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Let (X n ) n∈N be a V -geometrically ergodic Markov chain on a measurable space X with invariant probability distribution π. In this paper, we propose a discretization scheme providing a computable sequence ( π k ) k≥1 of probability measures which approximates π as k growths to infinity. The probability measure π k is computed from the invariant probability distribution of a finite Markov chain. The convergence rate in total variation of ( π k ) k≥1 to π is given. As a result, the specific case of first order autoregressive processes with linear and non-linear errors is studied. Finally, illustrations of the procedure for such autoregressive processes are provided, in particular when no explicit formula for π is known.

Introduction

Let (X, d) denote a metric space equipped with its Borel σ-algebra X . Let (X n ) n∈N be a Markov chain with state space (X, X ) and transition kernel P of the form ∀x ∈ X, P (x, dy) = p(x, y) dµ(y),

where p : X 2 →[0, +∞) is a measurable function and µ is a positive σ-additive measure on (X, X ). Typically X is R d and µ is the Lebesgue measure on R d . Moreover let v : [0, +∞) →[1, +∞) denote an unbounded increasing continuous function such that v(0) = 1, and let V : X →[1, +∞) be defined by

∀x ∈ X, V (x) := v d(x, x 0 ) , (2) 
where x 0 ∈ X is fixed. We assume that P admits an invariant probability measure π on (X, X ). Since P is of the form (1), π is absolutely continuous with respect to µ, that is

The authors in [Hai98, AH00, ANR07] developed another method to approximate the stationary pdf p of linear processes. Their approach consists in approximating the stationary pdf p of an AR(1) process (i.e. X n = X n-1 + ϑ n , see Subsection 4.1 for details) by the sequence (h n ) n∈N of functions recursively defined by

h 0 := ν and ∀n ≥ 1, h n (x) := R ν(x -u) h n-1 (u) du (4) 
where ν denotes the innovation pdf (i.e. the law of ϑ 1 ). Hainman in [START_REF] Haiman | Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes[END_REF] proved that (h n ) n∈N uniformly converges to p with geometric rate under strong assumptions on the support of ν. The authors in [START_REF] Anděl | On calculation of stationary density of autoregressive processes[END_REF] proved that (h n ) n∈N converges point-wise to p under some mild assumptions on the Fourier transform of ν, and they established the uniform convergence with geometric rate in the case when ν is the exponential pdf. In [START_REF] Anděl | Methods for calculating stationary distribution in linear models of time series[END_REF] the uniform convergence of (h n ) n∈N to p, with geometric rate, is extended to general causal linear processes under mild assumptions on the noise process. Closely linked to these works, we also mention the paper [START_REF] Loges | The stationary marginal distribution of a threshold AR(1) process[END_REF] which studies the characteristic function of the stationary pdf p for a threshold AR(1) model with noise process having Laplace distribution, as well as the paper [START_REF] Anděl | Stationary distribution of absolute autoregression[END_REF] which investigates p for absolute autoregressive associated with noise process having Gaussian, Cauchy or Laplace distribution (from [START_REF] Chan | A note on certain integral equations associated with nonlinear time series analysis[END_REF] this issue may be reduced to the computation of the stationary pdf of an auxiliary AR(1) process).

Due to [START_REF] Anděl | Methods for calculating stationary distribution in linear models of time series[END_REF], the approximation of p by (h n ) n∈N via Equation (4) is theoretically efficient for linear processes since the rate of convergence is geometric. However, except when the noise process has a special usual law, the exact calculation of the integral in (4) can not be carried out. Moreover, any numerical method recursively providing approximations of the integrals h 1 , . . . , h p for some p ≥ 1 induces some cumulative errors. For linear processes our method is thus an alternative way to approximate p: the rate of convergence in our work is not geometric (a priori), but for some k ≥ 1 the approximation p k of p as above described can be directly computed (without any recursive procedure). Section 6 provides numerical evidence for robustness of the method. Moreover our approach applies to any V -geometrical Markov chain (not only to linear processes) admitting a probability kernel P (x, dy) of the form (1), provided that the kernel p(•, •) has some suitable Lipschitz-regularity properties (see Assumption (18c)). For instance our method applies to autoregressive process with ARCH(1) errors (see Subsections 4.2 and 6.2.3).

The invariant pdf p satisfies the functional equation T p = p, where T is the linear operator defined by (T f )(•) = X p(y, •) f (y) dµ(y). However this operator T is not used in this work. Indeed that is not T , but P , which is approximated by a sequence of finite-rank operators ( P k ) k≥1 . The reason for this is that P has good spectral properties on the usual weighted-supremum Banach space B 1 associated with V due to the V -geometrical ergodicity assumption. Also note that the classical theory of perturbed operators does not apply here because the sequence ( P k ) k≥1 does not converge to P for the usual operator norm on B 1 (in particular P is not a compact operator on B 1 ). To get around this difficulty, we use the results of [START_REF] Hervé | Approximating Markov chains and V -geometric ergodicity via weak perturbation theory[END_REF] based on the Keller-Liverani perturbation theorem [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF]: this method requires an auxiliary weaker operator norm on B 1 (see Lemma 3.4), as well as uniform (in k) drift inequalities for P k (see Lemma 3.3). In the context of perturbed V -geometrically ergodic Markov chains, the interest of using an auxiliary norm appears in [START_REF] Shardlow | A perturbation theory for ergodic Markov chains and application to numerical approximations[END_REF] (see [START_REF] Keller | Stochastic stability in some chaotic dynamical systems[END_REF] for similar issues in ergodic theory). For recent works related to this weak perturbation method in Markovian models, see [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF][START_REF] Rudolf | Perturbation theory for Markov chains via Wasserstein distance[END_REF][START_REF] Truquet | A perturbation analysis of some Markov chains models with timevarying parameters[END_REF] and the references therein.

2 Definition of the approximating probability measure π k Let x 0 ∈ X be fixed and, for every integer k ≥ 1, let us consider any

X k ∈ X such that x ∈ X : d(x, x 0 ) < k ⊆ X k ⊆ x ∈ X : d(x, x 0 ) ≤ k .
Let us introduce the following finite partitions of the sequence of spaces (X k ) k≥1 . Definition (A). Let (δ k ) k≥1 be a sequence of positive real numbers such that lim k δ k = 0. For every integer k ≥ 1, we consider a finite family {X j,k } j∈I k of disjoint measurable subsets of X k such that

X k = j∈I k X j,k with ∀j ∈ I k , diam(X j,k ) ≤ δ k . ( 5 
)
where diam(X j,k ) := sup d(x, x ) : (x, x ) ∈ X j,k . The positive real number δ k must be thought of as the mesh of the partition {X j,k } j∈I k .

Define

∀k ≥ 1, ∀(x, y) ∈ X 2 , p k (x, y) := 1 X k (y) i∈I k 1 X i,k (x) inf t∈X i,k p(t, y),
Observe that p k ≤ p. Below f : X → C denotes any bounded measurable function on X where C denoted the set of complex numbers. We define the following non-negative kernel Q k :

∀x ∈ X, ( Q k f )(x) := X f (y) p k (x, y) dµ(y) = i∈I k X k f (y) inf t∈X i,k p(t, y) dµ(y) 1 X i,k (x). ( 6 
)
Note that Q k f vanishes on X \ X k . Let ψ k be the non-negative function on X defined by

ψ k := 1 X -Q k 1 X .
We have

ψ k ≡ 1 on X \ X k , and 0 ≤ ψ k ≤ 1 X since 0 ≤ Q k 1 X ≤ P 1 X = 1 X . Next define the following kernel: ∀x ∈ X, ( P k f )(x) := ( Q k f )(x) + f (x 0 ) ψ k (x). ( 7 
)
Then P k is a Markov kernel on (X, X ), i.e. P k is non-negative (f ≥ 0 ⇒ P k f ≥ 0) and

P k 1 X = 1 X .
Moreover we deduce from (7) and (6) that P k (f ) ∈ F k , where F k is the finite-dimensional space spanned by the system of functions 1

X i,k , i ∈ I k ∪ {ψ k }. Observe that 1 X ∈ F k from 1 X = Q k 1 X + ψ k and (6). Now define b k := 1 X -1 X k = 1 X\X k . Then b k ∈ F k since 1 X ∈ F k and b k = 1 X -i∈I k 1 X i,k
. Thus another basis of F k is given by

C k := 1 X i,k , i ∈ I k ∪ {b k }. (8) 
Let {x i,k } i∈I k be such that x i,k ∈ X i,k and let x k ∈ X \ X k . Then we have for every g ∈ F k :

g = i∈I k g(x i,k ) 1 X i,k + g(x k ) b k . (9) 
Now, from P k (F k ) ⊂ F k we can define the linear map P k : F k → F k as the restriction of

P k to F k . Let N k := dim F k = Card (I k ) + 1,
and let B k be the N k × N k -matrix defined as the matrix of P k with respect to the basis C k . Note that

P k b k = P k b k = Q k b k + b k (x 0 )ψ k = 0, ( 10 
)
and that for every j ∈ I k

P k 1 X j,k = P k 1 X j,k = i∈I k ( P k 1 X j,k )(x i,k ) 1 X i,k + ( P k 1 X j,k )(x k ) b k (from (9)) = i∈I k ( Q k 1 X j,k )(x i,k ) + 1 X j,k (x 0 ) ψ k (x i,k ) 1 X i,k + ( Q k 1 X j,k )(x k ) + 1 X j,k (x 0 ) ψ k (x k ) b k = i∈I k ( Q k 1 X j,k )(x i,k ) + 1 X j,k (x 0 ) ψ k (x i,k ) 1 X i,k + 1 X j,k (x 0 ) b k .
The previous equalities show that B k is a non-negative matrix. Moreover Equality P k 1 X = 1 X reads as matrix equality B k • 1 k = 1 k where 1 k is the coordinate vector of 1 X in the basis C k and is given by 1 k = (1, . . . , 1) . The symbol • stands for the transpose operation. Thus B k is a stochastic matrix. Accordingly there exists a non-zero row-vector

π k ∈ [0, +∞) N k such that π k • B k = π k , and π k • 1 k = 1. ( 11 
)
Note that the last component of π k (i.e. the component associated with b k ) is zero since the last column of B k is zero from (10). We denote by π i,k the component of π k associated with the element 1 X i,k of the basis C k , so that the coordinate vector of

π k in C k is ({π i,k } i∈I k , 0). For every k ≥ 1 we set π k (f ) := π k • F k (12)
where

F k ≡ F k (f ) is the coordinate vector of P k f in the basis C k .
Proposition 2.1 π k defines a P k -invariant probability measure on (X, X ). Moreover we have

π k (dy) = p k (y) dµ(y) + 1 - X p k (y) dµ(y) δ x 0 , (13) 
where δ x 0 is the Dirac distribution at x 0 , and where p k is the non-negative function defined by ∀y ∈ X, p k (y) := 1 X k (y)

i∈I k π i,k inf t∈X i,k p(t, y), (14) 
Note that Formula (14) involves the infimum of the function t → p(t, y) on each subset X i,k . This is a technical choice to ensure that Lemma 3.3 holds true for P k . Specifically, this a simple choice to simplify the convergence analysis in Section 3 of the approximation scheme.

Proof. Recall that b k is defined by b k = 1 X -i∈I k 1 X i,k . From ψ k := 1 X -Q k 1 X it follows that ψ k = b k + i∈I k 1 X i,k -Q k 1 X . Define m i,k (f ) := X k f (y) inf t∈X i,k p(t, y) dµ(y) (15) 
and observe that

Q k f = i∈I k m i,k (f ) 1 X i,k .
Then we deduce from ( 6) and ( 7) that

P k f := ( Q k f ) + f (x 0 ) ψ k = i∈I k m i,k (f ) 1 X i,k + f (x 0 ) b k + i∈I k 1 X i,k -Q k 1 X = i∈I k m i,k (f ) + f (x 0 ) -f (x 0 ) m i,k (1 X ) 1 X i,k + f (x 0 )b k , so that (12) and i∈I k π i,k = 1 give π k (f ) := i∈I k π i,k [m i,k (f ) + f (x 0 ) -f (x 0 ) m i,k (1 X ) = i∈I k π i,k m i,k (f ) + f (x 0 ) 1 - i∈I k π i,k m i,k (1 X ) . (16) 
This proves Formula (13). Now we prove that π k defines a P k -invariant probability measure on (X, X ). Note that

∀i ∈ I k , m i,k (1 X ) ≤ X p(x i,k , y) dµ(y) = (P 1 X )(x i,k ) = 1, thus X p k (y) dµ(y) = i∈I k π i,k m i,k (1 X ) ≤ 1.
It follows from this remark and from ( 16) that π k is a probability measure on X.

Finally B k • F k is the coordinate vector of P 2 k f in C k since P k f ∈ F k and F k is the coordinate vector of P k f in C k .
Consequently we deduce from ( 12) and (11) that

π k ( P k f ) := π k • B k • F k = π k • F k = π k (f ). Thus π k is P k -invariant. 3 Convergence of ( π k ) k≥1 to π in total variation distance
The metric space X is equipped with a sequence of partitions satisfying Definition (A). The Markov kernel P on X is assumed to be of the form (1). Let θ ∈ (0, 1]. For k ≥ 1, i ∈ I k , and y ∈ X k , we denote by L i,k,θ (y) the following quantity in [0, +∞]

L i,k,θ (y) := sup |p(x, y) -p(x , y)| d(x, x ) θ , (x, x ) ∈ X i,k × X i,k , x = x . (17) 
Finally we assume that P satisfies the following assumptions ∃ δ ∈ (0, 1), ∃M ∈ (0, +∞), P V ≤ δV + M (18a)

α k := sup u∈X k P u, X \ X k V (u) -→ 0 when k → +∞ (18b) ∃ θ ∈ (0, 1], ∀k ≥ 1, k,θ := max i∈I k X k L i,k,θ (y) dµ(y) < ∞, and lim k → +∞ k,θ δ θ k = 0. (18c)
Actually (18a) is a drift type inequality (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]) which comes from the V -geometric ergodicity assumption (3). Technical conditions (18b) and (18c) are used to control the weak convergence of ( P k ) k≥1 to P (see Lemma 3.4). In the first order autoregressive models of Section 4, condition (18b) reduces to a polynomial moment condition on the noise (see (25) for instance), and Condition (18c) reduces to the control of the derivative of the noise (see (26) for instance).

Theorem 3.1 Let (δ k ) k≥1 be a sequence of positive real numbers from Definition (A). Assume that P is a V -geometrically ergodic Markov kernel of the form (1), and finally that Assumptions (18a)-(18c) hold. Then the probability measures π k on X given in (13) are such that π -π k T V → 0 when k → +∞, more precisely:

π -π k T V = O | ln τ k | τ k with τ k = 2 max 1 v(k) , α k + k,θ δ θ k . (19) 
Let (B 0 , • 0 ) denote the Banach space of bounded measurable C-valued functions on X equipped with the norm

f 0 := sup x∈X |f (x)|. Then (19) means that ∀k ≥ 1, ∀f ∈ B 0 , π(f ) -π k (f ) ≤ γ k f 0 with γ k = O | ln τ k | τ k .
Recall that π(dy) = p(y)dµ(y). Assume that µ({x 0 }) = 0. Then, using (13), the previous inequalities applied to

f := 1 {x 0 } imply 0 ≤ 1 - X p k (y) dµ(y) ≤ γ k . Hence ∀k ≥ 1, ∀f ∈ B 0 , X f (y) p(y) dµ(y) - X f (y) p k (y) dµ(y) ≤ 2 γ k f 0 ,
from which we deduce the following corollary.

Corollary 3.2 Assume that the assumptions of Theorem 3.1 hold and that µ({x 0 }) = 0.

Then the sequence (p k ) k≥1 given in (14) converges to p in the usual Lebesgue space L 1 (X, X , µ), more precisely

X p(y) -p k (y) dµ(y) = O | ln τ k | τ k . ( 20 
)
Proof of Theorem 3.1. We apply [HL14, Prop. 2.1(b)] based on the Keller-Liverani perturbation theorem [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF]. Define (B 1 , • 1 ) as the weighted-supremum Banach space

B 1 := f : X → C, measurable : f 1 := sup x∈X |f (x)|V (x) -1 < ∞ .
Note that Inequality (3) writes as follows

∀n ≥ 0, ∀f ∈ B 1 , P n f -π(f ) 1 X 1 ≤ C ρ n f 1 .
Since p k (x, y) ≤ p(x, y), P k continuously acts on both B 0 and B 1 . In fact P k is finite-rank, more precisely 

P k (B 1 ) ⊂ F k with F k given in
P k V ≤ δV + L with L := M + 1 and M given in (18a). Proof. If x ∈ X \ X k , then ( P k V )(x) = V (x 0 ) ψ k (x) ≤ 1. If x ∈ X k ,
then we obtain (see (15)):

( P k V )(x) = i∈I k m i,k (V ) 1 X i,k (x) + V (x 0 ) ψ k (x) ≤ i∈I k X V (y) p(x, y) dµ(y) 1 X i,k (x) + 1 ≤ (P V )(x) + 1.
The desired inequality follows from (18a).

Lemma 3.4 For every k ≥ 1 we have:

sup f ∈B 0 , f 0 ≤1 P k f -P f 1 ≤ τ k . Proof. Let f ∈ B 0 , f 0 ≤ 1. If x ∈ X \ X k , it follows from ( P k f )(x) = f (x 0 ) ψ k (x) that ( P k f )(x) -(P f )(x) V (x) ≤ ψ k (x) + (P |f |)(x) V (x) ≤ 2 V (x) ≤ 2 v(k) . (21) 
Next assume that x ∈ X k . Then we obtain from the definition of

Q k that ( Q k f )(x) -(P f )(x) V (x) ≤ X p k (x, y) -p(x, y) V (x) dµ(y) ≤ X\X k p k (x, y) -p(x, y) V (x) dµ(y) :=α k (x) + X k p k (x, y) -p(x, y) V (x) dµ(y) :=β k (x)
Since p k (x, y) = 0 when y ∈ X \ X k , we obtain that

α k (x) = X\X k p(x, y) V (x) dµ(y) = P x, X \ X k V (x) ≤ α k
from the definition (18b) of α k . Now, since V ≥ 1, it follows from Conditions (5) and (18c) that

β k (x) = X k i∈I k 1 X i,k (x) inf t∈X i,k p(t, y) - i∈I k 1 X i,k (x) p(x, y) dµ(y) ≤ X k i∈I k 1 X i,k (x) p(x, y) -inf t∈X i,k p(t, y) dµ(y) ≤ X k i∈I k 1 X i,k (x) sup u∈X i,k p(x, y) -p(u, y) dµ(y) ≤ δ θ k X k i∈I k 1 X i,k (x) L i,k,θ (y) dµ(y) ≤ δ θ k i∈I k 1 X i,k (x) X k L i,k,θ (y) dµ(y) ≤ δ θ k k,θ .
We have proved that, for every f ∈ B 0 such that f 0 ≤ 1 and for every x ∈ X k , we have

( Q k f )(x) -(P f )(x) V (x) ≤ α k + k,θ δ θ k . ( 22 
)
Moreover we deduce from the definition of ψ k and from (22

) that 0 ≤ ψ k (x) V (x) = 1 -( Q k 1 X )(x) V (x) = (P 1 X )(x) -( Q k 1 X )(x) V (x) ≤ α k + k,θ δ θ k . ( 23 
)
It follows from Inequalities ( 22) and (23) that, for every f ∈ B 0 such that f 0 ≤ 1 and for every x ∈ X k , we have: 19) and (20) in terms of the constants δ, L in (18a) and the constants C and ρ in (3). Unfortunately, finding explicit constants ρ ∈ (0, 1) and C > 0 in (3) is a difficult issue, even for simple models as AR(1). Such constants can be obtained in our context by applying the procedure of [HL14, Th. 4.1], but the resulting constant C is too large to be numerically interesting. An alternative way is to use, for k larger and larger, the bound provided by Inequality (a) of [HL14, Prop. 2.1(a)], which is only based on the spectral properties of the finite stochastic matrix B k . But again the resulting constants are too large. In fact the numerical applications presented in Section 6 show that the convergence in ( 19) and ( 20) is much better than what is provided by using the constants derived from [HL14, Prop. 2.1].

( P k f )(x) -(P f )(x) V (x) = ( Q k f )(x) + f (x 0 )ψ k (x) -(P f )(x) V (x) ≤ ψ k (x) V (x) + ( Q k f )(x) -(P f )(x) V (x) ≤ 2 α k + k,

Applications to first order autoregressive processes 4.1 The standard AR(1) process

Let (X n ) n∈N be a standard first order linear autoregressive process, that is

∀n ≥ 1, X n = X n-1 + ϑ n , (24) 
where X 0 is a real-valued random variable (r.v.) and (ϑ n ) n∈N is a sequence of real-valued independent and identically distributed (i.i.d.) random variables, also assumed to be independent from X 0 . We suppose that | | < 1, that ϑ 1 has a pdf ν, called the innovation density function, with respect to the Lebesgue measure dµ(y) := dy on R. Assume that the three following conditions are satisfied:

(a) ϑ 1 has a moment of order m for some m ∈ [1, +∞), namely

∃ m ∈ [1, +∞), η m := R |x| m ν(x) dx < ∞; (25) 
(b) ν is continuously differentiable on R and its derivative ν is assumed to be right differentiable on R;

(c) finally

I := R |ν (y)| dy < ∞ and M := sup t∈R |ν r (t)| < ∞ (26) 
where ν r (t) denotes the right derivative of ν at t.

Let X := R be equipped with its usual distance d(x, x ) := |x -x | and with its Borel σ-algebra X . Recall that (X n ) n∈N is a Markov chain with transition kernel P defined by ∀A ∈ X , P (x, A) := R 1 A (y) p(x, y) dy with p(x, y) := ν(y -x).

It is well-known from [START_REF] Meyn | Markov chains and stochastic stability[END_REF] that (X n ) n∈N admits a unique stationary probability measure π on R, and that π is absolutely continuous with respect to the Lebesgue measure, with density function p such that R |y| m p(y)dy < ∞ and satisfying

∀x ∈ R, p(x) = R ν(x -u) p(u) du.
For x ∈ R, we define V (x) = 1 + |x| m where m is the positive real number given in (25) and where • denotes the integer part function on R. According to (25) and | | < 1, P is V -geometrically ergodic (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]). In the sequel we fix any δ ∈ (| | m , 1). It can be easily deduced from (25) that there exists M ≡ M (δ) such that

P V ≤ δV + M. (28) 
For every k ≥ 1, we choose δ k > 0 such that δ k = O(1/k) and (for the sake of simplicity) such that q k := 2k/δ k ∈ N. Set X k = [-k, k[, and consider the following partition of X k :

X k := q k -1 i=0 X i,k with X i,k := x i,k , x i+1,k , x i,k = -k + i δ k . (29) 
The associated discretized Markov kernels P k and the probability measures π k on R are defined by ( 7) and ( 12) respectively. The associated function p k is given in (14).

Proposition 4.1 Let δ k be such that δ k > 0 and δ k = O(1/k). Assume that the innovation density function ν(•) satisfies Conditions (25) and (26). Then

π -π k T V = O | ln τ k | τ k , p -p k L 1 (R) = O | ln τ k | τ k with τ k = 1 k m + δ k . (30) 
Proof. Proposition 4.1 follows from Theorem 3.1 and Corollary 3.2, provided that Assumptions (18b) and (18c) are satisfied (all the others assumptions of Theorem 3.1 have been already checked above). First the real number α k in (18b) satisfies

α k = |y|>k(1-| |) ν(y) dy ≤ η m (1 -| |) m k m
from Markov's inequality. Thus (18b) holds. Second, we obtain for every (

x, x ) ∈ X i,k |p(x, y) -p(x , y)| = ν(y -x) -ν(y -x ) ≤ | | |x -x | ν (y -c) for some c ≡ c x,x ,y ∈ X i,k ≤ | | |x -x | ν (y -c) -ν (y -x i,k ) + ν (y -x i,k ) ≤ | | |x -x | | | M δ k + ν (y -x i,k )

The AR(1) process with ARCH(1) errors

The following example is derived from [START_REF] Borkovec | The tail of the stationary distribution of an autoregressive process with ARCH(1) errors[END_REF]. Let X := R be equipped with its usual distance d(x, x ) := |x -x | and with its Borel σ-algebra X . Let α ∈ R and let β, λ > 0. We consider the autoregressive process (X n ) n∈N with ARCH(1) errors, defined by

∀n ≥ 1, X n = α X n-1 + β + λX 2 n-1 1/2 ϑ n , ( 33 
)
where X 0 is a real-valued r.v. and (ϑ n ) n∈N is a sequence of i.i.d. real-valued random variables which are independent from X 0 . We suppose that ϑ 1 has a pdf ν with respect to the Lebesgue measure dµ(y) := dy on R, that ν is a bounded continuously differentiable and symmetric function with full support R, that its derivatives ν satisfies |ν (x)| = O ±∞ (1/|x|), and finally that ϑ 1 has a second-order moment. Then (X n ) n∈N is a Markov chain with transition kernel P defined by P (x, A)

:= R 1 A (y) p(x, y) dy (A ∈ X ) with p(x, y) := β + λx 2 -1/2 ν y -αx β + λx 2 1/2 . ( 34 
)
As in Section 4, for every k ≥ 1 we consider

q k := 2k/δ k , X k = [-k, k[, and 
X i,k as in (29). Moreover assume that E ln α + √ λ ϑ 1 < 0. ( 35 
)
Then there exists κ > 0 such that, for every u ∈]0, κ[, we have

E[|α+ √ λ ϑ 1 | u ] < 1, see [BK01, Prop. 2]. Let η ∈]0, min(κ, 2)[.
Proposition 4.5 Under the previous assumptions and notations, the following estimates hold true:

π -π k T V = O | ln τ k | τ k , p -p k L 1 (R) = O | ln τ k | τ k with τ k = 1 k η/2 + k δ k . (36) Thus π -π k T V and p -p k L 1 (R) converge to 0 when k → +∞ provided that δ k = o(1/k).
Proof. For x ∈ R, we define V (x) = 1 + |x| η . The V -geometrical ergodicity of P , together with Condition (18a), are proved in [BK01, Th. 1]. To study (18b), we assume that α > 0 (similar arguments hold if α < 0). Note that

+∞ k p(x, y) dy = φ k (x) ν(t) dt with φ k (x) := k -αx β + λx 2 1/2 . Let x ∈ [-k, k]. If √ k ≤ |x| ≤ k, then 1 1 + |x| η +∞ k p(x, y) dy ≤ 1 1 + k η/2 . If |x| ≤ √ k, then 1 1+|x| η ≤ 1 and φ k (x) ν(t) dt ≤ φ k ( √ k) ν(t) dt = O 1/k from φ k ( √ k) ≤ φ k (x), φ k ( √ k) ∼ +∞ (k/λ) 1/2
, and from Markov's inequality (since by hypothesis ν has a second-order moment). Since η < 2, we have proved that 17) satisfies (with θ = 1): ∀y ∈ R, L i,k,1 (y) ≤ D. Therefore the real numbers k,θ in (18c) are such that k,1 ≤ 2Dk. The above inequalities and Theorem 3.1 provide the desired statement in Proposition 4.5.

∂p ∂x (x, y) ≤ M λ|x| (β + λx 2 ) 3/2 + M |α| β + λx 2 + Cλ|x| (β + λx 2 ) 3/2 . Thus D := sup (x,y)∈R 2 | ∂p ∂x (x, y)| < ∞, so that the function L i,k,θ defined in (

A generic algorithm to get p k (y)

Let (X n ) n∈N be a Markov chain with transition kernel p(•, •). In this section, we propose a generic algorithm to get the material provided by Section 2. Specifically, the focus is on the non-negative function p k (14) which allows us to obtain the approximating invariant probability given by Proposition 2.1. According to Section 2, the following algorithm can be proposed.

1. Fix the positive integer k such that X k := [-k, k[ and choose the integers

k -et k + such that [k -, k + [⊂ X k (you can take k -= -k, k + = k). 2. Choose a mesh δ k of the partition of [k -, k + [ such that the number of intervals of the subdivision is q max := (k + -k -)/δ k ∈ N * ,
Let us introduce the (q max + 1) points of the subdivision x i,k := k -+ iδ k , i = 0, . . . , q max and consider the finite partition

{X i,k = [x i,k , x i+1,k [, i = 0, . . . , q max -1} of [k -, k + [ 3. Introduce p i,k (y) := inf t∈X i,k p(t, y).
4. Choose j 0 ∈ {1, . . . , q max -1}, then for j = j 0 compute:

B k (i, j 0 ) := x j 0 +1,k x j 0 ,k p i,k (y) dy + 1 - k + k - p i,k (y) dy for i = 0, . . . , q max -1 B k (q max , j 0 ) := 1
Compute for j = 0, . . . , q max -1, j = j 0 ,

B k (i, j) := x j+1,k
x j,k p i,k (y) dy for i = 0, . . . , q max -1 B k (q max , j) := 0 pour i = q max Set B(i, j) = 0 for j = q max et i = 1, . . . , q max . 5. Compute the B k -invariant probability vector π k of B k : it has the form π k = ({π i,k } 0≤i<qmax , 0) 6. Finally, the non-negative function p k (•) is defined by (see ( 14)):

∀y ∈ R, p k (y) := 1 [k -,k + [ (y) qmax-1 i=0 π i,k p i,k (y). 
The third step of the algorithm involves the computation of an extreme value of the function t → p(t, y) on a small interval (length δ k ). Such a numerical minimization may be computationally expensive. But it can be checked that, for AR(1) models in Subsections 6.1, 6.2, the function t → p(t, y) has no local minima so that the minimum may be setted to min(p(x i,k , y), p(x i+1,k , y)). The case of the AR(1) with ARCH(1) errors may produce local minima for some parameter (β, α, λ). But it can be expected that any approximation of p i,k (y) in Step 3. does not provide large numerical errors from the fact that it is made on a very small interval of length δ k << 1.

Such an algorithm has been implemented using MATLAB software to obtain the numerical results of Section 6.

Remark 5.1 (Multivariate Markov models) A natural issue is the generalization of the material of Sections 2 and 3 to multivariate Markov models. A general discussion is beyond the scope of this paper. We only mention that technical Conditions (18a,18b,18c) have natural counterparts for multivariate autoregressive models (e.g. see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]). Thus it can seen from this section that the main difficulties in a multidimensional framework are computational issues due to computation of extreme values and integrals.

6 Numerical examples

Application to the Gaussian AR(1)

The benchmark model is the Gaussian linear model where the random variables ϑ n in (24) have Gaussian distribution N (0, σ 2 ). In such a context, it is well-known that the invariant probability π of the Markov chain (X n ) n∈N specified by (24) is N (0, σ 2 /(1 -2 )). Therefore the pdf's ν and p are

ν(y) = 1 √ 2πσ 2 exp - y 2 2σ 2 p(y) = 1 -2 √ 2πσ 2 exp - (1 -2 )y 2 2σ 2 . ( 37 
)
Using the algorithm in Section 5, we obtain the following numerical results. For the sake of simplicity, set σ 2 := 1. The support of the approximation is X k := [-k, k[ for specific value of the positive integer k, and δ k is the mesh of the partition of X k used for the computation. The supremum norm of the error vector v k := p k (x i,k ) -p(x i,k ) i=0,...,q k between p k and p on the grid of points {x i,k , i = 0, . . . , q k } given by the partition of X k (see (29)) is denoted by v k ∞ and reported in Table 1. The Riemann sum estimation v k 1,R := δ k v k 1 of p k -p L 1 is provided. These errors are computed using a decreasing sequence of meshes δ k and a support X k selected according to the comments of Remark 6.1. As it can be seen, the quality of the approximation is quite satisfactory. Figure 1 gives the graphs of the two pdf p k and ν. Note that the exact invariant pdf is not reported in Figure 1 Indeed, if the value of k in X k is too small with respect to the support of the target pdf p of π, then the approximate function p k may appear to be far from the target p.

Applications to AR(1) where the invariant pdf p is unknown

When the target pdf p is unknown, the set X k (the support of p k , see (29)) can be chosen as follows. If the innovation pdf ν has a support contained in [-a, a] and if X 0 = 0, then P{X n ∈ [-s n , s n ]} = 1 with s n := a n-1 k=0 k , so that the pdf p has support [-s, s] with s := a/(1 -). If ν is not compactly supported, then the previous remark may be applied with a such that ν(x) is meaningless for |x| > a. Obviously this remark may be easily adapted when the exact or approximated support of ν is contained in [0, a]. In the previous Gaussian case, although this question is less relevant since the target pdf p is known, we take a = 4 and s = 4/(1 -) in Figure 1.

Exponential innovation distribution

In this part, the innovation distribution ν is set to the exponential one with parameter 1. Recall that the pdf ν must satisfy the regularity conditions of Proposition 4.1. Therefore, as discussed in Remark 4.4, the pdf ν 3 is used as input in the algorithm instead of ν:

ν 3, (x) = 1 (1 -) 2 e -x -e -x/ + e -x/ 2 -e -x 1 + 1 [0,+∞[ (x)
and the dynamics is given by (32) with := 3. The support of ν 3, may be truncated to [0, a 3, ] with a 3,0.5 = 11, a 3,0.7 = 12, a 3,0.9 = 14, so that the support of p may be truncated to [0, s ] with s = a 3, /(1 -3 ) + 1, that is s 0.5 = 13, s 0.7 = 19, s 0.9 = 52. Thus we use the interval [0, 13], [0, 19], [0, 52] as X k for := 0.5, 0.7, 0.9 (apply the above remark with ν 3, and 3 in place of ν and ). In Figure 2 are reported the graphs of the estimated p k of the (unknown) invariant pdf p for = 0.5, 0.7, 0.9.

The invariant probability distribution π with pdf p satisfies πP = π, that is: R p(x) p(x, •)dx = p(•). Such a relation can be checked on the grid of points {x i,k , i = 0, . . . , q k } given by the partition of X k (see (29)):

∀x i,k , R p(x) p(x, x i,k )dx = p(x i,k ).
The integral on the left hand side can be estimated using the Riemann sum denoted by p k (x i,k ) := j p k (x j,k )P (x j,k , x i,k )δ k . Therefore, in order to get some confidence into the estimated invariant pdf p k , the uniform norm of the following vector w k := p k (x i,k )p k (x i,k ) i=0,...,q k is reported in Table 2. As it can be seen, the results are satisfactory.

Remark 6.2 The case = 0.9 (even = 0.8) shows that the graphs of ν 3, and p (given by the approximation p k ) are very far. Consequently, in this case, the method of [Hai98, AH00, ANR07] requires to compute h N via (4) for some quite large integer N . Since the use of ( 4) is recursive, the successive approximations h 1 , . . . , h N should involve large cumulative errors.

A similar comment holds true in the forthcoming case of the uniform innovation distribution.

As mentioned in Introduction, our method does not contain this drawback since it is not based on a recursive algorithm.

Uniform innovation distribution

Here, the innovation distribution ν is set to the uniform one on [0, 1]. As discussed in Remark 4.4, the pdf ν 3 is used as input in the algorithm instead of ν (see [START_REF] Anděl | Methods for calculating stationary distribution in linear models of time series[END_REF] for an explicit formula). Here the dynamics is given by (32) with := 3. The graphs of ν 3, with = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 are reported in Figures 3,4 (blue curves). The support of ν 3, is [0, 1 + + 2 ] so that the support of the target pdf p is included into [0, s ] with s := (1+ + 2 )/(1-3 ) +1. Thus we use the intervals [0, 2], [0, 2], [0, 3], [0, 4], [0, 5], [0, 10] as set X k for := 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. In Figure 3, we report the graphs of the approximated function p k of the (unknown) invariant pdf p and the pdf ν 3, for = 0.4, 0.5, 0.6. The graphs for = 0.7, 0.8, 0.9 are reported in Figure 4. As in the exponential case, the expected invariance of the estimated pdf p k is evaluated by the uniform norm of the following vector w k := p k (x i,k ) -p k (x i,k ) i=0,...,q k (see Table 2). The results are still satisfactory. Expo 0.5 0.7 0.9 w k ∞ 8.73 × 10 -4 9.47 × 10 -4 0.0013 Unif 0.7 0.8 0.9 w k ∞ 0.0045 0.0050 0.0051

Table 2: AR(1): checking P -invariance of the estimated pdf p k with δ k := 0.02

AR(1) with ARCH(1) errors

In this part, we apply our generic algorithm to the autoregressive model with ARCH(1) errors and transition kernel defined in (34). The innovation distribution is the standard Gaussian one, that is ϑ n ∼ N (0, 1). The estimated invariant pdf p 15 with support X 15 = [-15, 15] and the Gaussian pdf are reported in Figure 5 when (β, α, λ) = (1, 0.7, 0.2). As for AR(1) models, the invariance property of the estimated pdf p 15 is evaluated by w 15 := p 15 (x i,15 )p 15 (x i,15 ) i=0,...,q 15 ∞ = 0.0223. 

  θ δ θ k . This inequality and (21) provide the conclusion of Lemma 3.4. Remark 3.5 The inequality (b) of [HL14, Prop. 2.1] provides explicit bounds in (

  The same conclusion can be similarly obtained for the term sup |x|≤k -k -∞ p(x, y) dy. Consequently α k in (18b) satisfies: α k = O k -η/2 . Next, to obtain (18c) set M := sup x∈R ν(x), M := sup x∈R ν (x), and C := sup x∈R |x ν (x)|. An easy computation gives

Figure 1 :

 1 Figure 1: (Gauss) For = 0.5, 0.7, 0.9 and δ k = 0.02: graphs of the invariant pdf p 8 , p 14 , p 40 (red) and the innovation pdf ν (blue)

Table 1 :

 1 since the estimated and exact graphs cannot be distinguished at this scale. From Table1, whatever the value of , the errors norms v k ∞ or v k 1,R scale linearly with the mesh δ k . Numerical results for the Gaussian linear model Remark 6.1 The algorithm is sensitive to the support X k of the approximate function p k .

			0.5			0.7			0.9	
	k		8			14			40	
	δ k	0.05	0.02	0.005	0.05	0.02	0.005	0.05	0.02	0.005
	v k 1,R	0.01	0.004	0.001	0.0151 0.0061	0.0015	0.0540	0.025	0.0058
	v k ∞	0.0025 0.001 2.45 × 10 -04	0.0035 0.0014 3.45 × 10 -4	0.0099 0.0041 0.0011

Using the notations of (26), we obtain that k,1 := max

Recall that δ k = O(1/k) by hypothesis, so that sup k≥1 k,1 < ∞. Hence (18c) holds.

Remark 4.2 Alternative assumptions (instead of ( 26)) on the innovation density function ν are possible. For instance, in place of (26), we may suppose that the derivative ν of ν exists and that

. Thus, provided that δ k = o(1/k), the statements of Proposition 4.1 is replaced with the following ones: Remark 4.4 If (X n ) n∈N is a first order autoregressive model given by (24), then for any ≥ 1 the sequence (X

The sequence (ϑ

and (X ( )

n ) n≥0 is a first order autoregressive model having the same stationary density function as (X n ) n∈N . The transition kernel of (X ( ) n ) n≥0 is P , which is of the form (1) too. More precisely, for every x ∈ R we have P (x, dy) = p (x, y) dy with p (x, y) := ν (y -x), where ν is the pdf of ϑ

where µ k denotes the pdf of the r.v. -k ϑ k for k = 1, . . . , , and where the symbol " " stands for the standard convolution product. This fact may be relevant since ν is more and more regular as increases, so that ν may satisfy the regularity condition required in (26) for large enough. In this case the stationary density function of (X n ) n∈N can be approximated by applying Proposition 4.1 to P (thus with ν in place of ν). For instance, if the innovation law is the uniform distribution on [0, 1], then Proposition 4.1 applies to the Markov kernel P 3 since the associated innovation density function (i.e. the law of ϑ

(3) 1 := 2 ϑ 1 + ϑ 2 + ϑ 3 ) is continuously differentiable on R and satisfies (26).