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State-discretization of V -geometrically ergodic Markov chains

and convergence to the stationary distribution

Loic HERVÉ and James LEDOUX ∗

September 26, 2019

Abstract

Let (Xn)n∈N be a V -geometrically ergodic Markov chain on a measurable space X with
invariant probability distribution π. In this paper, we propose a discretization scheme
providing a computable sequence (π̂k)k≥1 of probability measures which approximates
π as k growths to infinity. The probability measure π̂k is computed from the invariant
probability distribution of a finite Markov chain. The convergence rate in total variation of
(π̂k)k≥1 to π is given. As a result, the specific case of first order autoregressive processes
with linear and non-linear errors is studied. Finally, illustrations of the procedure for
such autoregressive processes are provided, in particular when no explicit formula for π
is known.

AMS subject classification : 60J05; 60J22

Keywords : Markov chain, Rate of convergence, Autoregressive models.

1 Introduction

Let (X, d) denote a metric space equipped with its Borel σ-algebra X . Let (Xn)n∈N be a
Markov chain with state space (X,X ) and transition kernel P of the form

∀x ∈ X, P (x, dy) = p(x, y) dµ(y), (1)

where p : X2→[0,+∞) is a measurable function and µ is a positive σ-additive measure
on (X,X ). Typically X is Rd and µ is the Lebesgue measure on Rd. Moreover let v :
[0,+∞)→[1,+∞) denote an unbounded increasing continuous function such that v(0) = 1,
and let V : X→[1,+∞) be defined by

∀x ∈ X, V (x) := v
(
d(x, x0)

)
, (2)

where x0 ∈ X is fixed. We assume that P admits an invariant probability measure π on
(X,X ). Since P is of the form (1), π is absolutely continuous with respect to µ, that is
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dπ(y) = p(y) dµ(y) for some probability density function (pdf) p. Throughout the paper we
assume that

π(V ) :=

∫
X
V (y) p(y) dµ(y) <∞

and that P is V -geometrically ergodic, that is (e.g. see [MT93]): there exist ρ ∈ (0, 1) and
a positive constant C ≡ C(ρ) such that the following inequality holds for every measurable
complex-valued function f on X satisfying |f | ≤ V :

∀n ≥ 0, sup
x∈X

|(Pnf)(x)− π(f)|
V (x)

≤ C ρn. (3)

Mention that, for most of the classical V -geometrically ergodic Markov chains, the function
V is of the form (2).

Even for simple models as first-order autoregressive models, the explicit computation of
the stationary pdf p is a difficult issue, and it is only possible for some specific examples.
In this work, under suitable assumptions on the kernel p(x, y), we propose a discretization
procedure providing a computable sequence (π̂k)k≥1 of probability measures on X which
approximates the stationary distribution π of P in total variation distance. Roughly speaking
the probability measure π̂k on X is defined as follows. For every integer k, an explicit finite
stochastic matrix Bk is derived from the Markov kernel P by discretization of the kernel
p(x, y). Then π̂k is defined as a natural extension of the left Bk-invariant probability vector.
Then the above mentioned convergence of (π̂k)k≥1 to π in total variation distance is derived
in Theorem 3.1 from the results of [HL14]. Moreover the absolutely continuous part pk of π̂k
w.r.t. µ can be explicitly computed, and the sequence (pk)k≥1 is proved to converge to p in the
usual Lebesgue space L1(X,X , µ) (see Corollary 3.2). Applications to the first order (linear)
autoregressive models AR(1) and to AR(1) processes with ARCH(1) errors are addressed
in Sections 4. The computational issues to get pk are discussed in Section 5. Numerical
illustrations are presented in Section 6.

The authors in [Hai98, AH00, ANR07] developed another method to approximate the
stationary pdf p of linear processes. Their approach consists in approximating the stationary
pdf p of an AR(1) process (i.e. Xn = %Xn−1 + ϑn, see Subsection 4.1 for details) by the
sequence (hn)n∈N of functions recursively defined by

h0 := ν and ∀n ≥ 1, hn(x) :=

∫
R
ν(x− %u)hn−1(u) du (4)

where ν denotes the innovation pdf (i.e. the law of ϑ1). Hainman in [Hai98] proved that
(hn)n∈N uniformly converges to p with geometric rate under strong assumptions on the sup-
port of ν. The authors in [AH00] proved that (hn)n∈N converges point-wise to p under some
mild assumptions on the Fourier transform of ν, and they established the uniform conver-
gence with geometric rate in the case when ν is the exponential pdf. In [ANR07] the uniform
convergence of (hn)n∈N to p, with geometric rate, is extended to general causal linear pro-
cesses under mild assumptions on the noise process. Closely linked to these works, we also
mention the paper [Log04] which studies the characteristic function of the stationary pdf p
for a threshold AR(1) model with noise process having Laplace distribution, as well as the
paper [AR05] which investigates p for absolute autoregressive associated with noise process
having Gaussian, Cauchy or Laplace distribution (from [CT86] this issue may be reduced to
the computation of the stationary pdf of an auxiliary AR(1) process).
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Due to [ANR07], the approximation of p by (hn)n∈N via Equation (4) is theoretically
efficient for linear processes since the rate of convergence is geometric. However, except when
the noise process has a special usual law, the exact calculation of the integral in (4) can not
be carried out. Moreover, any numerical method recursively providing approximations of the
integrals h1, . . . , hp for some p ≥ 1 induces some cumulative errors. For linear processes our
method is thus an alternative way to approximate p: the rate of convergence in our work is
not geometric (a priori), but for some k ≥ 1 the approximation pk of p as above described
can be directly computed (without any recursive procedure). Section 6 provides numerical
evidence for robustness of the method. Moreover our approach applies to any V -geometrical
Markov chain (not only to linear processes) admitting a probability kernel P (x, dy) of the
form (1), provided that the kernel p(·, ·) has some suitable Lipschitz-regularity properties (see
Assumption (18c)). For instance our method applies to autoregressive process with ARCH(1)
errors (see Subsections 4.2 and 6.2.3).

The invariant pdf p satisfies the functional equation Tp = p, where T is the linear op-
erator defined by (Tf)(·) =

∫
X p(y, ·) f(y) dµ(y). However this operator T is not used in

this work. Indeed that is not T , but P , which is approximated by a sequence of finite-rank
operators (P̂k)k≥1. The reason for this is that P has good spectral properties on the usual
weighted-supremum Banach space B1 associated with V due to the V -geometrical ergodicity
assumption. Also note that the classical theory of perturbed operators does not apply here
because the sequence (P̂k)k≥1 does not converge to P for the usual operator norm on B1 (in
particular P is not a compact operator on B1). To get around this difficulty, we use the results
of [HL14] based on the Keller-Liverani perturbation theorem [KL99]: this method requires
an auxiliary weaker operator norm on B1 (see Lemma 3.4), as well as uniform (in k) drift
inequalities for P̂k (see Lemma 3.3). In the context of perturbed V -geometrically ergodic
Markov chains, the interest of using an auxiliary norm appears in [SS00] (see [Kel82] for
similar issues in ergodic theory). For recent works related to this weak perturbation method
in Markovian models, see [FHL13, RS18, Tru17] and the references therein.

2 Definition of the approximating probability measure π̂k

Let x0 ∈ X be fixed and, for every integer k ≥ 1, let us consider any Xk ∈ X such that{
x ∈ X : d(x, x0) < k

}
⊆ Xk ⊆

{
x ∈ X : d(x, x0) ≤ k

}
.

Let us introduce the following finite partitions of the sequence of spaces (Xk)k≥1.

Definition (A). Let (δk)k≥1 be a sequence of positive real numbers such that limk δk = 0.
For every integer k ≥ 1, we consider a finite family {Xj,k}j∈Ik of disjoint measurable subsets
of Xk such that

Xk =
⊔
j∈Ik

Xj,k with ∀j ∈ Ik, diam(Xj,k) ≤ δk. (5)

where diam(Xj,k) := sup
{
d(x, x′) : (x, x′) ∈ Xj,k

}
. The positive real number δk must be

thought of as the mesh of the partition {Xj,k}j∈Ik .
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Define

∀k ≥ 1, ∀(x, y) ∈ X2, pk(x, y) := 1Xk(y)
∑
i∈Ik

1Xi,k(x) inf
t∈Xi,k

p(t, y),

Observe that pk ≤ p. Below f : X→C denotes any bounded measurable function on X where
C denoted the set of complex numbers. We define the following non-negative kernel Q̂k:

∀x ∈ X, (Q̂kf)(x) :=

∫
X
f(y) pk(x, y) dµ(y)

=
∑
i∈Ik

(∫
Xk
f(y) inf

t∈Xi,k
p(t, y) dµ(y)

)
1Xi,k(x). (6)

Note that Q̂kf vanishes on X \ Xk. Let ψk be the non-negative function on X defined by

ψk := 1X − Q̂k1X.

We have ψk ≡ 1 on X \ Xk, and 0 ≤ ψk ≤ 1X since 0 ≤ Q̂k1X ≤ P1X = 1X. Next define the
following kernel:

∀x ∈ X, (P̂kf)(x) := (Q̂kf)(x) + f(x0)ψk(x). (7)

Then P̂k is a Markov kernel on (X,X ), i.e. P̂k is non-negative (f ≥ 0 ⇒ P̂kf ≥ 0) and
P̂k1X = 1X.

Moreover we deduce from (7) and (6) that P̂k(f) ∈ Fk, where Fk is the finite-dimensional
space spanned by the system of functions

{
1Xi,k , i ∈ Ik

}
∪{ψk}. Observe that 1X ∈ Fk from

1X = Q̂k1X + ψk and (6). Now define

bk := 1X − 1Xk = 1X\Xk .

Then bk ∈ Fk since 1X ∈ Fk and bk = 1X−
∑

i∈Ik 1Xi,k . Thus another basis of Fk is given by

Ck :=
{

1Xi,k , i ∈ Ik
}
∪ {bk}. (8)

Let {xi,k}i∈Ik be such that xi,k ∈ Xi,k and let xk ∈ X \ Xk. Then we have for every g ∈ Fk:

g =
∑
i∈Ik

g(xi,k) 1Xi,k + g(xk) bk. (9)

Now, from P̂k(Fk) ⊂ Fk we can define the linear map Pk : Fk→Fk as the restriction of
P̂k to Fk. Let Nk := dimFk = Card (Ik) + 1, and let Bk be the Nk ×Nk−matrix defined as
the matrix of Pk with respect to the basis Ck. Note that

Pkbk = P̂kbk = Q̂kbk + bk(x0)ψk = 0, (10)

and that for every j ∈ Ik

Pk1Xj,k = P̂k1Xj,k

=
∑
i∈Ik

(P̂k1Xj,k)(xi,k) 1Xi,k + (P̂k1Xj,k)(xk) bk (from (9))

=
∑
i∈Ik

[
(Q̂k1Xj,k)(xi,k) + 1Xj,k(x0)ψk(xi,k)

]
1Xi,k +

[
(Q̂k1Xj,k)(xk) + 1Xj,k(x0)ψk(xk)

]
bk

=
∑
i∈Ik

[
(Q̂k1Xj,k)(xi,k) + 1Xj,k(x0)ψk(xi,k)

]
1Xi,k + 1Xj,k(x0) bk.
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The previous equalities show that Bk is a non-negative matrix. Moreover Equality Pk1X = 1X
reads as matrix equality Bk · 1k = 1k where 1k is the coordinate vector of 1X in the basis Ck
and is given by 1k = (1, . . . , 1)>. The symbol ·> stands for the transpose operation. Thus
Bk is a stochastic matrix. Accordingly there exists a non-zero row-vector πk ∈ [0,+∞)Nk

such that
πk ·Bk = πk, and πk · 1k = 1. (11)

Note that the last component of πk (i.e. the component associated with bk) is zero since the
last column of Bk is zero from (10). We denote by πi,k the component of πk associated with
the element 1Xi,k of the basis Ck, so that the coordinate vector of πk in Ck is ({πi,k}i∈Ik , 0).
For every k ≥ 1 we set

π̂k(f) := πk · Fk (12)

where Fk ≡ Fk(f) is the coordinate vector of P̂kf in the basis Ck.

Proposition 2.1 π̂k defines a P̂k-invariant probability measure on (X,X ). Moreover we have

π̂k(dy) = pk(y) dµ(y) +

(
1−

∫
X
pk(y) dµ(y)

)
δx0 , (13)

where δx0 is the Dirac distribution at x0, and where pk is the non-negative function defined
by

∀y ∈ X, pk(y) := 1Xk(y)
∑
i∈Ik

πi,k inf
t∈Xi,k

p(t, y), (14)

Note that Formula (14) involves the infimum of the function t 7→ p(t, y) on each subset Xi,k.
This is a technical choice to ensure that Lemma 3.3 holds true for P̂k. Specifically, this a
simple choice to simplify the convergence analysis in Section 3 of the approximation scheme.

Proof. Recall that bk is defined by bk = 1X−
∑

i∈Ik 1Xi,k . From ψk := 1X− Q̂k1X it follows

that ψk = bk +
∑

i∈Ik 1Xi,k − Q̂k1X. Define

mi,k(f) :=

∫
Xk
f(y) inf

t∈Xi,k
p(t, y) dµ(y) (15)

and observe that Q̂kf =
∑

i∈Ik mi,k(f) 1Xi,k . Then we deduce from (6) and (7) that

P̂kf := (Q̂kf) + f(x0)ψk =
∑
i∈Ik

mi,k(f) 1Xi,k + f(x0)
(
bk +

∑
i∈Ik

1Xi,k − Q̂k1X
)

=
∑
i∈Ik

[
mi,k(f) + f(x0)− f(x0)mi,k(1X)

]
1Xi,k + f(x0)bk,

so that (12) and
∑

i∈Ik πi,k = 1 give

π̂k(f) :=
∑
i∈Ik

πi,k [mi,k(f) + f(x0)− f(x0)mi,k(1X)
]

=
∑
i∈Ik

πi,kmi,k(f) + f(x0)

(
1−

∑
i∈Ik

πi,kmi,k(1X)

)
. (16)
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This proves Formula (13). Now we prove that π̂k defines a P̂k-invariant probability measure
on (X,X ). Note that

∀i ∈ Ik, mi,k(1X) ≤
∫
X
p(xi,k, y) dµ(y) = (P1X)(xi,k) = 1,

thus ∫
X
pk(y) dµ(y) =

∑
i∈Ik

πi,kmi,k(1X) ≤ 1.

It follows from this remark and from (16) that π̂k is a probability measure on X. Finally
Bk ·Fk is the coordinate vector of P̂ 2

k f in Ck since P̂kf ∈ Fk and Fk is the coordinate vector

of P̂kf in Ck. Consequently we deduce from (12) and (11) that

π̂k(P̂kf) := πk ·Bk · Fk = πk · Fk = π̂k(f).

Thus π̂k is P̂k-invariant. �

3 Convergence of (π̂k)k≥1 to π in total variation distance

The metric space X is equipped with a sequence of partitions satisfying Definition (A). The
Markov kernel P on X is assumed to be of the form (1). Let θ ∈ (0, 1]. For k ≥ 1, i ∈ Ik,
and y ∈ Xk, we denote by Li,k,θ(y) the following quantity in [0,+∞]

Li,k,θ(y) := sup

{
|p(x, y)− p(x′, y)|

d(x, x′)θ
, (x, x′) ∈ Xi,k × Xi,k, x 6= x′

}
. (17)

Finally we assume that P satisfies the following assumptions

∃ δ ∈ (0, 1), ∃M ∈ (0,+∞), PV ≤ δV +M (18a)

αk := sup
u∈Xk

P
(
u,X \ Xk

)
V (u)

−→ 0 when k→+∞ (18b)

∃ θ ∈ (0, 1], ∀k ≥ 1, `k,θ := max
i∈Ik

∫
Xk
Li,k,θ(y) dµ(y) <∞, and lim

k→+∞
`k,θ δ

θ
k = 0. (18c)

Actually (18a) is a drift type inequality (see [MT93]) which comes from the V -geometric
ergodicity assumption (3). Technical conditions (18b) and (18c) are used to control the weak
convergence of (P̂k)k≥1 to P (see Lemma 3.4). In the first order autoregressive models of
Section 4, condition (18b) reduces to a polynomial moment condition on the noise (see (25)
for instance), and Condition (18c) reduces to the control of the derivative of the noise (see
(26) for instance).

Theorem 3.1 Let (δk)k≥1 be a sequence of positive real numbers from Definition (A). As-
sume that P is a V -geometrically ergodic Markov kernel of the form (1), and finally that
Assumptions (18a)-(18c) hold. Then the probability measures π̂k on X given in (13) are such
that ‖π − π̂k‖TV → 0 when k→+∞, more precisely:

‖π − π̂k‖TV = O
(
| ln τk| τk

)
with τk = 2 max

(
1

v(k)
, αk + `k,θ δ

θ
k

)
. (19)
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Let (B0, ‖ · ‖0) denote the Banach space of bounded measurable C-valued functions on X
equipped with the norm ‖f‖0 := supx∈X |f(x)|. Then (19) means that

∀k ≥ 1, ∀f ∈ B0,
∣∣π(f)− π̂k(f)

∣∣ ≤ γk ‖f‖0
with γk = O

(
| ln τk| τk

)
. Recall that π(dy) = p(y)dµ(y). Assume that µ({x0}) = 0. Then,

using (13), the previous inequalities applied to f := 1{x0} imply

0 ≤ 1−
∫
X
pk(y) dµ(y) ≤ γk.

Hence

∀k ≥ 1, ∀f ∈ B0,
∣∣ ∫

X
f(y) p(y) dµ(y)−

∫
X
f(y) pk(y) dµ(y)

∣∣ ≤ 2 γk ‖f‖0,

from which we deduce the following corollary.

Corollary 3.2 Assume that the assumptions of Theorem 3.1 hold and that µ({x0}) = 0.
Then the sequence (pk)k≥1 given in (14) converges to p in the usual Lebesgue space L1(X,X , µ),
more precisely ∫

X

∣∣p(y)− pk(y)
∣∣ dµ(y) = O

(
| ln τk| τk

)
. (20)

Proof of Theorem 3.1. We apply [HL14, Prop. 2.1(b)] based on the Keller-Liverani pertur-
bation theorem [KL99]. Define (B1, ‖ · ‖1) as the weighted-supremum Banach space

B1 :=
{
f : X→C, measurable : ‖f‖1 := sup

x∈X
|f(x)|V (x)−1 <∞

}
.

Note that Inequality (3) writes as follows

∀n ≥ 0, ∀f ∈ B1, ‖Pnf − π(f) 1X‖1 ≤ C ρn ‖f‖1.

Since pk(x, y) ≤ p(x, y), P̂k continuously acts on both B0 and B1. In fact P̂k is finite-rank,
more precisely

P̂k(B1) ⊂ Fk
with Fk given in Section 2 (see (8)). Note that π̂k clearly defines a non-negative bounded
linear form on B1. Then, according to [HL14, Prop. 2.1(b)], Property (19) follows from the
next Lemmas 3.3 and 3.4. �

Lemma 3.3 We have

∀k ≥ 1, P̂kV ≤ δV + L with L := M + 1 and M given in (18a).

Proof. If x ∈ X\Xk, then (P̂kV )(x) = V (x0)ψk(x) ≤ 1. If x ∈ Xk, then we obtain (see (15)):

(P̂kV )(x) =
∑
i∈Ik

mi,k(V ) 1Xi,k(x) + V (x0)ψk(x)

≤
∑
i∈Ik

(∫
X
V (y) p(x, y) dµ(y)

)
1Xi,k(x) + 1

≤ (PV )(x) + 1.

The desired inequality follows from (18a). �
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Lemma 3.4 For every k ≥ 1 we have: sup
f∈B0, ‖f‖0≤1

‖P̂kf − Pf‖1 ≤ τk.

Proof. Let f ∈ B0, ‖f‖0 ≤ 1. If x ∈ X \ Xk, it follows from (P̂kf)(x) = f(x0)ψk(x) that∣∣(P̂kf)(x)− (Pf)(x)
∣∣

V (x)
≤ ψk(x) + (P |f |)(x)

V (x)
≤ 2

V (x)
≤ 2

v(k)
. (21)

Next assume that x ∈ Xk. Then we obtain from the definition of Q̂k that∣∣(Q̂kf)(x)− (Pf)(x)
∣∣

V (x)
≤

∫
X

∣∣pk(x, y)− p(x, y)
∣∣

V (x)
dµ(y)

≤
∫
X\Xk

∣∣pk(x, y)− p(x, y)
∣∣

V (x)
dµ(y)︸ ︷︷ ︸

:=αk(x)

+

∫
Xk

∣∣pk(x, y)− p(x, y)
∣∣

V (x)
dµ(y)︸ ︷︷ ︸

:=βk(x)

Since pk(x, y) = 0 when y ∈ X \ Xk, we obtain that

αk(x) =

∫
X\Xk

p(x, y)

V (x)
dµ(y) =

P
(
x,X \ Xk

)
V (x)

≤ αk

from the definition (18b) of αk. Now, since V ≥ 1, it follows from Conditions (5) and (18c)
that

βk(x) =

∫
Xk

∣∣∣∣∑
i∈Ik

1Xi,k(x) inf
t∈Xi,k

p(t, y)−
∑
i∈Ik

1Xi,k(x) p(x, y)

∣∣∣∣ dµ(y)

≤
∫
Xk

∑
i∈Ik

1Xi,k(x)
∣∣p(x, y)− inf

t∈Xi,k
p(t, y)

∣∣ dµ(y)

≤
∫
Xk

∑
i∈Ik

1Xi,k(x) sup
u∈Xi,k

∣∣p(x, y)− p(u, y)
∣∣ dµ(y)

≤ δθk

∫
Xk

∑
i∈Ik

1Xi,k(x)Li,k,θ(y) dµ(y)

≤ δθk
∑
i∈Ik

1Xi,k(x)

∫
Xk

Li,k,θ(y) dµ(y)

≤ δθk `k,θ.

We have proved that, for every f ∈ B0 such that ‖f‖0 ≤ 1 and for every x ∈ Xk, we have∣∣(Q̂kf)(x)− (Pf)(x)
∣∣

V (x)
≤ αk + `k,θ δ

θ
k. (22)

Moreover we deduce from the definition of ψk and from (22) that

0 ≤ ψk(x)

V (x)
=

1− (Q̂k1X)(x)

V (x)
=

(P1X)(x)− (Q̂k1X)(x)

V (x)
≤ αk + `k,θ δ

θ
k. (23)

8



It follows from Inequalities (22) and (23) that, for every f ∈ B0 such that ‖f‖0 ≤ 1 and for
every x ∈ Xk, we have:∣∣(P̂kf)(x)− (Pf)(x)

∣∣
V (x)

=

∣∣(Q̂kf)(x) + f(x0)ψk(x)− (Pf)(x)
∣∣

V (x)

≤ ψk(x)

V (x)
+

∣∣(Q̂kf)(x)− (Pf)(x)
∣∣

V (x)

≤ 2
(
αk + `k,θ δ

θ
k

)
.

This inequality and (21) provide the conclusion of Lemma 3.4. �

Remark 3.5 The inequality (b) of [HL14, Prop. 2.1] provides explicit bounds in (19) and
(20) in terms of the constants δ, L in (18a) and the constants C and ρ in (3). Unfortunately,
finding explicit constants ρ ∈ (0, 1) and C > 0 in (3) is a difficult issue, even for simple
models as AR(1). Such constants can be obtained in our context by applying the procedure
of [HL14, Th. 4.1], but the resulting constant C is too large to be numerically interesting.
An alternative way is to use, for k larger and larger, the bound provided by Inequality (a) of
[HL14, Prop. 2.1(a)], which is only based on the spectral properties of the finite stochastic
matrix Bk. But again the resulting constants are too large. In fact the numerical applications
presented in Section 6 show that the convergence in (19) and (20) is much better than what
is provided by using the constants derived from [HL14, Prop. 2.1].

4 Applications to first order autoregressive processes

4.1 The standard AR(1) process

Let (Xn)n∈N be a standard first order linear autoregressive process, that is

∀n ≥ 1, Xn = %Xn−1 + ϑn, (24)

where X0 is a real-valued random variable (r.v.) and (ϑn)n∈N is a sequence of real-valued
independent and identically distributed (i.i.d.) random variables, also assumed to be inde-
pendent from X0. We suppose that |%| < 1, that ϑ1 has a pdf ν, called the innovation density
function, with respect to the Lebesgue measure dµ(y) := dy on R. Assume that the three
following conditions are satisfied:

(a) ϑ1 has a moment of order m for some m ∈ [1,+∞), namely

∃m ∈ [1,+∞), ηm :=

∫
R
|x|m ν(x) dx <∞; (25)

(b) ν is continuously differentiable on R and its derivative ν ′ is assumed to be right differ-
entiable on R;

(c) finally

I ′ :=

∫
R
|ν ′(y)| dy <∞ and M ′′ := sup

t∈R
|ν ′′r (t)| <∞ (26)

where ν ′′r (t) denotes the right derivative of ν ′ at t.
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Let X := R be equipped with its usual distance d(x, x′) := |x − x′| and with its Borel
σ-algebra X . Recall that (Xn)n∈N is a Markov chain with transition kernel P defined by

∀A ∈ X , P (x,A) :=

∫
R

1A(y) p(x, y) dy with p(x, y) := ν(y − %x). (27)

It is well-known from [MT93] that (Xn)n∈N admits a unique stationary probability measure π
on R, and that π is absolutely continuous with respect to the Lebesgue measure, with density
function p such that

∫
R |y|

mp(y)dy <∞ and satisfying

∀x ∈ R, p(x) =

∫
R
ν(x− %u) p(u) du.

For x ∈ R, we define V (x) = b1 + |x|mc where m is the positive real number given in (25)
and where b·c denotes the integer part function on R. According to (25) and |%| < 1, P is
V -geometrically ergodic (see [MT93]). In the sequel we fix any δ ∈ (|%|m, 1). It can be easily
deduced from (25) that there exists M ≡M(δ) such that

PV ≤ δV +M. (28)

For every k ≥ 1, we choose δk > 0 such that δk = O(1/k) and (for the sake of simplicity)
such that qk := 2k/δk ∈ N. Set Xk = [−k, k[, and consider the following partition of Xk:

Xk :=

qk−1⊔
i=0

Xi,k with Xi,k :=
[
xi,k, xi+1,k

[
, xi,k = −k + i δk. (29)

The associated discretized Markov kernels P̂k and the probability measures π̂k on R are
defined by (7) and (12) respectively. The associated function pk is given in (14).

Proposition 4.1 Let δk be such that δk > 0 and δk = O(1/k). Assume that the innovation
density function ν(·) satisfies Conditions (25) and (26). Then

‖π − π̂k‖TV = O
(
| ln τk| τk

)
, ‖p− pk‖L1(R) = O

(
| ln τk| τk

)
with τk =

1

km
+ δk. (30)

Proof. Proposition 4.1 follows from Theorem 3.1 and Corollary 3.2, provided that Assump-
tions (18b) and (18c) are satisfied (all the others assumptions of Theorem 3.1 have been
already checked above). First the real number αk in (18b) satisfies

αk =

∫
|y|>k(1−|%|)

ν(y) dy ≤ ηm
(1− |%|)m km

from Markov’s inequality. Thus (18b) holds. Second, we obtain for every (x, x′) ∈ Xi,k

|p(x, y)− p(x′, y)| =
∣∣ν(y − %x)− ν(y − %x′)

∣∣
≤ |%| |x− x′|

∣∣ν ′(y − % c)∣∣ for some c ≡ cx,x′,y ∈ Xi,k
≤ |%| |x− x′|

(∣∣ν ′(y − % c)− ν ′(y − % xi,k)∣∣+
∣∣ν ′(y − % xi,k)∣∣)

≤ |%| |x− x′|
(
|%|M ′′ δk +

∣∣ν ′(y − % xi,k)∣∣)
10



so that

Li,k,1(y) := sup

{
|p(x, y)− p(x′, y)|

|x− x′|
, (x, x′) ∈ Xi,k × Xi,k, x 6= x′

}
≤ |%|

(
|%|M ′′ δk +

∣∣ν ′(y − % xi,k)∣∣) .
Using the notations of (26), we obtain that

`k,1 := max
i∈Ik

∫ k

−k
Li,k,θ(y) dy ≤ 2 |%|2M ′′k δk + |%| I ′. (31)

Recall that δk = O(1/k) by hypothesis, so that supk≥1 `k,1 <∞. Hence (18c) holds. �

Remark 4.2 Alternative assumptions (instead of (26)) on the innovation density function
ν are possible. For instance, in place of (26), we may suppose that the derivative ν ′ of ν
exists and that D := supx∈R |ν ′(x)| < ∞. Then Li,k,1(·) ≤ D, so that `k,1 = O(k). Thus,
provided that δk = o(1/k), the statements of Proposition 4.1 is replaced with the following
ones: ‖π − π̂k‖TV and ‖p − pk‖L1(R) are both O

(
| ln τk| τk

)
with τk = 1/km + k δk and both

‖π − π̂k‖TV and ‖p− pk‖L1(R) converge to 0 when k→+∞ .

Remark 4.3 In [DDGMR00] a similar state-discretization procedure is proposed to estimate
the spectrum of the Markov kernel P given in (27). Because the authors of [DDGMR00] use
the standard perturbation theory, they have to assume that the innovation density function
is compactly supported in some interval [a, b] (the action of P is then considered on the
usual Lebesgue space L2([a, b]). The use of the Keller-Liverani perturbation theorem in our
work (see the proof of Theorem 3.1) allows us to consider innovation density functions with
unbounded support.

Remark 4.4 If (Xn)n∈N is a first order autoregressive model given by (24), then for any

` ≥ 1 the sequence (X
(`)
n )n≥0 defined by X

(`)
n := X`n satisfies the following linear recursion

∀n ≥ 1, X(`)
n = %`X

(`)
n−1 + ϑ (`)

n with ϑ (`)
n =

` n∑
k= `(n−1)+1

%`n−k ϑk. (32)

The sequence (ϑ
(`)
n )n≥0 is i.i.d., and (X

(`)
n )n≥0 is a first order autoregressive model having

the same stationary density function as (Xn)n∈N. The transition kernel of (X
(`)
n )n≥0 is P `,

which is of the form (1) too. More precisely, for every x ∈ R we have P `(x, dy) = p`(x, y) dy

with p`(x, y) := ν`(y − %`x), where ν` is the pdf of ϑ
(`)
1 , that is ν` := µ` ? · · · ? µ1, where

µk denotes the pdf of the r.v. %`−k ϑk for k = 1, . . . , `, and where the symbol ”?” stands
for the standard convolution product. This fact may be relevant since ν` is more and more
regular as ` increases, so that ν` may satisfy the regularity condition required in (26) for `
large enough. In this case the stationary density function of (Xn)n∈N can be approximated by
applying Proposition 4.1 to P ` (thus with ν` in place of ν). For instance, if the innovation
law is the uniform distribution on [0, 1], then Proposition 4.1 applies to the Markov kernel

P 3 since the associated innovation density function (i.e. the law of ϑ
(3)
1 := %2 ϑ1 + % ϑ2 + ϑ3)

is continuously differentiable on R and satisfies (26).
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4.2 The AR(1) process with ARCH(1) errors

The following example is derived from [BK01]. Let X := R be equipped with its usual distance
d(x, x′) := |x− x′| and with its Borel σ-algebra X . Let α ∈ R and let β, λ > 0. We consider
the autoregressive process (Xn)n∈N with ARCH(1) errors, defined by

∀n ≥ 1, Xn = αXn−1 +
(
β + λX2

n−1
)1/2

ϑn, (33)

where X0 is a real-valued r.v. and (ϑn)n∈N is a sequence of i.i.d. real-valued random variables
which are independent from X0. We suppose that ϑ1 has a pdf ν with respect to the Lebesgue
measure dµ(y) := dy on R, that ν is a bounded continuously differentiable and symmetric
function with full support R, that its derivatives ν ′ satisfies |ν ′(x)| = O±∞(1/|x|), and finally
that ϑ1 has a second-order moment. Then (Xn)n∈N is a Markov chain with transition kernel
P defined by P (x,A) :=

∫
R 1A(y) p(x, y) dy (A ∈ X ) with

p(x, y) :=
(
β + λx2

)−1/2
ν

(
y − αx(

β + λx2
)1/2

)
. (34)

As in Section 4, for every k ≥ 1 we consider qk := 2k/δk, Xk = [−k, k[, and Xi,k as in (29).
Moreover assume that

E
[

ln
∣∣α+

√
λϑ1

∣∣ ] < 0. (35)

Then there exists κ > 0 such that, for every u ∈]0, κ[, we have E[|α+
√
λϑ1|u] < 1, see [BK01,

Prop. 2]. Let η ∈]0,min(κ, 2)[.

Proposition 4.5 Under the previous assumptions and notations, the following estimates
hold true:

‖π − π̂k‖TV = O
(
| ln τk| τk

)
, ‖p− pk‖L1(R) = O

(
| ln τk| τk

)
with τk =

1

kη/2
+ k δk. (36)

Thus ‖π − π̂k‖TV and ‖p− pk‖L1(R) converge to 0 when k→+∞ provided that δk = o(1/k).

Proof. For x ∈ R, we define V (x) = 1 + |x|η. The V -geometrical ergodicity of P , together
with Condition (18a), are proved in [BK01, Th. 1]. To study (18b), we assume that α > 0
(similar arguments hold if α < 0). Note that∫ +∞

k
p(x, y) dy =

∫
φk(x)

ν(t) dt with φk(x) :=
k − αx(

β + λx2
)1/2 .

Let x ∈ [−k, k]. If
√
k ≤ |x| ≤ k, then

1

1 + |x|η

∫ +∞

k
p(x, y) dy ≤ 1

1 + kη/2
.

If |x| ≤
√
k, then 1

1+|x|η ≤ 1 and∫
φk(x)

ν(t) dt ≤
∫
φk(
√
k)
ν(t) dt = O

(
1/k
)

12



from φk(
√
k) ≤ φk(x), φk(

√
k) ∼+∞ (k/λ)1/2, and from Markov’s inequality (since by hy-

pothesis ν has a second-order moment). Since η < 2, we have proved that

sup
|x|≤k

∫ +∞

k
p(x, y) dy = O

(
1

kη/2

)
.

The same conclusion can be similarly obtained for the term sup|x|≤k
∫ −k
−∞ p(x, y) dy. Conse-

quently αk in (18b) satisfies: αk = O
(
k−η/2

)
. Next, to obtain (18c) set M := supx∈R ν(x),

M ′ := supx∈R ν
′(x), and C := supx∈R |x ν ′(x)|. An easy computation gives∣∣∣∣∂p∂x(x, y)

∣∣∣∣ ≤ Mλ|x|
(β + λx2)3/2

+
M ′|α|
β + λx2

+
Cλ|x|

(β + λx2)3/2
.

Thus D := sup(x,y)∈R2 | ∂p∂x(x, y)| < ∞, so that the function Li,k,θ defined in (17) satisfies
(with θ = 1): ∀y ∈ R, Li,k,1(y) ≤ D. Therefore the real numbers `k,θ in (18c) are such
that `k,1 ≤ 2Dk. The above inequalities and Theorem 3.1 provide the desired statement in
Proposition 4.5. �

5 A generic algorithm to get pk(y)

Let (Xn)n∈N be a Markov chain with transition kernel p(·, ·). In this section, we propose
a generic algorithm to get the material provided by Section 2. Specifically, the focus is on
the non-negative function pk (14) which allows us to obtain the approximating invariant
probability given by Proposition 2.1. According to Section 2, the following algorithm can be
proposed.

1. Fix the positive integer k such that Xk := [−k, k[ and choose the integers k− et k+ such
that [k−, k+[⊂ Xk (you can take k− = −k, k+ = k).

2. Choose a mesh δk of the partition of [k−, k+[ such that the number of intervals of the
subdivision is qmax := (k+ − k−)/δk ∈ N∗,
Let us introduce the (qmax +1) points of the subdivision

{
xi,k := k−+ iδk, i = 0, . . . , qmax

}
and consider the finite partition {Xi,k = [xi,k, xi+1,k[, i = 0, . . . , qmax − 1} of [k−, k+[

3. Introduce
pi,k(y) := inf

t∈Xi,k
p(t, y).

4. Choose j0 ∈ {1, . . . , qmax − 1}, then for j = j0 compute:

Bk(i, j0) :=

∫ xj0+1,k

xj0,k

pi,k(y) dy + 1−
∫ k+

k−
pi,k(y) dy for i = 0, . . . , qmax − 1

Bk(qmax, j0) := 1

Compute for j = 0, . . . , qmax − 1, j 6= j0,

Bk(i, j) :=

∫ xj+1,k

xj,k

pi,k(y) dy for i = 0, . . . , qmax − 1

Bk(qmax, j) := 0 pour i = qmax

Set B(i, j) = 0 for j = qmax et i = 1, . . . , qmax.
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5. Compute theBk-invariant probability vector πk ofBk: it has the form πk = ({πi,k}0≤i<qmax , 0)

6. Finally, the non-negative function pk(·) is defined by (see (14)):

∀y ∈ R, pk(y) := 1[k−,k+[(y)

qmax−1∑
i=0

πi,k pi,k(y).

The third step of the algorithm involves the computation of an extreme value of the
function t 7→ p(t, y) on a small interval (length δk). Such a numerical minimization may be
computationally expensive. But it can be checked that, for AR(1) models in Subsections 6.1,
6.2, the function t 7→ p(t, y) has no local minima so that the minimum may be setted to
min(p(xi,k, y), p(xi+1,k, y)). The case of the AR(1) with ARCH(1) errors may produce local
minima for some parameter (β, α, λ). But it can be expected that any approximation of
pi,k(y) in Step 3. does not provide large numerical errors from the fact that it is made on a
very small interval of length δk << 1.

Such an algorithm has been implemented using MATLAB software to obtain the numerical
results of Section 6.

Remark 5.1 (Multivariate Markov models) A natural issue is the generalization of the
material of Sections 2 and 3 to multivariate Markov models. A general discussion is beyond
the scope of this paper. We only mention that technical Conditions (18a,18b,18c) have natural
counterparts for multivariate autoregressive models (e.g. see [MT93]). Thus it can seen from
this section that the main difficulties in a multidimensional framework are computational
issues due to computation of extreme values and integrals.

6 Numerical examples

6.1 Application to the Gaussian AR(1)

The benchmark model is the Gaussian linear model where the random variables ϑn in (24)
have Gaussian distribution N (0, σ2). In such a context, it is well-known that the invariant
probability π of the Markov chain (Xn)n∈N specified by (24) is N (0, σ2/(1− %2)). Therefore
the pdf’s ν and p are

ν(y) =
1√

2πσ2
exp

(
− y2

2σ2

)
p(y) =

√
1− %2√
2πσ2

exp

(
−(1− %2)y2

2σ2

)
. (37)

Using the algorithm in Section 5, we obtain the following numerical results. For the sake of
simplicity, set σ2 := 1. The support of the approximation is Xk := [−k, k[ for specific value
of the positive integer k, and δk is the mesh of the partition of Xk used for the computation.
The supremum norm of the error vector vk :=

(
pk(xi,k) − p(xi,k)

)
i=0,...,qk

between pk and p

on the grid of points {xi,k, i = 0, . . . , qk} given by the partition of Xk (see (29)) is denoted
by ‖vk‖∞ and reported in Table 1. The Riemann sum estimation ‖vk‖1,R := δk‖vk‖1 of
‖pk − p‖L1 is provided. These errors are computed using a decreasing sequence of meshes δk
and a support Xk selected according to the comments of Remark 6.1. As it can be seen, the
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quality of the approximation is quite satisfactory. Figure 1 gives the graphs of the two pdf
pk and ν. Note that the exact invariant pdf is not reported in Figure 1 since the estimated
and exact graphs cannot be distinguished at this scale. From Table 1, whatever the value of
%, the errors norms ‖vk‖∞ or ‖vk‖1,R scale linearly with the mesh δk.

%
0.5 0.7 0.9

k 8 14 40
δk 0.05 0.02 0.005 0.05 0.02 0.005 0.05 0.02 0.005

‖vk‖1,R 0.01 0.004 0.001 0.0151 0.0061 0.0015 0.0540 0.025 0.0058
‖vk‖∞ 0.0025 0.001 2.45× 10−04 0.0035 0.0014 3.45× 10−4 0.0099 0.0041 0.0011

Table 1: Numerical results for the Gaussian linear model

Remark 6.1 The algorithm is sensitive to the support Xk of the approximate function pk.
Indeed, if the value of k in Xk is too small with respect to the support of the target pdf p of
π, then the approximate function pk may appear to be far from the target p.

6.2 Applications to AR(1) where the invariant pdf p is unknown

When the target pdf p is unknown, the set Xk (the support of pk, see (29)) can be chosen
as follows. If the innovation pdf ν has a support contained in [−a, a] and if X0 = 0, then
P{Xn ∈ [−sn, sn]} = 1 with sn := a

∑n−1
k=0 %

k, so that the pdf p has support [−s, s] with
s := a/(1 − %). If ν is not compactly supported, then the previous remark may be applied
with a such that ν(x) is meaningless for |x| > a. Obviously this remark may be easily adapted
when the exact or approximated support of ν is contained in [0, a]. In the previous Gaussian
case, although this question is less relevant since the target pdf p is known, we take a = 4
and s = 4/(1− %) in Figure 1.

6.2.1 Exponential innovation distribution

In this part, the innovation distribution ν is set to the exponential one with parameter 1.
Recall that the pdf ν must satisfy the regularity conditions of Proposition 4.1. Therefore, as
discussed in Remark 4.4, the pdf ν3 is used as input in the algorithm instead of ν:

ν3,%(x) =
1

(1− %)2

(
e−x − e−x/% +

%
(
e−x/%

2 − e−x
)

1 + %

)
1[0,+∞[(x)

and the dynamics is given by (32) with ` := 3. The support of ν3,% may be truncated to
[0, a3,%] with a3,0.5 = 11, a3,0.7 = 12, a3,0.9 = 14, so that the support of p may be truncated
to [0, s%] with s% = ba3,%/(1 − %3)c + 1, that is s0.5 = 13, s0.7 = 19, s0.9 = 52. Thus we use
the interval [0, 13], [0, 19], [0, 52] as Xk for % := 0.5, 0.7, 0.9 (apply the above remark with ν3,%
and %3 in place of ν and %). In Figure 2 are reported the graphs of the estimated pk of the
(unknown) invariant pdf p for % = 0.5, 0.7, 0.9.

The invariant probability distribution π with pdf p satisfies πP = π, that is:
∫
R p(x) p(x, ·)dx =

p(·). Such a relation can be checked on the grid of points {xi,k, i = 0, . . . , qk} given by the
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partition of Xk (see (29)):

∀xi,k,
∫
R
p(x) p(x, xi,k)dx = p(xi,k).

The integral on the left hand side can be estimated using the Riemann sum denoted by
p̃k(xi,k) :=

∑
j pk(xj,k)P (xj,k, xi,k)δk. Therefore, in order to get some confidence into the

estimated invariant pdf pk, the uniform norm of the following vector wk :=
(
pk(xi,k) −

p̃k(xi,k)
)
i=0,...,qk

is reported in Table 2. As it can be seen, the results are satisfactory.

Remark 6.2 The case % = 0.9 (even % = 0.8) shows that the graphs of ν3,% and p (given by
the approximation pk) are very far. Consequently, in this case, the method of [Hai98, AH00,
ANR07] requires to compute hN via (4) for some quite large integer N . Since the use of (4)
is recursive, the successive approximations h1, . . . , hN should involve large cumulative errors.
A similar comment holds true in the forthcoming case of the uniform innovation distribution.
As mentioned in Introduction, our method does not contain this drawback since it is not based
on a recursive algorithm.

6.2.2 Uniform innovation distribution

Here, the innovation distribution ν is set to the uniform one on [0, 1]. As discussed in
Remark 4.4, the pdf ν3 is used as input in the algorithm instead of ν (see [ANR07, p 281-282]
for an explicit formula). Here the dynamics is given by (32) with ` := 3. The graphs of
ν3,% with % = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 are reported in Figures 3, 4 (blue curves). The support
of ν3,% is [0, 1 + % + %2] so that the support of the target pdf p% is included into [0, s%] with
s% := b(1+%+%2)/(1−%3)c+1. Thus we use the intervals [0, 2], [0, 2], [0, 3], [0, 4], [0, 5], [0, 10] as
set Xk for % := 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. In Figure 3, we report the graphs of the approximated
function pk of the (unknown) invariant pdf p and the pdf ν3,% for % = 0.4, 0.5, 0.6. The graphs
for % = 0.7, 0.8, 0.9 are reported in Figure 4. As in the exponential case, the expected
invariance of the estimated pdf pk is evaluated by the uniform norm of the following vector
wk :=

(
pk(xi,k)− p̃k(xi,k)

)
i=0,...,qk

(see Table 2). The results are still satisfactory.

Expo
% 0.5 0.7 0.9

‖wk‖∞ 8.73× 10−4 9.47× 10−4 0.0013

Unif
% 0.7 0.8 0.9

‖wk‖∞ 0.0045 0.0050 0.0051

Table 2: AR(1): checking P -invariance of the estimated pdf pk with δk := 0.02

6.2.3 AR(1) with ARCH(1) errors

In this part, we apply our generic algorithm to the autoregressive model with ARCH(1) errors
and transition kernel defined in (34). The innovation distribution is the standard Gaussian
one, that is ϑn ∼ N (0, 1). The estimated invariant pdf p15 with support X15 = [−15, 15]
and the Gaussian pdf are reported in Figure 5 when (β, α, λ) = (1, 0.7, 0.2). As for AR(1)
models, the invariance property of the estimated pdf p15 is evaluated by w15 := ‖

(
p15(xi,15)−

p̃15(xi,15)
)
i=0,...,q15

‖∞ = 0.0223.
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Figure 1: (Gauss) For % = 0.5, 0.7, 0.9 and δk = 0.02: graphs of the invariant pdf p8, p14, p40
(red) and the innovation pdf ν (blue)
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Figure 2: (Expo) For % = 0.5, 0.7, 0.9 with δk = 0.02: graphs of the estimated invariant pdf
pk (red) and the pdf ν3,% (blue)
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Figure 3: (Unif) For % = 0.4, 0.5, 0.6 with δk = 0.02: graphs of the estimated pdf pk (red)
and ν3,% (blue)
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Figure 4: (Unif) For % = 0.7, 0.8, 0.9 with δk = 0.02: graphs of the estimated pdf pk (red)
and ν3,% (blue)
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Figure 5: (ARCH) For δ15 = 0.02: graphs of the estimated pdf p15 (red) and the innovation
pdf (blue)
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