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MULLINS-SEKERKA AS THE WASSERSTEIN FLOW

OF THE PERIMETER

ANTONIN CHAMBOLLE AND TIM LAUX

Abstract. We prove the convergence of an implicit time discretization for the

one-phase Mullins-Sekerka equation, possibly with additional non-local repulsion,
proposed in [F. Otto, Arch. Rational Mech. Anal. 141 (1998) 63–103]. Our simple

argument shows that the limit satisfies the equation in a distributional sense as

well as an optimal energy-dissipation relation. The proof combines arguments
from optimal transport, gradient flows & minimizing movements, and basic geo-

metric measure theory.
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1. Introduction

The Mullins-Sekerka equation, see (1)–(4) below for its exact formulation with
additional non-local repulsion, is a well-studied mathematical model which, among
other phenomena, describes a Hele-Shaw cell: A viscous ferro-fluid is confined to a
thin region between two parallel horizontal plates. Applying a strong magnetic field
in the vertical direction leads to two opposing forces: (i) due to surface tension, the
fluid wants to decrease its surface area; (ii) the probe becomes magnetized by the
field and the particles repel each other due to the induced magnetic field. These two
competing effects lead to the formation of intriguing patterns.

In this paper we construct weak solutions using an implicit time discretization
proposed by F. Otto in [27] for the Mullins-Sekerka equation, possibly with non-
local repulsion. Because of the gradient-flow structure of the equation, it is natural
to consider minimizing movements, an implicit time discretization which comes as
a sequence of variational problems [8]. The effective energy consists of two terms,
(i) an attractive term due to surface tension, the total surface area of the lateral
boundary of the region occupied by the fluid, and (ii) a non-local term due to the
magnetic repulsion of the particles; see (8) below. In [27] it has been observed that
the dissipation functional may be modeled by the Wasserstein distance, which arises
in optimal mass transport; see (7). The Wasserstein distance plays a crucial role for
many diffusion equations as was pointed out by Jordan, Kinderlehrer, and Otto in the
seminal work [17], see also [16].

The main theorem of the present work is a refined version of the announced re-
sult [27, Theorem 1], for which a detailed proof was not provided. Our simple proof
establishes the convergence of the approximations obtained from the minimizing move-
ments scheme to a weak solution. We derive the Mullins-Sekerka equation (1)–(4) in
a distributional form, and using De Giorgi’s variational interpolations [3], we show
that the limit satisfies an optimal energy-dissipation relation. The convergence of the
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energies as h → 0, a well-known assumption known from the more difficult case of
mean curvature flow [23], is not necessary in our case. In fact, our proof is much
simpler and no regularity theory of almost minimal surfaces is needed. Dropping the
assumption of energy convergence, however, comes at the price of a weaker solution
concept involving varifolds instead of sets of finite perimeter. We need of course to
assume in addition the convergence of the time-integrated energies in order to recover
the expected formulation for sets of finite perimeter. It may be expected that this
solution concept, at least in the case of energy convergence, satisfies a weak-strong
uniqueness principle similar to the ones in the forthcoming works by Fischer, Hensel,
Simon, and one of the authors for multiphase mean curvature flow [11] and for the
simpler two-phase Mullins-Sekerka equation [12].

There has been continuous interest in the Mullins-Sekerka equation and similar
gradient flows, so we only briefly point out some of the most relevant results related
to the present work. Weak solutions to the two-phase Stefan problem have been
constructed by Luckhaus [22]. In particular, Luckhaus discovered a hidden variational
principle satisfied by his approximations, which allows to verify the convergence of
the energies as h → 0. Luckhaus and Sturzenhecker [23] constructed weak solutions
of mean curvature flow and the two-phase Mullins-Sekerka equation conditioned on
the convergence of the energies. Röger [28] was able to remove the assumption in
the case of this two-phase Mullins-Sekerka equation by showing that the assumption
may only be violated along flat parts of ∂E. In the case of mean curvature flow,
the assumption can be verified in very particular cases, like convex sets [6], graphs
[21], and mean convex sets [9]. For generalizations to the anisotropic case, which for
mean curvarture flow has already been introduced by Almgren, Taylor, and Wang
[2], we refer the interested reader to Garcke and Schaubeck [13] and Kraus [18]. A
variant relevant for image denoising has been introduced by Carlier and Poon [5] who
relax the constraint χE ∈ {0, 1}, which leads to the total variation flow. However, it
seems that the convergence can only be proven under an additional assumption on the
density. Glasner [14] introduced a phase-field approximation to the one-phase Mullins-
Sekerka equation and studied its convergence by formal asymptotic expansions. While
the analysis of the non-degenerate Cahn-Hilliard equation to the two-phase Mullins-
Sekerka equation is by now well-understood, see for example the work of Chen [7] and
Alikakos, Bates, and Chen [1], there seems to be no result for this degenerate version.
Recently, also the computationally efficient thresholding scheme by Merriman, Bence,
and Osher [25, 26] has been reinterpreted as a minimizing movements scheme by
Esedoğlu and Otto [10], which allowed one of the author together with Otto to prove
conditional convergence results to multiphase mean curvature flow [19, 20]. Most
recently, Jacobs, Kim, and Mészáros [15] introduced an interesting thresholding-type
approximation for the Muskat problem and proved a similar (conditional) convergence
result for their scheme.

The paper is organized as follows: In §2 we recall the minimizing movements scheme
and state our main result, Theorem 1, which will be proved in the following sections:
§3 establishes the compactness; in §4 we recover the distributional equation for the
limit and the optimal energy-dissipation relation; and §5 contains a simple nonlinear
interpolation inequality and its proof.
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2. Statement of the main result

The physical model under consideration is described by the following system of
equations for an evolving set (E(t))t∈(0,∞) and a velocity field u : Rd × (0,∞)→ Rd:
The interface ∂E(t) is transported by the fluid

(1) V = u · ν on ∂E(t)

(throughout, ν denotes the outer unit normal to ∂E(t)); the fluid is incompressible

(2) divu = 0 in E(t);

the flow is irrotational, i.e.,

(3) there exists p such that u = −∇p in E(t);

and on the interface, the following balance-of-forces condition holds

(4) p = H + 2k ∗ χE(t) on ∂E(t),

where H denotes the mean curvature of ∂E(t) with the sign convention H > 0 for
convex E(t) and k is a non-negative, symmetric, and normalized convolution kernel
k ≥ 0, k(−z) = k(z), and

´
k = 1.

Since the velocity field u is divergence-free, any smooth solution E(t) is volume-
preserving d

dt |E| = 0. More importantly, combining (1)–(4), we see that any such
evolution is energy dissipating

(5)
d

dt

(
Hn−1(∂E(t)) +

ˆ
E(t)

k ∗ χE(t) dx

)
= −
ˆ
E(t)

|u|2 dx ≤ 0.

More precisely, the above set of equations have a gradient-flow structure.
Here, the metric tensor

´
E
|u|2 dx defined on divergence-free vector fields u : E →

Rd is less degenerate than the one of the mean curvature flow
´
∂E

V 2dS defined on
normal velocities V , but more degenerate than the one of the two-phase Mullins-
Sekerka problem

´
Rd |u|2dx, in which the ferro-liquid is assumed to be surrounded by

another liquid of the same viscosity.
For more physical motivation, we refer to the introduction of [27] and the references

therein.

Let us recall the implicit time discretization introduced by F. Otto in [27]: Given
a time-step size h > 0, and initial conditions E0 ⊂ Rd, for n ≥ 1, find En solving

(6) min
E

{ 1

2h
W 2

2 (χE , χEn−1
) + P (E) +

ˆ
E

k ∗ χE dx
}
.
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Here P (E) := sup{−
´
E

div ξ dx : sup |ξ| ≤ 1} denotes the perimeter of E ⊂ Rd and

(7) W 2
2 (χE , χF ) = inf

ˆ
E

|x− T (x)|2dx = min

¨
|x− y|2dγ(x, y)

denotes the squared Wasserstein distance, where the infimum runs over all transport
maps, i.e., volume preserving diffeomorphisms T : Rd → Rd such that T]χE(x)dx =
χF (y)dy, and the minimum runs over all transport plans, i.e., finite measures γ in
Rd×Rd with marginals χE(x)dx and χF (y)dy. Note that the Wasserstein distance in
the minimization term automatically enforces the volume constrained |En| = |En−1|,
just like the system of partial differential equations (1)–(4) above.

We denote the total energy by

(8) E(E) := P (E) +

ˆ
E

k ∗ χE dx,

and let Eh(t) := E[t/h] for t ≥ 0. Our standing assumption on the initial conditions is

(9) P (E0) <∞ and

ˆ
E0

(1 + |x|2) dx <∞.

In particular |E0| <∞ and w.l.o.g. by scaling we may assume that |E0| = 1.
The main result is the following construction of solutions.

Theorem 1. Let E0 ⊂ Rd be initial conditions satisfying (9) and let Eh(t) be
constructed as above. Then there exists a subsequence h ↓ 0, an L1-continuous
one-parameter family of finite perimeter sets E(t) satisfying (9), and a vector field
u ∈ L2(Rd × (0,+∞);Rd) such that

lim
h↓0

sup
t∈[0,T ]

|Eh(t)4E(t)| = 0 for all T < +∞

and

(10) −
ˆ +∞

0

ˆ
E(t)

(∂tζ + u · ∇ζ) dx dt =

ˆ
E0

ζ(0) dx

for all ζ ∈ C∞0 (Rd × [0,+∞)), and E(t) satisfies the optimal energy dissipation rate

(11) E(E(T )) +

ˆ T

0

ˆ
E(t)

|u(x, t)|2 dx dt ≤ E(E0) for all T > 0.

The measures µh := δνEh(t)
⊗
∣∣∇χEh(t)

∣∣ dt converge, µh ⇀ µ = µt dt, to an oriented

integral varifold µ, i.e., a non-negative measure on (ν̃, x, t) ∈ Sd−1 × Rd × [0,+∞),
which satisfies the compatibility condition

(12) −∇χE(t) = νE(t)|∇χE(t)| =
ˆ
Sd−1

ν̃ µt(dν̃, · ) in the sense of measures

and in particular
∣∣∇χE(t)

∣∣ ≤ ´Sd−1 µt(dν̃, · ). Here and throughout, νE(t) = − ∇χE(t)

|∇χE(t)|
denotes the (measure theoretic) outer unit normal of E(t).

Furthermore, the tuple (E,u, µ) satisfies the distributional equation

−
ˆ ∞
0

ˆ
E(t)

u · ξ dxdt =

ˆ ∞
0

ˆ ˆ
(div ξ − ν̃ ·Dξ ν̃) dµt(ν̃, x) dt

+ 2

ˆ ∞
0

ˆ
k ∗ χE(t) ξ · νE(t)

∣∣∇χE(t)

∣∣ dt(13)
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for all ξ ∈ C∞0 (Rd × (0,+∞),Rd) with div ξ = 0, as well as the optimal energy
dissipation relation

µT (Sd−1 × Rd) +

ˆ
E(T )

k ∗ χE(T ) dx+
1

2

ˆ T

0

ˆ
E(t)

|u(x, t)|2 dx dt

+

ˆ T

0

ˆ ˆ
(div ξ − ν̃ ·Dξ ν̃) dµt(ν̃, x) dt+ 2

ˆ T

0

ˆ
k ∗ χE(t) ξ · νE(t)

∣∣∇χE(t)

∣∣ dt
− 1

2

ˆ T

0

ˆ
E(t)

|ξ|2 dx dt ≤ E(E0)

(14)

for almost all T < +∞ and all ξ ∈ C∞0 (Rd × (0,+∞),Rd) with div ξ = 0.

Remark 1. The system of equations derived in the theorem is indeed a weak form of
the free boundary problem (1)–(4) provided the sets E(t) are (essentially) open:

(i) The continuity equation (10) encodes (1) & (2) as well as the initial conditions
E0.

(ii) Under the assumption that no hidden boundary lies inside of E(t), i.e., sptµt ∩
E(t) = ∅, Equation (13) encodes both (3) (since (13) says that u is orthogonal to
divergence-free fields in E(t)) and the balance of forces (4) on the free boundary.

(iii) The last three left-hand side terms involving the test vector field ξ in (14) can
be viewed as a fractional Sobolev norm of H + 2k ∗χE , and (14) is a type of De
Giorgi inequality, which for a smooth gradient flow characterizes the solution.

Remark 2. Note also that we may replace the sum of the first two left-hand side
terms in (14) by the (smaller) energy E(E(T )). Let us assume for a moment that the
energies converge as h→ 0, which in view of the continuity of the non-local term and
the lower semi-continuity of the perimeter is equivalent to saying that the perimeters
do not drop down as h→ 0, i.e.,

lim sup
h↓0

ˆ T

0

P (Eh(t)) dt ≤
ˆ T

0

P (E(t)) dt.

Then we may replace the measure µt by the BV -version δνE(t)
⊗
∣∣∇χE(t)

∣∣ in all terms

appearing in (13) & (14). Indeed, in that case, the convergence of the curvature term

lim
h↓0

ˆ T

0

ˆ (
div ξ − νEh(t) ·DξνEh(t)

)
|∇χEh(t)|

=

ˆ T

0

ˆ (
div ξ − νE(t) ·DξνE(t)

)
|∇χE(t)|

follows directly from Reshetnyak’s continuity theorem, see e.g. [24, Theorem 20.12].

Remark 3. The more precise structure of the varifold µt is not clear. The integrality
(or even rectifiability) of µt away from supp |∇χE(t)| does not simply follow from
curvature bounds and the control in time on the sets Eh(t). Indeed, it is easy to
construct counterexamples for which µt oscillates in time but both estimates are valid.

Remark 4. The optimal energy-dissipation rate (here in form of (11) or (14)) plays
a crucial role in recent weak-strong uniqueness proofs and does not follow from the
weak formulation (10) & (13).



6 ANTONIN CHAMBOLLE AND TIM LAUX

In the following we write A . B if there exists a generic constant C = C(d) such
that A ≤ C B.

3. Compactness

Lemma 1 (Compactness). Suppose E0 satisfies (9) and let Eh be constructed by the
scheme as above. Then

(15) W2(χEh(t), χEh(s)) . E(E0)
1
2 (t− s) 1

2

and

(16) |Eh(t)4Eh(s)| . E(E0)
3
4 (t− s) 1

4

for all t > s ≥ 0 with t− s ≥ h.
Therefore, there exists a subsequence h ↓ 0 and a one-parameter family of finite

perimeter sets (E(t))t≥0 such that for any T < +∞
(17) sup

t∈[0,T ]

|Eh(t)4E(t)| → 0 as h ↓ 0.

Furthermore, the limit satisfies

(18) W2(χE(t), χE(s)) . E(E0)
1
2 (t− s) 1

2

and

(19) |E(t)4E(s)| . E(E0)
3
4 (t− s) 1

4

for all t > s ≥ 0.

Proof. Using En−1 as a competitor in (6) yields

1

2h
W 2

2 (χEn , χEn−1) + E(En) ≤ E(En−1),

so that after summation in n and telescoping

(20)
h

2

n1∑
n=n0+1

(
W2(χEn

, χEn−1
)

h

)2

+ E(En1) ≤ E(En0).

In particular, for any pair of integers n1 > n0 ≥ 0, we have

W2(χEn0
, χEn1

) ≤
√

(n1 − n0)h

(
n1∑

n=n0+1

1

h
W2(χEn

, χEn−1
)2

) 1
2

≤
√

(n1 − n0)h
√

2(E(En0
)− E(En1

)),

which implies (15).
The L1 estimate (16) then follows from (15) in conjunction with the interpolation

inequality in Corollary 1 in Section 5 below and Jensen’s inequality in the form of
W1(χ, χ̃) ≤W2(χ, χ̃).

The energy estimate (20) also yields a uniform bound on the perimeter, henceˆ
|χEh(t)(x+ z)− χEh(t)(x)| dx ≤ |z|P (Eh(t)) ≤ |z|E(E0),

i.e., we have a uniform modulus of continuity in space. Together with the uniform
modulus of continuity in time (16), which is valid down to scales h, this allows us to
apply the Riesz-Kolmogorov compactness theorem in L1([0, T ]×K) for any compact
set K ⊂ Rd and any T < +∞. A diagonal argument yields χEh

→ χE in L1
loc([0,∞)×
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Rd). But since
´
|x|2χEh(t)(x)dx <∞, which follows from (9) & (15), this implies the

L1-convergence globally in space, and locally in time. Eventually, an Ascoli-Arzelà
type argument, together with the estimate in Corollary 1, allows to deduce the local
uniform convergence in time, i.e., (17). The continuity estimates (18) & (19) then
follow immediately. �

4. Convergence

Proof of Theorem 1.
Step 1: Construction of u and verification of (10). By Kantorovich duality

1

2h
W 2

2 (χEn , χEn−1) = sup
φ(x)+ψ(y)≤ |x−y|2

2h

ˆ
En

φ(x) dx+

ˆ
En−1

ψ(y) dy.

This supremum is reached at (φn, ψn) such that

Φn(x) =
|x|2

2
− hφn(x), Ψn(y) =

|y|2

2
− hψn(y)

are convex conjugates and (∇Φn)]χEn = χEn−1 solves the optimal transportation
problem (7) defining the distance W2(χEn

, χEn−1
), see [4, Theorem 1.3] or [29, Theo-

rem 2.12]. Hence

(21)
1

2h
W 2

2 (χEn
, χEn−1

) = h

ˆ
En

|∇φn(x)|2dx = h

ˆ
En−1

|∇ψn(y)|2dy

and by (20)

(22) h

n1∑
n=n0+1

ˆ
En

|∇φn(x)|2dx ≤ E(En0
)− E(En1

) ≤ E(E0),

that is, if we set un := χEn∇φn and uh(t) := u[t/h], then uh is uniformly bounded in
L2. Let u = u(x, t) be a weak limit. Since (Id − h∇φn)]χEn

= χEn−1
, for η(x, t) a

smooth test function

1

h

ˆ
Rd

(χEn
− χEn−1

) η dx =
1

h

ˆ
Rd

χEn
(x) (η(x)− η(x− h∇φn(x))) dx.

Using Taylor’s theorem in the form
∣∣η(x)−η(x−hξ)−hξ ·∇η(x)

∣∣ ≤ h2

2 |ξ|
2 supx |∇2η|,

we can replace the right-hand side byˆ
Rd

∇η(x) · ∇φn(x)χEn(x)dx

at the expense of the error

1

h

h2

2
sup |∇2η|

ˆ
Rd

|∇φn|2χEn
dx = sup |∇2η| 1

2h
W 2

2 (χEn
, χEn−1

).

After integration in time, this error term vanishes as h ↓ 0 because of (20) and we
may pass to the limit in the time-integrated version of the above identity to obtain
the continuity equation in form of (10).

Step 2: De Giorgi’s interpolation and argument for (11). De Giorgi’s variational
interpolation

(23) Ẽh((n− 1)h+ t) ∈ arg min
E

{ 1

2t
W 2

2 (χE , χEn−1
) + E(E)

}
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satisfies the identity

h

2

(
W2(χEn

, χEn−1
)

h

)2

+
1

2

ˆ nh

(n−1)h

(
W2(χẼh(t+(n−1)h), χEn−1)

t

)2

dt

≤ E(En−1)− E(En).

(24)

Although the proof is contained—in a more general context—in [3, Theorem 3.1.4],
we repeat it here for the reader’s convenience.

W.l.o.g. we may assume n = 1; for notational convenience we also drop the index
h for this short argument. Defining momentarily

f(t) :=
1

2t
W 2

2 (χẼ(t), χE0
) + E(Ẽ(t))

to be the minimal value in the variational problem (23), we may compute for s < t,

using the minimality of Ẽ(t),

f(t)− f(s) ≤ 1

2t
W 2

2 (χẼ(s), χE0
) + E(E(s))− 1

2s
W 2

2 (χẼ(s), χE0
)− E(E(s))

=
s− t
2st

W 2
2 (χẼ(s), χE0).

Since s < t, this implies

f(t)− f(s)

t− s
≤ − 1

2st
W 2

2 (χẼ(s), χE0
)→ − 1

2t2
W 2

2 (χẼ(t), χE0
) as s ↑ t.

The analogous reverse inequality may be obtained by using s > t in the above ar-
gument with the roles of s and t interchanged. Hence f is locally Lipschitz in (0, h]
with

d

dt
f(t) = − 1

2t2
W 2

2 (χẼ(t), χE0
)

for almost every t ∈ (0, h). For ε > 0, integrating this inequality from t = ε to t = h,
and then using lower semicontinuity w.r.t. the L1 convergence E(ε)→ E0 yields (24).

Summing (24) over n from n0 + 1 to n1 and telescoping the right-hand side we
obtain the sharp energy dissipation inequality:

h

2

n1∑
n=n0+1

(
W2(χEn

, χEn−1
)

h

)2

+
1

2

ˆ n1h

n0h

(
W2(χẼh(t)

, χEh(t))

t− h[t/h]

)2

dt

≤ E(En0
)− E(En1

).

(25)

By (21) we have

h

2

N∑
n=1

(
W2(χEn

, χEn−1
)

h

)2

=
h

2

N∑
n=1

ˆ
|χEn∇φn|

2
dx,

which implies

(26)

ˆ T

0

ˆ
E(t)

|u(x, t)|2 dx dt ≤ lim inf
h→0

h

2

N∑
n=1

(
W2(χEn

, χEn−1
)

h

)2

since χEn
∇φn = un and uh ⇀ u in L2.
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Following the same strategy as in Step 1, we can show that ũh := χẼh(t)
∇φ̃h(t) with

x−(t−h[t/h])∇φ̃h(x, t) optimal inW2(χẼh(t)
, χEh(t))—after passage to a subsequence—

weakly converges to the same limit u = w − limh↓0 uh. In particular, as before,

1

t− h[t/h]
W 2

2 (χẼh(t)
, χEh(t)) = (t− h[t/h])

ˆ
|∇φ̃|2dx

so that after division by (t− h[t/h]) and integration in t

1

2

ˆ T

0

(
W2(χẼh(t)

, χEh(t))

t− h[t/h]

)2

dt =
1

2

ˆ T

0

ˆ
|∇φ̃h|2dx dt =

1

2

ˆ T

0

ˆ
|ũh|2dx dt,

which is again lower semi-continuous. This concludes the argument for (11) for a.e.
T > 0. Now let T > 0 be arbitrary and let Tn → T such that (11) holds for each
Tn. Since E(Tn) → E(T ) in L1, the first term on the left-hand side of (11) is lower-
semicontinuous. The second one is clearly continuous in T so the inequality holds for
all T > 0. We will prove the refined energy dissipation inequality (14) later on in
Step 4.

Step 3: Derivation of (13). The Euler-Lagrange equation of the minimization problem
(6) reads

(27) −
ˆ
En

∇φn · ξ dx =

ˆ
(div ξ − νEn

·DξνEn
+ 2k ∗ χEn

ξ · νEn
) |∇χEn

|

for all smooth test vector fields ξ with div ξ = 0, where νEn
= − ∇χEn

|∇χEn |
denotes the

outer normal.
The non-local termˆ ∞

0

ˆ
2k ∗ χEh(t)ξ · νEh(t)

∣∣∇χEh(t)

∣∣ dt = −
ˆ ∞
0

ˆ
2k ∗ χEh

ξ · ∇χEh

converges since ∇χEh
→ ∇χE weakly as measures, and since k ∗χEh(t) converges uni-

formly, which follows from the strong L1 convergence χEh
→ χE and the observation

that

sup |k ∗ χ− k ∗ χ̃| ≤
ˆ
|χ− χ̃| dx

for any two characteristic functions χ, χ̃ for which only the integrability
´
k = 1 and

non-negativity k ≥ 0 are needed.
Since the measures µh = µht dt = δνEh(t)(x) ⊗

∣∣∇χEh(t)

∣∣ dt are bounded (with more-

over µh(Sd−1 × Rd × I) ≤ P (E0)|I| for any I ⊂ (0,+∞) measurable), by Banach-
Alaoglu, they have a weak-∗ limit µ = µtdt (after passage to a subsequence). Hence
we can identify the limit of the first right-hand side term in (27) as well:

lim
h↓0

ˆ ∞
0

ˆ
(div ξ − νEh

·Dξ νEh
)|∇χEh

| dt

= lim
h↓0

ˆ ∞
0

ˆ ˆ
(div ξ − ν̃ ·Dξ ν̃) dµht (ν̃, x)dt

=

ˆ ∞
0

ˆ ˆ
(div ξ − ν̃ ·Dξ ν̃) dµt(ν̃, x)dt

for any test vector field ξ ∈ C∞0 (Rd × (0,+∞),Rd).
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Step 4: Proof of the optimal energy dissipation relation (14). The local slope of E ,
defined via

|∂E(E)| := lim sup
F→E

(E(E)− E(F ))+
W2(χE , χF )

,

where the convergence of the sets F → E is to be understood with respect to W2,
satisfies

|∂E|(Ẽ((n− 1)h+ t)) ≤
W2(χẼ((n−1)h+t), χEn−1)

t
,

cf. [3, Lemma 3.1.3]. Applying this to (25) yields the sharp energy dissipation inequal-
ity

h

2

n1∑
n=n0+1

(
W2(χEn

, χEn−1
)

h

)2

+
1

2

ˆ n1h

n0h

|∂E|2 (Ẽh(t)) dt

≤ E(Eh(n0h))− E(Eh(n1h)).

(28)

Our goal is to pass to the limit in (28). We have already done this for the metric
term in Step 2. Rewriting the surface energy as P (Eh(t)) = µht (Sd−1×Rd), it is clear
that the right-hand side terms converge to the desired limits. It remains to show

ˆ T

0

ˆ
(div ξ − ν̃ ·Dξ ν̃) dµt(ν̃, x)dt+

ˆ T

0

ˆ
2k ∗ χE(t) ξ · νE(t) |∇χE(t)| dt

−1

2

ˆ T

0

ˆ
E(t)

|ξ|2 dx dt ≤ lim inf
h→0

1

2

ˆ T

0

|∂E|2(Ẽh(t)) dt

(29)

for all test vector fields ξ with div ξ = 0.
Given an arbitrary set of finite perimeter E satisfying (9), any smooth divergence

free vector field ξ provides a one-parameter family of candidates for the lim sup in the
definition of the local slope |∂E|(E) at E via the inner variations ∂sχEs

+ξ ·∇χEs
= 0.

Using the elementary relation 0 ≤ 1
2 (ab − b)

2 = 1
2 (ab )2 − a+ 1

2b
2, this yields

1

2
|∂E|2(E) ≥ lim

s→0

1

2

(
1
s (E(E)− E(Es))+

1
sW2(χE , χEs)

)2

≥ lim
s→0

1

s
(E(E)− E(Es))+ −

1

2s2
W 2

2 (χE , χEs).

On the one hand, since ξ is divergence free, it generates one particular volume-
preserving flow from E to Es. More precisely, the rescaled field sξ solves ∂s′χEs′ +
div(sξχEs′ ) = 0 and transports E to Es in one unit of time and hence provides a
particular candidate for the minimum problem in W2:

W 2
2 (χE , χEs

) ≤
ˆ 1

0

ˆ
Es′

|sξ|2 dx ds′ = s2
ˆ
E

|ξ|2dx+ o(s2).
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On the other hand, we have

(E(E)− E(Es))+ ≥ E(E)− E(Es)

= −s d
ds

∣∣∣
s=0
E(Es) + o(s)

= −s
ˆ

(div ξ − νE ·Dξ νE) |∇χE |

− 2s

ˆ
k ∗ χE ξ · νE |∇χE |+ o(s).

Therefore, for any E satisfying (9), and any test vector field field ξ with div ξ = 0 it
holds

1

2
|∂E|2(E) ≥−

ˆ
(div ξ − νE ·Dξ νE) |∇χE |

− 2

ˆ
k ∗ χEξ · νE |∇χE | −

1

2

ˆ
E

|ξ|2dx.
(30)

Replacing ξ by −ξ and applying this argument to Eh(t), writing the first integral in
terms of µht asˆ (

div ξ − νEh(t) ·Dξ νEh(t)

)
|∇χEh(t)| =

ˆ
(div ξ − ν̃ ·Dξν̃) dµht (x, ν̃),

integrating in t, and taking the limit h→ 0 yields (29). �

5. An interpolation inequality

Lemma 2. There exists C > 0 such that for u, v ∈ BV (Rd) with
´

(|u|+ |v|)|x|dx <
+∞, one has

‖u− v‖2L1 ≤ C‖u− v‖W−1,1 |D(u− v)|(Rd).

Proof. We first consider, f, g smooth with compact support, a symmetric mollifier ρ,
and σ > 0. We haveˆ

fg dx =

ˆ
g (ρσ ∗ f) dx+

ˆ
g (f − ρσ ∗ f) dx.

For the first integral we use |∇(ρσ ∗ g)| ≤ (‖∇ρ‖L1/σ)‖g‖L∞ , hence by symmetry of
ρ: ˆ

g (ρσ ∗ f) dx =

ˆ
f (ρσ ∗ g) dx ≤ C1

σ
‖f‖W−1,1‖g‖L∞ ,

with C1 = ‖∇ρ‖L1 . For the second integral, we write that for f ∈ BV (Rd) ∩C1(Rd),ˆ
|f − ρσ ∗ f |dx =

ˆ ∣∣∣∣ˆ ˆ σ

0

ρ(ξ)ξ · ∇f(x− tξ) dt dξ
∣∣∣∣ dx ≤ C2σ‖∇f‖L1 ,

where C2 =
´
|ξ|ρ(ξ)dξ. We deduce thatˆ

g(f − ρσ ∗ f) dx ≤ C2σ‖g‖∞|Df |(Rd).

Hence for any σ > 0ˆ
f g dx ≤ ‖g‖L∞

(
C1

σ
‖f‖W−1,1 + C2σ|D(u− v)|(Rd)

)
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so that (minimizing the right-hand side with respect to σ > 0)ˆ
f g dx ≤ 2‖g‖L∞

√
C1C2‖f‖W−1,1 |Df |(Rd).

Choosing g a mollification of sign f and passing to the limit it follows thatˆ
|f | dx ≤ 2

√
C1C2‖f‖W−1,1 |Df |(Rd).

This extends to f ∈ BV (Rd) such that ‖f‖−1,1 = sup|∇g|<1

´
fg dx < +∞ and´

|x||f(x)|dx < +∞, by approximation. �

Since ‖χE−χF ‖W−1,1 = W1(χE , χF ) we have the following immediate consequence
of Lemma 2.

Corollary 1. For any sets E,F ⊂ Rd with finite perimeter and with
´
E∪F |x|dx <

+∞
|E4F | .

√
P (E) + P (F )

√
W1(χE , χF ).
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