 2iπ) are respectively equal to 3 and 0, leading
to ∆(0,1) = 2. Below are respectively drawn the real-analytic maps p1 7−→ Re(∆p), p1 7−→ Im(∆p)
and the parametric curve p1 7−→ ∆p, for 0 ≤ p1 ≤ 1, where we recall that p = (1− p1, p1).

We observe that p1 7−→ ∆p spends a rather long time near 0, with Re(∆p) and Im(∆p) both around
10−4. Mention here that one can exploit the product form (given by the exponential) inside the
expectation appearing in Fp(k) and Gp(k, r) and make a deterministic numerical computation of
∆p, with nearly an arbitrary precision, based on a dynamical programming (using a binomial tree).
For example, one can obtain the value :

∆(1/2,1/2) = 0, 000178...+ i0, 0000491...,

where all digits are exact. In this case, s((1/2, 1/2), λ) = 1, 64... > 1. The pictures above were
drawn with a sufficient precision, allowing to safely zoom on the neighbourhood of 0, the interesting
region. We obtain the following pictures :
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This came as a surprise and suggests the possible existence of profound reasons behind these
pictures, but further investigations are necessary. A priori, there is no other singularity elsewhere.
We conclude that the curve p1 7−→ ∆p is rather convincingly not touching 0; it may certainly be
possible to build a rigorous numerical proof of this fact, but this is not the purpose of the present
paper. Having faith in this, we can state :

Numerical Theorem 4.1
Let N = 1 and the two contractions ϕ0(x) = λx and ϕ1(x) = 1 +λ2x, where 1/λ > 1 is the Plastic
number. Then for any probability vector p ∈ C1, the invariant measure νp is not Rajchman.

Acknowledgments. We thank B. Kloeckner for initial discussions on this topic and J. Printems for
his help in the numerical part of the last section.
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