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A BRIEF NOTE CONCERNING HARD LEFSCHETZ FOR CHOW

GROUPS

ROBERT LATERVEER

Abstract. We formulate a conjectural hard Lefschetz property for Chow
groups, and prove this in some special cases: roughly speaking, for varieties
with finite–dimensional motive, and for varieties whose self–product has van-
ishing middle–dimensional Griffiths group. An appendix includes related state-
ments that follow from results of Vial.

1. Introduction

The Bloch–Beilinson conjectures can be seen as a formidable heuristic guide that
predicts the structure of Chow groups of algebraic varieties, and the precise way
Chow groups are influenced by singular cohomology (cf. [12], [18], [29], [19]). To
get a glimpse of this heuristic, let us look at what the Bloch–Beilinson conjectures
say concerning the hard Lefschetz property on the level of Chow groups.

Let X be a smooth projective variety over C of dimension n, equipped with an
ample line bundle L. Let AjXQ denote the Chow group of codimension j algebraic

cycles with Q coefficients. It is expected that Aj
AJXQ (the subgroup of Abel–Jacobi

trivial cycles) only depends on the cohomology groups

H2j−2(X,Q), H2j−3(X,Q), . . . , Hj(X,Q) .

This leads to the following expectation:

Conjecture 1.1. Let X be a smooth projective variety of dimension n, and L an
ample line bundle. Then intersection induces maps

·Ln−2j+2 : Aj
AJ (X)Q → An−j+2(X)Q

that are injective for 2j − 2 ≤ n.

This type of conjecture is formulated and studied in [7]. In particular, conjecture
1.1 implies a certain weak Lefschetz property for Chow groups: if Y ⊂ X is a
smooth ample hypersurface, restriction Aj(X)Q → Aj(Y )Q is injective in the range
j < n/2; such a weak Lefschetz property was conjectured in 1974 by Hartshorne
[9].

Unlike cohomology, Chow groups get increasingly complicated in higher codi-
mension (as attested by the group An(X) of 0–cycles, which is in general “very
large” [18], [5]; precisely: using [5], one sees that ·L : An−1(X)Q → An(X)Q can
not surject unless pg(X) = 0). For this reason, in general one cannot expect the
surjectivity part of the hard Lefschetz theorem to carry over from cohomology to
Chow groups. In the special case where X has a small Hodge diamond, however,
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2 ROBERT LATERVEER

one may expect a surjectivity statement on the level of Chow groups—as we now
proceed to explain.

For simplicity, let’s restrict to the case of 0–cycles. It is expected that if

Hn(X,Q), . . . , Hn+r−1(X,Q)

are supported in codimension 1, then An(X)Q is determined by

H2n(X,Q), H2n−1(X,Q), . . . , Hn+r(X,Q) .

(This expectation can be made more precise by introducing the conjectural Bloch–
Beilinson filtration F ∗ on An, and stipulating that the various gradeds depend
on the various cohomology groups, cf. [12].) Thus one is led to the following
expectation:

Conjecture 1.2. Let X be a smooth projective variety of dimension n, and L an
ample line bundle. Suppose Hi(X,Q) = N1Hi(X,Q) for n ≤ i < n + r. Then
intersection induces surjective maps

·Lr : An−r(X)Q → An(X)Q .

(Here N∗ denotes the coniveau filtration on cohomology (definition 2.1).) In
particular, conjecture 1.2 implies a “weak Lefschetz–type” property: under the
hypotheses of conjecture 1.2, An(X)Q is supported on a codimension r complete
intersection Y ⊂ X .

The main result of this note shows conjectures 1.1 and 1.2 can be proven in some
special cases:

Theorem (=theorem 3.1). Suppose the Voisin standard conjecture holds. Let X
be a smooth projective variety of dimension n, and suppose
(i) Either the motive of X is finite–dimensional, or Griffn(X ×X)Q = 0;
(ii) The Lefschetz standard conjecture B(X) holds;
(iii) Hi(X,Q) = N rHi(X,Q) for all i ∈ [n− r + 1, n].

Then for any ample line bundle L, the map

·Lr : Aj
AJ (X)Q → Aj+r

AJ (X)Q ,

is injective for j ≤ r + 1, and

·Lr : Aj(X)Q → Aj+r(X)Q ,

is surjective for j > n− 2r.

The Voisin standard conjecture [28] is explained in conjecture 2.2 below. For
the notion of finite–dimensional motive, cf. [14] and [1]; let us merely note that
conjecturally all varieties have finite–dimensional motive [14], and that there are
quite a few varieties known to have finite–dimensional motive (cf. section 2 below).

In certain cases, some of the hypotheses are automatically satisfied and the
statement simplifies somewhat; for instance, there are the following corollaries:

Corollary (=corollary 3.8). Let X be a smooth projective 3fold, rationally domi-
nated by a product of curves. Suppose A3(X)Q is supported on a divisor. Then for
any ample line bundle L, the map

·L : A2
AJ (X)Q → A3

AJ(X)Q

is an isomorphism.
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(In particular, for any ample hypersurface Y ⊂ X, restriction A2
AJ(X)Q →

A2(Y )Q is injective, and push–forward A2(Y )Q → A3(X)Q is surjective.)

Corollary (=corollary 3.10). Let X be a smooth projective variety of dimension
n which is a product

X = X1 ×X2 × · · · ×Xs ,

where each Xj is either an abelian variety, or a variety with Abel-Jacobi trivial
Chow groups. Suppose Hi(X,Q) = N rHi(X,Q) for all i ∈ [n− r+1, n]. Then for
any ample line bundle L on X,

·Lr : Aj
AJ(X)Q → Aj+r

AJ (X)Q

is injective for j ≤ r + 1, and

·Lr : Aj(X)Q → Aj+r(X)Q

is surjective for j > n− 2r.

As noted by the anonymous referee, there is some overlap with Vial’s work [24],
and corollary 3.8 easily follows from results contained in [24]. Actually, using Vial’s
work one can prove a stronger statement; this is explained in an appendix. We are
very grateful to the referee for numerous valuable suggestions, and particularly for
pointing out the relevance of [24] and sketching the proof presented in the appendix.

Conventions . In this note, the word variety will refer to a quasi–projective ir-
reducible algebraic variety over C. A subvariety is a (possibly reducible) reduced
subscheme which is equidimensional. The Chow group of j–dimensional cycles on
X is denoted AjX ; for X smooth of dimension n the notations AjX and An−jX

will be used interchangeably. The Griffiths group Griffj is the group of codimension
j cycles that are homologically trivial modulo algebraic equivalence. In an effort to
lighten notation, we will often write HjX orHjX to designate singular cohomology
Hj(X,Q) resp. Borel–Moore homology Hj(X,Q).

2. Preliminary

Definition 2.1 (Coniveau filtration [4]). Let X be a quasi–projective variety. The
coniveau filtration on cohomology and on homology is defined as

N cHi(X,Q) =
∑

Im
(
Hi

Y (X,Q) → Hi(X,Q)
)
;

N cHi(X,Q) =
∑

Im
(
Hi(Z,Q) → Hi(X,Q)

)
,

where Y runs over codimension ≥ c subvarieties of X , and Z over dimension ≤ i−c
subvarieties.

We recall the statement of the “Voisin standard conjecture” (this is [28, Conjec-
ture 0.6]):

Conjecture 2.2 (Voisin standard conjecture). Let X be a smooth projective vari-
ety, and Y ⊂ X closed with complement U . Then the natural sequence

N iH2i(Y,Q) → N iH2i(X,Q) → N iH2i(U,Q) → 0

is exact for any i.



4 ROBERT LATERVEER

Remark 2.3. Hodge theory gives an exact sequence

GrW−2iH2iY ∩ F−i → H2iX ∩ F−i → GrW−2iH2iU ∩ F−i → 0 ,

whereW denotes Deligne’s weight filtration, and F the Hodge filtration onH∗(−,C).
Hence if the Hodge conjecture (that is, its homology version for singular varieties
[11]) is true, then conjecture 2.2 is true.

What’s more, this conjecture fits in very neatly with the classical standard con-
jectures: Voisin shows that conjecture 2.2 plus the algebraicity of the Künneth
components of the diagonal is equivalent to the Lefschetz standard conjecture [28,
Proposition 1.6].

Remark 2.4. Conjecture 2.2 is obviously true for i ≤ 1 (this follows from the truth
of the Hodge conjecture for curve classes), and for i ≥ dimY − 1 (where it follows
from the Hodge conjecture for divisors).

The main ingredient we will use in this note is Kimura’s nilpotence theorem:

Theorem 2.5 (Kimura [14]). Let X be a smooth projective variety of dimension
n with finite–dimensional motive. Let Γ ∈ An(X ×X)Q be a correspondence which
is homologically trivial. Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X ×X)Q .

We refer to [14], [1], [19] for the definition of finite–dimensional motive. Conjec-
turally, any variety has finite–dimensional motive [14]. What mainly concerns us
in the scope of this note, is that there are quite a few examples which are known
to have finite–dimensional motive: varieties dominated by products of curves [14],
K3 surfaces with Picard number 19 or 20 [20], surfaces not of general type with
vanishing geometric genus [8, Theorem 2.11], Godeaux surfaces [8], 3folds with nef
tangent bundle [10], certain 3folds of general type [25, Section 8], varieties of dimen-
sion ≤ 3 rationally dominated by products of curves [23, Example 3.15], varieties
X with Abel–Jacobi trivial Chow groups (i.e. Ai

AJXQ = 0 for all i) [22, Theorem
4], products of varieties with finite–dimensional motive [14].

So far, all examples of finite-dimensional motives are in the tensor subcategory
generated by Chow motives of curves.

There exists another nilpotence result, which predates and prefigures Kimura’s
theorem:

Theorem 2.6 (Voisin [27], Voevodsky [26]). Let X be a smooth projective algebraic
variety of dimension n, and Γ ∈ An(X×X)Q a correspondence which is algebraically
trivial. Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X ×X)Q .

3. Main

We proceed to prove the main result of this note. Note that we prove slightly
more than the statement given in the introduction; we also consider hard Lefschetz
for the Griffiths groups.

Theorem 3.1. Suppose the Voisin standard conjecture holds. Let X be a smooth
projective variety of dimension n, and suppose
(i) Either the motive of X is finite–dimensional, or Griffn(X ×X)Q = 0;
(ii) The Lefschetz standard conjecture B(X) holds;
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(iii) Hi(X,Q) = N rHi(X,Q) for all i ∈ [n− r + 1, n].
Then for any ample line bundle L, the maps

·Lr : Aj
AJ (X)Q → Aj+r

AJ (X)Q ,

·Lr : Griffj(X)Q → Griffj+r(X)Q

are injective for j ≤ r + 1, and

·Lr : Aj(X)Q → Aj+r(X)Q ,

·Lr : Aj
AJ(X)Q → Aj+r

AJ (X)Q ,

·Lr : Griffj−1(X)Q → Griffj+r−1(X)Q

are surjective for j > n− 2r.
(Moreover, Lr is injective on Aj

hom(X)Q resp. on Aj(X)Q provided j ≤ min(r+

1, n−r+1
2 ) resp. j ≤ min(r + 1, n−r

2 ).)

Proof. We first consider Chow groups, and prove the injectivity statement. Since
by hypothesis B(X) holds, the Künneth components

πi ∈ Im
(
H2n−iX ⊗HiX → H2n(X ×X)

)

are algebraic [16]. Given an ample line bundle L, and an integer ℓ ≥ 0, we have a
correspondence Lℓ ∈ An+ℓ(X×X)Q which acts as “cupping with Lℓ”. There is the
relation

Lℓ =
1

d
Γτ ◦ tΓτ ∈ An+ℓ(X ×X)Q ,

where Γτ is the graph of the inclusion τ : Y → X and Y is a complete intersection
of class [Y ] = dLℓ ∈ AℓXQ. Moreover, since we suppose B(X) holds, for any i ≤ n
there exist correspondences Ci ∈ Ai(X ×X)Q such that

Ci ◦ L
n−i = id: HiX → HiX .

Now we are going to use hypothesis (iii) of the theorem. Applying hard Lef-
schetz, it follows from hypothesis (iii) that there exists some closed codimension r
subvariety Z ⊂ X supporting the cohomology groups

Hn−r+1X, . . . ,Hn+r−1X .

That is, for i ∈ [n− r+ 1, n+ r− 1], the Künneth component πi is in the kernel of
the restriction homomorphism

H2n(X ×X) → H2n
(
(X ×X) \ (Z × Z)

)
.

Using the Voisin standard conjecture (conjecture 2.2), we find there exists a cycle
P ′
i ∈ An(Z × Z)Q such that the push-forward Pi ∈ An(X ×X) (of P ′

i to X ×X)
equals the Künneth component πi:

Pi = πi ∈ H2n(X ×X) ∀i ∈ [n− r + 1, n+ r − 1] .

Lemma 3.2. Let i ∈ [n− r + 1, n+ r − 1]. Then for j > n− r, we have

(Pi)∗A
j(X)Q = 0 .

For j ≤ r + 1, we have

(Pi)∗A
j
AJ (X)Q = 0 .

Moreover,

(Pi)∗Griffj(X)Q = 0 ∀j ∈ [0, r + 1] ∪ [n− r, n] .
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Proof. Let ψ : Z → X denote the inclusion, so Pi = (ψ × ψ)∗(P
′
i ). There is a

factorization

Aj(X)Q
(Pi)∗
→ Aj(X)Q

↓ ↑

Aj(Z)Q
(P ′

i )∗→ Aj−r(Z)Q .

This implies the lemma for reasons of dimension: the lower left group vanishes for
j > n− r (since dimZ = n− r); the lower right group vanishes when restricted to
Abel–Jacobi trivial cycles for j ≤ r + 1. �

For i ≤ n − r, we choose a rational equivalence class to represent the Künneth
component πi in the following way: We take arbitrary lifts of πi and Ci in A

n(X ×
X)Q resp. in Ai(X ×X)Q, and we define

Πi := πi ◦
tCi ◦ L

n−i ∈ An(X ×X)Q , i ≤ n− r .

For i ≥ n+ r, we make the following choice to represent the Künneth component:
We define

Πi := πi ◦ L
i−n ◦ tC2n−i ∈ An(X ×X)Q , i ≥ n+ r .

Lemma 3.3. We have

Πi = πi ∈ H2n(X ×X) ∀i ∈ [0, n− r] ∪ [n+ r, 2n] .

Proof. First, consider the case i ≤ n− r. The transpose of Πi is

tΠi =
t
(
πi ◦

tCi ◦ L
n−i

)
= Ln−i ◦ Ci ◦ π2n−i ∈ H2n(X ×X)

(as obviously tLn−i = 1/d t(Γτ ◦ tΓτ ) = Ln−i). Hence, the action on cohomology
is

(tΠi)∗H
jX =

{
id if j = 2n− i ;

0 if j 6= 2n− i .

It follows that tΠi = π2n−i ∈ H2n(X ×X).
Next, suppose i ≥ n+ r. The argument is similar: The transpose of Πi is

tΠi =
t
(
πi ◦ L

i−n ◦ tC2n−i

)
= C2n−i ◦ L

i−n ◦ π2n−i ∈ H2n(X ×X) .

Hence, the action on cohomology is

(tΠi)∗H
jX =

{
id if j = 2n− i ;

0 if j 6= 2n− i .

It follows that tΠi = π2n−i ∈ H2n(X ×X). �

Lemma 3.4. Let i ≥ n+ r. Then for j ≤ r + 1, we have

(Πi)∗A
j
AJXQ = 0 ;

(Πi)∗GriffjXQ = 0 .

Proof. Note that tC2n−i ∈ A2n−i(X ×X)Q acts

(tC2n−i)∗ : Aj
AJ(X)Q → Aj+n−i

AJ (X)Q .

But since j + n− i ≤ 1, the group on the right vanishes. �
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The above choices give us a decomposition of the diagonal

∆ =

n−r∑

i=0

Πi +

n+r−1∑

i=n−r+1

Pi +

2n∑

i=n+r

Πi ∈ H2n(X ×X,Q) .

This is an equality of cycles modulo homological equivalence. Now, applying one
of the two nilpotence theorems (theorem 2.5 if the motive is finite–dimensional,
theorem 2.6 in case the Griffiths group vanishes), we get that there exists N ∈ N

such that

(
∆−

n−r∑

i=1

Πi −

n+r−1∑

i=n−r+1

Pi −

2n∑

i=n+r

Πi

)◦N

= 0 ∈ An(X ×X)Q .

Developing this expression (and noting that ∆◦N = ∆), we find

∆ =
∑

k

Qk ∈ An(X ×X)Q ,

where each Qk is a composition of elements Πi and Pi′ . For each k, let Q
0
k denote

the “tail element” of Qk, i.e. we write

Qk = QN ′

k ◦QN ′−1
k ◦ · · · ◦Q0

k ∈ An(X ×X)Q ,

with Q0
k 6= ∆ (so that N ′ ≤ N).

Now let us consider the action of Qk on Aj
AJ (X)Q, for j ≤ r + 1. In case Q0

k is
a Πi for some i ∈ [n+ r, 2n], it follows from lemma 3.4 that

(Qk)∗A
j
AJ (X)Q = 0 .

Likewise, if Q0
k is of the form Pi (for some i ∈ [n− r+1, n+ r− 1]), then applying

lemma 3.2, we find again

(Qk)∗A
j
AJ (X)Q = 0 .

It follows that the only Qk acting non–trivially are those with a tail of type Πi,
i ≤ n− r. But then (looking at the definition of Πi for i ≤ n− r) it follows that

Aj
AJ(X)Q = ∆∗A

j
AJ(X)Q =

(
(something) ◦ Lr

)
∗
Aj

AJ (X)Q ∀j ≤ r + 1 .

The injectivity statement is now obvious.
We now proceed to prove the surjectivity statement; this is done by making

one small change in the above argument. We replace the correspondences Πi for
i ≥ n+ r by the following modification:

Π′
i := Li−n ◦ tC2n−i ◦ πi ∈ An(X ×X)Q , i ≥ n+ r .

This definition implies the following (cf. lemma 3.3):

Lemma 3.5. For i ≥ n+ r, we have

Π′
i = πi ∈ H2n(X ×X) .

We need another lemma:

Lemma 3.6. Let i ≤ n− r. Then for j > n− r, we have

(Πi)∗A
j(X)Q = 0 ;

(Πi)∗Griffj−1XQ = 0 .
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Proof. This is analogous to lemma 3.4. Let Y ⊂ X be a dimension i complete
intersection, of class [Y ] = dLn−i. Then the action of Πi factors

(Πi)∗ : Aj(X)Q → Aj(Y )Q → Aj(X)Q ,

from which the required vanishing follows. �

Now, we have a decomposition of the diagonal in a sum of cycles

∆ =
n−r∑

i=0

Πi +
n+r−1∑

i=n−r+1

Pi +
2n∑

i=n+r

Π′
i ∈ H2n(X ×X) .

Again applying one of the two nilpotence theorems, we know there exists N ∈ N

such that

(
∆−

n−r∑

i=1

Πi −

n+r−1∑

i=n−r+1

Pi −

2n∑

i=n+r

Π′
i

)◦N

= 0 ∈ An(X ×X)Q .

Upon developing:

∆ =
∑

k

Qk ∈ An(X ×X)Q ,

where each Qk is a composition of elements Πi and Pi′ and Π′
i′′ . We now decompose

each Qk as

Qk = Q0
k ◦Q

1
k ◦ · · · ◦Q

N ′

k ∈ An(X ×X)Q ,

with Q0
k 6= ∆ (and N ′ ≤ N).

We analyze the action of Qk on Aj+r(X)Q for j > n−2r. First, in case Q0
k = Πi

(for some i ≤ n− r) it follows from lemma 3.6 that there is no action:

(Qk)∗A
j+r(X)Q = 0 .

Likewise, in case Q0
k is of type Pi (for some i ∈ [n− r + 1, n+ r − 1]) we find from

lemma 3.2 that again

(Qk)∗A
j+r(X)Q = 0 .

It follows that the only correspondences Qk acting are those with “head” Q0
k of

type Π′
i (for some i ≥ n+ r). Thus we can write

Aj+r(X)Q = ∆∗A
j+r(X)Q =

(
Lr ◦ (something)

)
∗
Aj+r(X)Q ∀j > n− 2r ,

and also

Aj+r
AJ (X)Q = ∆∗A

j+r
AJ (X)Q =

(
Lr ◦ (something)

)
∗
Aj+r

AJ (X)Q ∀j > n− 2r ,

The surjectivity statement is now obvious.
The statements for the Griffiths group are proven in the same way; details are

left to the reader. As for the injectivity statement in parenthesis: the Abel–Jacobi
maps fit into a commutative diagram

Aj
hom(X)Q

·Lr

→ Aj+r
hom(X)Q

↓ ↓

Jj(X)Q
·Lr

→ Jj+r(X)Q

(where J∗ denotes the intermediate Jacobian). Under the assumption 2j−1+r ≤ n,
one can show (using hard Lefschetz for cohomology) that the bottom horizontal
arrow is injective. The statement for Aj is proven similarly, using the cycle class
map. �
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Remark 3.7. The assumption “Griffn(X × X)Q = 0” in theorem 3.1 is mainly of
theoretical interest, and not practically useful. Indeed, there are precise conjectures
(based on the Bloch–Beilinson conjectures) saying how the coniveau filtration on
cohomology should influence Griffiths groups [13]. Unfortunately, it seems these
conjectures are not known in any non–trivial cases. For n = 2, it is conjectured
that if H1(X) = 0 then Griff2(X × X)Q = 0. For n = 3, it is conjectured that if

h0,2(X) = h0,3(X) = 0 then Griff3(X×X)Q = 0. For n = 4, if h2,0(X) = h3,0(X) =

h4,0(X) = h2,1(X) = 0 then Griff4(X ×X)Q should vanish. These predictions are
particular instances of [13, Corollary 6.8].

In certain easy cases, some hypotheses can be eliminated from theorem 3.1:

Corollary 3.8. Let X be a smooth projective 3fold. Suppose
(i) A0(X)Q is supported on a divisor;
(ii) The motive of X is finite–dimensional.

Then for any ample line bundle L, the map

·L : A2
AJ (X)Q → A3

AJ(X)Q

is an isomorphism. In particular, for any ample hypersurface Y ⊂ X, the restriction
map

A2
AJ (X)Q → A2

AJ(Y )Q

is injective, and push–forward

A0(Y )Q → A0(X)Q

is surjective.

Proof. First, as is well–known [5], hypothesis (i) implies

H3X = N1H3X .

Hypothesis (i) also implies B(X); this follows from [3] or [21, Theorem 7.1]. Thus
we are in position to apply theorem 3.1, once we manage to explain why Voisin’s
standard conjecture is not needed as an extra hypothesis. Looking at the proof,
we see that this conjecture is only used to obtain that a certain Hodge class in
H6(Z × Z) is algebraic, where dimZ = 2; this is OK by the Hodge conjecture for
divisors. �

Corollary 3.9. Let X be a smooth projective variety of dimension n ≥ 4, domi-
nated by curves. Suppose

Hn(X) = N ⌈n−1

2
⌉Hn(X) .

Then for any ample L,

·L : A2
hom(X)Q → A3(X)Q

is injective, and

·L : An−1(X)Q → An(X)Q

is surjective.

Proof. Just as in the proof of corollary 3.8, the Künneth component πn is repre-
sented by an algebraic cycle on something of dimension n+1 thanks to the Hodge
conjecture for divisors. This means that theorem 3.1 applies unconditionally. �
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(Note that in corollary 3.9, the assumption Hn(X) = N ⌈n−1

2
⌉Hn(X) implies

(using B(X)) that Hi(X) = N ⌈ i−1

2
⌉Hi(X) for all i of the same parity as n. That

is, the Hodge structures Hn(X), Hn−2(X), Hn−4(X), . . . are of level ≤ 1.)

Corollary 3.10. Let X be a smooth projective variety of dimension n which is a
product

X = X1 ×X2 × · · · ×Xs ,

where each Xj is either an abelian variety, or a variety with Abel-Jacobi trivial
Chow groups. Suppose

Hi(X) = N rHi(X) for all i ∈ [n− r + 1, n] .

Then for any ample line bundle L on X,

·Lr : Aj
AJ(X)Q → Aj+r

AJ (X)Q

is injective for j ≤ r + 1, and

·Lr : Aj(X)Q → Aj+r(X)Q ,

is surjective for j > n− 2r.

Proof. The hypotheses imply that X has finite–dimensional motive, and that B(X)
is true ([15], [16] for abelian varieties, and [21, Theorem 7.1] or [3] for varieties with
AJ–trivial Chow groups). The corollary now follows from theorem 3.1, once we
explain why Voisin’s standard conjecture is not needed as extra hypothesis. Recall
that in the proof of theorem 3.1, Voisin’s standard conjecture was only used to
obtain cycles P ′

i ∈ An(Z × Z) (for some Z ⊂ X of codimension r) such that the
push–forward Pi ∈ An(X ×X)Q represents the Künneth component πi:

Pi = πi ∈ H2n(X ×X) ∀i ∈ [n− r + 1, n+ r − 1] .

But this is OK unconditionally, for the following reason: each πi can be expressed
in terms of Künneth components of the factors Xj :

πi =
⊕

i1+i2+...is=i

π1
i1
× π2

i2
× · · · × πs

is
∈ H2n(X ×X) ,

where πj
ij
∈ H2nj−ij (Xj)⊗Hij (Xj) and nj = dimXj .

Given a Künneth component πi, for some i ∈ [n− r + 1, n+ r − 1], consider its
summands π1

i1
× · · · × πs

is
. Suppose a summand satisfies

π1
i1
× π2

i2
× · · · × πs

is
∈ N rH2n−iX ⊗N rHiX ⊂ H2n(X ×X) .

Then in particular,

π1
i1
× π2

i2
× · · · × πs

is
∈ F rH2n−iX ⊗ F rHiX ⊂ H2n(X ×X)

(where F ∗ is the Hodge filtration), and hence (by multiplicativity of the Hodge
filtration)

πj
ij
∈ F rjH2nj−ij (Xj)⊗ F sjHij (Xj) ⊂ H2nj (Xj ×Xj) , j = 1, . . . , s ,

with
∑

j rj =
∑

j sj = r.
We need a lemma:
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Lemma 3.11. Let X of dimension n be either an abelian variety, or a smooth pro-
jective variety with Abel–Jacobi trivial Chow groups. Suppose a Künneth component
πi satisfies

πi ∈ F rH2n−iX ⊗ F sHiX ⊂ H2n(X ×X) .

Then there exist closed subvarieties V , W ⊂ X of codimension r resp. s, and a
cycle P ′

i ∈ An(V ×W )Q such that

(τV × τW )∗(P
′
i ) = πi ∈ H2n(X ×X)

(where τV , τW denote the inclusion morphisms).

Proof. First, suppose X is an abelian variety. Then (r, s) must be (n− i, 0) (in case
i ≤ n) or (0, i− n) (in case i ≥ n). In either case, one can take V , resp. W to be a
complete intersection; the existence of the cycle P ′

i is then ensured by the validity
of B(X).

Next, suppose X has AJ–trivial Chow groups. Then we may suppose s ≥ i−1
2

and r ≥ 2n−i−1
2 , and the existence of the requisite V and W follows since we know

the generalized Hodge conjecture holds for X [17]. From Hodge theory, we find πi
comes from a Hodge class on V ×W ; since dim(V ×W ) ≤ n+ 1, this Hodge class
is algebraic. �

Applying lemma 3.11 to the Xj and taking the product, we obtain cycles P ′
i

supported in the expected codimension and representing the Künneth components
πi; this ends the proof. �

4. Appendix: Vial’s work

As indicated by the anonymous referee, Vial’s work [24] is very relevant to the
hard Lefschetz conjectures stated in the introduction. Indeed, exploiting the con-
struction of specific Chow–Künneth projectors in [24], it is easy to obtain hard
Lefschetz results for Chow groups.

An important difference with our theorem 3.1 is that there is no need for the
Voisin standard conjecture. The “cost” for this is a switch from the coniveau

filtration N∗ to a variant filtration Ñ∗, called the niveau filtration.

Definition 4.1 (Vial [24]). Let X be a smooth projective variety. The niveau
filtration on homology is defined as

Ñ jHi(X) =
∑

Γ∈Ai−j(Z×X)Q

Im
(
Hi−2j(Z) → Hi(X)

)
,

where the union runs over all smooth projective varieties Z of dimension i − 2j,
and all correspondences Γ ∈ Ai−j(Z ×X)Q.

The niveau filtration is included in the coniveau filtration:

Ñ jHi(X) ⊂ N jHi(X) .

These two filtrations are expected to coincide; indeed, Vial shows this is true if the
standard conjecture B is true for all varieties [24, Proposition 1.1].

Proposition 4.2. Let X be a smooth projective variety of dimension n. Suppose
the following:
(i) n ≤ 5;
(ii) X has finite–dimensional motive;
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(iii) B(X) is true;

(iv) Hi(X) = Ñ1Hi(X) for all i ∈ [n− r + 1, n].
Let L be any ample line bundle. Then

·Lr : An−r(X)Q → An(X)Q

·Lr : An−r
AJ (X)Q → An

AJ(X)Q

are surjective, and

Lr : A2
AJ (X)Q ∩ A2

alg(X)Q → A2+r(X)Q

is injective. (Moreover, Lr : A2
hom(X)Q → A2+r(X)Q is injective provided

2 + r < n.)

Proof. (With thanks to the referee for pointing out this proof.) The point is that
X verifies conditions (∗) and (∗∗) of [24], so that [24, Theorems 1 and 2] apply.
From [24, Theorems 1 and 2], we get idempotents Πi,k ∈ An(X ×X)Q such that∑

k≥r(Πi,k)∗Hi(X) = Ñ rHi(X). Since the hard Lefschetz isomorphism respects
the niveau filtration, we find that there are isomorphisms

Li−n : (Πi,k)∗Hi(X)
∼=
→ (Π2n−i,n−i+k)∗H2n−i(X) for all i− n ≥ 0 .

By finite–dimensionality, it follows there are isomorphisms of Chow motives

Li−n : (X,Πi,k)
∼=
→ (X,Π2n−i,n−i+k, i− n) for all i− n ≥ 0 .

Taking Chow groups, this implies there are isomorphisms (for any j)

Li−n : (Πi,k)∗A
j(X)Q

∼=
→ (Π2n−i,n−i+k)∗A

j+i−n(X)Q for all i− n ≥ 0 .

First, let’s prove surjectivity. Using [24, Theorem 2 point 1], we see that

An(X)Q =
∑

i

(Πi,0)∗A
n(X)Q .

The hypothesis on Hi(X) implies Πi,0 = 0 ∀i > n− r by [24, Theorem 2 point 4],
so that

An(X)Q =
∑

i≤n−r

(Πi,0)∗A
n(X)Q .

But from the above remarks, we find that
∑

i≤n−r

Ln−i :
⊕

i≤n−r

(Π2n−i,i−n)∗A
i(X)Q →

∑

i≤n−r

(Πi,0)∗A
n(X)Q = An(X)Q

is surjective, hence (by mapping Ai to An−r via Ln−r−i for i < n− r)

Lr : An−r(X)Q → An(X)Q

is surjective.
The proof for An

AJ is the same.
It remains to prove injectivity. We find from [24, Theorem 2 point 1] that

A2
AJ,alg(X)Q =

∑

k≤n−2

(Πi,k)∗A
2
AJ,alg(X)Q .

Now we are repeatedly going to apply the various points of [24, Theorem 2] to
eliminate certain projectors from this sum.
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If k = 0, then i = n by [24, Theorem 2 points 1, 2, 3]. But Πn,0 = 0 by the
hypothesis on Hn(X) and [24, Theorem 2 point 4].

The projectors Πi,1 can likewise be eliminated: Πn−1,1 and Πn,1 don’t act by
points 2 resp. 3 from loc. cit., and Πn+1,1 = 0 by hypothesis, provided r ≥ 2 (since

Gr1
Ñ
Hn+1(X) = Gr0

Ñ
Hn−1(X) = 0).

Next, the projectors Πi,2: for n ≤ 3 these don’t act (point 1 of loc. cit), while
for n = 4, 5 we have that Πn,2 doesn’t act by point 5 resp. point 6 of loc. cit. The
projector Πn+1,2 doesn’t act for n = 4 (point 6 of loc. cit.), nor for n = 5 (point
3 of loc. cit.). The projector Πn+2,2 is 0 by hypothesis, provided r ≥ 3 (since

Gr2
Ñ
Hn+2(X) = Gr0

Ñ
Hn−2(X) = 0).

The last case we need to check is that of Πi,3. These only act when n = 5. We
have i ≥ 6 (point 1 of loc. cit.), i 6= 6 (point 3 of loc. cit.), i 6= 7 (point 6 of loc.
cit.). So the only projector acting is Π8,3 (that is, provided r = 3).

Resuming this analysis, we find that

A2
AJ,alg(X)Q =

∑

k≤n−2
i≥n+r

(Πi,k)∗A
2
AJ,alg(X)Q .

But from the above remarks, we find that

Lr : (Πi,k)∗A
2(X)Q → (Πi−2r,n−i+k)∗A

2+r(X)Q

is injective as soon as i ≥ n+ r.
As for the injectivity statement in parentheses: looking at the above proof of

injectivity, we see that the hypothesis “Abel-Jacobi and algebraically trivial” is
only used in the extremal cases (n, r) = (4, 2) and (n, r) = (5, 3). That is, as long
as 2 + r < n we have

A2
hom(X)Q =

∑

k≤n−2
i≥n+r

(Πi,k)∗A
2
hom(X)Q ,

and injectivity follows.
�

Corollary 4.3. Let X be a smooth projective variety of dimension n ≤ 5, domi-
nated by curves. Suppose An(X)Q is supported on a surface. Then for any ample
line bundle L,

·Ln−2 : A2
AJ (X)Q ∩ A2

alg(X)Q → An(X)Q

is injective, and

·Ln−2 : A2(X)Q → An(X)Q

is surjective.
(In particular, An(X)Q is supported on a dimension 2 complete intersection.)

Proof. This follows from proposition 4.2, in combination with lemma 4.4 below. �

Lemma 4.4. Let X be a smooth projective variety of dimension n. Suppose
An(X)Q is supported on a surface. Then

Hi(X) = Ñ1Hi(X) for all i > 2 .
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Proof. (This is the same argument as [24, Proposition 2.2], which is the case
An(X)Q supported on a curve.) Using [5], one obtains a decomposition of the
diagonal

∆ = ∆1 +∆2 ∈ An(X ×X)Q ,

with ∆1 supported on D×X for some divisor D, and ∆2 supported on X × S, for
S ⊂ X a surface. We consider the action of the ∆i on Gr0

Ñ
Hi(X) (this is possible:

[24, Proposition 1.2]). The correspondence ∆1 does not act, as it factors over

Hi−2(D̃)/Ñ0 = 0 .

The correspondence ∆2 does not act for i > 2, as it factors over

Gr0
Ñ
Hi(S) = Gr0NHi(S) = 0 .

�

Note that corollary 4.3 is considerably stronger than our corollary 3.8, just as
proposition 4.2 is more powerful than our theorem 3.1. This reflects the fact that
Vial’s Chow–Künneth projectors are far more refined than the “Künneth lifts” we
use in the proof of theorem 3.1.

For example, let X be a variety of dimension 5 dominated by curves. Proposition

4.2 gives a hard Lefschetz statement as soon as H5(X) = Ñ1H5(X) (i.e. the Hodge
level of H5 could be 3). Theorem 3.1 only works without assuming the Voisin
standard conjecture if H5(X) = N2H5(X) (i.e., the Hodge level is 1).

It seems likely corollary 3.9 can also be improved using the methods of [24].
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