Supervised–Component versus PLS regression The case of GLMMs with autoregressive random effect

Jocelyn CHAUVET
joint work with Catherine TROTTIER and Xavier BRY

CASI 2018, Galway, May 18

A simple Gaussian model

$$lacksquare$$
 $y \sim \mathcal{N}_n (\mu = X eta, \Sigma = \mathsf{Id}_n)$

$$X = \left[\begin{array}{ccc} \underline{x^1 \dots \dots x^{10}} \\ \text{large bundle} \\ \rightarrow \text{noise} \end{array} \right] \underbrace{x^{11} \dots x^{15}}_{\text{small bundle}} \underbrace{x^{16} \dots x^{20}}_{\text{small bundle}} \right]$$

PLSR vs "Supervised Component Regression" (a more flexible way to build components)

A simple Gaussian model

- lacksquare $y \sim \mathcal{N}_n (\mu = Xeta, \Sigma = \mathsf{Id}_n)$
- $X = \left[\begin{array}{ccc} \underline{x^1 \dots \dots x^{10}} \\ \text{large bundle} \\ \rightarrow \text{noise} \end{array} \right] \underbrace{x^{11} \dots x^{15}}_{\text{small bundle}} \underbrace{x^{16} \dots x^{20}}_{\text{small bundle}} \right]$
 - PLSR vs "Supervised Component Regression"
 (a more flexible way to build components)
- Supervised Component Regression also available for Bernoulli, binomial and Poisson responses (R package: SCGLR)

How to extend it to GLMMs with both individual— and time—specific random effects ?

- 1 Data, motivation and model definition
- 2 A new regularisation framework
- Simulation study
- 4 Conclusions

We consider balanced panel data with:

ightharpoonup N individuals . . .

Data, motivation and model definition

▶ ... observed at the same R time-points

Notations:

- $lackbox{y}_{\scriptscriptstyle NR imes1}$: response vector
- $igwedge X_{NR imes p}$: design matrix of the many and redundant explanatory variables

Conclusions

We consider balanced panel data with:

- ightharpoonup N individuals . . .
- ightharpoonup ... observed at the same R time-points

Notations:

- $ightharpoonup y_{NR imes 1}$: response vector
- $igwedge X_{NR imes p}$: design matrix of the many and redundant explanatory variables

Difficulties

- High level of correlation among the explanatory variables
 - → Regularisation is needed
- Individual-specific and time-specific effects
 - → Need to take into account the induced complex dependence structure

Data, motivation

Example of real data

→ Econometrics: all companies share a common economic climate (latent phenomenon) which tends to persist over time... Data, motivation

Example of real data

→ Econometrics: all companies share a common economic climate (latent phenomenon) which tends to persist over time...

In general: data with

- a dependence within individuals on which data is repeatedly collected
- a serially correlated time—specific effect shared by all the individuals

The method we propose must

- take into account the dependence structure:
 - → Within-individual dependence modelled by a random effect with independent levels
 - → Time dependence modelled by a random effect with AR(1) levels
 - → **GLMM** in order to deal with non–Gaussian response (e.g. count or binary response)
- handle the high correlations among the explanatory variables
 - → Ridge-based regularisation
 - → Supervised component-based regularisation

GLMM framework

$$m{Y}_i \mid m{\xi} \stackrel{\mathsf{iid}}{\sim} F$$
 belonging to the exponential family $g(\underbrace{\mathbb{E}\left(m{Y} \mid m{\xi}
ight)}_{m{U}}) = m{\eta} = m{X}m{eta} + m{U_1}m{\xi^1} + m{U_2}m{\xi^2}$

- ▶ β fixed effect vector
- ▶ $\boldsymbol{\xi^1} = \left(\xi_1^1, \xi_2^1, \dots, \xi_N^1\right)^\mathsf{T}$ the "individual–specific" random effect vector, $U_1 = \mathsf{Id}_N \otimes \mathbf{1}_R$ the associated design matrix
- ▶ $\boldsymbol{\xi^2} = \left(\xi_1^2, \xi_2^2, \dots, \xi_R^2\right)^\mathsf{T}$ the "time-specific" random effect vector, $U_2 = \mathbf{1}_N \otimes \mathsf{Id}_R$ the associated design matrix

Model definition

Random effects

$$\mathbf{y} = (y_{11}, y_{12}, \dots, y_{1R}, y_{21}, y_{22}, \dots, y_{2R}, \dots y_{N1}, y_{N2}, \dots, y_{NR})^{\mathsf{T}}$$

A new regularisation framework

$$\blacktriangleright \xi^1 = (\xi_1^1, \xi_2^1, \dots, \xi_N^1)^{\mathsf{T}} \sim \mathcal{N}_N(\mathbf{0}, D_1), D_1 = \sigma_1^2 A_1$$

$$ightharpoonup$$
 $m{\xi^2} = \left({{\xi _1^2},{\xi _2^2}, \ldots ,{\xi _R^2}} \right)^{\sf T} \sim {\cal N}_R\left({m{0},\,{m{D_2}}} \right)$, ${m{D_2}} = \sigma _{m{2}}^2\,{m{A_2}}(
ho)$,

$$A_2(\rho) = \left(\frac{
ho^{|i-j|}}{1-
ho^2}\right)_{1\leqslant i,j\leqslant R}$$

 $\triangleright \xi^1 \perp \xi^2$

- Data, motivation and model definition
- 2 A new regularisation framework
 - (Ridge-) penalised EM
 - Component-based EM
 - The particular case of GLMMs
- Simulation study
- 4 Conclusions

Simulation study

Data, motivation and model definition

Principle of penalised EM algorithm

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

$$\begin{split} \mathbf{E} &: \mathcal{Q}_{\mathbf{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi} \mid \boldsymbol{y}}\left[\mathcal{L}_{\mathbf{pen}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) \,|\, \boldsymbol{\theta}^{[t]}\right] \\ \mathbf{M} &: \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg\max_{\boldsymbol{\theta}} \, \mathcal{Q}_{\mathbf{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) \end{split}$$

Principle of penalised EM algorithm

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

$$\begin{split} \mathbf{E} &: \mathcal{Q}_{\text{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi} \mid \boldsymbol{y}}\left[\mathcal{L}_{\text{pen}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) \,|\, \boldsymbol{\theta}^{[t]}\right] \\ \mathbf{M} &: \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg\max_{\boldsymbol{\theta}} \mathcal{Q}_{\text{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) \end{split}$$

Usual penalised complete log-likelihood

$$\begin{split} \mathcal{L}_{\text{pen}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) &= \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) - \lambda \operatorname{pen}(\boldsymbol{\beta}) \\ \operatorname{pen}(\boldsymbol{\beta}) &= \begin{cases} \|\boldsymbol{\beta}\|_1 \\ \|\boldsymbol{\beta}\|_2^2 &= \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta} \\ \alpha \|\boldsymbol{\beta}\|_2^2 + (1 - \alpha) \|\boldsymbol{\beta}\|_1, \quad 0 \leqslant \alpha \leqslant 1 \end{cases} \end{split}$$

Simulation study

Ridge-based regularisation

$$\hookrightarrow$$
 EM algorithm, $m{ heta}=(m{eta},\sigma_1^2,\sigma_2^2,
ho)$ and $m{\xi}=(m{\xi^1},m{\xi^2})$

$$\begin{split} & \mathsf{E}: \mathcal{Q}_{\mathsf{ridge}}\left(\boldsymbol{\theta}, \boldsymbol{\lambda} \,|\, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi} \mid \boldsymbol{y}} \left[\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) - \boldsymbol{\lambda} \, \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta} \,|\, \boldsymbol{\theta}^{[t]} \right] \\ & \mathsf{M}: \left\{ \begin{aligned} & \lambda^{[t+1]} \longleftarrow \mathsf{GCV}^{[t+1]}(\boldsymbol{\lambda}) \\ & \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg \max_{\boldsymbol{\theta}} \, \mathcal{Q}_{\mathsf{ridge}}\left(\boldsymbol{\theta}, \boldsymbol{\lambda}^{[t+1]} \,|\, \boldsymbol{\theta}^{[t]}\right) \end{aligned} \right. \end{split}$$

Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011) *Ridge Regression for Longitudinal Biomarker Data.* The International Journal of Biostatistics, **7**, 1–11.

Component-based regularisation

$$m{Y}_i \mid m{\xi} \stackrel{\mathsf{iid}}{\sim} F$$
 belongs to the exponential family $g(\mathbb{E}\left(m{Y} \mid m{\xi}
ight)) = m{\eta} = \mathbf{X} \mathcal{A} + m{U}_1 m{\xi}^1 + m{U}_2 m{\xi}^2$

replaced with

$$\eta = (\boldsymbol{X}\boldsymbol{u})\gamma + \boldsymbol{U}_1\boldsymbol{\xi}^1 + \boldsymbol{U}_2\boldsymbol{\xi}^2$$

for a single component

extended to

$$\eta = \sum_{k=1}^{K^{\star}} (\boldsymbol{X} \boldsymbol{u_k}) \gamma_k + \boldsymbol{U_1} \boldsymbol{\xi^1} + \boldsymbol{U_2} \boldsymbol{\xi^2}$$
 for K^{\star} components

Complete log-likelihood for supervised component regularisation

With $\theta = (\boldsymbol{u}, \gamma, \sigma_1^2, \sigma_2^2, \rho)$ and a trade-off parameter $s \in [0, 1]$

$$\mathcal{L}_{SC}(\theta; y, \xi) = (1 - s) \mathcal{L}(\theta; y, \xi) + s \phi(u)$$

- Log-likelihood: measures (inter alia) the probability that observations y have been generated from component f = Xu
- Structural relevance criterion: measures the closeness of component f to the strongest structures of X

A few words about the structural relevance criterion

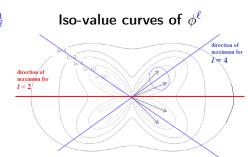
How many bundles do you see ?

Simulation study

$$\phi(\boldsymbol{u}) = \left(\sum_{j=1}^p \left[\text{cor}^2(\boldsymbol{X}\boldsymbol{u}, \boldsymbol{x^j}) \right]^\ell \right)^{\frac{1}{\ell}}$$

A few words about the structural relevance criterion

$$\phi(\boldsymbol{u}) = \left(\sum_{j=1}^p \left[\operatorname{cor}^2(\boldsymbol{X}\boldsymbol{u}, \boldsymbol{x^j}) \right]^\ell \right)^{\frac{1}{2}}$$



Ridge-based penalisation

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) - \lambda \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta}$$

- Penalises the "large" coefficients
- Sees the high correlations among the explanatory variables as pure nuisance
- $\triangleright \eta$ hard to interpret

Component-based regularisation

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) + \frac{s}{1-s} \phi(\boldsymbol{u})$$

- ► Gives a bonus to the most interpretable bundles in X
- ► Takes advantage of the high correlations among the explanatory variables

The particular case of GLMMs

→ Focus on GLMMs

Starting with the classical Fisher Scoring Algorithm for GLMs, we perform:

LINEARISATION step

▶ Linearisation of y_i at $\mu_i = \mathbb{E}(Y_i | \xi)$:

$$egin{aligned} oldsymbol{y}_i &\simeq oldsymbol{z}_i = g(oldsymbol{\mu}_i) + (oldsymbol{y}_i - oldsymbol{\mu}_i) g'(oldsymbol{\mu}_i) \ oldsymbol{z}_i &= oldsymbol{\eta}_i + oldsymbol{e}_i \end{aligned}$$

Linearised model:

$$\mathcal{M}: z = X\beta + U_1 \xi^1 + U_2 \xi^2 + e, \quad \mathsf{with} \ \mathbb{V}(e) = \Gamma$$

ESTIMATION step

Penalised/Regularised EM algorithm on \mathcal{M}

Ridge-based penalisation for GLMM-AR(1)

$$\boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma_1^2, \sigma_2^2, \rho)$$

Linearised model

$$\mathcal{M}^{[t]}: oldsymbol{z}^{[t]} = oldsymbol{X}eta + oldsymbol{U_1}oldsymbol{\xi^1} + oldsymbol{U_2}oldsymbol{\xi^2} + e^{[t]}, \quad ext{with } \mathbb{V}\left(e^{[t]}
ight) = \Gamma^{[t]}$$

Ridge estimation

$$\mathsf{E}:\mathcal{Q}_{\mathsf{ridge}}\left(\boldsymbol{\theta},\lambda\,|\,\boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi}|\boldsymbol{z}^{[t]}}\Bigg[\mathcal{L}\left(\boldsymbol{\theta}\,;\,\boldsymbol{z}^{[t]},\boldsymbol{\xi}\right) - \lambda\,\boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{\beta}\,|\,\boldsymbol{\theta}^{[t]}\Bigg]$$

$$\mathbf{M}: \begin{cases} \lambda^{[t+1]} \longleftarrow \mathsf{GCV}^{[t+1]}(\lambda) \\ \boldsymbol{\theta}^{[t+1]} \longleftarrow \argmax_{\boldsymbol{\theta}} \mathcal{Q}_{\mathsf{ridge}} \left(\boldsymbol{\theta}, \lambda^{[t+1]} \, | \, \boldsymbol{\theta}^{[t]} \right) \end{cases}$$

Update

Calculate $oldsymbol{\xi}^{[t+1]}, \, oldsymbol{z}^{[t+1]}, \, oldsymbol{\Gamma}^{[t+1]}$ with the updated $oldsymbol{ heta}^{[t+1]}$

Supervised component–based regularisation for GLMM–AR(1)

$$\boldsymbol{\theta} = (\boldsymbol{u}, \gamma, \sigma_1^2, \sigma_2^2, \rho)$$

Linearised model

$$\mathcal{M}^{[t]}: oldsymbol{z}^{[t]} = (oldsymbol{X}oldsymbol{u})\gamma + oldsymbol{U_1}oldsymbol{\xi^1} + oldsymbol{U_2}oldsymbol{\xi^2} + e^{[t]}, \quad ext{with } \mathbb{V}\left(e^{[t]}
ight) = \Gamma^{[t]}$$

SC- estimation

$$\begin{split} \mathbf{E} &: \mathcal{Q}_{\mathbf{SC}}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi}|\boldsymbol{z}^{[t]}}\left[(1-s)\mathcal{L}\left(\boldsymbol{\theta}\,;\,\boldsymbol{z}^{[t]},\boldsymbol{\xi}\right) + s\boldsymbol{\phi}(\boldsymbol{u})\,|\,\boldsymbol{\theta}^{[t]}\right] \\ \mathbf{M} &: \begin{cases} \sigma_1^{2[t+1]},\,\sigma_2^{2[t+1]},\,\rho^{[t+1]} \text{ computed as previously} \\ \boldsymbol{u}^{[t+1]} \longleftarrow \underset{\boldsymbol{u}:||\boldsymbol{u}||=1}{\arg\max}\,\mathcal{Q}_{\mathbf{SC}}\left(\boldsymbol{u},\gamma^{[t]}\,|\,\boldsymbol{\theta}^{[t]}\right) \\ \boldsymbol{v}^{[t+1]} \longleftarrow \underset{\boldsymbol{\gamma}}{\arg\max}\,\mathcal{Q}_{\mathbf{SC}}\left(\boldsymbol{u}^{[t+1]},\boldsymbol{\gamma}\,|\,\boldsymbol{\theta}^{[t]}\right) \end{cases} \end{split}$$

Update: Calculate $\boldsymbol{\xi}^{[t+1]}, \, z^{[t+1]}, \, \Gamma^{[t+1]}$ with the updated $\boldsymbol{\theta}^{[t+1]}$

Conclusions

- 1 Data, motivation and model definition
- 2 A new regularisation framework
- Simulation study
- 4 Conclusions

Data simulation

Poisson regression with log link

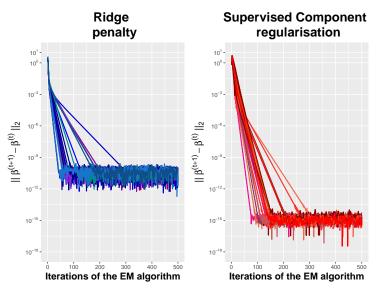
$$m y \sim \mathcal{P}\left(m \lambda = \exp\left(m Xm eta + m U_1m \xi^1 + m U_2m \xi^2
ight)
ight)$$

$$\underbrace{x^{11} \dots x^{15}}_{\text{small bundle}}$$

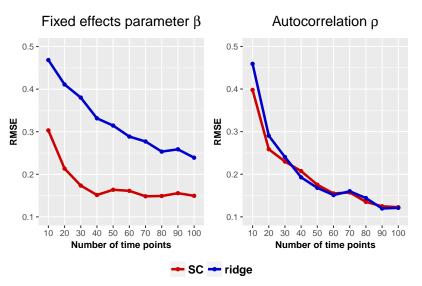
$$\xrightarrow{\text{predicts y}}$$

$$x^{16} \cdot \dots \cdot x^{20}$$
small bundle

How does convergence go?

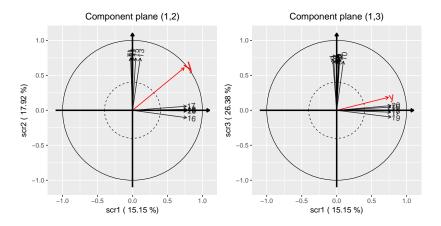


Accuracy of the estimates

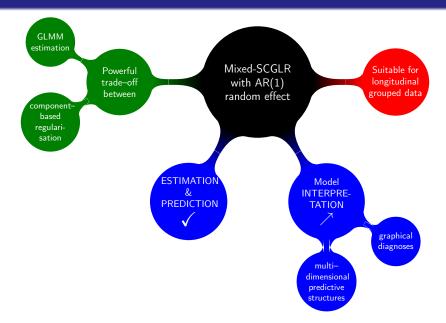


Does the use of SC—regularisation facilitate the model interpretation ?

Power for model interpretation



Simulation study



Bibliography

Bry, X., Trottier, C., Verron, T. and Mortier, F. (2013) Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm. Journal of Multivariate Analysis, 119, 47--60.

+ Package R : SCGLR

Chauvet, J., Bry, X., Trottier, C. and Mortier, F. (2016) Extension to mixed models of the Supervised Component-based Generalised Linear Regression. In COMPSTAT: Proceedings in Computational Statistics.

Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011) *Ridge Regression for Longitudinal Biomarker Data*. The International Journal of Biostatistics, 7, 1–11.

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

Marx, B. D. (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics, 38, 4, 374–381.