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Abstracts: In this paper, the Riemann integral and the fundamental of calculus will be used to perform double 

integrals on a polygonal domain enclosed by curved edges. The double integral with two variables over the domain 

is transformed into sequences of single integrals with one variable of its primitive. The sequence is arranged counter 

clockwise starting from the minimum value of the variable of integration. Finally, the integration over the domain is 

performed using only one variable in one direction. The way of integration is illustrated on practical examples for 

which the area and moments of area are found for arbitrary polygons enclosed by straight edges as well as curved 

edges and compared with the exact values resulting in from dividing the polygon into its standard elementary shapes 

and the parallel axis theorem. The stiffness matrix is derived for an arbitrary quadrilateral finite element for plate 

bending. The derived element is a generalization of the first finite element used in the analysis of thin plates known 

as ACM. The results are tested according to a program code written in MATLAB. The presented way of integration 

is of general applicability for convex and non-convex domains for a wide range of engineering and physical 

problems provided that, the primitive of the integrated function exists and it is continuous on the partial intervals of 

integration. The generalization of this technique to volume integrals over polyhedral domains is possible. 
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1 Introduction 

The finite element methods among other numerical methods experienced significant developments after the use of 

the Voronoi Diagram in partitioning of a plane points into convex polygons [1]. Based on Voronoi Diagram, there 

were several mesh generator for polygonal and polyhedral elements with topology optimization. These offer a 

general framework for finite element discretization and analysis, see for example [2] and the mesh generators 

mentioned therein.   

In the past fifteen years, many works have been published which operate on polygonal elements in the framework of 

numerical analysis and used intensively in the fields of applied engineering and physical sciences and even in 

medical and biological sciences [3, 4, 5, 6, 7, 8, 9, 10,].  An overview of previous developments on conforming 

polygonal and polyhedral finite elements is included in [9], and an overview on the use of different generalized 

barycentric coordinates in Galerkin finite element computations is included in [6]. Several other papers that use the 

polygonal and polyhedral elements in different fields of computational Engineering are listed in [8].  

Therefore, it was necessary to use flexible techniques in performing the integrals of the state variables defined on the 

domains analyzed. These techniques become necessary when changes occur suddenly in the geometry of the 

domains such as the appearance of cracks or ruptures within them. Some recent publications [11, 12, 13 14, 15] 

show that the topic is still under study and development; some others [16, 17, 18] reflect its use and wide spreading 

under different disciplines.  
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Concurrently, new software languages have been developed that are highly capable of meeting the requirements of 

researchers in conducting symbolic and arithmetic operations in a built-in software environment, including but not 

limited to MATLAB, Python, Julia and Octave, etc...[19, 20, 21, 22, 23, 24] 

By adopting the Riemann integral, the Green’s formula or the Gauss divergence theorem in the calculation of 

integrals over complex domains by the use of open programming languages that use symbolic operations, young 

researchers are provided with powerful tools that can be used to address various types of physical and engineering 

problems. 

Integration over a finite element of various shapes is an important part of every finite element code. The numerical 

integration consumes considerable part of the computational time. Therefore, developing explicit element matrices 

will reduce the computational costs considerably. One of the great advantages of using the Riemann integral is the 

possibility to develop explicit expressions of the element matrices at first symbolically and incorporating it after that 

in a numerical program code.  

A study about the history of integration can be found in [25], [26]. Many classical examples exploiting the basic 

concept of the fundamental of calculus are presented in [27]. According to [28], the most employed technique of 

integration over polygonal and polyhedral elements is performed by subdividing them into standard-shaped elements 

and after that applying the corresponding integration rules on each sub-element and summation.   [28], itself presents 

quadrature rules for the numerical approximation of integrals of polynomial functions over general 

polygonal/polyhedral elements without subdivision exploiting the ‘Stokes’ Theorem. The surface or volume integral 

over a polygon is evaluated by computing the integral of the same function over the boundary. Although the 

integration does not require an explicit construction of a sub-tessellation into standard-shapes, the numerical 

integration used is complex and a mapping procedure is employed in deriving the stiffness and mass matrix. A 

limited exact integration technique for exact geometrical representation of the holes within the context of XFEM 

utilizing Fubini’s Theorem can be found in [29]. 

This paper demonstrates some worked examples on integration over arbitrary polygonal domains enclosed by a 

sequence of edges. The integration is performed in the Cartesian coordinate system using only one variable. There is 

also no necessity to use any interpolation or to use any natural coordinate system. A mapping procedure is also not 

necessary. Once, the primitives of the functions to be integrated over the domains are known, the integration can be 

performed along the boundary between the limits in one direction using one variable. Furthermore, there is no need 

to use the Gauss divergence theorem, the ‘Stokes’ Theorem or to integrate in the edge direction. The method of 

integration is easy to use. It is presented in a form such that it can be adopted directly within a computer program for 

numerical analysis. Areas and moments of areas of a triangle, an arbitrary quadrilateral and a polygon enclosed by 

six straight edges as well as an arbitrary curved domain are calculated using the scheme presented and compared 

with the results, provided using the combination of these known values for standard shapes and using the parallel 

axes theorem. In addition, the integration of the stiffness matrix of a generalized version of the well-known ACM 

plate-bending element of quadrilateral shape is presented. The presented procedure is of general applicability for 

elements with curved edges and not limited to straight-sided edges in the framework of numerical methods. This 

work is mainly devoted to students and young researchers and therefore detailed calculations and program codes are 

listed. 

 

2 Integration in the Cartesian coordinate system 

Let   be a polygonal domain related to a Cartesian coordinate system ),( yx  with the origin o, and the 

unit vectors ),( yx ee


. Let   be enclosed in the rectangle ( ); )()()2()1( ba yyyxxx   and be bounded by 

n-edges )1(E , )2(E ,…, )(nE described counterclockwise through the explicit sequence of equations 

)1(E : ],[);( )2()1(1 xxxxgy   
(1.a) 



)2(E : ],[);( )3()2(2 xxxxgy   
(1.b) 

….. 
 

)(nE : ],[);( )1()( xxxxgy nn   
(1.n) 

The edges are connected by a sequence of vertices (1), (2) (…), (n) (nodal points) with the nodal coordinates 

)( px , see Figure 1. 
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Let ),( yxp  an arbitrary point of the domain.  The position vector of p  reads  

yx eyexr


  
(2) 

The Cartesian variables of ),( yxp  are connected through the Pythagorean Theorem: 
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Figure 1: Domain enclosed by curved edges, Cartesian coordinates of vertices 

 

This fact should not be ignored, when we change from a physical domain to a computational domain. For example, 

the Pythagorean Theorem still holds when changing x and y of the physical domain through the polar variables 

r and  as a computational domain. 
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In Eqn. (3), there are only two independent variables. The variables x and y are variant in what concerns axes 

translation and rotation. The third one r , the distance between the point p and the origin o, is invariant and 

independent of the coordinate system used.  Solving Eqn. (3) for example for y  gives 

22

222

),( xrxry
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(4) 

Note that Eqn. (4) can be derived infinite number of times with respect to x  under the condition xr  which follow 

directly from 0y in the first relation of Eqn. (4).  

Let Ad


 the differential element of the area defined by 

yx edyedxAd


  (5) 

Denote the scalar value of Ad


 by dxdydA , where dydx, are the total differential of yx, respectively. 

Suppose that we want to perform double-integrals such as 
A

dxdy  or 
A

dxdyyxf ),(  directly in the ),( yx system, 

where ),( yxf  is some function, defined on the domain. 

The position vector yx eyexr


  is a sum of two vectors one has the direction of x , xex


and the other has the 

direction of y , yey


 . 

Assume that the total differential of ),( xry  and y  in Eqn. (4) exist, then the following relation applies 

dxydy   
(6) 

Now, if the definite integrals of the form 
A

dxdy  or 
A

dxdyyxf ),(  depends only on the initial and end-values of 

the variables x and y , then these can be performed using only one variable as states in every encyclopaedia for 

mathematics, see for instance [30, 31]. Using for example x as a variable, the following integral over the total area of 

Fig. 1: 



A

dxdyyxfI ),(  (7) 

can be calculated as follows: 

Suppose that ),( yxf is continuous and integrable over the subintervals [ )1(x , )2(x ],…, [ )1( nx , )(nx ],[ )(nx , )1(x ] . 

The integral 1I over the subarea )1(A  enclosed between )1(E  and )2(E , and the coordinate lines )3(xx    )2(xx  reads 

dxyxFdxyxFdxyxFyxFdxdyyxfI
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The integral 2I over the subarea )2(A  enclosed between )1(E and )3(E , and the coordinate lines )4(xx    

)3(xx  reads 

dxyxFdxyxFdxyxFyxFdxdyyxfI
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The integral iI over the subarea )(iA  enclosed between )1(E  and )(iE , and the coordinate lines )2(  ixx   

)1(  ixx reads 

dxyxFdxyxFdxyxFyxFdxdyyxfI
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And so on. For the Last part of the area )(nA  enclosed between )1(E  and )(nE , and the coordinate lines )(nxx    

)1(xx   

dxyxFdxyxFdxyxFyxFdxdyyxfI
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Eqn. (8) applies if )1(E  and )2(E , do not intersect in the subinterval  )3()2( , xx  otherwise the subinterval or even the 

domain requires further subdivision in order to consider the intersection points between them. Similar conditions 

apply for Eqn. (9) to (11). These conditions do not restrict the use of the method but they make its use more difficult. 

In Eqn. (8) to (11), ),( yxF denote the y -primitive of ),( yxf . The indefinite integral or anti-derivative of 

),( yxf with respect to y  is as follows:   

)(),(),( xyxFdyyxf

y

  (12) 

In other words, ),( yxf  is the derivative of ),( yxF  with respect to y .  )(x  is an arbitrary function independent of 

y . Selecting the integration of )(x along the closed interval as zero function and observing that  
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Then, the definite integral can be performed with one variable with respect to x  as a series of integrals over the 

subintervals counter clockwise using the following relation  
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





n

i

E

x

xA

dxyxFdxdyyxf
i

i

i
1

|),(),(

)1(

)(

 
(14) 

iEyxF |),( denotes the function ),( yxF , in which y is replaced by the explicit edge equation 

)(: xgyE ii  corresponding to Eqns. (1). This means, the edge equation is solved with respect to y and the 

expression 
iEyxF |),(  involves terms of x  variables only. 
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A similar relation applies for the integration in the y -direction but now with a positive sign.  
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Now, let us explain how to employ this result. For the sake of simplicity, consider the arbitrary polygon depicted in 

Fig. 2. In case of a domain with straight edges described by their nodal points, the relation between x and y  becomes 

linear along the edge and takes the form 0 cbyax . The constants cba ,,  can be uniquely determined depending 

on the nodal coordinates spanning the edge and the intersection point between the edge-line and the x -axes.     

For a quadrilateral domain for example, the domain is bounded by four edges )1(E , )2(E , )3(E )4(E . Every edge-

equation can be determined by the two corresponding vertices spanning the edge. The resulting edge-equations are 

as follows 

)1(E : 0111  cybxa  
 (16.a) 

)2(E : 0222  cybxa   
(16.b) 

)3(E : 0333  cybxa    
(16.c) 

)4(E : 0444  cybxa  
(16.d) 

In such case, one of the variables can be explicitly expressed in terms of the other one and the integration can be 

performed in one direction. In the following, integrals for calculating geometrical properties like area and moments 

of area of a triangle, of an arbitrary quadrilateral and of a polygon enclosed by six or five straight edges as well as of 

domains enclosed by curved edges will be demonstrated in details.  

 

3 Integration over a triangular element using one variable 

 

Example 1: A triangular domain is defined by its four vertices (1), (2) (3) (nodal points)  
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The exact values of the area of the triangular element and the moments of area about the axes ),( yx  , computed by 

the usual way of integration about the axes of a standard shape (here, triangle) as well as the parallel axes theorem 

[32], are 
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Figure 2: Triangular element, Cartesian coordinates of vertices, and edges 

 

Now, the same results can be obtained using the above stated method of integration. 

The triangular element is bounded by three edges 321 ,, EEE . Every edge-equation can be determined by the two 

corresponding vertices spanning the edge. The resulting edge-equations solved with respect to y  are as follows 

 1E : 0y                                                      

  2E :
4

15

4

3
 xy                                                      

 3E : xy
3

4
                                                      

Dividing the triangle in two subareas )2()1( , AA and observing the limits of the integral, the area and the moments of 

area about x -axes take the following form: 

The area A of the triangle calculated as a sum of two subareas, the subarea )1(A enclosed between the two 

edges )1(E and )2(E  plus the subarea  )2(A  enclosed between the two edges )1(E and )3(E  
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The previous integral arranged counter clockwise is then as follows 
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The previous integral arranged counter clockwise is then as follows                                       
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The moment of area yI , calculated as the moment of area of the subarea )1(A enclosed between the two edges )1(E and 

)2(E  plus the moment of area of the subarea )2(A  enclosed between the two edges )1(E and )3(E , read 
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The previous integral arranged counter clockwise is then as follows                                       
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This gives arranged counterclockwise the same result. 
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4 Integration over the quadrilateral element using one variable 

 

Example 2: A quadrilateral domain is defined by its four vertices (1), (2) (3), (4) (nodal points).  
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The exact values of the area of the quadrilateral cross section and the moments of area about the axes ),( yx          

can be computed easily as difference between these values of a rectangle )1(A  with the side length 7x5 and the 

summation of them for four rectangled triangles )6()5()3()2( ,,, AAAA  with the catheti 17 , 24 , 14  and 14  as 

well as  of a rectangle )4(A with the side length 12 , Fig. 3 ( [32]) 

  

 

 

 

 

 

 

  

 

 

Figure 3: Quadrilateral cross-section, Cartesian coordinates of vertices, and edges 

 

The calculation using the values about the axes of the standard shapes and the parallel axes theorem gives: 
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The quadrilateral domain is bounded by four edges 4321 ,,, EEEE . Every edge-equation can be determined by the two 

corresponding vertices spanning the edge. The resulting edge-equations solved with respect to y  are as follows 
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 E4: 34  xy                                                      

Observig the limits of the integral, the moments of area about x -axes take the form 
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Or calculated counter clockwise 
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5 Integration over a polygonal element using one variable 

 

 

Example 3: A polygonal domain is defined by its six vertices (1), (2) (3), (4), (5), (6) (nodal points)  
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Figure 4: Polygonal domain enclosed by six straight edges, Cartesian coordinates of vertices, and edges 

 

The exact values of the area of the polygonal cross section and the moments of area about the axes ),( yx          

can be computed easily as difference between these values of a rectangle )1(A  with the side length 68  and the 

summation of them for four rectangled triangles )5()4()3()2( ,,, AAAA  with the catheti 21 , 34 , 32  and 43 , 

Fig. 4 ( [32]) 
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The polygonal domain is bounded by six edges 654321 ,,,,, EEEEEE . Every edge-equation can be determined by the 

two corresponding vertices spanning the edge. The resulting edge-equations solved with respect to y  are as follows 

  

 

 

 

 

 

 

  

 

 

 

Figure 5: Polygonal domain enclosed by six straight edges, subintervals of integration 
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Moving in x -axes positive direction, the area of the polygon can be integrated after dividing the area A  of the 

polygon in five subareas )1(A , )2(A , )3(A , )4(A )5(A corresponding to the discontinuity points of the geometry as 

follows, see Fig. 5 
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In an analogous way, the moments of area about  x -axes take the form 
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Rearranging the last integral counter clockwise gives: 
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The moment of area about y -axes can be written as follows: 
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Arranging this integral counter clockwise gives: 
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Finally, the following relation represents the moment of area xyI  
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This can be written in the following form:  
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The same results can be obtained by dividing the polygon into two quadrilateral with the following nodal points 
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and finding the explicit transformation relation between Cartesian variables and natural variables using the standard 

bilinear approach and integrating the expressions for area and moments of area between -1 and +1.  

In the following, a MATLAB function code is given by which the area and moments of area for an arbitrary polygon 

with straight edges can be calculated.  

Before using it, some notes on using formula (14) within a finite element program code must be considered. The 

vertices of the polygonal domain must be ordered counterclockwise starting with the minimum x –value when 

integrating over x  or the smallest y –value when integrating over y in order to avoid any sign confusion which 

leads to incorrect results. Furthermore, an edge equation of the form constx  , when integrating over x  or of the 

form consty  , when integrating over y must be avoided. In case of a parallel edge to x -axes the program will 

stop running from itself (the code integrate over x ).  The presented code is not intended for a general use in a finite 

element program because it needs further editing to account for some special geometry cases of a polygon. It should 

serve understanding and investigating the use of the Riemann formula in the current paper. 

In order to call the code, the following script file must be saved under the name moa.m in the working directory. 

 

%====================================moa.m=================================== 
% function for calculating moments of area of a Polygon with straight edges 
%============================================================================ 
function [A,Ix,Iy,Ixy]=moa(xip) 
n=size(xip); 
if (xip(1:1,1))< min(xip(2:n(1)-1,1))      
syms x y; 
for i=1:n(1)-1 
E(i)=det([ x y 1; xip(i,1) xip(i,2) 1; xip(i+1,1) xip(i+1,2) 1]); 
E(i)=solve(E(i),y); 
A(i)=-vpa(int(E(i),xip(i,1),xip(i+1,1))); 
Ix(i)=-vpa(int((E(i))^3/3,xip(i,1),xip(i+1,1))); 
Iy(i)=-vpa(int(x^2*E(i),xip(i,1),xip(i+1,1))); 
Ixy(i)=-vpa(int(x*(E(i))^2/2,xip(i,1),xip(i+1,1))); 
end 

  
E(n(1))=det([ x y 1; xip(n(1),1) xip(n(1),2) 1; xip(1,1) xip(1,2) 1]); 



E(n(1))=solve(E(n(1)),y); 
A(n(1))=-vpa(int(E(n(1)),xip(n(1),1),xip(1,1))); 

  
Ix(n(1))=-vpa(int((E(n(1)))^3/3,xip(n(1),1),xip(1,1))); 
Iy(n(1))=-vpa(int(x^2*E(n(1)),xip(n(1),1),xip(1,1))); 
Ixy(n(1))=-vpa(int(x*(E(n(1)))^2/2,xip(n(1),1),xip(1,1))); 

  
A=sum(transpose(A)); 
Ix=sum(transpose(Ix)); 
Iy=sum(transpose(Iy)); 
Ixy=sum(transpose(Ixy)); 
else  
fprintf('Please order the cordinate counter clockwise starting with the 

smallest xip-one\n'); 
end 

end     
%============================================================================ 
 

Calling the function for the triangle by the two following command lines 

xip=[0  0  ;  5  0  ;1.8  2.4] 

[A,Ix,Iy,Ixy]=moa(xip) 

 

, for the quadrilateral by the two following command lines 

xip=[1   1  ;  8  0  ;6   4  ; 2  5] 

[A,Ix,Iy,Ixy]=moa(xip) 

 

and finally for the polygon by the two following command lines 

xip=[0 2;1 0;4 0;8 3;6 6;3 6] 

[A,Ix,Iy,Ixy]=moa(xip) 

 

give the results obtained in the three examples. 

 

Example 4: Finally, a polygonal domain with five edges (Fig, 6) with the following Cartesian coordinates of 

vertices 
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is computed using the above given program function and called by the two following command lines 

xip=[1 1;6 0;3 3;8 6;2 5] 

[A,Ix,Iy,Ixy]=moa(xip)  

The output gives the following results for area and moments of area 

A =15.5; Ix =186.08333333;  Iy =218.75; Ixy =178.375  

 

 

 

 



 

 

 

 

 

 

  

 

Figure 6: Polygonal domain enclosed by five straight edges, Cartesian coordinates of vertices, and edges 

 

The same results can be obtained by dividing the polygon into two quadrilateral with the following nodal points 
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and performing the integration using the standard bilinear approach. 

Here, the results are also exact in case of non-convex polygon. 

 

Example 5: The last assessment in this section is on a circular disc with a diameter of two units of length. The 

circumference is divided into hundred segments. The above function moa(xip) is used along with the following 

code: 

 % area and moments of area for a circular disc with a diameter of two units of length 

i=0; 

for f=-pi:pi/100:pi-pi/100 

i=i+1 

xip(i,1)=cos(f);xip(i,2)=sin(f); 

end 

xip 

[A,Ix,Iy,Ixy]=moa(xip) 

The output gives the following results 

A =3.1410759078128293940787214943951;Ix =0.78513981600761063777789906861322 

 Iy =0.78513981600761063432172486883439; Ixy =-0.0000000000000000116128775033486671270401753. 
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These results are quasi correct (A=pi; Ix=Iy=pi/4 ; Ixy=0). It is worth mentioning that the convergence towards the 

exact results occurs very slowly especially for the quadratic form of Ix or Iy. One can easily discover this fact by 

changing the number of segments in the for loop. 

Two reasons may delay the use of Riemann integral. Firstly, one needs to know the primitive of the function to be 

integrated inside the domain. Secondly one needs also to express one variable using the other one explicitly at the 

boundaries of the polygon, which is probably impossible in case of a complex geometry bounded by curves with 

complex implicit expressions in the two variables. In the second case, one can use one-dimensional curve fitting 

techniques to find explicit expressions at the domain boundaries. 

 

7 Integration over domain with curved edges 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Domain with curved edges, Cartesian coordinates of vertices, and edge-equations 

 

Example 6: Let a four-sided curved domain defined by its four vertices (1), (2) (3), (4) (nodal points).  
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and enclosed by three curved edges and one straight edge. The edges are defined by the following edge-equations: 
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 ]1,0[;14: 2
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In order to calculate the exact values of the area and the moments of area of the curved domain using standard 

elementary shapes, the five shapes shown in Fig. 7 are considered.  

)1(A is the area of the unit quadrate with a unit side length.  

)2(A is the area of a quarter bi-unit circle  with a center located at the origin of the coordinate system .  

)3(A is the area of the triangle with two edges of unit length.  

)4(A , )5(A  are the areas of the right and the left sub-parabolic segments with the side length 41 , respectively.  

The area of the domain can now be calculated as follows 
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Then, the moments of area read   
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Corresponding to the concept of the fundamental of calculus, the area of the curved domain can be calculated as 

follows 
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Then, the moments of area read 
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Example 7: Let a four-sided curved domain defined by its four vertices (1), (2) (3), (4) (nodal points).  
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and enclosed by four curved parabolic segments . The edges are defined by the following edge-equations: 
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Applying Eqn. (14) gives the following exact results 
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The reader can easily verify these results by trying the following code 

%============================================================================ 
% Area and Moments of area for a domain bounded by four parabolic segments 
%============================================================================ 
syms x y 

%defining the quadrilateral curved domain 

xip=[1 1;8 0;6 4;2 5] %vertices 

%Edge equations 

E(1)=(1/49)*((8-x)^2) 

E(2)=(4/4)*((8.-x)^2) 

E(3)=(1/16)*((6-x)^2)+4 

E(4)=4*(1-x)^2+1 

n=transpose(size(E)) 

for i=1:n(2)-1 

A(i)=-vpa(int(E(i),xip(i,1),xip(i+1,1))) 

Ix(i)=-vpa(int((E(i)^3/3),xip(i,1),xip(i+1,1))); 

Iy(i)=-vpa(int(x^2*E(i),xip(i,1),xip(i+1,1))); 

Ixy(i)=-vpa(int(x*(E(i)^2/2),xip(i,1),xip(i+1,1))); 

end 

A(n(2))=-vpa(int(E(n(2)),xip(n(2),1),xip(1,1))) 

Ix(n(2))=-vpa(int((E(n(2))^3/3),xip(n(2),1),xip(1,1))); 

Iy(n(2))=-vpa(int(x^2*E(n(2)),xip(n(2),1),xip(1,1))); 

Ixy(n(2))=-vpa(int(x*(E(n(2))^2/2),xip(n(2),1),xip(1,1))); 

A=sum(transpose(A)); A=vpa(A) 

Ix=sum(transpose(Ix)); Ix=vpa(Ix) 

Iy=sum(transpose(Iy)); Iy=vpa(Iy) 



Ixy=sum(transpose(Ixy));Ixy=vpa(Ixy) 

The last three examples show that the method is easily applicable for non-convex and complex domains.  

    

7 Deriving the Stiffness matrix of a generalized ACM-plate bending element 

 

The finite Element approximation is based on Hamilton’s Principle. The 2D expression for the special case of the 

thin plate considered can be written in the absence of the prescribed boundary displacements relating to a Cartesian 

coordinate system in the following form: 
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where 

1t and 2t are two fixed time points of the vibration process,  is the first variation, 

A is the area and dA its differential element, iu is the velocity vector in which both displacement and rotation 

components are included, ji is the corresponding mass density matrix,  )(iF is the concentrated load applied at the 

point (i). 

ij  is the curvature tensor, which reads expressed in terms of the deflection ),( 210
3 xxu

x
: 
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lkjiE is the matrix of the force-curvature dependency given in a matrix form as follows: 
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ji  is defined by the following matrix: 
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where   is the material density, E  is the modulus of elasticity, h  is the plate thickness and   the Poisson’s ratio 

The indicial notation to indicate the Cartesian variables 
21, xx   is used instead of the yx, - frame and indices 

between brackets range over the nodal points. 

In Eqn. (17), the internal work associated with the bending and twist moments is only considered. 



The plate finite element with the nodal points (i), (j), (k), (l) has three degrees of freedom each node.  These are the 

displacement normal to the plate surface in 
3x -direction and the two rotations about  

1x and 
2x -axes. The total 

number of degrees of freedom each element is then represented by the element nodal displacement vector with 12 

degrees of freedom 
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The local axes 21, xx  are defined using the directions of the element base vectors in an analogous procedure used in 

section 4 in [33, 34]. The approximation basis is constructed using the defined local Cartesian variables 21, xx  in the 

usual parametric form [35, 36]: 

 )(
)(210 ),(3 mm
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x
cMxxu   

 32123132221221312212121 )()()()()()()()(1 xxxxxxxxxxxyxxxxM   

 )4(3)2(1)1(1)( ..........cccc mm                                                                                 (22) 

Linking the free parameters )(mmc  to the nodal degrees of freedom using the essential boundary conditions at the 

finite element level yield: 
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)()( mm
mm

rrrr cAu                                                                                  (23) 

Eliminating the free parameters from Eqn. (22) by solving the linear system of equations (23) and substituting the 

result into equation (22), the following relationship between the internal displacements ),( 210
3 xxu

x
 and the nodal 

degrees of freedoms )(rru   is obtained 
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In Eqn. (23),
)(

)(
mm

rrA is a 1212 matrix derived from 
)(mmM  by substituting the coordinates of the element nodes 

and 
1)(

)( )( mm
rrA  is the inverse matrix of

)(
)(
mm

rrA . 

Deriving the curvature tensor ij using Eqn. (24) yield 
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Applying the expressions of  ij  in the first term of Eqn. (17) gives 
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is the element stiffness matrix related to the Cartesian coordinate system. 

The integration over the area can be performed using the scheme presented above as follow: 
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where )()( nnmm

r
P  is the primitive matrix of the 1212  matrix )()( nnijklmm

klij
pEp with respect to 
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The stiffness matrix of the quadrilateral element of sec. 4 with the nodal coordinates 
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is derived. Defining a local coordinate system from the directions of the base vectors corresponding to [33], [34], the 

new local coordinates read 
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The following two function code generate the stiffness matrix of the quadrilateral element 

%============================Ekr.m==============================% 

function [k]=EKr(xip,E,m,t) 

%xip: local cartesian coordinates of the quadrilateral 

%E: Young modulus m Poissons ratio t:thickness 

%===============================================================% 

syms x y  ; 

M=[ 1 x y x^2 x*y y^2 x^3 x^2*y x*y^2 y^3 x^3*y x*y^3]; 

Mxx=diff(diff(M,x),x); 

Mxy=diff(diff(M,x),y); 

Myy=diff(diff(M,y),y); 

%c: eleasticity tensor in the x y-system 

c=((E*t^3)/(12.*(1-m^2)))*[1 0 0 m; 0 (1-m)/2. (1-m)/2. 0; 0 (1-m)/2. 

(1-m)/2. 0;m 0 0 1]; 

p=[Mxx;Mxy;Mxy;Myy]; 

Mi=[M;diff(M,y);-diff(M,x);]; 

A=[subs(subs(Mi,'x',xip(1,1)),'y',xip(1,2)); 

subs(subs(Mi,'x',xip(2,1)),'y',xip(2,2));subs(subs(Mi,'x',xip(3,1)),'y

',xip(3,2));subs(subs(Mi,'x',xip(4,1)),'y',xip(4,2))]; 

a=inv(A); 

k=transpose(p)*c*p 

%Primitive matrix of the matrix pT*c*p 

k=int(k,y) 

%integration over the boundary using x as variable  



[kr]=Rk(k,xip) 

k=transpose(a)*kr*a 

eig(k) 

%==============================EOF==================================== 

 

%==============================Rk.m=================================== 

% function for calculating stiffness matrix of a Polygon with straight 

% edges using Riemann integral 

% before call order the x-coordinate such that x(1)=min 

%===================================================================== 

 

function [kr]=Rk(k,xip) 

n=size(xip); 

if (xip(1:1,1))< min(xip(2:n(1)-1,1)) 

kr=zeros(12); 

syms x y 

for i=1:n(1)-1 

E(i)=det([ x y 1; xip(i,1) xip(i,2) 1; xip(i+1,1) xip(i+1,2) 1]); 

E(i)=solve(E(i),y); 

kE=subs(k,y,E(i)); 

kr=kr-vpa(int(kE,xip(i,1),xip(i+1,1))); 

end 

E(i+1)=det([ x y 1; xip(n(1),1) xip(n(1),2) 1; xip(1,1) xip(1,2) 1]); 

E(i+1)=solve(E(n(1)),y); 

kE=subs(k,y,E(i)); 

Kr=kr-vpa(int(kE,xip(n(1),1),xip(1,1))); 

vpa(kr,6); 

else  

fprintf('Please order the cordinate counter clockwise starting with 

the smallest xip-one'); 

end 

end 

%===============================================================# 

Calling the above two functions using the following three commands 

xip =[   -3.2071   -1.5896;    3.8179   -2.3950;    1.7077    1.5480;   -2.3185    2.4366] 

EKr(xip,1365.0,0.3,0.2) 

[kr]=Rk(k,xip) 

produces the stiffness matrix and its eigenvalues listed in the first line of Tab. 1.  

 

Table 1: Eigen values of the stiffness matrix of the quadrilateral element of sec. 4 related to a local Cartesian  

coordinate system (integrated exactly using the Riemann integral) 

 

1 2 3 4 5 6 7 8 9 

26877.01 7835.507 58177253 2807...3 68.57.07 68032631 68013573 68717373 68201772 

2286.126 78371301 58103713 28.67337 68.27230 68756320 68036..6 68751237 68203377 



 

Similar results can be obtained by substituting the expressions for 21, xx  derived using the standard bilinear 

approach into Eqn. (27) between the limits -1, +1. The results of such procedure are listed cursive in the second line 

of Tab.1.  

Transforming the stiffness matrix into the global coordinate system gives the same results listed in Tab.1.  

Performing the integration directly in the global coordinate system with the coordinates  

xip=[1   1 ;  8  0  ;6   4  ; 2  5  ]  

gives a very different results, which are lower by about 16%. 

This example shows the necessity to define the proposed local element coordinate system and to locate it at the 

geometric center of the element. 

Similar procedure can be adopted to evaluate the element mass matrix resulting in from evaluating the third term of 

Eqn. (17). 

A final note about deriving the stiffness matrix of the rectangular ACM plate-bending element is to be mentioned. It 

is better to use a separate program-code for deriving this matrix. The Fundamental of Calculus can deal with this 

special case, too. For a rectangular element with the side-length ba ll  and the origin of the coordinate system 

located at the element center, the edges 2E  and 4E lie on the coordinate lines alx  ; alx  , respectively. The 

following simple code integrated using the Fundamental of Calculus in its ideal form gives the exact stiffness 

matrix: 

E(1)=-lb;E(3)=lb; 
kr=int(subs(k,y,E(3)),-la,la)-int(subs(k,y,E(1)),-la,la) 
where k is the primitive matrix of the matrix pT*c*p as constructed as in Ekr.m but now with the special nodal 
coordinates of the rectangular element. 
As may be seen, formula (14) or (15) applies in case of rectangular element, too, but only two edges have to be 

considered during the integration.  

Note that the results in the first seven examples using either formula (14) or the standard bilinear approach are exact 

but the results of the stiffness matrix are different. In such cases, it is difficult to make right conclusions. A study on 

benchmark of polygon quality metrics for polytopal element methods is still at the beginning [37]. However, one can 

observe that the characters of the integrals in the first five examples are additive, whilst they are not additive when 

deriving the stiffness matrix, which include the rotations and their derivatives. In addition the integrated shape 

functions are discontinuous and non-conform. Therefore, we found ourselves confronted with similar problems that 

appear during the discretization. Therefore, it is necessary to subject the element matrices to the same tests required 

for a finite element application especially when the integrated function are discontinuous. 

 

8 Changing the variable of integration 

8.1. Using a polar coordinate system 

 

An example of changing the variable of integration (i. e. x or y ) is the use of a polar coordinate 

system. In polar coordinate system the following exact relations apply  
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(30) 

Note that x and y are replaced each by other two variables, namely ,r such that the Pythagorean Theorem applies. 

In this sense, the transformation is exact and there is no approximation. 

The position vector of an arbitrary point zyx ezeyexr


  formulated in ,r terms reads 

zyxzyx eererezeyexr
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0sincos    
(31) 

and the changes of it in ,r directions are as follows: 
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(32) 

The deferential element of the area can now be calculated as a vector product of these changes  
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The integral over the area is now to be performed over the new variables  
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Usually, integration is first performed over the variable limits and after that over the constant limits. 

  

8.2. Using a s, system 

 

In the previous examples both limits of the integral change in x and y -direction even if the domain is bounded by 

straight edges. Sometimes it is useful to use another coordinate system with one variant variable instead of using the 

Cartesian coordinate system or a polar coordinate system. Therefore, it is more reliable to find other two variables 

instead of x and y such that at least one of them has a constant value at the edges of the domain. Along the boundary 

with straight edges both x and y change, but y  has a constant value. 

The idea now is to decompose the position vector r


 into two vectors 


and s


. 

Let us define the position vector r


corresponding to the Chasles relation of vector addition as a sum of two vectors 

s


,  

rs


  
(36) 



where, 


  is the position vector of an arbitrary point o   of the plane 0z  and s


 the vector from o to  p  . 

o can be located everywhere in the plane 0z .  

An exact relation between the magnitude of s


, and of that of the position vector is then given by 

22222 ),(cos2 ryxsss 


  (37) 

where ss


 ,  and rr


 . 

This relation is valid everywhere in the domain and along the boundaries with o as free selectable point.  

In order to evaluate integrals such as 
A

dxdy  or 
A

dxdyyxf ),( , yx, must be expressed in terms of s, . 

In case of straight edges, after suitable selection of o , the relation between  s,  and yx, can be formulated at the 

boundary. The integral can be performed in the s, instead of yx, . 

The Wachspress space [38] offered an approximation basis for many publications dealing with polygonal and 

polyhedral elements.  

This idea can be extended by decomposing the position vector r


 into more than two vectors 


and s


when 

necessary and useful. In any case the connection between the origin of the coordinate system yx, and o should not 

be lost. 

 

9 Conclusion 

 

This paper shows the power of the Fundamental of Calculus in dealing with complex geometry-domains for some 

practical engineering problems. The integration over a polygonal domain enclosed by a sequence of edges is 

performed exactly using the Fundamental of Calculus without sub-division. Double integrals are transformed into 

sequences of single integrals in one direction using the Fundamental of Calculus. There were no need to use the 

Gauss divergence theorem, the ‘Stokes’ Theorem or to integrate in the edge direction. It was not necessary to use 

any mapping procedure in order to integrate over a polygonal element. The presented way of integration is of 

general applicability for convex and non-convex domains for a wide range of engineering and physical problems. 

Some examples with curved edges are also investigated. The results are encouraging. Some notes on changing the 

variables of the integration for instance, in case of using polar coordinate system or non-orthogonal coordinate 

system are discussed. 
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