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In this paper, the Riemann integral and the fundamental of calculus will be used to perform double integrals on a polygonal domain enclosed by curved edges. The double integral with two variables over the domain is transformed into sequences of single integrals with one variable of its primitive. The sequence is arranged counter clockwise starting from the minimum value of the variable of integration. Finally, the integration over the domain is performed using only one variable in one direction. The way of integration is illustrated on practical examples for which the area and moments of area are found for arbitrary polygons enclosed by straight edges as well as curved edges and compared with the exact values resulting in from dividing the polygon into its standard elementary shapes and the parallel axis theorem. The stiffness matrix is derived for an arbitrary quadrilateral finite element for plate bending. The derived element is a generalization of the first finite element used in the analysis of thin plates known as ACM. The results are tested according to a program code written in MATLAB. The presented way of integration is of general applicability for convex and non-convex domains for a wide range of engineering and physical problems provided that, the primitive of the integrated function exists and it is continuous on the partial intervals of integration. The generalization of this technique to volume integrals over polyhedral domains is possible.

Introduction

The finite element methods among other numerical methods experienced significant developments after the use of the Voronoi Diagram in partitioning of a plane points into convex polygons [START_REF] Weisstein | Voronoi Diagram[END_REF]. Based on Voronoi Diagram, there were several mesh generator for polygonal and polyhedral elements with topology optimization. These offer a general framework for finite element discretization and analysis, see for example [START_REF] Talischi | Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab[END_REF] and the mesh generators mentioned therein.

In the past fifteen years, many works have been published which operate on polygonal elements in the framework of numerical analysis and used intensively in the fields of applied engineering and physical sciences and even in medical and biological sciences [3, 4, 5, 6, 7, 8, 9, 10,]. An overview of previous developments on conforming polygonal and polyhedral finite elements is included in [START_REF] Beirão Da Veiga | High-order Virtual Element Method on polyhedral meshes[END_REF], and an overview on the use of different generalized barycentric coordinates in Galerkin finite element computations is included in [START_REF] Manzini | New perspectives on polygonal and polyhedral finite element methods[END_REF]. Several other papers that use the polygonal and polyhedral elements in different fields of computational Engineering are listed in [START_REF] Chi | Some basic formulations of the virtual element method (VEM) for finite deformations[END_REF]. Therefore, it was necessary to use flexible techniques in performing the integrals of the state variables defined on the domains analyzed. These techniques become necessary when changes occur suddenly in the geometry of the domains such as the appearance of cracks or ruptures within them. Some recent publications [11, 12, 13 14, 15] show that the topic is still under study and development; some others [START_REF] Shen | Biomechanics of a moth scale at ultrasonic frequencies[END_REF][START_REF] Kappert | An interactive surgical simulation tool to assess the consequences of a partial glossectomy on a biomechanical model of the tongue[END_REF][START_REF] Ferguson | Polygonal Virtual Element Spatial Discretisation Methods for the Neutron Diffusion Equation With Applications in Nuclear Reactor Physics[END_REF] reflect its use and wide spreading under different disciplines.

Concurrently, new software languages have been developed that are highly capable of meeting the requirements of researchers in conducting symbolic and arithmetic operations in a built-in software environment, including but not limited to MATLAB, Python, Julia and Octave, etc... [19,20,21,22,23,[START_REF] Meurer | SymPy: symbolic computing in Python[END_REF] By adopting the Riemann integral, the Green's formula or the Gauss divergence theorem in the calculation of integrals over complex domains by the use of open programming languages that use symbolic operations, young researchers are provided with powerful tools that can be used to address various types of physical and engineering problems.

Integration over a finite element of various shapes is an important part of every finite element code. The numerical integration consumes considerable part of the computational time. Therefore, developing explicit element matrices will reduce the computational costs considerably. One of the great advantages of using the Riemann integral is the possibility to develop explicit expressions of the element matrices at first symbolically and incorporating it after that in a numerical program code.

A study about the history of integration can be found in [START_REF] Hammarström | Origins of integration[END_REF], [START_REF] Bastian | An introduction to the generalized Riemann integral and its role in undergraduate mathematics education[END_REF]. Many classical examples exploiting the basic concept of the fundamental of calculus are presented in [START_REF] Edelstein-Keshet | Integral Calculus with Applications to the Life Sciences[END_REF]. According to [START_REF] Antonietti | Fast Numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods[END_REF], the most employed technique of integration over polygonal and polyhedral elements is performed by subdividing them into standard-shaped elements and after that applying the corresponding integration rules on each sub-element and summation. [START_REF] Antonietti | Fast Numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods[END_REF], itself presents quadrature rules for the numerical approximation of integrals of polynomial functions over general polygonal/polyhedral elements without subdivision exploiting the 'Stokes' Theorem. The surface or volume integral over a polygon is evaluated by computing the integral of the same function over the boundary. Although the integration does not require an explicit construction of a sub-tessellation into standard-shapes, the numerical integration used is complex and a mapping procedure is employed in deriving the stiffness and mass matrix. A limited exact integration technique for exact geometrical representation of the holes within the context of XFEM utilizing Fubini's Theorem can be found in [START_REF] Perumal | Analysis of thin plates with holes by exact geometrical representation within XFEM[END_REF].

This paper demonstrates some worked examples on integration over arbitrary polygonal domains enclosed by a sequence of edges. The integration is performed in the Cartesian coordinate system using only one variable. There is also no necessity to use any interpolation or to use any natural coordinate system. A mapping procedure is also not necessary. Once, the primitives of the functions to be integrated over the domains are known, the integration can be performed along the boundary between the limits in one direction using one variable. Furthermore, there is no need to use the Gauss divergence theorem, the 'Stokes' Theorem or to integrate in the edge direction. The method of integration is easy to use. It is presented in a form such that it can be adopted directly within a computer program for numerical analysis. Areas and moments of areas of a triangle, an arbitrary quadrilateral and a polygon enclosed by six straight edges as well as an arbitrary curved domain are calculated using the scheme presented and compared with the results, provided using the combination of these known values for standard shapes and using the parallel axes theorem. In addition, the integration of the stiffness matrix of a generalized version of the well-known ACM plate-bending element of quadrilateral shape is presented. The presented procedure is of general applicability for elements with curved edges and not limited to straight-sided edges in the framework of numerical methods. This work is mainly devoted to students and young researchers and therefore detailed calculations and program codes are listed.

Integration in the Cartesian coordinate system

Let  be a polygonal domain related to a Cartesian coordinate system . Let  be enclosed in the rectangle ( ) ;
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The edges are connected by a sequence of vertices (1), (2) (…), (n) (nodal points) with the nodal coordinates 

) ( p x , see Figure 1.                ) ( ) ( ) 2 ( ) 2 ( ) 1 ( ) 1 ( ) ( . .
     (2) 
The Cartesian variables of ) , ( y x p are connected through the Pythagorean Theorem: This fact should not be ignored, when we change from a physical domain to a computational domain. For example, the Pythagorean Theorem still holds when changing x and y of the physical domain through the polar variables r and  as a computational domain.
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In Eqn. (3), there are only two independent variables. The variables x and y are variant in what concerns axes translation and rotation. The third one r , the distance between the point p and the origin o, is invariant and independent of the coordinate system used. Solving Eqn. ( 3 x and y , then these can be performed using only one variable as states in every encyclopaedia for mathematics, see for instance [START_REF]EncyclopediaofMathematics[END_REF]31]. Using for example

x as a variable, the following integral over the total area of Fig. 1:

  A dxdy y x f I ) , ( (7) 
can be calculated as follows:
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Eqn. [START_REF] Chi | Some basic formulations of the virtual element method (VEM) for finite deformations[END_REF] 
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otherwise the subinterval or even the domain requires further subdivision in order to consider the intersection points between them. Similar conditions apply for Eqn. ( 9) to [START_REF] Chi | A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme[END_REF]. These conditions do not restrict the use of the method but they make its use more difficult.

In Eqn. [START_REF] Chi | Some basic formulations of the virtual element method (VEM) for finite deformations[END_REF] with respect to y . ) (x  is an arbitrary function independent of y . Selecting the integration of ) (x  along the closed interval as zero function and observing that
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Then, the definite integral can be performed with one variable with respect to x as a series of integrals over the subintervals counter clockwise using the following relation 
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A similar relation applies for the integration in the y -direction but now with a positive sign.
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Now, let us explain how to employ this result. For the sake of simplicity, consider the arbitrary polygon depicted in Fig. 2. In case of a domain with straight edges described by their nodal points, the relation between For a quadrilateral domain for example, the domain is bounded by four edges E : 0
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In such case, one of the variables can be explicitly expressed in terms of the other one and the integration can be performed in one direction. In the following, integrals for calculating geometrical properties like area and moments of area of a triangle, of an arbitrary quadrilateral and of a polygon enclosed by six or five straight edges as well as of domains enclosed by curved edges will be demonstrated in details.

Integration over a triangular element using one variable

Example 1: A triangular domain is defined by its four vertices (1), (2) (3) (nodal points)
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The exact values of the area of the triangular element and the moments of area about the axes ) , ( y x , computed by the usual way of integration about the axes of a standard shape (here, triangle) as well as the parallel axes theorem [START_REF] Timoshenko | Engineering Mechanics[END_REF] Now, the same results can be obtained using the above stated method of integration. The triangular element is bounded by three edges 
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and observing the limits of the integral, the area and the moments of area about x -axes take the following form:

The area A of the triangle calculated as a sum of two subareas, the subarea 
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The previous integral arranged counter clockwise is then as follows 
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The previous integral arranged counter clockwise is then as follows 
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The previous integral arranged counter clockwise is then as follows 
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This gives arranged counterclockwise the same result. The calculation using the values about the axes of the standard shapes and the parallel axes theorem gives: Integration over a polygonal element using one variable Example 3: A polygonal domain is defined by its six vertices (1), (2) (3), ( 4), ( 5), (6) (nodal points) 
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The polygonal domain is bounded by six edges

6 5 4 3 2 1 , , , , , E E E E E E
. Every edge-equation can be determined by the two corresponding vertices spanning the edge. The resulting edge-equations solved with respect to y are as follows 
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In an analogous way, the moments of area about

x -axes take the form This can be written in the following form: 394.333333 2 
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The same results can be obtained by dividing the polygon into two quadrilateral with the following nodal points and finding the explicit transformation relation between Cartesian variables and natural variables using the standard bilinear approach and integrating the expressions for area and moments of area between -1 and +1. In the following, a MATLAB function code is given by which the area and moments of area for an arbitrary polygon with straight edges can be calculated. Before using it, some notes on using formula ( 14) within a finite element program code must be considered. The vertices of the polygonal domain must be ordered counterclockwise starting with the minimum

x -value when integrating over

x or the smallest y -value when integrating over y in order to avoid any sign confusion which leads to incorrect results. Furthermore, an edge equation of the form const x  , when integrating over x or of the form const y  , when integrating over y must be avoided. In case of a parallel edge to x -axes the program will stop running from itself (the code integrate over

x ). The presented code is not intended for a general use in a finite element program because it needs further editing to account for some special geometry cases of a polygon. It should serve understanding and investigating the use of the Riemann formula in the current paper.

In order to call the code, the following script file must be saved under the name moa.m in the working directory. The same results can be obtained by dividing the polygon into two quadrilateral with the following nodal points

                          0 . 5 0 . 2 0 . 6 0 . 8 0 . 3 0 . 3 0 . 2 5 . 1 ; 0 . 3 5 . 1 0 . 3 0 . 3 0 . 0 0 . 6 0 . 1 0 . 1 ~) ( ~) ( i p i p x x
and performing the integration using the standard bilinear approach.

Here, the results are also exact in case of non-convex polygon.

Example 5:

The last assessment in this section is on a circular disc with a diameter of two units of length. The circumference is divided into hundred segments. The above function moa(xip) is used along with the following code: % area and moments of area for a circular disc with a diameter of two units of length 

E ) 5 ( E ) 1 ( E ) 2 ( E ) 3 ( E ) 1 ( (p) i ~
These results are quasi correct (A=pi; Ix=Iy=pi/4 ; Ixy=0). It is worth mentioning that the convergence towards the exact results occurs very slowly especially for the quadratic form of Ix or Iy. One can easily discover this fact by changing the number of segments in the for loop.

Two reasons may delay the use of Riemann integral. Firstly, one needs to know the primitive of the function to be integrated inside the domain. Secondly one needs also to express one variable using the other one explicitly at the boundaries of the polygon, which is probably impossible in case of a complex geometry bounded by curves with complex implicit expressions in the two variables. In the second case, one can use one-dimensional curve fitting techniques to find explicit expressions at the domain boundaries.
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Integration over domain with curved edges 
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In order to calculate the exact values of the area and the moments of area of the curved domain using standard elementary shapes, the five shapes shown in Fig. 7 are considered. Corresponding to the concept of the fundamental of calculus, the area of the curved domain can be calculated as follows 
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Then, the moments of area read 15.5488885 The finite Element approximation is based on Hamilton's Principle. The 2D expression for the special case of the thin plate considered can be written in the absence of the prescribed boundary displacements relating to a Cartesian coordinate system in the following form:
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where 1 t and 2 t are two fixed time points of the vibration process,  is the first variation, A is the area and dA its differential element, i u  is the velocity vector in which both displacement and rotation components are included,

j i
 is the corresponding mass density matrix, ) (i F is the concentrated load applied at the point (i). ij  is the curvature tensor, which reads expressed in terms of the deflection ) , ( 

E

is the matrix of the force-curvature dependency given in a matrix form as follows:

                  0 0 0 0 2 / ) 1 ( 2 / ) 1 ( 0 0 2 / ) 1 ( 2 / ) 1 ( 0 0 0 1 ) 1 ( 12 2 3        Eh E ijkl (19) j i
 is defined by the following matrix: In Eqn. [START_REF] Kappert | An interactive surgical simulation tool to assess the consequences of a partial glossectomy on a biomechanical model of the tongue[END_REF], the internal work associated with the bending and twist moments is only considered. Deriving the curvature tensor ij  using Eqn. [START_REF] Meurer | SymPy: symbolic computing in Python[END_REF] yield
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Applying the expressions of ij  in the first term of Eqn. [START_REF] Kappert | An interactive surgical simulation tool to assess the consequences of a partial glossectomy on a biomechanical model of the tongue[END_REF] gives [START_REF] Edelstein-Keshet | Integral Calculus with Applications to the Life Sciences[END_REF] is the element stiffness matrix related to the Cartesian coordinate system.
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The integration over the area can be performed using the scheme presented above as follow: This example shows the necessity to define the proposed local element coordinate system and to locate it at the geometric center of the element.
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Similar procedure can be adopted to evaluate the element mass matrix resulting in from evaluating the third term of Eqn. [START_REF] Kappert | An interactive surgical simulation tool to assess the consequences of a partial glossectomy on a biomechanical model of the tongue[END_REF].

A final note about deriving the stiffness matrix of the rectangular ACM plate-bending element is to be mentioned. It is better to use a separate program-code for deriving this matrix. The Fundamental of Calculus can deal with this special case, too. For a rectangular element with the side-length b a l l  and the origin of the coordinate system located at the element center, the edges 2 E and 4 E lie on the coordinate lines a l x   ; a l x   , respectively. The following simple code integrated using the Fundamental of Calculus in its ideal form gives the exact stiffness matrix:

E(1)=-lb;E(3)=lb; kr=int(subs(k,y,E (3) 
),-la,la)-int(subs(k,y,E(1)),-la,la)

where k is the primitive matrix of the matrix pT*c*p as constructed as in Ekr.m but now with the special nodal coordinates of the rectangular element.

As may be seen, formula [START_REF] Ho-Nguyen-Tan | Polygonal shell elements with assumed transverse shear and membrane strains[END_REF] or [START_REF] Wang | n-sided polygonal hybrid finite elements with unified fundamental solution kernels for topology optimization[END_REF] applies in case of rectangular element, too, but only two edges have to be considered during the integration.

Note that the results in the first seven examples using either formula [START_REF] Ho-Nguyen-Tan | Polygonal shell elements with assumed transverse shear and membrane strains[END_REF] or the standard bilinear approach are exact but the results of the stiffness matrix are different. In such cases, it is difficult to make right conclusions. A study on benchmark of polygon quality metrics for polytopal element methods is still at the beginning [START_REF] Attene | Benchmark of Polygon Quality Metrics for Polytopal Element Methods[END_REF]. However, one can observe that the characters of the integrals in the first five examples are additive, whilst they are not additive when deriving the stiffness matrix, which include the rotations and their derivatives. In addition the integrated shape functions are discontinuous and non-conform. Therefore, we found ourselves confronted with similar problems that appear during the discretization. Therefore, it is necessary to subject the element matrices to the same tests required for a finite element application especially when the integrated function are discontinuous.
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Changing the variable of integration 8.1.

Using a polar coordinate system

An example of changing the variable of integration (i. e. x or y ) is the use of a polar coordinate system. In polar coordinate system the following exact relations apply In this sense, the transformation is exact and there is no approximation.

The position vector of an arbitrary point The deferential element of the area can now be calculated as a vector product of these changes 

The integral over the area is now to be performed over the new variables Usually, integration is first performed over the variable limits and after that over the constant limits.

8.2.

Using a s ,

 system

In the previous examples both limits of the integral change in

x and y -direction even if the domain is bounded by straight edges. Sometimes it is useful to use another coordinate system with one variant variable instead of using the Cartesian coordinate system or a polar coordinate system. Therefore, it is more reliable to find other two variables instead of x and y such that at least one of them has a constant value at the edges of the domain. Along the boundary with straight edges both x and y change, but y has a constant value.

The idea now is to decompose the position vector r where,   is the position vector of an arbitrary point o of the plane 0  z and s  the vector from o to p .

o can be located everywhere in the plane 0  z .

An exact relation between the magnitude of s   ,  and of that of the position vector is then given by This relation is valid everywhere in the domain and along the boundaries with o as free selectable point.

In order to evaluate integrals such as  A dxdy or  A dxdy y x f ) , ( , y x, must be expressed in terms of s ,  .

In case of straight edges, after suitable selection of o , the relation between s ,  and y x, can be formulated at the boundary. The integral can be performed in the s ,  instead of y x, . The Wachspress space [START_REF] Wachspress | A Rational Finite Element Basis[END_REF] offered an approximation basis for many publications dealing with polygonal and polyhedral elements. This idea can be extended by decomposing the position vector r  into more than two vectors   and s  when necessary and useful. In any case the connection between the origin of the coordinate system y x, and o should not be lost.

Conclusion

This paper shows the power of the Fundamental of Calculus in dealing with complex geometry-domains for some practical engineering problems. The integration over a polygonal domain enclosed by a sequence of edges is performed exactly using the Fundamental of Calculus without sub-division. Double integrals are transformed into sequences of single integrals in one direction using the Fundamental of Calculus. There were no need to use the Gauss divergence theorem, the 'Stokes' Theorem or to integrate in the edge direction. It was not necessary to use any mapping procedure in order to integrate over a polygonal element. The presented way of integration is of general applicability for convex and non-convex domains for a wide range of engineering and physical problems. Some examples with curved edges are also investigated. The results are encouraging. Some notes on changing the variables of the integration for instance, in case of using polar coordinate system or non-orthogonal coordinate system are discussed.
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Figure 1 :

 1 Figure 1: Domain enclosed by curved edges, Cartesian coordinates of vertices

  determined depending on the nodal coordinates spanning the edge and the intersection point between the edge-line and the x -axes.

  edgeequation can be determined by the two corresponding vertices spanning the edge. The resulting edge-equations are as follows ) 1 (

Figure 2 :

 2 Figure 2: Triangular element, Cartesian coordinates of vertices, and edges

  edge-equation can be determined by the two corresponding vertices spanning the edge. The resulting edge-equations solved with respect to y are as follows 1

  as the moment of area of the subarea )
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 23 Figure 3: Quadrilateral cross-section, Cartesian coordinates of vertices, and edges

Figure 4 :

 4 Figure 4: Polygonal domain enclosed by six straight edges, Cartesian coordinates of vertices, and edges

Figure 5 :

 5 Figure 5: Polygonal domain enclosed by six straight edges, subintervals of integration

Example 4 :Figure 6 :

 46 Figure 6: Polygonal domain enclosed by five straight edges, Cartesian coordinates of vertices, and edges

  i=0; for f=-pi:pi/100:pi-pi/100 i=i+1 xip(i,1)=cos(f);xip(i,2)=sin(f); end xip [A,Ix,Iy,Ixy]=moa(xip) The output gives the following results A =3.1410759078128293940787214943951;Ix =0.78513981600761063777789906861322 Iy =0.78513981600761063432172486883439; Ixy =-0.0000000000000000116128775033486671270401753.

Figure 7 :Example 6 :

 76 Figure 7: Domain with curved edges, Cartesian coordinates of vertices, and edge-equations Example 6: Let a four-sided curved domain defined by its four vertices (1), (2) (3), (4) (nodal points).
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 7 Let a four-sided curved domain defined by its four vertices (1), (2) (3), by four curved parabolic segments . The edges are defined by the following edge-equations:

]

  

  The reader can easily verify these results by trying the following code %============================================================================ % Area and Moments of area for a domain bounded by four parabolic segments %============================================================================ syms x y %defining the quadrilateral curved domain xip=[1 1;8 0;6 4;2 5] %vertices %Edge equations Deriving the Stiffness matrix of a generalized ACM-plate bending element

  where  is the material density, E is the modulus of elasticity, h is the plate thickness and  the Poisson's ratioThe indicial notation to indicate the Cartesian variables 21 , x x is used instead of the y x, -frame and indices between brackets range over the nodal points.

x

  of the quadrilateral element of sec. 4 with the nodal coordinates . Defining a local coordinate system from the directions of the base vectors corresponding to[START_REF] Abo Diab | Generalization of a reduced Trefftz-type approach[END_REF],[START_REF] Abo Diab | Quadrilateral folded plate structure elements of reduced Trefftz type[END_REF], the new local coordinates readThe following two function code generate the stiffness matrix of the quadrilateral element %============================Ekr.m==============================% function [k]=EKr(xip,E,m,t) %xip: local cartesian coordinates of the quadrilateral %E: Young modulus m Poissons ratio t:thickness %===============================================================% syms x y ; M=[ 1 x y x^2 x*y y^2 x^3 x^2*y x*y^2 y^3 x^3*y x*y^3]; Mxx=diff(diff(M,x),x); Mxy=diff(diff(M,x),y); Myy=diff(diff(M,y),y); %c: eleasticity tensor in the x y-system c=((E*t^3)/(12.*(1-m^2)))*[1 0 0 m; 0 (1-m)/2. (1-m)/2. 0; 0 (1-m)/2. (1-m)/2. 0;m 0 0 1]; p=[Mxx;Mxy;Mxy;Myy]; Mi=[M;diff(M,y);-diff(M,x);]; A=[subs(subs(Mi,'x',xip(1,1)),'y',xip(1,2)); subs(subs(Mi,'x',xip(2,1)),'y',xip(2,2));subs(subs(Mi,'x',xip(3,1)),'y ',xip(3,2));subs(subs(Mi,'x',xip(4,1)),'y',xip(4,2))]; a=inv(A); k=transpose(p)*c*p %Primitive matrix of the matrix pT*c*p k=int(k,y) %integration over the boundary using x as variable [kr]=Rk(k,xip) k=transpose(a)*

y

  are replaced each by other two variables, namely  , r such that the Pythagorean Theorem applies.

  the position vector r  corresponding to the Chasles relation of vector addition as a sum of two vectors s

  )

	F	(	x ,	y	)	|	denotes the function	F	, ( y x	)	, in which	y is replaced by the explicit edge equation
							E					
							i					
	E	:	y		g	(	x	)	corresponding to Eqns. (1). This means, the edge equation is solved with respect to	y and the
	i					i					
	expression	F	(	x ,	y	)	|	involves terms of x variables only.
													E
													i

Table 1 :

 1 Eigen values of the stiffness matrix of the quadrilateral element of sec. 4 related to a local Cartesian coordinate system (integrated exactly using the Riemann integral) Eqn. (27) between the limits -1, +1. The results of such procedure are listed cursive in the second line of Tab.1.Transforming the stiffness matrix into the global coordinate system gives the same results listed in Tab.1.

			kr*a						
	eig(k)								
	%==============================EOF====================================
	%==============================Rk.m===================================
	% function for calculating stiffness matrix of a Polygon with straight
	% edges using Riemann integral					
	% before call order the x-coordinate such that x(1)=min	
	%=====================================================================
	function [kr]=Rk(k,xip)						
	n=size(xip);							
	if (xip(1:1,1))< min(xip(2:n(1)-1,1))				
	kr=zeros(12);							
	syms x y								
	for i=1:n(1)-1							
	E(i)=det([ x y 1; xip(i,1) xip(i,2) 1; xip(i+1,1) xip(i+1,2) 1]);
	E(i)=solve(E(i),y);						
	kE=subs(k,y,E(i));						
	kr=kr-vpa(int(kE,xip(i,1),xip(i+1,1)));			
	end								
	E(i+1)=det([ x y 1; xip(n(1),1) xip(n(1),2) 1; xip(1,1) xip(1,2) 1]);
	E(i+1)=solve(E(n(1)),y);						
	kE=subs(k,y,E(i));						
	Kr=kr-vpa(int(kE,xip(n(1),1),xip(1,1)));			
	vpa(kr,6);							
	else								
	fprintf('Please order the cordinate counter clockwise starting with
	the smallest xip-one');						
	end								
	end								
	%===============================================================#
	Calling the above two functions using the following three commands			
	xip =[ -3.2071 -1.5896; 3.8179 -2.3950; 1.7077 1.5480; -2.3185 2.4366]		
	EKr(xip,1365.0,0.3,0.2)							
	[kr]=Rk(k,xip)								
	produces the stiffness matrix and its eigenvalues listed in the first line of Tab. 1.		
	1 	2 	3 	4 	5 	6 	7 	8 	9 
	26877.01 7835.507 58177253 2807...3 68.57.07 68032631 68013573 68717373 68201772
	2286.126 78371301 58103713 28.67337 68.27230 68756320 68036..6 68751237 68203377
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Moving in x -axes positive direction, the area of the polygon can be integrated after dividing the area A of the polygon in five subareas )

A corresponding to the discontinuity points of the geometry as follows, see Fig. 5 32

A is the area of the unit quadrate with a unit side length. A is the area of a quarter bi-unit circle with a center located at the origin of the coordinate system . The area of the domain can now be calculated as follows

Then, the moments of area read 15.548889 ))

)) 4 ( 10 16The plate finite element with the nodal points (i), (j), (k), (l) has three degrees of freedom each node. These are the displacement normal to the plate surface in 3 x -direction and the two rotations about 1 x and 2 x -axes. The total number of degrees of freedom each element is then represented by the element nodal displacement vector with 12 degrees of freedom

The local axes 2 1 , x x are defined using the directions of the element base vectors in an analogous procedure used in section 4 in [START_REF] Abo Diab | Generalization of a reduced Trefftz-type approach[END_REF][START_REF] Abo Diab | Quadrilateral folded plate structure elements of reduced Trefftz type[END_REF]. The approximation basis is constructed using the defined local Cartesian variables