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Supplementary Note 1: Details of the 3D reconstruction algorithm
The 3D reconstruction task consists of recovering depth T and intensity R information from the lidar
data Z ∈ ZNr×Nc×T

+ , where the photons recorded in pixel (i, j) and histogram bin t are denoted by zi,j,t.
However, the background image B ∈ RNr×Nc

+ should also be estimated from the data, as it is generally
a priori unknown and it has a strong impact on the estimation of T and R. Consequently, we also estimate
B in addition to the depth and intensity profiles. In the single-surface per pixel setting, T ∈ RNrNc×1 and
R ∈ RNrNc×1

+ are vectorized images of fixed size, whereas in the multiple-surface per pixel setting T and
R are sets of NΦ points, which is a priori unknown.

Previous 3D reconstruction algorithms
In a fixed dimensional setting (fixed number of points) and assuming one surface (point) per pixel and
negligible background levels, the maximum likelihood (ML) solution is

(T̂ , R̂) = arg min
T ,R

g (T ,R,B = 0) (1)

which corresponds to cross-correlating the data with log hi,j(t) and finding the delay leading to the maxi-
mum correlation for each pixel. When the number of photons per pixel is low, or when the single object
per pixel assumption does not hold or when the background levels are not negligible, the ML solution does
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not provide reliable estimates. These estimates can be improved by considering a priori information on
the structure of Φ and B. One approach, referred to as penalized maximum-likelihood (PML), introduces
additive regularization terms ρT (T ), ρR(R) and ρB(B) to enforce more structured solutions, that is

(T̂ , R̂, B̂) = arg min
T ,R,B

g (T ,R,B) + λT ρT (T ) + λRρR(R) + λBρB(B) (2)

where λT , λM and λB are hyperparameters controlling the amount of regularization of the point cloud
and background respectively. Following a Bayesian viewpoint, the regularization terms ρT (T ), ρR(R)
and ρB(B) can be seen as the negative log-prior distributions of the point cloud and background levels,
respectively. Under the following assumptions:

1. only one surface per pixel, which reduces to fixing the total number of points to NΦ = NrNc,

2. negligible background levels (or removed by a preprocessing step) as in [1, 2] (also equating to
ρB(B) = 0)

3. and convex regularization terms ρT (T ) and ρR(R),

Problem (2) is convex and has a unique minimizer and it is usually solved by SPIRAL [3] or ADMM [4],
which take into account the non-Lipschitz globality of ∇Rg (T ,R,B). However, these assumptions can
be too restrictive for practical implementation, as they do not allow for a variable number of surfaces per
pixel. Moreover, the depth and intensity regularizations are decoupled, which hinders any improvement of
the intensity estimates by using depth information.

In the multiple-surface per pixel scenario, the algorithms investigated in [5] and [6] by-pass the problem
related to the unknown number of points by estimating a vectorized data cube of intensities R ∈ RNr×Nc×T ,
where the active depths T are implicitly given by the non-zero entries of R. Convex priors are then assigned
to R, such that (2) is convex and has a unique minimiser. However, this formulation presents disadvantages:

1. The estimated values R are generally not sparse enough (over-estimation of the number of points)
and the gradient involves a dense computation over the complete cube, implying that these algorithms
can come with a high computational complexity.

2. The TV-based regularization term ρR(R) promotes volumetric smoothness, which generally results
in poor reconstruction quality and the need of empirical post-processing steps, as the reconstructed
surfaces should be manifolds.

The algorithm presented in [7] proposes a model based on spatial point processes to promote manifolds,
which improves the results of [5] and [6]. However, since the reconstruction is performed via a reversible
jump MCMC algorithm, the method has a intrinsically sequential structure, which is difficult to be paral-
lelized, making the algorithm not well adapted for real-time processing.

Novel reconstruction algorithm
In this work, we avoid the issues induced by the high dimensionality of the intensity parameters involved in
the problem formulation adopted in [5] and [6], while allowing for a variable number of surfaces per pixel.
More precisely, here T and R are sets of variable size NΦ.
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Reparametrization

In a similar fashion to other optimization algorithms assuming Poisson observation noise [8, 9], we intro-
duce the transformation

mn = log rn ∀n = 1, . . . , NΦ (3)

and fix a maximum intensity mn ∈ (−∞, log r max]. This change of variables and additional constraint
ensure that the likelihood remains globally Lipshitz differentiable with respect to R. The vectorized set of
log-intensity values is denoted by M = [m1, . . . ,mNΦ

]T . Analogously, we estimate the log-background
levels, i.e., li,j = log bi,j , denoting the vectorized log-background image as L = [l1, . . . , lNrNc ]

T . The
resulting negative log-likelihood function under this parametrization is

g (T ,M ,L) =
Nc∑
i=1

Nr∑
j=1

T∑
t=1

zi,j,t log

∑
Ni,j

gi,je
mnhi,j(t− tn) + gi,je

li,j

− gi,jeli,jT −∑
Ni,j

gi,je
mn (4)

under the assumption of a normalized impulse response, i.e.,
∑T

t=1 hi,j(t) = 1 for all the pixels (i, j).

Proximal gradient steps

To solve the general problem in (2), we follow the structure of PALM [10]: the proposed algorithm alter-
nates between the optimization of three blocks of variables (T , M and L), applying a proximal gradient
update on each step, i.e., {

T̃ ← T s − µst∇T g (T s,M s,Ls)

T s+1 ← arg minT λT ρT (T ) + 1
2µst
||T − T̃ ||22

(5)

{
M̃ ←M s − µsm∇Mg (T s+1,M s,Ls)

M s+1 ← arg minM λMρM (M ) + 1
2µsm
||M − M̃ ||22

(6)

and {
L̃ ← Ls − µsb∇Lg (T s+1,M s+1,Ls)

Ls+1 ← arg minL λLρB(B) + 1
2µsb
||L− L̃||22

(7)

where µm, µt and µb are the step sizes for the log-intensities, depths and background levels respectively. The
gradients with respect to the log-intensity, depth and background levels are denoted by [∇Mg (T ,M ,L)]n =
∂g (T ,M ,L) /∂mn, [∇T g (T ,M ,L)]n = ∂g (T ,M ,L) /∂tn and [∇Lg (T ,M ,L)]n = ∂g (T ,M ,L) /∂bn.
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Depth denoising One of the key contributions of this paper is to extend the ideas introduced for plug-
and-play denoising [11] to 3D point clouds, replacing the proximal operator of (5) by the APSS algorithm,
i.e.,

T s+1 ← APSS(T̃ ). (8)

The APSS algorithm fits a continuous surface to the set of points defined by T , using spheres as local
primitives [12, 13]. The algebraic spheres are parametrized by the vector u = [u0, . . . , u4]T , according to
the scalar field φ : R3 → R, that is

φu(c) = [1, cT , cTc]u. (9)

For each 3D point cn = [i, j, tn]T , the local sphere is fitted by minimizing the following problem

arg min
u

NΦ∑
n=1

w (||cn − cr||Σ)φ2
u(cr) (10)

where w(t) = (1− t2)
4 is a smooth compactly supported weight function and ||c||Σ = cTΣc is a metric of

choice, with Σ a diagonal matrix with positive entries, which controls the degree of low-pass filtering of the
surface. In particular, w(t) was chosen with diagonal entries, i.e.,

Σ =

dx 0 0
0 dy 0
0 0 dt

 (11)

In all the experiment, we set dx = dy = 1, such that only the 8 closest neighbouring pixels have strong
weights, and dt to be the minimum distance between two surfaces in the same transverse pixel, which is
chosen according to the bin width of the lidar system to have a physical meaning (see also the experimental
analysis conducted in ‘setting the hyperparameters’ below). Interestingly, we chose the same distance as
the hard constraint between points in the same pixel in ManiPoP [7]. The fitting is performed in real-world
coordinates, using the camera mapping f(·). Fig. 1 illustrates the surface fitting performed by APSS. The
implicit definition of the scalar field is evaluated in every pixel with at least 3 neighbours, filling any holes
and dilating the existing surfaces. Similarly to the almost orthogonal projection described in [14], we repeat
the fitting process until there is no significant change in the projected point.
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Figure 1: Example of the APSS denoising step with two surfaces S1 and S2 per pixel. The algorithm fits
a continuous surface (black line), weighting the 3D points using a kernel defined by an isotropic metric Σ
(dashed-line circle). The input points are depicted in black, whereas the output points are red.

Intensity denoising The proximal operator of the log-intensity update in (6) is replaced by a denois-
ing step using the manifold metrics. In this work, we simply consider a low-pass filter using the nearest
neighbours of each point, as in [15]: each log-intensity mn is updated as

ms+1
n = βms

n + (1− β)
∑

n′∈M(ms
n)

ms
n′

#M(ms
n)

(12)

where β is a coefficient controlling the amount of filtering,M(mn) is the set of spatial neighbours mn and
#M(mn) denotes the total number of neighbours. Hence, the proximal step is summarized as

M s+1 ← Manifold denoising(M̃ ) (13)

More elaborate filters could also be applied, using the manifold metrics defined by the implicit mean least
squares surface, as explained in [16]. After the denoising step, we remove the points with intensity rn lower
than a given threshold rmin. This step prevents the algorithm from growing surfaces without bounds.

Background denoising The proximal operator used for L depends on the prior assumptions that can be
made about the spatial configuration of the spurious detections. Using bistatic raster-scanning systems (e.g.,
[5]), background counts are not necessarily spatially correlated, thus the proximity operator can be chosen
as the identity operator. Using monostatic raster-scanning systems (e.g., [17]) or lidar arrays (e.g., the
Princeton Lightwave lidar used in this paper), the background detections appear as a passive image of the
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imaged scene. Thus a spatial regularization is useful to improve the background estimates. In this case, we
use a Gaussian Markov random field regularization [18], i.e., ρL(L) = LTPL/2, where P is the Laplacian
2D filter. The proximal operator is thus

Ls+1 ← (I + λLµ
s
bP )−1L̃ (14)

where I is the identity matrix. This denoising step can be quickly computed using the fast Fourier transform
(FFT). The proximal operator can also be replaced by an off-the-shelf image denoising algorithm, such as
NLM [19] or BM3D [20], at the cost of a higher computational load.

Setting the step sizes

Assuming the number of points is constant, the step sizes at iteration s should verify µst <
1
Ls
t
, µsm < 1

Ls
m

and µsb <
1
Ls
b
, where Lst , L

s
m and Lsb are the Lipschitz constants of ∇T g (T s,M s,Ls), ∇Mg (T s,M s,Ls)

and ∇Lg (T s,M s,Ls) respectively [21, 10]. The value of Lst can be approximated by assuming that the
non-diagonal entries of the Hessian matrix, ∂g (T ,M s,Ls) /∂mn∂mk with k 6= n, are negligible. Under
this approximation, the Lipschitz constant is

Lst = max

{
∂2g (T ,M s,Ls)

∂t2n
n = 1, . . . , NΦ

}
. (15)

If the impulse response has a Gaussian shape, i.e., hi,j(t) ∝ exp(−(t/σ)2/2), the partial derivatives can be
computed analytically, leading to

Lst ≤
1

σ2
max
i,j

T∑
t=1

zi,j,t (16)

which only depends on the width of the impulse response and the maximum number of photons per pixel.
Thus, we set a fixed stepsize µst = µt, dropping the dependence on the iteration s. The values of Lsm and Lsb
are bounded by the maximum point intensity and background level, that is

Lsm ≤
T∑
t=1

hi,j(t) max
n

em
s
n (17)

Lsb ≤ T max
i,j

eli,j . (18)

We bound the maximum intensity, such that Lsm is upper bounded irrespective of the iteration s. The value
of µsb is set to 1/(T maxi,j e

lsi,j), according to the maximum background level at each iteration.
The aforementioned rules for setting step sizes only guarantee the convergence to a local minimum if

the dimension of the problem remains fixed [10]. The overall problem is highly non-convex and changes
dimension at each step. Thus, the outcome of the algorithm depends on the initialization. However, as
shown in the next section, the algorithm converges to fixed points in practical scenarios and is robust to
different initializations.
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Initialization

The initialization step is designed to provide a coarse estimate, while being fast and easily parallelizable. If
at most one surface per pixel is expected, then the classical cross-correlation can be applied. Fig. 2 shows the
initialization (top row) and achieved reconstructions (bottom row) for different decimations of the cross-
correlation initialization (i.e., the output of the cross-correlation is decimated before finding the bin that
realizes the maximum). Decimating the cross-correlation function reduces to considering a reduced number
of admissible ranges, which in turn reduces the computational complexity of the initialisation. For instance,
Fig. 2 (b) uses only 3 admissible ranges (top subplot). Yet, the algorithm yields the same reconstruction
even if 0.11% of the total cross-correlation is computed. As shown in Fig. 3, the algorithm recovers the
same amount of true points for a wide range of initialization, converging to the same likelihood value. This
approach can be used to further accelerate the algorithm, in the case of one peak per pixel. However, we
have proposed a more sophisticated initialisation to handle the more complex scenes.

(a) (b)

Figure 2: The upper row shows the initialization of the algorithm when computing the 100% (a) and 0.11%
(b) of the total cross-correlation. The bottom row shows the reconstructions obtained after running the
proposed reconstruction algorithm.
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Figure 3: Left: Value of g (T ,M ,L) as a function of the iterations of the algorithm for different initializa-
tions. Right: Ground-truth points found using different initializations by reducing the computation of the
cross-correlation.

In a general setting where multiple surfaces may be present, we initialize the algorithm with a multi-
surface extension of the classic cross-correlation. We propose two different alternatives depending on the
sparsity of the recorded histograms:

• Lidar arrays present dense histograms, such that we can use the Anscombe transform [22] to stabilize
the variance of the Poisson noise. After the transform, the matching pursuit algorithm [23] is used to
find the M most prominent surfaces on each pixel, as summarized in Algorithm 1. The parameter M
is user defined and in the experiments presented here, we chose M = 10.

• Histograms collected using single-photon lidar systems with high temporal resolution (< 20ps), e.g.,
raster-scanning systems, generally present a large number of sparsely populated bins, hindering any
dense computations using the Anscombe transform. In this case, we find theM most prominent peaks
by iteratively using the cross-correlation estimate and removing the photons associated with the peak,
as shown in Algorithm 2.

Algorithm 1 Dense VST-MP initialization

1: Input: lidar waveforms Z, maximum number of surfaces per pixel M , zi,j = [zi,j,1, . . . , zi,j,T ]T

2: Main loop: Process each pixel (i, j) in parallel
3: z̃i,j ← VST(zi,j)
4: t1, . . . , tM ←Matched Pursuit using z̃i,j and atoms given by the shifted impulse response hi,j(t)
5: while s < M do
6: mi ← log(

∑
t:hi,j(t−ti) 6=0 zi,j,t)

7: end while
8: li,j = log(

∑
t zi,j,t/

∑
t 1) where t = {t : hi,j(t− ti) 6= 0 ∀i = 1, . . . ,M}

9: Output: Initial estimates (T 0,M 0,L0)
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Algorithm 2 Sparse MP initialization

1: Input: lidar waveforms Z, maximum number of surfaces per pixel M , zi,j = [zi,j,1, . . . , zi,j,T ]T

2: Main loop: Process each pixel (i, j) in parallel
3: while s < M do
4: ti ← cross-correlation maximum(zi,j)
5: mi ← log(

∑
t:hi,j(t−ti) 6=0 zi,j,t)

6: zi,j,t ← 0 ∀t : hi,j(t− ti) 6= 0.
7: end while
8: li,j = log(

∑
t zi,j,t/

∑
t 1) where t = {t : hi,j(t− ti) 6= 0 ∀i = 1, . . . ,M}

9: Output: Initial estimates (T 0,M 0,L0)

Setting the hyperparameters

In this section, we study the impact of the hyperparameters on the reconstruction performance, with the
aim of providing basic guidelines to select them. We evaluate the performance using the “polystyrene head
with backplane” dataset, shown in the main paper. Fig. 4 shows the number of true and false detections as
a function of the intensity threshold. As we increase the threshold, the number of true detections decreases
monotonically. In contrast, the number of false detections increases exponentially as the threshold tends to
zero. The best performing values are between 0.2 and 0.4 photons, coinciding with the reflectivity interval
from 5% to 10%. This interval can be used as a guideline for setting rmin. The execution time is not affected
significantly by the threshold, as the complexity is mostly driven by the (fixed) number of photons.

0.5 1 1.5 2 2.5

threshold [photons]

40

60

80

100
True points [%]

0.5 1 1.5 2 2.5

threshold [photons]

0

500

1000
False points

Figure 4: Reconstruction performance as a function of the intensity threshold for the polystyrene head with
backplane. The best performing values have a normalized intensity between 5% and 10%.

The reflectivity update depends on the amount of filtering β in (12), which mostly impacts the intensity
estimation. Fig. 5 shows the intensity absolute error (as defined in [24]) as a function of β ∈ [0, 1]. Very
values of β mean negligible filtering, finding less points and resulting in a larger intensity error. Large values
(close to 1) oversmooth the estimates, generating false detections and also resulting in a larger intensity error
(this effect is reduced by the very smooth profile of a polystyrene head). Good values for β generally lie in
the interval [0.1, 0.3]. Note that this interval might vary depending on the number of pixels of the array.

The depth update depends on dt, the APSS kernel size in the depth direction. Fig. 6 shows the impact
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Figure 5: Effect of the amount of low-pass filtering on the reconstruction quality. Large values oversmooth
the estimates, generating false detections and also incurring in a larger intensity error, whereas low values
do not impose sufficient spatial correlation, reducing the number of true detections.

of dt in terms of true and false detections and mean depth absolute error (DAE). Small values of dt result
in poor reconstructions, as the kernel is too small to correlate neighbouring points, whereas large values
oversmooth the depth estimates and may also mix different surfaces. The best choice lies around 8 and 10,
which also has the physical meaning discussed above.
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10
DAE [cm]

Figure 6: Effect of the APSS kernel size in the depth direction on the reconstruction quality. Low values fail
to correlate neighbouring points, whereas large values oversmooth the depth estimates.

The background update depends on the hyperparameter λL, which controls the degree of correlation
between neighbouring background levels. Fig. 7 shows the background estimation performance as a func-
tion of λL for the polystyrene head without backplane. While low values of λL do not impose sufficient
correlation, large values of λL tend to oversmooth the estimates. While the best choices lie in the interval
[0.5, 2], the performance is not very sensitive to bad specifications of λL.
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Figure 7: Effect of the amount of background regularisation λL on the estimation of background levels.

Parallel implementation
Pseudo-code of the full algorithm is presented in Algorithm 3. Our implementation runs completely on
a GPU, only exchanging the lidar waveforms and final output with the CPU. The parallel structures of
the initialization and main algorithm allow for efficient GPU implementation, as each parallel thread only
requires the information of a local subset of photon measurements and 3D points

As the initialization algorithms process every pixel independently, one parallel thread is executed per
lidar pixel. The general per-pixel complexity of the dense case isO(MT log T ), whereas the complexity of
the sparse algorithm is O(Mk), where k is the number of bins with one or more photons.

The gradient and denoising steps of the main algorithm have different parallel implementations. Each
of the parallel threads processes one lidar waveform in the gradient steps of (5) and (6), as they can be
processed independently of the rest due to the separable structure of the negative log-likelihood. The per-
pixel complexity for the depth and log-intensity gradients isO(k) with k the number of non-zero bins in the
compact support of the impulse response centred in the existing points, which is smaller than O(T log T )
needed for algorithms working on a dense intensity cube such as [5] or [6], especially when the number of
histogram bins T is large. The background gradient step in (6) has a complexity of O(k), where k is the
number of active photon pixels in the processed histogram. Both the APSS and intensity denoising steps
run one thread per world-coordinates pixels, making use of the shared GPU memory (a gather operation
[25]) to efficiently read the information of its neighbours. The main bottleneck of these steps is given
by the memory reads during the gather operation, which can be reduced by considering fewer neighbours
at the cost of potentially degraded reconstruction. Note that the proposed method has minimal memory
requirements. In contrast to alternatives based on convex relaxations [5, 26], which require the storage of
a dense 3D cube of intensity estimates of size O(NrNcT ), the proposed method only stores the estimated
point cloud of size O(NrNc).

The complexity of the algorithm is generally dominated by the gradient steps, which depend on the
number of photons (active bins) per pixel. For example, the proposed method might run faster on a large
array with few photon detections than a smaller array with densely populated histograms. To illustrate this,
consider the execution times of the large raster-scan dataset (13 ms) and the Princeton Lightwave dataset
(20 ms). While being significantly smaller, the 32 × 32 array has dense histograms of 153 bins with non-
zero counts. On the other hand, the 141× 141 raster scan dataset has a mean photon count of 3 photons per
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pixel, hence having approximately 3 active bins per pixel. Hence, the effective data size in the former case
is 32× 32× 153 = 156672, whereas in the latter is 141× 141× 3× 2 = 119286 (where the last term in the
multiplication is due to the bin number indicator in a sparse representation). The latter data size is smaller
than the 32 × 32 array, hence the faster processing. Moreover, as the algorithm’s complexity is driven by
the amount of computation within a pixel, it is more intensive to process 153 bins than 4 active bins.

Algorithm 3 Real-time single-photon 3D imaging (RT3D)

1: Input: lidar waveforms Z and camera parameters f(·)
2: Initialization:
3: s← 0
4: (T 0,M 0,L0)← algorithm 1 (array) or algorithm 2 (raster-scan)
5: Main loop:
6: while s < Ni do
7: T s+1 ← Point cloud denoising (T s − µt∇T g (T s,M s,Ls))
8: M s+1 ← Manifold denoising (T s − µm∇Mg (T s+1,M s,Ls))
9: Ls+1 ← Ls − µsb∇Lg (T s+1,M s+1,Ls)

10: if the lidar system is mono-static then
11: Ls+1 ← Image denoising (Ls+1)
12: end if
13: s← s+ 1
14: end while
15: Output: Final estimates (TNi ,MNi ,LNi)

Beyond the APSS denoiser: point cloud denoising alternatives
In this work, we focus on the APSS denoiser to target real-time performance, profiting from the parallel
structure and closed-form updates. However, we could imagine other choices with different trade-offs be-
tween execution time, memory requirement and reconstruction quality [27]. For example, a straightforward
alternative is the simple point set surface (SPSS) denoiser instead of APSS. The proposed method provides
a framework to incorporate different types of prior information, avoiding the need to develop specific algo-
rithms for single-photon lidar. As explained in [28], APSS only relies on a local surface smoothness prior,
whereas more sophisticated denoisers exploit more complex prior knowledge on the point cloud structure.
If we want to capture non-local correlations between point cloud patches, we could use the denoiser in [29],
which uses a dictionary learning approach. Higher-level knowledge on the scene, such as the presence of
buildings or humans could be also exploited through dedicated denoisers. The algorithm of [30] uses planes
to denoise point clouds of building facades, being adapted for remote sensing/outdoor applications. Finally,
we could also profit from available 3D data using data-driven denoisers. In this direction, we can use al-
gorithms that fit templates of possible objects [31] or profit from recent advances in graph convolutional
neural networks [32], which are specially designed to handle point cloud structures [33, 34].
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Dataset
Polystyrene head
with backplane

Polystyrene head
without backplane

Human behind
camouflage netting

Mannequin behind
scattering object

Source [37] [7] [36] [5]
Nr 141 141 159 99
Nc 141 141 78 99
T 4613 2500 550 4001

Binning
resolution 0.3 mm 0.3 mm 1.2 mm 5.6 mm

Mean phot.
per pixel 3.37 1.14

44.6 (long. acq.)
4.5 (short acq.) 45

SBR 13.62 8.14 2.35 8.57
Stand-off
distance 40 m 40 m 230 m 4 m

Applicable
algorithms

[7, 1]
and cross-corr.

[7, 35] and
[1] with thres. [7, 5, 26] [7, 5, 26]

Table 1: Summary of the evaluated lidar datasets: Nr and Nc are the number of vertical and horizontal
pixels and T is the number of histogram bins. All the datasets were acquired using raster-scan technology.

Additional results
Comparison with state-of-the-art reconstruction algorithms

We evaluate the proposed method using 4 lidar datasets acquired with different systems, summarised in
Table 1. The “polystyrene head with backplane” dataset, shown in the main paper, corresponds to the
classical setting with one surface in almost all pixels. The “polystyrene head without backplane” dataset,
shown in Fig. 8 and introduced in [35], contains at most one surface per pixel. The “human behind camou-
flage netting” and “mannequin behind a scattering object”, shown in Figs. 9 and 10 and introduced in [36]
and [5] respectively, have multiple surfaces per pixel. We compare our results to those obtained with the
standard cross-correlation, a state-of-the-art single-surface algorithm [1], 3 multiple-surface reconstruction
algorithms SPISTA [5], `21+TV [26] and ManiPoP [7], and a target detection algorithm [35]. Figures 8
to 10 show the 3D reconstructions obtained by the competing algorithms for each dataset, whereas their
execution time are presented in Table 2.
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Collected photons Rapp et al. [1] ManiPop [7] Altmann et al. [35] Proposed

Figure 8: Comparison of 3D reconstructions achieved by the proposed algorithm and competing methods
for the “polystyrene head without backplane” scene. The colour scheme denotes the number of returned
photons attributed to each 3D point.

Collected photons

ManiPoP [7] SPISTA [1]

`21+TV [26] Proposed

Figure 9: Comparison of 3D reconstructions achieved by the proposed algorithm and competing methods
for the “mannequin behind scattering object” scene.
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(a) Short acquisition time

Collected photons ManiPoP [7] SPISTA [5] `21+TV [26] Proposed

(b) Long acquisition time

Figure 10: Comparison of 3D reconstructions achieved by the proposed algorithm and competing methods
for the “human behind camouflage netting” scene.

Fig. 11 shows the percentage of true detections and number of false detections as a function of the
maximum distance between a ground-truth point and a reconstructed point.

The “polystyrene head without backplane” dataset presents at most one surface per pixel. In this case,
if a single-surface per pixel algorithm [1] plus a thresholding step is used, the borders of the target are
correlated with spurious detections in pixels without surfaces, yielding relatively poor estimates. The target
detection algorithm of [35] takes into account the presence of pixels without any surfaces, but does not
promote any correlation between detected points. Both the proposed method and ManiPoP provide good
results, correlating only points belonging to the target.

In the “mannequin behind a scattering object” and the “human behind camouflage netting” scenes,
[1, 35] or cross-correlation cannot be applied, as they would only reconstruct the first object. In these cases,
we evaluate SPISTA, `21+TV, ManiPoP and the proposed method, which can handle multiple surfaces.
Again, the best results are obtained by ManiPoP and the proposed algorithm. However, ManiPoP requires
an execution time many orders of magnitude higher than the novel method.
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Polystyrene head
with backplane

Polystyrene head
without backplane

Human behind
camouflage netting

Mannequin behind
scattering object

Parallel cross-corr 1 ms 1 ms NA NA

SPISTA [5] 705 s 3362 s
1279 s (long. acq.)
1212 s (short acq.) 2871 s

`21+TV [26] 201 s 187 s
165 s (long. acq.)
182 s (short acq.) 202 s

Rapp and Goyal [1] 37 s 44 s NA NA
Target detection [35] 12 h 12 h NA NA

ManiPoP [7] 201 s 181 s
120 s (long. acq.)
102 s (short acq.) 146 s

Proposed method 13 ms 11 ms
27 ms (long. acq.)
15 ms (short acq.) 40 ms

Table 2: Execution time of the proposed method and other state-of-the-art 3D reconstruction algorithms.
Some methods do not provide meaningful results in certain scenes. For such cases, the execution time is
not available (NA). The proposed method presents a higher computing time than a parallel implementation
of the cross-correlation algorithm (which only applies in the presence of single peaks), but outperforms all
the other reconstruction algorithms by a factor of about ≈ 105.

1 4 15 60

distance [mm]

10
2

10
4

F
a

ls
e

 p
o

in
ts

 f
o

u
n

d

1 4 15 60

distance [mm]

0

50

100

%
 o

f 
tr

u
e

 p
o

in
ts

 f
o

u
n

d

ManiPoP Cross-Corr Superpixel Unmixing Proposed

(a)

1 4 15 60

distance [mm]

10
2

10
4

F
a
ls

e
 p

o
in

ts
 f
o
u
n
d

1 4 15 60

distance [mm]

0

50

100

%
 o

f 
tr

u
e
 p

o
in

ts
 f
o
u
n
d

ManiPoP Superpixel Unmixing Target detection Proposed

(b)

32 100 316 1000

distance [mm]

10
3

F
a

ls
e

 p
o

in
ts

 f
o

u
n

d

ManiPoP SPISTA L21+TV Proposed

32 100 316 1000

distance [mm]

0

50

100

%
 o

f 
tr

u
e

 p
o

in
ts

 f
o

u
n

d

(c)

Figure 11: Number of true and false detections as a function of the maximum admissible distance between
a ground truth point and a reconstructed one for (a) head with backplane (b) head without backplane and
(c) mannequin behind scattering object.
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Improvements by upsampling in small lidar arrays

The proposed upsampling can bring additional details to the reconstructed objects, improving the estimates
of naive upsampling in a post-processing step. Fig. 12 shows the upsampled reconstructions with the pro-
posed method and cross-correlation. The cross-correlation output was upsampled by naively converting
each detection into a 3 × 3 grid of points at the same depth. While the upsampled cross-correlation has a
blocky appearance, the proposed method captures additional details in the contours of the 3D target. Note
that these contours are not always aligned with the coarse scale.

ProposedCross-corr.

Figure 12: Comparison of 3D reconstructions of the 32×32 lidar array data using cross-correlation and the
proposed method. The upsampling strategy of the proposed method brings additional details in the contours
of the object, whereas a naive upsampling of the cross-correlation output presents a blocky appearance.

Operation boundary conditions

Finally, we study the performance of the algorithm as a function of the mean number of photons per pixel
and signal-to-background ratio. We generate 100 synthetic lidar cubes for SBR values in [0.01, 100] and
mean photons per pixels in [0.1, 100], using the ground truth point cloud, data cube size and impulse re-
sponse from the “polystyrene head without backplane” dataset. As a baseline, we compare the proposed
method with the standard cross-correlation algorithm. To account for the pixels without objects, we post-
process the output of cross-correlation by removing points below a normalized intensity of 10%. We con-
sider the number of true and false detections, depth absolute error (only computed for true detections and
reconstructions with more than 80% of detected points), intensity absolute error (normalised by the mean
signal photon counts to approximately lie between 0 and 1) and background NMSE. The results obtained
are gathered in Fig. 13. The proposed method performs well in a wider range of conditions, achieving
reconstructions with ≈ 0.1 photons per pixel and up to signal-to-noise background ratio of 0.01 (with 100
photons per pixel or more). Moreover, cross-correlation generates many orders of magnitude more false
detections than the new method. Interestingly, the proposed algorithm exhibits a sharper transition in the
detection of true points, meaning that, for a given signal-to-background ratio, either none or most of the
points will be found depending on the recorded photon count. The new method achieves smaller depth and
intensity absolute errors than cross-correlation in all conditions, as it exploits the manifold structure of the
scene. The proposed method also achieves a significantly smaller background NMSE, capturing the spatial
correlation in the background image.
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Figure 13: Comparison of the proposed method and cross-correlation with thresholding in a target detection
setting for different SBR and mean photons per pixel values. The depth absolute error is only displayed for
reconstructions with more than 80% and is left blank otherwise.

Supplementary methods

3D lidar array
A schematic diagram of the lidar system, which was based on the 32 × 32 single-photon array Kestrel
camera produced by Princeton Lightwave, is shown in Fig. 14. The system was implemented as a bistatic
arrangement - the illuminating transmit (laser) channel and the collecting receive (camera) channel were
not co-axial - with the centres of the apertures separated by about 125 mm. This configuration was used
in order to avoid potential issues that could arise in a co-axial (monostatic) system due to back reflections
from the optical components causing damage to the sensitive focal plane array of the Kestrel camera. The
bistatic optical configuration meant that a slight re-alignment of the illumination channel, relative to the
receive (camera) channel, was required for scenes at different distances from the system. Both the camera
and laser were mounted on a single breadboard with the optical setup for the illumination channel mounted
on a stage which enabled controlled adjustments to be made to the pitch and yaw of the illuminating beam,
so that it could be positioned accurately relative to the field of view of the camera. Another camera (Ninox
640 VIS-SWIR, from Raptor Photonics) was also mounted on the breadboard and used to help align the
system to the scene of interest.
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Figure 14: A schematic diagram of the lidar system showing the key components and configuration of the
bistatic imaging system comprising the Princeton Lightwave Kestrel 32 × 32 InGaAs/InP SPAD detector
array and the λ = 1550 nm fibre pulsed illumination source. Optical components include: objective lenses
(OBJ1, OBJ2)); a neutral density filter (ND); a longpass filter (LP1); and bandpass filters (BP1, BP2).
Details of these components are given in the text.

The operating wavelength for the system was chosen as 1550 nm - this wavelength corresponds to
a high transmission window in the atmosphere, with the unwanted contribution from solar background
being significantly lower when compared to shorter wavelengths, and it is eye-safe at significantly higher
power levels than for wavelengths in the retinal hazard region of the spectrum (which extends from 400 to
1400 nm). The BKtel fibre laser (HFL-240am series) had a central wavelength of 1550 nm and the pulse
width was measured to be 413 ps at the operating parameters used in these measurements. It was run at
a repetition rate of 150.421 kHz (this clock signal was provided by the Kestrel camera), and the resulting
average optical output power was approximately 220 mW (for a laser drive current of 3 A). A neutral
density (ND) filter with an optical density of 0.5 and transmission of approximately 32% at λ = 1550 nm
was used to reduce the average optical power level to approximately 70 mW to avoid saturating the sensitive
detector. The output fibre from the laser module was connected to a reflective collimation package and the
exiting beam was then passed through a 12 nm FWHM bandpass filter with a centre wavelength of 1550 nm
in order to remove any amplified spontaneous emission that was present. A beam expander arrangement
consisting of a pair of lenses (with effective focal lengths of approximately 10 mm and 75 mm) housed in
a zoom mechanism enabled the diameter of the illuminating beam at the scene of interest to be adjusted to
match the field of view of the camera.

The Kestrel camera had an InGaAs/InP SPAD detector array and at the operating wavelength of 1550 nm,
the elements in the array had a quoted photon detection efficiency of approximately 25% and a measured
dark count rate of approximately 320 kcps. The camera was operated in time-of-flight mode and configured
to operate with 250 ps timing bins, a gate duration of 40 ns, which corresponds to a total of 160 histogram
bins, and was equivalent to a measurement depth range of 6 metres. The camera was operated at a frame rate
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of 150.421 kHz (this was close to the expected maximum frame rate of the camera). In order to acquire an
accurate instrumental response of the system (i.e., accurate estimations of hi,j(t) and gi,j) a long-acquisition
measurement of a uniform, cooperative surface (Spectralon, Labsphere, Inc) was made in dark laboratory
conditions over a short stand-off distance of 2 metres. Due to a small amount of latency present in the
timing electronics of each SPAD detector, the instrumental response of each pixel in the camera array is
non-identical. This is taken in to consideration during data reconstruction by using a separate instrumental
response for each pixel.

A 500 mm effective focal length lens operating at f/7 (manufactured by Optec, and designed for use in
the 900 to 1700 nm wavelength region) was attached to the camera to collect the scattered return photons
from the scene. This resulted in a field of view of approximately 2 × 2 metres at the standoff distance of
320 metres, i.e., each individual pixel covered an area of approximately 65× 65 mm. In order to minimise
the amount of background light detected, a pair of high performance passive spectral filters was mounted
between the rear element of the lens and the sensor of the camera - one was a longpass filter with a cut-on
wavelength of 1500 nm, and the other was a 9 nm full width half maximum (FWHM) bandpass filter with
a centre wavelength of 1550 nm.
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