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 and the power halflogistic distribution introduced by Krishnarani (2016). Among its advantages, the corresponding hazard rate function has various kinds of shapes, which constitutes a positive point in the context of statistical modelling. A part of the paper is devoted to some of its main mathematical features, including quantiles, skewness, kurtosis, moments, incomplete moments, mean deviations, Bonferroni and Lorenz curves, stochastic ordering, reliability parameter and distribution of order statistics. Then, the gamma power half-logistic model is investigated in view of data analysis. We use the maximum likelihood method for estimating the model parameters, with a simulation study attesting the good performance of the method. The practical aspect is discussed with the help of two real life data sets.

Introduction

By their intrinsic definitions, the distributions defined on the positive real line, i.e., (0, +∞), are appropriate to model the duration of time until a certain phenomenon happens (death times of patients, time to mechanical failure. . . ). The notorious distributions on (0, +∞) includes the chi, Dagum, exponential, Fréchet, gamma, Gompertz, Lomax, Pareto, Rayleigh and Weibull distributions, and those defined as a fold at zero of symmetric (around zero) distributions as the half-normal, half-Student, half-Cauchy and half-logistic distributions. All of them are widely used as models to analyze data sets in many applied fields, as computer science, engineering, economics, biological studies, medical sciences and hydrology. Thanks to its simplicity, tractable mathematical properties and ability to fit correctly survival data, the half-logistic (HL) distribution has been the object of all the attentions. We refer to [START_REF] Balakrishnan | Order statistics from the half logistic distribution[END_REF][START_REF] Balakrishnan | Best Linear Unbiased Estimators of Location and Scale Parameters of the Half Logistic Distribution[END_REF][START_REF] Balakrishnan | Handbook of the Logistic Distribution[END_REF] and [START_REF] Olapade | On Characterizations of the Half Logistic Distribution[END_REF], and the references therein. Let us just mention that it is characterized by the survival function (sf) given by Π(x) = 2 1 + e αx , α, x > 0.

(1)

In recent years, aiming to extend or exploit some of its features, several generalizations and extensions of the HL distribution have been proposed. Among them, there are the generalized half-logistic (GHL) distribution by [START_REF] Torabi | Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data[END_REF], the type 1 generalized half logistic (Type 1 GHL) distribution by [START_REF] Olapade | The type I generalized half logistic distribution[END_REF], the exponentiated HL-G family of distributions (EHL-G) by [START_REF] Cordeiro | The exponentiated half logistic family of distributions: Properties and applications[END_REF] type I half-logistic-G family of distributions (Type 1 GHL-G) by [START_REF] Cordeiro | The type I half-logistic family of distributions[END_REF], the power half-logistic (PHL) distribution by [START_REF] Krishnarani | On a power transformation of half-logistic distribution[END_REF], the half-logistic generalized Weibull (HLGW) distribution by [START_REF] Anwar | The Half-Logistic Generalized Weibull Distribution[END_REF], the Marshall Olkin half-logistic (MOHL) distribution by [START_REF] Yegen | Marshall-Olkin Half Logistic Distribution with Theory and Applications[END_REF] and the Kumaraswamy type I half-logistic (KHL) distribution by [START_REF] El-Sherpieny | Kumaraswamy Type I Half Logistic Family of Distributions with Applications[END_REF]. Let us now focus on the PHL distribution by [START_REF] Krishnarani | On a power transformation of half-logistic distribution[END_REF]. First of all, we can presented it as a simple two parameter distribution extending the half logistic distribution by the use of the power transformation method, in the same way that the Weibull distribution extends the exponential distribution. The corresponding sf is given by Ḡ(x) = Π(x β ) = 2 1 + e αx β , α, β, x > 0.

(2)

It is shown in [START_REF] Krishnarani | On a power transformation of half-logistic distribution[END_REF] that β has an important role on the curvatures of the related probability density function (pdf) and on the nature of the tails of the PHL distribution, demonstrating more flexible properties in comparison to the former HL distribution. Thus, the related statistical model is adequate to model data sets having tail probability less or greater than the basic HL model. This is illustrated in [START_REF] Krishnarani | On a power transformation of half-logistic distribution[END_REF] with the help of three real-life data sets. There is however a room for improvement in terms of model flexibility as suggested by (Krishnarani, 2016, Figures 3 and 4), where a lack of bathtub or reversed J shapes for the hazard rate function (hrf) can be observed.

In this paper, we explore a natural extension of the PHL distribution. Following the spirit of [START_REF] Castellares | A Gamma-Generated Logistic Distribution: Properties and Inference[END_REF] for the logistic distribution (on the whole real line), we consider the gamma-G family of distributions established by [START_REF] Zografos | On families of beta-and generalized gamma-generated distributions and associated inference[END_REF] with the PHL distribution for baseline distribution. Let us now present the gamma-G family of distributions, in full generality. From a baseline sf denoted by Ḡ(x), the cumulative distribution function (cdf) of the gamma-G family of distributions is given by

F (x) = γ 1 δ, -log[ Ḡ(x)] , δ, x > 0, (3) 
where γ 1 (δ, z) denotes the so-called regularized lower incomplete gamma function defined by

γ 1 (δ, z) = γ(δ, z)/Γ(δ), γ(δ, z) = z 0 t δ-1 e -t dt and Γ(δ) = +∞ 0 t δ-1 e -t dt.
As established in numerous works in the field, the new parameter δ aims to increase flexibility to the baseline distribution, including it as a special case by taking δ = 1. The usefulness of the gamma-G family of distributions is discussed in detail in (Nadarajah and Rocha, 2016, gamma-G I distributions, page 11), with a wide broad of baseline distributions and applications. We thus introduce the gamma power halflogistic (GPHL) distribution characterized by the cdf defined by he cdf of the gamma-G family of distributions given by (3) with the sf of the PHL distribution (2). In this study, we defend the merits and advantages of using the GPHL distribution in a statistical setting.

The rest of the paper is unfolded in the following manner. Section 2 describes the GPHL distribution by their main probabilistic functions, with the analytical study of their shapes. Some structural properties of the GPHL distribution are exhibited in Section 3, with natural ideas of extensions. Estimation of the unknown GPHL model parameters are explored in Section 4 with the maximum likelihood method. In particular, a Monte Carlo simulation study examines the precision of the obtained maximum likelihood estimates. Applications of the GPHL model are performed in Section 5 by the consideration of two real data sets. A brief conclusion is given in Section 6.

The GPHL distribution

Crucial functions

As described in the introduction, the GPHL distribution is characterized by the cdf obtained by substituting the PHL sf given by (2) in the definition of the gamma-G cdf given by(3). Hence, the cdf of the GPHL distribution is given by

F (x) = γ 1 δ, -log 2 1 + e αx β , δ, α, β, x > 0. ( 4 
)
By differentiation, after some algebra, the pdf corresponding to (4) is given by

f (x) = 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1
.

(5)

The sf and hrf of the GPHL distribution are, respectively, given by The rest of the section is devoted to some analytical study of these shapes.

S(x) = 1 -F (x) = 1 -γ 1 δ, -log 2 1 + e αx β and h(x) = f (x) S(x) = 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 1 -γ 1 δ, -log 2 1 + e αx β -1 .

Illustrations
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Asymptotes

The following result presents the asymptotes for f (x) and h(x).

Proposition 1 We have

lim x→0 f (x) =          + ∞ if δβ < 1, α δ δΓ(δ)2 δ if δβ = 1, 0 if δβ > 1, lim x→+∞ f (x) = 0 and lim x→0 h(x) =          + ∞ if δβ < 1, α δ δΓ(δ)2 δ if δβ = 1, 0 if δβ > 1, lim x→+∞ h(x) =      0 if β < 1, 2α if β = 1, + ∞ if β > 1.
Proof. We proceed by using equivalences of the involved functions.

As x → 0, since -log(2/(1 + e αx β )) ∼ 1 -2/(1 + e αx β ) ∼ (1/2)αx β , we have f (x) ∼ α δ β Γ(δ)2 δ x δβ-1 . Therefore, as x → 0, if δβ < 1, f (x) → +∞, if δβ = 1, f (x) → α δ /(δΓ(δ)2 δ ) and if δβ > 1, f (x) → 0.
As x → +∞, since -log(2/(1 + e αx β )) ∼ αx β , we have

f (x) ∼ 2α δ β Γ(δ) x δβ-1 e -αx β .
Hence, for any values of the parameters, as x → +∞, we have f (x) → 0. As x → 0, we have

h(x) ∼ f (x) ∼ α δ β Γ(δ)2 δ x δβ-1 . Therefore, as x → 0, if δβ < 1, h(x) → +∞, if δβ = 1, h(x) → α δ /(δΓ(δ)2 δ ) and if δβ > 1, h(x) → 0. As x → +∞, since γ 1 (δ, x) ∼ 1 -x δ-1 e -x /Γ(δ) and -log(2/(1 + e αx β )) ∼ αx β , we have S(x) ∼ 1 Γ(δ) α δ-1 x β(δ-1) e -αx β .
Therefore,

h(x) = f (x) S(x) ∼ 2αβx β-1 . Hence, as x → +∞, if β < 1, h(x) → 0, if β = 1, h(x) → 2α and if β > 1, h(x) → +∞.
This ends the proof of Proposition 1.

Shapes

The shapes of f (x) and h(x) can be described analytically. The critical points of f (x) are the roots of the equation given by ∂ log[f (x)]/∂x = 0, i.e.,

β -αβx β e αx β + αβx β -e αx β + βe αx β -1 log 2 1 + e αx β = (1 -δ)αβx β e αx β .
As usual, if x = x 0 is a root, then it corresponds to a local maximum, a local minimum or a point of inflexion depending on whether λ(x 0 ) < 0, λ(x 0 ) > 0, or λ(x 0 ) = 0, where λ

(x) = ∂ 2 log[f (x)]/∂x 2 , i.e., λ(x) = (δ -1)α 2 β 2 x 2β-2 e 2αx β 2 -δ + log 2 1+e αx β log 2 1+e αx β 2 1 + e αx β 2
.

Similarly, the critical points of h(x) are the roots of the equation given by ∂ log[h(x)]/∂x = 0, i.e.,

β -αβx β e αx β + αβx β -e αx β + βe αx β -1 x(1 + e αx β ) = (1 -δ)αβx β-1 e αx β log 2 1+e αx β 1 + e αx β - 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 1 -γ 1 δ, -log 2 1 + e αx β -1 .
Here again, if x = x • is a root, then it corresponds to a local maximum, a local minimum or a point of inflexion depending on whether θ(x

• ) < 0, θ(x • ) > 0, or θ(x • ) = 0, where θ(x) = ∂ 2 log[h(x)]/∂x 2 .
To save place, we omit the analytical expression of θ(x).

These critical points, as well as their nature, can be determined numerically using any mathematical softwares (R, Matlab, Mathematica. . . ).

3 Some properties of the GPHL distribution

Quantile function

The quantile function of the GPHL distribution, denoted by Q(u), satisfies the equation F (Q(u)) = Q(F (u)) = u, for any u ∈ (0, 1). After some algebra, it is given by

Q(u) = 1 α log 2e γ -1 1 (δ,u) -1 1/β , u ∈ (0, 1), (6) 
where γ -1 1 (δ, u) denotes the inverse function of γ 1 (δ, u) (the so-called inverse of the regularized lower incomplete gamma function, see [START_REF] Didonato | Computation of the incomplete gamma functions[END_REF]).

The median is given by M ed = Q(1/2). In a similar way, we can also determine the quartiles and octiles.

The quantile finction is also useful examine the skewness and kurtosis of the GPHL distribution. One can evaluate the Bowley skewness and the Moors kurtosis, for instance. The Bowley skewness is given by

B = Q(3/4) + Q(1/4) -2Q(2/4) Q(3/4) -Q(1/4)
and the Moors kurtosis is given by

M = Q(3/8) -Q(1/8) + Q(7/8) -Q(5/8) Q(3/4) -Q(1/4) .
Further details on the Bowley skewness and Moors kurtosis can be found in Kenney and Keeping (1962) and [START_REF] Moors | A quantile alternative for kurtosis[END_REF], respectively. These measures have the advantages to be less sensitive to outliers and they exist even for distributions without moments.

A remarkable function related to Q(u), with of statistical importance, is the quantile density function given by

q(u) = 1 f (Q(u)) = 2Γ(δ)e γ -1 1 (δ,u) 1 α log 2e γ -1 1 (δ,u) -1 1/β-1 αβ(2e γ -1 1 (δ,u) -1) γ -1 1 (δ, u) δ-1 e -γ -1 1 (δ,u)
, u ∈ (0, 1).

The implication of the quantile density function in statistics is discussed in [START_REF] Parzen | Nonparametric statistical modelling (with comments)[END_REF].

Some distributional results

Here we develop some results in distribution involving the GPHL distribution.

Simple connexions

There exist connexions between the GPHL distribution and standard distributions. Some of these connexions are presented below.

Let U be a random variable following the uniform distribution over (0, 1). Then, using the quantile function Q(u) given by ( 6), the random variable X defined by

X = Q(U ) = 1 α log 2e γ -1 1 (δ,U ) -1 1/β (7) 
follows the GPHL distribution. Now, we say that a random variable follows the gamma distribution G am (1, δ) if it has the cdf given by K(x) = γ 1 (δ, x), x > 0. If X is a random variable following the GPHL distribution, then the random variable Y defined by

Y = -log 2 1 + e αX β follows the gamma distribution G am (1, δ).
Also, if Y is a random variable following the gamma distribution G am (1, δ), since γ(δ, Y ) follows the uniform distribution on (0, 1), ( 7) implies that the random variable X defined by

X = Q(γ(δ, Y )) = 1 α log 2e Y -1 1/β
follows the GPHL distribution.

Some log GPHL distributions

Some log transformations of the GPHL distributions are now investigated, extending those in (Krishnarani, 2016, Subsection 5.1). Let X be a random variable following the GPHL distribution.

• Let Y = e X . Then, the corresponding pdf is given by

f (y) = 2αβ{log(y)} β-1 e α{log(y)} β Γ(δ)y 1 + e α{log(y)} β 2 -log 2 1 + e α{log(y)} β δ-1 , y > 1.
The distribution of Y is called the log positive GPHL distribution.

• Let Z = e -X . Then, the corresponding pdf is given by

f (z) = 2αβ{-log(z)} β-1 e α{-log(z)} β Γ(δ)z 1 + e α{-log(z)} β 2 -log 2 1 + e α{-log(z)} β δ-1 , z ∈ (0, 1).
The distribution of Z is called the log negative GPHL distribution.

Simple distributions derived to the GPHL distribution, with one parameter and different supports, are presented below.

• Let Y = e αX β . Then, the pdf of Y is given by

f (y) = 1 Γ(δ) (1 + y) 2 -log 2 1 + y δ-1 , y > 1.
Let Z = e -αX β . Then, the pdf of Z is given by

f (z) = 1 Γ(δ) (1 + z) 2 -log 2z 1 + z δ-1
, z ∈ (0, 1).

Linear expansions for the pdf and cdf

The following result investigates useful expansions for F (x) and f (x) in terms of exponential function of the form e -sαx β , where s denotes an integer.

Proposition 2 The cdf F (x) given by (4) can be expressed as

F (x) = +∞ ,m=0 c ,m e -( +m)αx β , x > 0, (8) 
where

c ,m = 1 Γ(δ -1) +∞ k=0 k j=0 k + 1 -δ k k j δ + k - m (-1) j+k+ 2 p j,k (δ -1 -j)(δ + k) , b a denotes the (generalized) binomial coefficient, i.e., b a = b(b -1) . . . (b -a + 1
)/a! and p j,k is calculated recursively by using p j,0 = 1 and, for strictly positive integer k,

p j,k = 1 k k i=1 [k -i(j + 1)] (-1) i+1 i + 1 p j,k-i .
Also, the pdf f (x) given by (5) can be expressed as

f (x) = +∞ ,m=0 ( +m>0) c * ,m ( + m)αβx β-1 e -( +m)αx β , (9) 
where c * ,m = -c ,m .

Proof. It follows from a general result in [START_REF] Nadarajah | The Zografos-Balakrishnan-G family of distributions: Mathematical properties and applications[END_REF], Section 3) on the gamma-G family of distributions, with Ḡ(x) as baseline sf, that

F (x) = +∞ k=0 b k [1 -Ḡ(x)] δ+k , where b k = 1 (δ + k)Γ(δ -1) k + 1 -δ k k j=0 (-1) j+k δ -1 -j k j p j,k .
On the other hand, by the generalized binomial formula and Ḡ(x) = 2/(1 + e αx β ) = 2e -αx β /(1 + e -αx β ), we have

[1 -Ḡ(x)] δ+k = +∞ =0 δ + k (-1) [ Ḡ(x)] = +∞ =0 δ + k (-1) 2 e -αx β [1 + e -αx β ] - = +∞ ,m=0 δ + k - m (-1) 2 e -( +m)αx β .
By combining the equalities above, we obtain the desired expansion for F (x). The expansion for f (x) follows by differentiation. This ends the proof of Proposition 2.

One can remark that the expression of the GPHL pdf given by ( 9) is sums of pdfs of the Weibull distribution with parameters ( + m)α and β, i.e., with pdf κ ,m (x) = ( + m)αβx β-1 e -( +m)αx β , x > 0. This expression is useful to have expression of several probabilistic measures. Some of them are presented in the next subsections.

Moments and related measures

Hereafter, X denotes a random variable following the GPHL distribution, i.e., having the cdf given by (4).

Let r be an integer. Then, the (raw) r-th moment of X is given by

µ r = E(X r ) = +∞ -∞ x r f (x)dx = +∞ 0 x r 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 dx.
Since, as x → 0, we have x r f (x) ∼ [1/(2 δ Γ(δ))]α δ βx r+δβ-1 and, as x → +∞, we have x r f (x) ∼ (1/Γ(δ))2α δ βx r+δβ-1 e -αx β , µ r always exists by using the criteria of the Riemann integrals.

Alternative expressions of this integral are possible via some change of variables, as the following ones:

µ r = +∞ 0 1 α log (2e y -1) r/β 1 Γ(δ) y δ-1 e -y dy = 1 0 1 α log 2e γ -1 1 (δ,u) -1 r/β du.
This integral can be computed numerically by using any mathematical softwares. Alternatively, we can use the expression of f (x) given by ( 9). Hence, we have

µ r = +∞ ,m=0 ( +m>0) c * ,m +∞ 0 x r ( + m)αβx β-1 e -( +m)αx β dx = Γ r β + 1 +∞ ,m=0 ( +m>0) c * ,m [( + m)α] -r/β .
Several quantities can be derived to µ r . The most important of them are described below. The mean of X is given by µ 1 . Furthermore, the r-th central moment of X is given by

µ r = E([X -µ 1 ] r ) = r k=0 r k (-1) k (µ 1 ) k µ r-k . ( 10 
)
The variance of X is given by µ 2 = µ 2 -(µ 1 ) 2 . The r-th descending factorial moment of X is given by

µ (r) = E[X(X -1) . . . (X -r + 1)] = r k=0 s sti (r, k)µ k ,
where s sti (r, k) denotes the Stirling number of the first kind defined by

s sti (r, k) = (1/k!)[x(x - 1) . . . (x -r + 1)] (k) | x=0 .
Also, the cumulants of X can be calculated by the recursive formula given by

κ r = µ r - r-1 k=1 r -1 k -1 µ r-k κ k ,
where, as initial value, κ 1 = µ 1 .

In particular, we have

κ 2 = µ 2 -(µ 1 ) 2 , κ 3 = µ 3 -3µ 2 µ 1 + 2(µ 1 ) 3 and κ 4 = µ 4 -4µ 3 µ 1 -3(µ 2 ) 2 + 12µ 2 (µ 1 ) 2 -6(µ 1 ) 4 . The skewness γ 1 is given by γ 1 = κ 3 /κ 3/2
2 , the normalized kurtosis γ 2 is given by κ 4 /κ 2 2 and the non normalized kurtosis is given by β 2 = γ 2 + 3. The moment generating function of X is given by

M (t) = +∞ -∞ e tx f (x)dx = +∞ 0 e tx 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 dx. Since, as x → 0, we have e tx f (x) ∼ (1/[2 δ Γ(δ)])α δ βx δβ-1 and, as x → +∞, we have e tx f (x) ∼ (1/Γ(δ))2α δ βx δβ-1 e tx-αx β , M (t) exists if t ≤ 0 if β > 0 (without restriction, a priori), or t ≤ α if β = 1, or t ∈ R if β > 1,
by using criteria of the Riemann integrals. As for the raw moments, we can investigate several changes of variables to have a more tractable expression of the integral. Also, if the raw moments are available, we have

M (t) = +∞ r=0 t r r! µ r .
An alternative expression follows from the expansion of f (x) given by ( 9). Thus, we have

M (t) = +∞ ,m=0 ( +m>0) c * ,m +∞ 0 e tx ( + m)αβx β-1 e -( +m)αx β dx = +∞ r, ,m=0 ( +m>0) c * ,m t r r! [( + m)α] -r/β Γ r β + 1 .

Incomplete moments

Let 1 A be the indicator function of over an event A, i.e., 1 A = 1 is A is satisfied and 1 A = 0 elsewhere. Then, the r-th incomplete moment of X is defined by

µ * r (t) = E X r 1 {X≤t} = t -∞ x r f (x)dx = t 0 x r 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 dx.
Other integral expressions can be given via some change of variables. As for the moments, we can compute this integral numerically.

On the other side, by virtue of the linear expansion of f (x) given by ( 9), we have

µ * r (t) = +∞ ,m=0 ( +m>0) c * ,m t 0 x r ( + m)αβx β-1 e -( +m)αx β dx = +∞ ,m=0 ( +m>0) c * ,m [( + m)α] -r/β γ r β + 1, ( + m)αt β .
Some important quantities involving µ * r (t) with r = 1 are described below. The mean deviation of X about the mean µ 1 is given by

ξ 1 = E(|X -µ 1 |) = 2µ 1 F (µ 1 ) -2µ * 1 (µ 1 ).
Similarly, the mean deviation of X about the median M ed is given by

ξ 2 = E(|X -M ed |) = µ 1 -2µ * 1 (M ed ).
The Bonferroni curve is given by

B(u) = 1 uµ 1 µ * 1 (Q(u)) = 1 uµ 1 µ * 1 1 α log 2e γ -1 1 (δ,u) -1 1/β , u ∈ (0, 1).
The Lorenz curve is given by L(u) = uB(u), u ∈ (0, 1). These curves are useful in many areas as economics, insurance, reliability, demography and medicine.

Stochastic ordering

A result on the stochastic ordering involving the GPHL distribution with fixed parameters α and β is presented below.

Proposition 3 Let X be a random variable having the pdf f 1 (x) given by (5) with parameters δ 1 , α and β and Y be a random variable having the pdf f 2 (x) given by (5) with parameters δ 2 , α and β. Then, if δ 1 ≤ δ 2 , we have X ≤ lr Y .

Proof. We have

f 1 (x) f 2 (x) = Γ(δ 2 ) Γ(δ 1 ) -log 2 1 + e αx β δ 1 -δ 2 .
Hence, by differentiation, since δ 1 ≤ δ 2 , we have

∂ ∂x f 1 (x) f 2 (x) = Γ(δ 2 ) Γ(δ 1 ) (δ 1 -δ 2 ) -log 2 1 + e αx β δ 1 -δ 2 -1 αβx β-1 e αx β 1 + e αx β ≤ 0.
Therefore, the ratio function f 1 (x)/f 2 (x) is decreasing, implying that X ≤ lr Y . This ends the proof of Proposition 3. The complete theory on stochastic ordering can be found in [START_REF] Shaked | Stochastic orders and their applications[END_REF].

On a reliability parameter

Here, we investigate a reliability parameter related to the GPHL distribution with fixed parameter β. This parameter is defined as follows. Let X be a random variable having the pdf f 1 (x) given by ( 5) with parameters δ 1 , α 1 and β and Y be a random variable having the cdf F 2 (x) given by ( 4) with parameters δ 2 , α 2 and β, independent of X. Then, we consider the reliability parameter of the GPHL distribution defined by R = P(Y < X). We refer to [START_REF] Kotz | The stress-strength model and its generalizations and applications[END_REF] for the implication of this parameter in the setting of the reliability theory. In terms of integrals, R can be expressed as

R = +∞ -∞ f 1 (x)F 2 (x)dx = +∞ 0 2α 1 βx β-1 e α 1 x β Γ(δ 1 ) 1 + e α 1 x β 2 -log 2 1 + e α 1 x β δ 1 -1 γ 1 δ 2 , -log 2 1 + e α 2 x β dx = +∞ 0 2α 1 e α 1 y Γ(δ 1 ) (1 + e α 1 y ) 2 -log 2 1 + e α 1 y δ 1 -1 γ 1 δ 2 , -log 2 1 + e α 2 y
dy.

This integral can be computed numerically. Also, remark that it is independent of β. A linear expression can be given by using the linear expressions of F 2 (x) and f 1 (x), respectively given by ( 8) and ( 9) with the appropriate notations for the coefficients c s and c * s according to the definitions of the parameters δ 2 , α 2 and δ 1 , α 1 , i.e.,

F 2 (x) = +∞ ,m=0 c ,m (δ 2 , α 2 )e -( +m)α 2 x β , f 1 (x) = +∞ s,t=0 (s+t>0) c * s,t (δ 1 , α 1 ) (s + t)α 1 βx β-1 e -(s+t)α 1 x β . Hence, R = +∞ ,m,s,t=0 (s+t>0) c ,m (δ 2 , α 2 )c * s,t (δ 1 , α 1 ) +∞ 0 (s + t)α 1 βx β-1 e -[( +m)α 2 +(s+t)α 1 ]x β dx = +∞ ,m,s,t=0 (s+t>0) c ,m (δ 2 , α 2 )c * s,t (δ 1 , α 1 ) (s + t)α 1 ( + m)α 2 + (s + t)α 1 .
Furthermore, if δ 1 = δ 2 and α 1 = α 2 , X and Y becomes identically distributed and we rediscover the value R = 1/2.

Order statistics

The order statistics are widely used in many statistical applications. Most of them are described in [START_REF] David | Order Statistics[END_REF], for instance. This subsection is devoted to the order statistics of the GPHL distribution. Let X 1 , . . . , X n be a random sample from the GPHL distribution and X i:n be the i-th order statistic, i.e., the i-th random variable such that, by arranging X 1 , . . . , X n in increasing order, we have X 1:n ≤ X 2:n ≤ . . . ≤ X n:n . In particular, the first order statistic is given by X 1:n = inf(X 1 , X 2 , . . . , X n ) and the last order statistic is given by

X n:n = sup(X 1 , X 2 , . . . , X n ).
Then, the cdf of X i:n is given by

F i:n (x) = n! (i -1)!(n -i)! n-i k=0 (-1) k k + i n -i k [F (x)] k+i = n! (i -1)!(n -i)! n-i k=0 (-1) k k + i n -i k γ 1 δ, -log 2 1 + e αx β k+i , x > 0.
The corresponding pdf is given by

f i:n (x) = n! (i -1)!(n -i)! f (x)[F (x)] i-1 [1 -F (x)] n-i = n! (i -1)!(n -i)! 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 γ 1 δ, -log 2 1 + e αx β i-1 × 1 -γ 1 δ, -log 2 1 + e αx β n-i .
In particular, the pdf corresponding to X 1:n is given by

f 1:n (x) = n 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 1 -γ 1 δ, -log 2 1 + e αx β n-1
and the pdf corresponding to X n:n is given by

f n:n (x) = n 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 γ 1 δ, -log 2 1 + e αx β n-1 .
The r-th moment of X i:n is given by

µ o r = E(X r i:n ) = +∞ -∞ x r f i:n (x)dx = +∞ 0 x r n! (i -1)!(n -i)! 2αβx β-1 e αx β Γ(δ) 1 + e αx β 2 -log 2 1 + e αx β δ-1 × γ 1 δ, -log 2 1 + e αx β i-1 1 -γ 1 δ, -log 2 1 + e αx β n-i dx = n! (i -1)!(n -i)! +∞ 0 1 α log (2e y -1) r/β 1 Γ(δ) y δ-1 e -y [γ 1 (δ, y)] i-1 [1 -γ 1 (δ, y)] n-i dy = n! (i -1)!(n -i)! 1 0 1 α log 2e γ -1 1 (δ,u) -1 r/β u i-1 (1 -u) n-i du.
This integral can be evaluated numerically.

Ideas of extensions

Following the spirit of (Krishnarani, 2016, Subsection 5.2), a prime idea of extension of the GPHL distribution is to introduce a new parameter τ by considering the cdf

F (x) = γ 1 δ, -log 1 + τ 1 + τ e αx β , δ, α, β, τ, x > 0.
The role of τ is to skew the tail of the distribution, by modulating the influence of the exponential function e αx β . The related distribution is called the extended GPHL (EGPHL) distribution.

Another idea of extension is to define some general GPHL-G families of distributions. Two of them are described below. Let G(x) be a cdf of an univariate continuous distribution. Then we can define the two following GPHL-G families of distributions:

• the odd GPHL-G family of distributions characterized by the cdf given by

F (x) = γ 1 δ, -log 2 1 + e α[G(x)] β /(1-G(x)) β , δ, α, β > 0, x ∈ R.
• the log GPHL-G family of distributions characterized by the cdf given by

F (x) = γ 1 δ, -log 2 1 + e α{-log[1-G(x)]} β , δ, α, β > 0, x ∈ R.
New flexible statistical models based on these ideas can be elaborated. This needs however further developments and validations, that we leave for a future work.

Estimation of parameters 4.1 Maximum likelihood estimation

We consider the estimation of the unknown parameters of the GPHL distribution by the method of maximum likelihood. Let x 1 , . . . , x n be a sample of size n from the GPHL distribution (characterized by the cdf given by ( 4) and with pdf ( 5)). The log-likelihood function for the vector of parameters Θ = (δ, α, β) can be expressed as

(Θ) = n log 2αβ Γ(δ) + (β -1) n i=1 log(x i ) + α n i=1 x β i -2 n i=1 log 1 + e αx β i + (δ -1) n i=1 log -log 2 1 + e αx β i .
The components of the score vector U (Θ) are given by

U δ (Θ) = ∂ (Θ) ∂δ = -n Γ (δ) Γ(δ) + n i=1 log -log 2 1 + e αx β i , U α (Θ) = ∂ (Θ) ∂α = n α + n i=1 x β i - n i=1 x β i e αx β i 1 + e αx β i + (δ -1) n i=1 x β i e αx β i -1 + e αx β i log 2 1+e αx β i , U β (Θ) = ∂ (Θ) ∂β = n β + n i=1 log(x i ) + α n i=1 x β i log(x i ) -2α n i=1 x β i log(x i )e αx β i 1 + e αx β i + α(δ -1) n i=1 x β i log(x i )e αx β i -1 + e αx β i log 2 1+e αx β i .
Setting these equations equal to zero and solving them simultaneously also yields the maximum likelihood estimates (MLEs) of the model parameters. They cannot be solved analytically but some Newton-Raphson type algorithms can be applied to obtain numerical evaluations of these estimates. Under some regularity conditions, it is well-known that the maximum likelihood estimators are asymptotically unbiased, convergent and normal. These properties allow the construction of crucial statistical objects as confidence intervals and statistical tests. All the related theory can be found in [START_REF] Cox | Theoretical Statistics[END_REF]. Some properties of the MLEs are illustrated in the next subsection via a simulation study.

Monte Carlo simulation study

Here, we evaluate the precision of the MLEs in the estimation of the GPHL parameters by using Monte Carlo simulations. The simulation study is repeated 5000 times each with sample sizes n = 50, 100, 300. The following parameter scenarios are considered: I: δ = 0.5, α = 0.5 and β = 1, II: δ = 0.5, α = 1.5 β = 1, III: δ = 1.5, α = 0.5 and β = 1, IV: δ = 1.5, α = 1.5 and β = 1,V: δ = 1.5, α = 2.5 and β = 0.5,VI: δ = 0.7, α = 0.3 and β = 2.5. Table 1 gives the average biases (Bias) of the MLEs, mean square errors (MSE) and modelbased coverage probabilities (CPs) for the parameters δ, α and β under these scenarios and the different sample sizes. Based on the simulation results, we conclude that the MLEs perform well in estimating the parameters of the GPHL distribution. Furthermore, the CPs of the confidence intervals are quite close to the 95% nominal levels. Therefore, the MLEs and their asymptotic results can be adopted for estimating and constructing confidence intervals for the model parameters. 

Illustrations with real data sets

In this section, the GPHL model is applied to model two real life data sets. We compare the fits of the GPHL model with the exponentiated Nadarajah-Haghighi (ENH) model defined by [START_REF] Lemonte | A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function[END_REF], the beta-exponential (BE) model introduced by [START_REF] Nadarajah | The beta exponential distribution[END_REF] and the PHL model proposed by [START_REF] Krishnarani | On a power transformation of half-logistic distribution[END_REF]. We estimate the model parameters by using the maximum likelihood method. We compare the goodness-of-fit of the models using Cramér-von Mises (W * ) and Anderson-Darling (A * ) statistics. Their mathematical definitions can be found in [START_REF] Chen | A general purpose approximate goodness-of-fit test[END_REF]. In addition, we consider the Kolmogorov-Smirnov (K-S) statistic. In general, the smaller the values of these statistics, the better the fit to the data. The cdfs of the GPHL, ENH, BE and PHL models are given by: 

F GP HL (x, δ, α, β) = γ 1 δ, -log 2 1 + e αx β , δ, α, β, x > 0, F EN H (x, β, α, λ) = 1 -e 1-(1+λx) α β , β, α, λ, x > 0, F BE (x, a, b, λ) = 1 1 0 t a-1 (1 -t) b-1 dt 1-e -λx 0 t a-1 (1 -t) b-1 dt, a, b, λ, x > 0, F P HL (x, α, β) = 2 1 + e αx β , α, β, x > 0.

Strength data

The first data set is taken from [START_REF] Smith | A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution[END_REF] which represents the strength of 1.5 cm glass fibers, measured at National physical laboratory, England. The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89. The MLEs (with SEs in parenthesis), A * , W * and K-S statistics are listed in Table 2. All three goodness-of-fit statistics indicate that the GPHL model provides the best fit. For a visual comparison, the histogram of the data estimated pdf and cdf, P-P plot and Q-Q plot are displayed in Figure 2. Clearly, the GPHL model fits the data more closely.

Breaking stress of carbon fibers (GPa)

The second data are taken from [START_REF] Nichols | A bootstrap control chart for Weibull percentiles[END_REF] on the breaking stress of carbon fibers (in Gba). The data are: 0.39, 3. 70, 4.42, 2.67, 1.25, 1.89, 2.35, 2.74, 2.41, 2.93, 4.38, 2.88, 2.55, 2.73, 3.19, 3.22, 1.84, 2.82, 2.59, 2.50, 3.22, 3.39, 2.05, 2.03, 3.60, 1.69, 2.81, 3.68, 3.65, 1.61, 3.11, 3.28, 4.20, 2.48, 3.75, 2.12, 3.27, 3.09, 3.33, 0.85, 2.43, 3.15, 2.87, 1.87, 2.55, 1.61, 2.95, 1.08, 1.47, 3.15, 3.31, 2.79, 2.97, 2.56, 3.11, 4.90, 3.31, 4.70, 3.39, 1.80, 3.56, 1.57, 2.85, 2.03, 2.96, 2.53.The MLEs (with SEs in parenthesis), A * , W * and K-S statistics are listed in Table 3. Again, all three goodness-of-fit statistics indicate that the GPHL model provides the best fit. For a visual comparison, the histogram of the data estimated pdf and cdf, P-P plot and Q-Q plot are displayed in Figure 3. We observe that the GPHL model fits well the data. 

Concluding remarks

A new distribution on the positive real-line is constructed using the gamma-G family of distributions introduced by Zografos and [START_REF] Zografos | On families of beta-and generalized gamma-generated distributions and associated inference[END_REF] and the power half-logistic distribution introduced by [START_REF] Krishnarani | On a power transformation of half-logistic distribution[END_REF]. It is called the gamma power half-logistic distribution (GPHL for short). Among its advantages, the GPHL distribution possesses a hazard rate function with very flexible behavior. We also investigate several of its analytical properties as quantiles, skewness, kurtosis, moments, incomplete moments, mean deviations, Bonferroni and Lorenz curves, stochastic ordering, reliability parameter and distribution of order statistics. Then, the estimation of the GPHL model parameters are done by using the maximum likelihood function. Finally, the GPHL model is used to analyze two real data sets in order to illustrate its usefulness. Also, some possible extensions of the GPHL model are introduced, investigations on their applicability will be conducted in a future work.
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 1 Figure 1 displays some plots of f (x) and h(x) for different values of δ, α and β. The plots in Figure 1 (a) reveal that f (x) can have reversed-J, right skewed shapes, left-skewed and approximately symmetric. The plots in Figure 1 (b) indicate that h(x) can have IFR (increasing failure rate), DFR (decreasing failure rate) and BT (bathtub) shapes. These different kinds of shapes show the high degree of flexibility of the proposed GPHL distribution in comparison to the former PHL distribution, as mentioned in Introduction.
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 1 Figure 1: Plots of the (a) GPHL pdf (b) GHPL hrf for certain parameter values.
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 23 Figure 2: The fitted pdfs, cdfs, Q-Q and P-P plots for the strength data.

Table 1 :

 1 Monte Carlo simulation results: Biases, MSEs and CPs.

			I	II		III
	Parameter n	Bias MSE CP	Bias MSE CP	Bias	MSE CP
	δ	50	0.010 0.037 0.91	0.052 0.072 0.98	0.033	0.407 0.89
		100 0.013 0.023 0.94	0.010 0.026 0.98	0.063	0.214 0.94
		300 0.007 0.008 0.95	0.000 0.006 0.95	0.040	0.075 0.96
	α	50	0.187 0.491 1.00	0.570 4.077 0.88	0.209	0.465 0.99
		100 0.062 0.058 0.98	0.305 1.390 0.92	0.062	0.093 0.98
		300 0.013 0.013 0.96	0.086 0.208 0.95	0.011	0.014 0.96
	β	50	0.343 1.228 0.99	0.495 3.206 0.86	0.374	1.287 0.98
		100 0.131 0.275 0.97	0.269 1.115 0.91	0.115	0.326 0.97
		300 0.027 0.071 0.96	0.077 0.179 0.95	0.020	0.076 0.96
			IV	V		VI
	δ	50	0.271 0.938 0.99	0.358 1.035 1.00	-0.090 0.057 0.87
		100 0.122 0.294 0.97	0.067 0.273 1.00	-0.075 0.032 0.90
		300 0.022 0.059 0.95	0.002 0.056 0.99	-0.051 0.013 0.93
	α	50	0.597 4.007 0.86	0.511 5.886 0.82	0.163	0.103 1.00
		100 0.256 1.511 0.90	0.638 4.383 0.90	0.093	0.029 1.00
		300 0.064 0.166 0.94	0.225 1.097 0.94	0.044	0.006 0.99
	β	50	0.513 3.132 0.84	0.299 1.170 0.74	0.588	1.074 0.96
		100 0.218 1.193 0.89	0.303 0.853 0.86	0.341	0.426 0.94
		300 0.056 0.146 0.94	0.097 0.195 0.92	0.146	0.106 0.95

Table 2 :

 2 MLEs, their SEs (in parentheses) and goodness-of-fit measures for the strength data.

	Distribution		Estimates		A *	W *	K-S
	GPHL(δ, α, β)	0.8514	5.5887	0.0813	0.9246 0.16780 0.1396
		(0.2858) (1.3054) (0.0810)	
	ENH(β, α, λ)	9.3842	21.2951	0.0421	2.7858 0.5312 0.2107
		(1.8948) (16.5962) (0.0342)	
	BE(a, b, λ)	16.7598	6.8285	0.8587	3.4713 0.6643 0.2265
		(3.5990) (8.4755) (0.6948)	
	PHL(α, β)	5.0492	0.1252		0.9590 0.1974 0.1890
		(0.5193) (0.0385)		

Table 3 :

 3 MLEs, their SEs (in parentheses) and goodness-of-fit measures for the breaking stress of carbon fibers.

	Distribution		Estimates		A *	W *	K-S
	GPHL(δ, α, β)	1.0482	2.8713	0.0621	0.4029 0.0663 0.0743
		(0.3983) (0.7405) (0.0752)	
	ENH(β, α, λ)	4.5816	6.0911	0.0727	0.9009 0.1722 0.1143
		(0.8390) (2.0535) (0.0280)	
	BE(a, b, λ)	7.4229	6.0563	0.3060	1.4260 0.2657 0.1371
		(1.3408) (4.0672) (0.1577)	
	PHL(α, β)	2.9579	0.0537		1.4074 0.3665 0.1746
		(0.2949) (0.0204)		
	Empirical and theoretical dens.