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State-discretization of V-geometrically ergodic Markov chains
and convergence to the stationary distribution

Loic HERVE and James LEDOUX *

September 26, 2019

Abstract

Let (X,,)nen be a V-geometrically ergodic Markov chain on a measurable space X with
invariant probability distribution 7. In this paper, we propose a discretization scheme
providing a computable sequence (7)r>1 of probability measures which approximates
7 as k growths to infinity. The probability measure 7y, is computed from the invariant
probability distribution of a finite Markov chain. The convergence rate in total variation of
(Tr)k>1 to m is given. As a result, the specific case of first order autoregressive processes
with linear and non-linear errors is studied. Finally, illustrations of the procedure for
such autoregressive processes are provided, in particular when no explicit formula for 7
is known.

AMS subject classification : 60J05; 60J22

Keywords : Markov chain, Rate of convergence, Autoregressive models.

1 Introduction

Let (X,d) denote a metric space equipped with its Borel o-algebra X'. Let (X,)nen be a
Markov chain with state space (X, X') and transition kernel P of the form

Ve e X, P(z,dy) = p(x,y)du(y), (1)

where p : X2 —[0,+00) is a measurable function and u is a positive o-additive measure
on (X,X). Typically X is R? and p is the Lebesgue measure on R?. Moreover let v :
[0, +00) —[1, +00) denote an unbounded increasing continuous function such that v(0) = 1,
and let V : X —[1, +00) be defined by

Ve eX, V(z):=v(d(z, z)), (2)

where xg € X is fixed. We assume that P admits an invariant probability measure 7w on
(X, X). Since P is of the form (1), 7 is absolutely continuous with respect to y, that is
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dr(y) = p(y) du(y) for some probability density function (pdf) p. Throughout the paper we
assume that

(V) = /X V() p(y) dyu(y) < oo

and that P is V-geometrically ergodic, that is (e.g. see [MT93]): there exist p € (0,1) and
a positive constant C' = C(p) such that the following inequality holds for every measurable
complex-valued function f on X satisfying |f| < V:

(P f) (@) — =(f)] n
VYn >0, ilelg Vo) < Cp". (3)

Mention that, for most of the classical V-geometrically ergodic Markov chains, the function
V' is of the form (2).

Even for simple models as first-order autoregressive models, the explicit computation of
the stationary pdf p is a difficult issue, and it is only possible for some specific examples.
In this work, under suitable assumptions on the kernel p(x,y), we propose a discretization
procedure providing a computable sequence (7)r>1 of probability measures on X which
approximates the stationary distribution 7 of P in total variation distance. Roughly speaking
the probability measure 7y on X is defined as follows. For every integer k, an explicit finite
stochastic matrix By is derived from the Markov kernel P by discretization of the kernel
p(z,y). Then 7 is defined as a natural extension of the left By-invariant probability vector.
Then the above mentioned convergence of (7;)>1 to 7 in total variation distance is derived
in Theorem 3.1 from the results of [HL14]. Moreover the absolutely continuous part ps of 7y
w.r.t. u can be explicitly computed, and the sequence (py)x>1 is proved to converge to p in the
usual Lebesgue space L' (X, X, 1) (see Corollary 3.2). Applications to the first order (linear)
autoregressive models AR(1) and to AR(1) processes with ARCH(1) errors are addressed
in Sections 4. The computational issues to get p; are discussed in Section 5. Numerical
illustrations are presented in Section 6.

The authors in [Hai98, AH00, ANRO7]| developed another method to approximate the
stationary pdf p of linear processes. Their approach consists in approximating the stationary
pdf p of an AR(1) process (i.e. X,, = 0X,,_1 + ¥, see Subsection 4.1 for details) by the
sequence (hy)nen of functions recursively defined by

ho :==v and Yn>1, hy(x):= /RI/(ZC — ou) hyp—1(u) du (4)

where v denotes the innovation pdf (i.e. the law of ;). Hainman in [Hai98] proved that
(hpn)nen uniformly converges to p with geometric rate under strong assumptions on the sup-
port of v. The authors in [AHOO] proved that (hy,)nen converges point-wise to p under some
mild assumptions on the Fourier transform of v, and they established the uniform conver-
gence with geometric rate in the case when v is the exponential pdf. In [ANRO7] the uniform
convergence of (hy)nen to p, with geometric rate, is extended to general causal linear pro-
cesses under mild assumptions on the noise process. Closely linked to these works, we also
mention the paper [Log04] which studies the characteristic function of the stationary pdf p
for a threshold AR(1) model with noise process having Laplace distribution, as well as the
paper [ARO05] which investigates p for absolute autoregressive associated with noise process
having Gaussian, Cauchy or Laplace distribution (from [CT86] this issue may be reduced to
the computation of the stationary pdf of an auxiliary AR(1) process).



Due to [ANRO7], the approximation of p by (hy)nen via Equation (4) is theoretically
efficient for linear processes since the rate of convergence is geometric. However, except when
the noise process has a special usual law, the exact calculation of the integral in (4) can not
be carried out. Moreover, any numerical method recursively providing approximations of the
integrals hq,...,h, for some p > 1 induces some cumulative errors. For linear processes our
method is thus an alternative way to approximate p: the rate of convergence in our work is
not geometric (a priori), but for some k > 1 the approximation pj of p as above described
can be directly computed (without any recursive procedure). Section 6 provides numerical
evidence for robustness of the method. Moreover our approach applies to any V-geometrical
Markov chain (not only to linear processes) admitting a probability kernel P(x,dy) of the
form (1), provided that the kernel p(-, -) has some suitable Lipschitz-regularity properties (see
Assumption (18c)). For instance our method applies to autoregressive process with ARCH(1)
errors (see Subsections 4.2 and 6.2.3).

The invariant pdf p satisfies the functional equation Tp = p, where T is the linear op-
erator defined by (T'f)(:) = [xp(y,-) f(y)du(y). However this operator T is not used in
this work. Indeed that is not T, but P, which is approximated by a sequence of finite-rank
operators (Pj)g>1. The reason for this is that P has good spectral properties on the usual
weighted-supremum Banach space By associated with V' due to the V-geometrical ergodicity
assumption. Also note that the classical theory of perturbed operators does not apply here
because the sequence (ﬁk) x>1 does not converge to P for the usual operator norm on B; (in
particular P is not a compact operator on B1). To get around this difficulty, we use the results
of [HL14] based on the Keller-Liverani perturbation theorem [KL99]: this method requires
an auxiliary weaker operator norm on By (see Lemma 3.4), as well as uniform (in k) drift
inequalities for ﬁk (see Lemma 3.3). In the context of perturbed V-geometrically ergodic
Markov chains, the interest of using an auxiliary norm appears in [SS00] (see [Kel82] for
similar issues in ergodic theory). For recent works related to this weak perturbation method
in Markovian models, see [FHL13, RS18, Trul7]| and the references therein.

2 Definition of the approximating probability measure 7,

Let z¢ € X be fixed and, for every integer k > 1, let us consider any X € X such that

{z eX : d(z,x0) <k} C X C {zeX:dz) <k}

Let us introduce the following finite partitions of the sequence of spaces (X)g>1.

Definition (A). Let (0x)r>1 be a sequence of positive real numbers such that limy §, = 0.
For every integer k > 1, we consider a finite family {X; 1};er, of disjoint measurable subsets
of X, such that
Xe= | | Xjn  with Vj ey, diam(X;z) <. (5)
J€lk
where diam(Xj ) := sup {d(z,a') : (z,2') € X;,}. The positive real number &, must be
thought of as the mesh of the partition {X;1}jer, -



Define
vk > 17 V(x,y) S X2a pk(x y - 1Xk Z 1sz lgf p(tvy)a
1€l bk

Observe that p; < p. Below f : X — C denotes any bounded measurable function on X where
C denoted the set of complex numbers. We define the following non-negative kernel Qg:

VeeX, (Ounf)(x /f ) pu( ) duy)

Note that @k f vanishes on X\ X. Let 95 be the non-negative function on X defined by

Y = 1x — Qxlx.

We have ¢, = 1 on X\ X, and 0 < 1, < 1x since 0 < Qilx < Plx = lx. Next define the
following kernel:

Vo € X, (Puf)(x) = (Qrf)(@) + f(xo) Yx(x). (7)
Then P, is a Markov kernel on (X, X), i.e. P, is non-negative (f > 0 = P,f > 0) and
Pl = 1x.
Moreover we deduce from (7) and (6) that ﬁk( f) € Fi, where Fy, is the finite-dimensional
space spanned by the system of functions {1X i€ Ik} U{vx}. Observe that 1x € Fy from
1x = @klx + ¢ and (6). Now define

bk = 1X — ]‘Xk = 1X\Xk'

ik

Then by € F}, since 1x € Fy, and by, = 1x — Zielk 1x, .- Thus another basis of Fy is given by

Ck = {1X2.’k, 7€ Ik} @] {bk} (8)
Let {x; 1 }icr, be such that x; , € X}, and let T, € X'\ X;,. Then we have for every g € Fy:
9= glxir)1x,, +9(Tx)bp. (9)

i€l

__ Now, from ﬁk (Fr) C Fi we can define the linear map Py : Fr — Fj as the restriction of
Py to Fi. Let Ny := dim Fy = Card (I) + 1, and let By be the Nj x Ny—matrix defined as
the matrix of P, with respect to the basis Cj. Note that

Pibi = Pibr, = Quby + b (wo) o = 0, (10)
and that for every j € Iy,
Pilx,, = Dilx,,
= > (Plx,,)(wip) 1x,, + (Pelx, ) (@) bi (from (9))
il
= > [(@rlx, ) (@in) + 1x,, (wo) Yi(@in)] 1x,, + [(Qrlx,, ) (@k) + Lx, , (w0) Vi (Tr)] br
il
= Z [(@klxj,k)(%‘,k) + 1x, , (z0) Yr(zik)] 1x,,, + 1x, . (€0) by
il



The previous equalities show that By is a non-negative matrix. Moreover Equality Prlx = 1x
reads as matrix equality By - 1 = 1 where 1j is the coordinate vector of 1x in the basis Cy
and is given by 1 = (1,...,1)". The symbol - stands for the transpose operation. Thus
By, is a stochastic matrix. Accordingly there exists a non-zero row-vector 7 € [0, +00)™*
such that

m - By =m, and -1, = 1. (11)

Note that the last component of 7 (i.e. the component associated with by) is zero since the
last column of By, is zero from (10). We denote by m; j, the component of 7, associated with
the element 1x, , of the basis Cy, so that the coordinate vector of 7y in Cy is ({7 }ier, , 0)-
For every k > 1 we set

where Fj, = Fj(f) is the coordinate vector of ]Sk; f in the basis Cy.

Proposition 2.1 7, defines a P\k-invam’ant probability measure on (X, X'). Moreover we have

Fu(dy) = prly) duly) + (1 - [t du<y>)5m, (13)

where dz, is the Dirac distribution at xo, and where py, is the non-negative function defined
by
vy € Xv pk(y) = 1Xk (y) Z Tk telgf p(ta y)a (14)
ik

i€l

Note that Formula (14) involves the infimum of the function t — p(t,y) on each subset X j.

This is a technical choice to ensure that Lemma 3.3 holds true for ISk Specifically, this a
simple choice to simplify the convergence analysis in Section 3 of the approximation scheme.

Proof. Recall that by, is defined by by = 1x — Zielk Ix; - From ¢y := 1x — @klx it follows

~

that ¥ = by + Zielk 1Xi,k — Qrlx. Define

mi(f) = ; f(y) inf p(t,y)du(y) (15)

teX; k

and observe that Q. f = > ier, Mik(f) 1x, - Then we deduce from (6) and (7) that

i€l

Pef == (Qef) + flwo) v = D> min(f)1x,, + f(z0) (b + D Ix,, — Qulx)

i€l i€l
= > [mi(f) + f(x0) = f(wo) min(1x)] 1x,, + f(z0)bs,
i€},

so that (12) and ), m =1 give

() = D ik mik(f) + fzo) — f(xo) mik(1x)]

iely
= Zﬂ'z’,k mik(f) +f(950)(1 - Zm,kmi,k(lx)) (16)
iely, i€l



This proves Formula (13). Now we prove that 7 defines a Py-invariant probability measure
on (X, X). Note that

Vie L, mig(ly) < / (i y) du(y) = (Ply) (@) = 1,
X

thus

/ka(y) du(y) =Y mipmik(lx) < 1.

i€l
It follows from this remark and from (16) that 7 _is a probability measure on X. Finally
By, - I}, is the coordinate vector of Pk? f in Cy, since Py f € Fj, and F} is the coordinate vector
of Py f in Cj. Consequently we deduce from (12) and (11) that

Fp(Pof) = - By - Fiy = 1 - Fy = 7 (f).

Thus 7, is Py-invariant. O

3 Convergence of (7;);>1 to 7 in total variation distance

The metric space X is equipped with a sequence of partitions satisfying Definition (A). The
Markov kernel P on X is assumed to be of the form (1). Let 6 € (0,1]. For k > 1, i € I,
and y € X, we denote by L; 1, 9(y) the following quantity in [0, 4+00]

o /

Li,k,&(y) = sup { ‘p(l"g()a:’:f?;;U 7y)|, (:c, JI/) c X@k X Xi,k; X 75 JZI} . (17)
Finally we assume that P satisfies the following assumptions

30 €(0,1), AM € (0,+0c0), PV <oV +M (18a)

Pu, X\ X
Qy := sup M — 0 when k — 400 (18b)

uEXy V(U‘)
36 € (0,1], VE > 1, L9 := max/ Liko(y)du(y) <oo, and lim {4g (5}2 =0. (18¢)
iEIk ch k — 400

Actually (18a) is a drift type inequality (see [MT93]) which comes from the V-geometric
ergodicity assumption (3). Technical conditions (18b) and (18c) are used to control the weak
convergence of (ﬁk)kZI to P (see Lemma 3.4). In the first order autoregressive models of
Section 4, condition (18b) reduces to a polynomial moment condition on the noise (see (25)
for instance), and Condition (18c) reduces to the control of the derivative of the noise (see
(26) for instance).

Theorem 3.1 Let (0;)r>1 be a sequence of positive real numbers from Definition (A). As-
sume that P is a V-geometrically ergodic Markov kernel of the form (1), and finally that
Assumptions (18a)-(18c) hold. Then the probability measures 7y, on X given in (13) are such
that ||m — 7k ||l7v — 0 when k — +o00, more precisely:

”ﬂ' — %k”TV = O(‘ lnTk‘ Tk) with Tk — 2 max ( , O + €k79 (52) (19)

L
v(k)
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Let (Bo,|| - |lo) denote the Banach space of bounded measurable C-valued functions on X
equipped with the norm || f||o := supgex | f(2)]|. Then (19) means that

Vk>1,VfeBo, |n(f)=7k(f)] <l flo
with v, = O(|In7y| 7). Recall that 7(dy) = p(y)du(y). Assume that p({zo}) = 0. Then,
using (13), the previous inequalities applied to f := 1,y imply

0<1- /ka@) dpi(y) < .
Hence

Vk > 1, Vf € By, }/Xf(y)p(y) dp(y) /Xf(y) pr(y) dp(y)] < 23k (1o,

from which we deduce the following corollary.

Corollary 3.2 Assume that the assumptions of Theorem 3.1 hold and that p({z¢}) =
Then the sequence (py)k>1 given in (14) converges to p in the usual Lebesgue space L' (X, X, ,u),
more precisely

[ 1o = puto| dnts) = O( 1 7). (20)

Proof of Theorem 3.1. We apply [HL14, Prop. 2.1(b)] based on the Keller-Liverani pertur-
bation theorem [KL99]. Define (B1, || - ||1) as the weighted-supremum Banach space

Bi:={ f:X—C, measurable : | f|; := sup | f(x)|V(z)™! < oo }.
reX

Note that Inequality (3) writes as follows
Vn =0, Vf€Bi, |[P"f—na(f)lxlh<Cp"[flh

Since pi(x,y) < p(z,y), Py continuously acts on both By and Bi. In fact P, is finite-rank,
more precisely R
Py(B1) C Fg

with Fj given in Section 2 (see (8)). Note that 7y clearly defines a non-negative bounded
linear form on B;. Then, according to [HL14, Prop. 2.1(b)], Property (19) follows from the
next Lemmas 3.3 and 3.4. g

Lemma 3.3 We have
Vk > 1, ﬁkV§6V+L with L:= M+ 1 and M given in (18a).

Proof. 1f z € X\ Xy, then (B, V)(z) = V(x0) ¢r(z) < 1. If # € X, then we obtain (see (15)):

(PV)(x) = > min(V)1x,, () + V(o) Yi(z)
i€y,
< </ V) ) du) ) 12,4 (0) + 1
’Lelk
< (PV)(z
The desired inequality follows from (18a). O



Lemma 3.4 For every k > 1 we have: sup ||ﬁkf —Pflh < 7.
f€Bo, |Ifllo<1

Proof. Let f € By, ||fllo < 1. If # € X\ Xy, it follows from (Pyf)(z) = f(z0) 1 (x) that

|(Bef) (@) = (PH@)] _ (@) + (PIfD@) _ 2 _ 2

V) = Viz) = V) S o) (21)
Next assume that x € Xi. Then we obtain from the definition of @k that
(Qkf) (@) = (PF)(@)] |pe(2,y) — p(z,y)]
V@) < /X V@) dp(y)
< /. o) Pl gy [ e pel )
=ay(z) =0 ()

Since pi(x,y) = 0 when y € X\ X}, we obtain that

B p(z,y) Pz, X\ Xy)
ox() = /X B ) = = <

from the definition (18b) of . Now, since V' > 1, it follows from Conditions (5) and (18c)
that

Br(z) = /Xk

D ix, (@) Bt p(ty) - > ix,,(x) ‘dﬂ()

1€l 1€l
< / > ix, (@ )\p(x,y)—teigkp(t,yﬂdu(y)
ZEIk ’
< / > 1, (0) sup (o) = plus )| dty)
Zelk uexX
< /le Lio(y) du(y)
kiely
< 603 1x, (o / Liseo(y) du(y)
i€l
S 5]{:£k’,9

We have proved that, for every f € By such that ||f]jo < 1 and for every x € X}, we have

|(Qrf)(z) — (Pf)()]
V(x)

< ag + 900, (22)

Moreover we deduce from the definition of ¢, and from (22) that

< Ye(z) 11— (Qelx) (@) _ (Plx)(z) — (Qulx) ()
~ V() V(x) V(x)

< oy —{—fkﬁ 52 (23)



It follows from Inequalities (22) and (23) that, for every f € By such that || f|lo < 1 and for
every x € Xg, we have:

(Pf)(@) = (PH@)]  _ [(Quf)() + flwo)du(z) — (Pf)(@)]
V() V()
Ye(@)  [(Qrf)(x) — (Pf)(=)]
= V) " V(o)

< 2(0% + lrp (52)

This inequality and (21) provide the conclusion of Lemma 3.4. O

Remark 3.5 The inequality (b) of [HL14, Prop. 2.1] provides explicit bounds in (19) and
(20) in terms of the constants 6, L in (18a) and the constants C and p in (3). Unfortunately,
finding ezplicit constants p € (0,1) and C > 0 in (3) is a difficult issue, even for simple
models as AR(1). Such constants can be obtained in our context by applying the procedure
of [HL14, Th. 4.1], but the resulting constant C' is too large to be numerically interesting.
An alternative way is to use, for k larger and larger, the bound provided by Inequality (a) of
[HL14, Prop. 2.1(a)], which is only based on the spectral properties of the finite stochastic
matriz By. But again the resulting constants are too large. In fact the numerical applications
presented in Section 6 show that the convergence in (19) and (20) is much better than what
is provided by using the constants derived from [HL1/, Prop. 2.1].

4 Applications to first order autoregressive processes

4.1 The standard AR(1) process

Let (X, )nen be a standard first order linear autoregressive process, that is
Vn>1, X,=p0Xp_ 1+, (24)

where X is a real-valued random variable (r.v.) and (¢,)nen is a sequence of real-valued
independent and identically distributed (i.i.d.) random variables, also assumed to be inde-
pendent from Xy. We suppose that |o| < 1, that 91 has a pdf v, called the innovation density
function, with respect to the Lebesgue measure du(y) := dy on R. Assume that the three
following conditions are satisfied:

(a) U1 has a moment of order m for some m € [1, +00), namely
dm e [1,+00), nm ::/ |z|™ v(x) de < oo; (25)
R

(b) v is continuously differentiable on R and its derivative v/ is assumed to be right differ-
entiable on R;
(c) finally

I' = / |V (y)|dy < oo and M" :=sup |V ()] < 0o (26)
R teR

where v)/(t) denotes the right derivative of v/ at t.



Let X := R be equipped with its usual distance d(z,z’) := |x — 2’| and with its Borel
o-algebra X'. Recall that (X,,)nen is a Markov chain with transition kernel P defined by

VAEX, Pld)= [L@ply)dy  with play) =v(y-or). (2]
R

It is well-known from [MT93] that (X,,)nen admits a unique stationary probability measure 7

on R, and that 7 is absolutely continuous with respect to the Lebesgue measure, with density

function p such that [, [y|™p(y)dy < oo and satisfying

Ve e R, p(x)= /Ru(x — ou) p(u) du.

For x € R, we define V(z) = |1 + |z|™| where m is the positive real number given in (25)
and where |-| denotes the integer part function on R. According to (25) and |g| < 1, P is
V-geometrically ergodic (see [MT93]). In the sequel we fix any ¢ € (]o|™,1). It can be easily
deduced from (25) that there exists M = M () such that

PV <6V + M. (28)

For every k > 1, we choose ¢; > 0 such that d; = O(1/k) and (for the sake of simplicity)
such that g := 2k/0;, € N. Set Xy = [—k, k[, and consider the following partition of Xj:

qr—1
Xy = |_| X@k with Xi,k = [‘Ti,kaxi+1,k‘ [, Tk = —k + 1 0. (29)
=0

The associated discretized Markov kernels ]Sk and the probability measures 7, on R are
defined by (7) and (12) respectively. The associated function py is given in (14).

Proposition 4.1 Let 0 be such that 6 > 0 and 6 = O(1/k). Assume that the innovation
density function v(-) satisfies Conditions (25) and (26). Then

~ . 1
Im = Fellry = O(nmil 7). llp = prlluiey = O(llnmlm)  with 7 = — + 6. (30)

Proof. Proposition 4.1 follows from Theorem 3.1 and Corollary 3.2, provided that Assump-
tions (18b) and (18c) are satisfied (all the others assumptions of Theorem 3.1 have been
already checked above). First the real number «y in (18b) satisfies

Mm
g = viy)dy < ——
/y|>k(1—|g|) ) (1 — o)™ km

from Markov’s inequality. Thus (18b) holds. Second, we obtain for every (z,z) € X,

vy — ox) — vy — 0a')|

lo| |z — 2| ‘V'(y — gc)‘ for some ¢ = ¢y, € Xig

lol |z —2'| (| (y—e0c) =V (y— owin)| + |V (y — 0win)|)
ol |z — 2| (Jo]| M" 6 + |V (y — 02ix)])

‘p(%, y) - p((L’l, y)’

IA A IA
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so that

bz, _pxla
Lisal) = sup{ PEDZEEIN 0ty € 0y x i 2 20

< ol (lo| M" 6 + |V (y — 0win)|) -

Using the notations of (26), we obtain that

k
lor = m%x/ Liro(y) dy < 2ol M"k 55 + o] I" (31)
1€l ) _k
Recall that 6, = O(1/k) by hypothesis, so that supy; f,1 < co. Hence (18c) holds. O

Remark 4.2 Alternative assumptions (instead of (26)) on the innovation density function
v are possible. For instance, in place of (26), we may suppose that the derivative v' of v
exists and that D := sup,cp |V (x)| < co. Then L;j1(-) < D, so that {1 = O(k). Thus,
provided that o, = o(1/k), the statements of Proposition 4.1 is replaced with the following
ones: || — @kl|rv and ||p — pillLiw) are both O(|In7y| 7)) with 7, = 1/k™ + k6 and both
|7 = Tkllrv and ||p — prllLir) converge to O when k— +o0 .

Remark 4.3 In [DDGMRO00] a similar state-discretization procedure is proposed to estimate
the spectrum of the Markov kernel P given in (27). Because the authors of [DDGMRO00] use
the standard perturbation theory, they have to assume that the innovation density function
is compactly supported in some interval [a,b] (the action of P is then considered on the
usual Lebesque space L%([a,b]). The use of the Keller-Liverani perturbation theorem in our
work (see the proof of Theorem 3.1) allows us to consider innovation density functions with
unbounded support.

Remark 4.4 If (X,,)nen s a first order autoregressive model given by (24), then for any
£ >1 the sequence (Xr(f))nzg defined by Xff) := Xy, satisfies the following linear recursion

In
vn>1, X0 =o' X\ 400 withol0 = N R (32)
k=(l(n—1)+1

(£)

The sequence (Op ' )n>0 is i.i.d., and (X,(f))nzo is a first order autoregressive model having

the same stationary density function as (X,)nen. The transition kernel of (Xff))nzo is Pt,
which is of the form (1) too. More precisely, for every x € R we have P'(x,dy) = pi(z,y) dy
with pe(z,y) == vy — o'x), where vy is the pdf of 191(6), that is vy := pg * -+ * u1, where
w denotes the pdf of the r.v. o %9y for k = 1,...,4, and where the symbol "x” stands
for the standard convolution product. This fact may be relevant since vy is more and more
reqular as ¢ increases, so that vy may satisfy the reqularity condition required in (26) for ¢
large enough. In this case the stationary density function of (X, )nen can be approrimated by
applying Proposition 4.1 to P* (thus with vy in place of v). For instance, if the innovation
law is the uniform distribution on [0,1], then Proposition 4.1 applies to the Markov kernel
P3 since the associated innovation density function (i.e. the law of 191(3) = 0201 + 092 +93)
is continuously differentiable on R and satisfies (26).
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4.2 The AR(1) process with ARCH(1) errors

The following example is derived from [BKO01]. Let X := R be equipped with its usual distance
d(z,2") := |z — 2'| and with its Borel o-algebra X. Let a € R and let 3, A > 0. We consider
the autoregressive process (X, )neny with ARCH(1) errors, defined by

1/2

Vn>1, Xp=aX, 1+ (B+AX2 )" Vn, (33)

where Xy is a real-valued r.v. and (9J,,),en is a sequence of i.i.d. real-valued random variables
which are independent from X,. We suppose that ¢, has a pdf v with respect to the Lebesgue
measure du(y) := dy on R, that v is a bounded continuously differentiable and symmetric
function with full support R, that its derivatives v/ satisfies |/ (z)| = O100(1/|2z]), and finally
that ¥; has a second-order moment. Then (X,,),ecn is a Markov chain with transition kernel
P defined by P(z, A) := [p1a(y)p(x,y)dy (A€ X) with

p(a,y) == (B+ A%y (Wi;f?;;m) : (34)

As in Section 4, for every k > 1 we consider g := 2k/0y, Xj = [—k, k[, and X}, as in (29).
Moreover assume that
E[In|a+VAth]] <o0. (35)

Then there exists £ > 0 such that, for every u €]0, k[, we have E[|a++v/A91]%] < 1, see [BKO1,
Prop. 2]. Let n €]0, min(x, 2)[.

Proposition 4.5 Under the previous assumptions and notations, the following estimates
hold true:

~ . 1
HTr—TrkHTV: O(|ln7‘k|7'k), ||p—pk\|L1(R): O(|ln7'k]7'k) with Tkzm-f—k(sk. (36)

Thus || — Tgll7v and [|p — prllLi(r) converge to O when k— +oo provided that 5 = o(1/k).

Proof. For x € R, we define V(z) = 1+ |z|7. The V-geometrical ergodicity of P, together
with Condition (18a), are proved in [BKO1, Th. 1]. To study (18b), we assume that a > 0
(similar arguments hold if & < 0). Note that

k — ax

+o0
/ p(xny)dy:/ v(t)dt  with  ¢p(z) =
k o ()

(5 + )\x2)1/2'

Let = € [k, k]. If VE < |z| < k, then

1 oo 1
— dy < ——.
1+!w\"/k Pl y)dy < 27

If |2| < vk, then L <1 and

L|z[?
u(t)dtg/ v(t)dt =O0O(1/k
/¢k($) o1 (V) ( )

12



from ¢ (VE) < ¢p(x), op(VE) ~ioo (k/N)Y/2, and from Markov’s inequality (since by hy-
pothesis v has a second-order moment). Since n < 2, we have proved that

400 1
su z,y)dy=0|—= .
|x§pk/lc p(z,y)dy <W2>

The same conclusion can be similarly obtained for the term SUP |4 <k f:{i p(z,y) dy. Conse-
quently ay, in (18b) satisfies: aj, = O(k~"/2). Next, to obtain (18¢) set M := sup,cp v(),
M' :=sup,cp V' (z), and C := sup,cp |z /(z)|. An easy computation gives

@(x ) M|z M|« C\|z|

or YV = B a2 T B aa? T (Bt Aa2)i2

Thus D = sup(, ,)cr2 |%(ac,y)\ < 00, so that the function L;j ¢ defined in (17) satisfies
(with 0§ = 1): Vy € R, L;,1(y) < D. Therefore the real numbers ¢ ¢ in (18c) are such
that /1 < 2Dk. The above inequalities and Theorem 3.1 provide the desired statement in
Proposition 4.5. O

5 A generic algorithm to get p;(y)

Let (X, )nen be a Markov chain with transition kernel p(-,-). In this section, we propose
a generic algorithm to get the material provided by Section 2. Specifically, the focus is on
the non-negative function pg (14) which allows us to obtain the approximating invariant
probability given by Proposition 2.1. According to Section 2, the following algorithm can be
proposed.

1. Fix the positive integer k such that X, := [k, k[ and choose the integers &~ et k* such
that [k—, kT[C Xy (you can take k= = —k, kT = k).
2. Choose a mesh J; of the partition of [k~, k™[ such that the number of intervals of the
subdivision is ¢max := (k¥ — k™) /d), € N*,
Let us introduce the (gmax + 1) points of the subdivision {xlk =k 41,1 =0,... ,qmax}
and consider the finite partition {X; ; = [z, Tix1£[,7 =0, ..., gmax — 1} of [k7, k™|
3. Introduce
; = inf p(t,y).
Pik(y) telikp( 'Y)

4. Choose jo € {1,...,¢max — 1}, then for j = jyo compute:
kt

.. Lio+1k .
Buido) = [ pu@dy+ 1= [y ori= 0. g 1
Z‘jo,k -
Bk(QmaxajO) = 1
Compute fOI‘j :07"'7qmax_]-aj#j0a
.. Ij+1’k .
By(i,j) = / pik(y)dy  fori=0,... ¢max —1
étj’k
Bk(QmaX7j) =0 POUT & = Gmax

Set B(l,]) =0 for ] = {max et i = 17° -+ @max-

13



5. Compute the Bj-invariant probability vector 7, of By: it has the form 7, = ({7 & }o<i<gmax » 0)
6. Finally, the non-negative function py(-) is defined by (see (14)):

dmax —

1
Yy €R, pr(y) = -k ((¥) D Tikpinr(y).
i=0

The third step of the algorithm involves the computation of an extreme value of the
function ¢ — p(t,y) on a small interval (length dx). Such a numerical minimization may be
computationally expensive. But it can be checked that, for AR(1) models in Subsections 6.1,
6.2, the function ¢ — p(t,y) has no local minima so that the minimum may be setted to
min(p(x; k,y), P(Ti+1,k,y)). The case of the AR(1) with ARCH(1) errors may produce local
minima for some parameter (3,a, ). But it can be expected that any approximation of
pik(y) in Step 3. does not provide large numerical errors from the fact that it is made on a
very small interval of length & << 1.

Such an algorithm has been implemented using MATLAB software to obtain the numerical
results of Section 6.

Remark 5.1 (Multivariate Markov models) A natural issue is the generalization of the
material of Sections 2 and 8 to multivariate Markov models. A general discussion is beyond
the scope of this paper. We only mention that technical Conditions (18a,18b,18¢c) have natural
counterparts for multivariate autoregressive models (e.g. see [MT93]). Thus it can seen from
this section that the main difficulties in a multidimensional framework are computational
issues due to computation of extreme values and integrals.

6 Numerical examples

6.1 Application to the Gaussian AR(1)

The benchmark model is the Gaussian linear model where the random variables ¥, in (24)
have Gaussian distribution A(0,0%). In such a context, it is well-known that the invariant
probability 7 of the Markov chain (X, ),en specified by (24) is A(0,0%/(1 — 0?)). Therefore
the pdf’s v and p are

v(y) = L exp (— v > p(y) = @exp (—(1_9%2> : (37)

2mo? 252 V2mo? 202

Using the algorithm in Section 5, we obtain the following numerical results. For the sake of
simplicity, set 02 := 1. The support of the approximation is X}, := [k, k[ for specific value
of the positive integer k, and J; is the mesh of the partition of Xy used for the computation.
The supremum norm of the error vector vy, := (pk(arzk) — p(xzk)) . between pi and p

i=0,...,
on the grid of points {z;%,i = 0,...,q,} given by the partition of X, (qsee (29)) is denoted
by |lvkllss and reported in Table 1. The Riemann sum estimation ||vg| 1,z = Ok|lvgl/1 of
Ilpx — pllr1 is provided. These errors are computed using a decreasing sequence of meshes dy,
and a support Xy selected according to the comments of Remark 6.1. As it can be seen, the
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quality of the approximation is quite satisfactory. Figure 1 gives the graphs of the two pdf
pr and v. Note that the exact invariant pdf is not reported in Figure 1 since the estimated
and exact graphs cannot be distinguished at this scale. From Table 1, whatever the value of
0, the errors norms ||[vg||ec O |[vg||1,r scale linearly with the mesh dy.

44
0.5 [ 0.7 [ 0.9
k 8 14 40
3, | 0.05 0.02 0.005 0.05 0.02 0.005 0.05 0.02 0.005
[velli,r | 0.01  0.004 0.001 0.0151  0.0061 0.0015 0.0540  0.025  0.0058
[[velloo | 0.0025 0.001 2.45 x 10~°% [ 0.0035 0.0014 3.45 x 10~% | 0.0099 0.0041 0.0011

Table 1: Numerical results for the Gaussian linear model

Remark 6.1 The algorithm is sensitive to the support Xy of the approximate function py.
Indeed, if the value of k in Xy is too small with respect to the support of the target pdf p of
w, then the approximate function pp may appear to be far from the target p.

6.2 Applications to AR(1) where the invariant pdf p is unknown

When the target pdf p is unknown, the set Xj (the support of pg, see (29)) can be chosen
as follows. If the innovation pdf v has a support contained in [—a,a] and if Xy = 0, then
P{X, € [—sn,sn]} = 1 with s, = azz;é 0¥, so that the pdf p has support [—s,s] with
s:=a/(l — p). If v is not compactly supported, then the previous remark may be applied
with a such that v(z) is meaningless for |x| > a. Obviously this remark may be easily adapted
when the exact or approximated support of v is contained in [0, a]. In the previous Gaussian
case, although this question is less relevant since the target pdf p is known, we take a = 4
and s =4/(1 — p) in Figure 1.

6.2.1 Exponential innovation distribution

In this part, the innovation distribution v is set to the exponential one with parameter 1.
Recall that the pdf v must satisfy the regularity conditions of Proposition 4.1. Therefore, as
discussed in Remark 4.4, the pdf 5 is used as input in the algorithm instead of v:

(e—x/g2 e %

140

1 —x —x 4
v3,0(T) = (1_9)2<e —eTv/ey

) Lorsel(@

and the dynamics is given by (32) with ¢ := 3. The support of v3, may be truncated to
[0,a3,] with agos = 11,a30.7 = 12,a3099 = 14, so that the support of p may be truncated
to [0, sp] with s, = |asz /(1 — 0%)| + 1, that is so5 = 13,507 = 19,509 = 52. Thus we use
the interval [0, 13], [0, 19], [0, 52] as X}, for ¢ := 0.5,0.7,0.9 (apply the above remark with v3 ,
and o3 in place of v and p). In Figure 2 are reported the graphs of the estimated pj of the
(unknown) invariant pdf p for o = 0.5,0.7,0.9.

The invariant probability distribution 7 with pdf p satisfies 7P = 7, that is: [ p(x) p(z,-)dz =
p(-). Such a relation can be checked on the grid of points {z;x,7 = 0,...,¢q;} given by the
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partition of Xy, (see (29)):

Vo, /R p(2) pl, 7i)dz = p(zig)-

The integral on the left hand side can be estimated using the Riemann sum denoted by
pi(zig) = Zj pi(xjr)P(x)k, k)0, Therefore, in order to get some confidence into the
estimated invariant pdf pj, the uniform norm of the following vector wy := (pk(xzk) —
5k(xivk))i:0,...,qk is reported in Table 2. As it can be seen, the results are satisfactory.

Remark 6.2 The case p = 0.9 (even ¢ = 0.8) shows that the graphs of v3, and p (given by
the approzimation py) are very far. Consequently, in this case, the method of [Hai98, AHOO,
ANRO7] requires to compute hy via (4) for some quite large integer N. Since the use of (4)
18 recursive, the successive approrimations hy, ..., hy should involve large cumulative errors.
A similar comment holds true in the forthcoming case of the uniform innovation distribution.
As mentioned in Introduction, our method does not contain this drawback since it is not based
on a recursive algorithm.

6.2.2 TUniform innovation distribution

Here, the innovation distribution v is set to the uniform one on [0,1]. As discussed in
Remark 4.4, the pdf v3 is used as input in the algorithm instead of v (see [ANRO7, p 281-282]
for an explicit formula). Here the dynamics is given by (32) with ¢ := 3. The graphs of
v3,, with 0 =0.4,0.5,0.6,0.7,0.8,0.9 are reported in Figures 3, 4 (blue curves). The support
of v3,is [0,1 + o + ¢%] so that the support of the target pdf p, is included into [0, s,] with
5o := |(1+0+0?)/(1—0%)|+1. Thus we use the intervals [0, 2], [0, 2], [0, 3], [0, 4], [0, 5], [0, 10] as
set X}, for ¢ :=0.4,0.5,0.6,0.7,0.8,0.9. In Figure 3, we report the graphs of the approximated
function pj, of the (unknown) invariant pdf p and the pdf v3 , for o = 0.4,0.5,0.6. The graphs
for o = 0.7,0.8,0.9 are reported in Figure 4. As in the exponential case, the expected
invariance of the estimated pdf pj is evaluated by the uniform norm of the following vector
Wy, 1= (pk(fczk) — Ek(%k))zzo (see Table 2). The results are still satisfactory.

»dk
Expo Unif
] 0.5 0.7 0.9 o 0.7 0.8 0.9
lwglloo | 873 x 10-%F  9.47 x 10-%  0.0013 [lwglleo | 0.0045  0.0050  0.0051

Table 2: AR(1): checking P-invariance of the estimated pdf p; with 5 := 0.02

6.2.3 AR(1) with ARCH(1) errors

In this part, we apply our generic algorithm to the autoregressive model with ARCH(1) errors
and transition kernel defined in (34). The innovation distribution is the standard Gaussian
one, that is ¥, ~ N(0,1). The estimated invariant pdf p;5 with support X;5 = [—15,15]
and the Gaussian pdf are reported in Figure 5 when (5, a,\) = (1,0.7,0.2). As for AR(1)
models, the invariance property of the estimated pdf pi5 is evaluated by w5 := || (p15(x¢715) —
P15(2i,15)) ;g g1 lloo = 0.0223.

16



References

[AHOO]

[ANRO7]

[ARO5]

[BKO1]

[CTS6]

[DDGMRO0]

[FHL13]

[Hai9g)]

[HL14]

[Kel82]

[KL99]

[Log04]

[MT93]

[RS1S]

[SS00]

Jiti Andél and Karel Hrach. On calculation of stationary density of autoregres-
sive processes. Kybernetika (Prague), 36(3):311-319, 2000.

J. Andél, 1. Netuka, and P. Ranocha. Methods for calculating stationary dis-
tribution in linear models of time series. Statistics, 41(4):279-287, 2007.

J. Andél and P. Ranocha. Stationary distribution of absolute autoregression.
Kybernetika (Prague), 41(6):735-742, 2005.

M. Borkovec and C. Klippelberg. The tail of the stationary distribution of an
autoregressive process with ARCH(1) errors. Ann. Appl. Probab., 11(4):1220—
1241, 2001.

K. S. Chan and H. Tong. A note on certain integral equations associated with
nonlinear time series analysis. Probab. Theory Relat. Fields, 73(1):153-158,
1986.

J. A. De Doné, G. C. Goodwin, R. H. Middleton, and I. Raeburn. Convergence
of eigenvalues in state-discretization of linear stochastic systems. SIAM J.
Matriz Anal. Appl., 21(4):1102-1111, 2000.

D. Ferré, L. Hervé, and J. Ledoux. Regular perturbation of V-geometrically
ergodic Markov chains. J. Appl. Probab., 50:184-194, 2013.

G. Haiman. Upper and lower bounds for the tail of the invariant distribution
of some AR(1) processes. In Asymptotic methods in probability and statistics
(Ottawa, ON, 1997), pages 723-730. North-Holland, Amsterdam, 1998.

L. Hervé and J. Ledoux. Approximating Markov chains and V-geometric ergod-
icity via weak perturbation theory. Stochastic Processes and their Applications,
124:613-638, 2014.

G. Keller. Stochastic stability in some chaotic dynamical systems. Monatsh.
Math., 94(4):313-333, 1982.

G. Keller and C. Liverani. Stability of the spectrum for transfer operators. An-
nali della Scuola Normale Superiore di Pisa - Classe di Scienze Sér. 4, 28:141—
152, 1999.

W. Loges. The stationary marginal distribution of a threshold AR(1) process.
J. Time Ser. Anal., 25(1):103-125, 2004.

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer-
Verlag London Ltd., London, 1993.

D. Rudolf and N. Schweizer. Perturbation theory for Markov chains via Wasser-
stein distance. Bernoulli, 24(4A):2610-2639, 2018.

T. Shardlow and A. M. Stuart. A perturbation theory for ergodic Markov
chains and application to numerical approximations. SIAM J. Numer. Anal.,
37:1120-1137, 2000.

17



[Trul7] L. Truquet. A perturbation analysis of some Markov chains models with time-
varying parameters. ArXiv e-prints, June 2017.

18



0.4

035

0.25

02

0.15

0.05

0.4

035

0.25

02

0.4

03r

0.25

02r

015

01

0.05

-40 -30 -20 -10 0 10 20 30 40

Figure 1: (Gauss) For o = 0.5,0.7,0.9 and 6 = 0.02: graphs of the invariant pdf pg, P14, pao
(red) and the innovation pdf v (blue)
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Figure 2: (Expo) For o = 0.5,0.7,0.9 with §; = 0.02: graphs of the estimated invariant pdf
pr (red) and the pdf vs, (blue)
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Figure 3: (Unif) For ¢ = 0.4,0.5,0.6 with 0; = 0.02: graphs of the estimated pdf p; (red)
and v3 , (blue)
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Figure 4: (Unif) For ¢ = 0.7,0.8,0.9 with §; = 0.02: graphs of the estimated pdf pj (red)
and v3 , (blue)
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Figure 5: (ARCH) For d15 = 0.02: graphs of the estimated pdf pi5 (red) and the innovation
pdf (blue)
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