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Polyhedral Newton-min algorithms for complementarity problems

Jean-Pierre Dussault · Mathieu Frappier · Jean

Charles Gilbert

May 15, 2023

Abstract The semismooth Newton method is a very efficient approach for computing a zero of a

large class of nonsmooth equations. When the initial iterate is sufficiently close to a regular zero

and the function is strongly semismooth, the generated sequence converges quadratically to that

zero, while the iteration only requires to solve a linear system. If the first iterate is far away from

a zero, however, it is difficult to force its convergence using linesearch or trust regions because a

semismooth Newton direction may not be a descent direction of the associated least-square merit

function, unlike when the function is differentiable. We explore this question in the particular case of

a nonsmooth equation reformulation of the nonlinear complementarity problem, using the minimum

function. We propose a globally convergent algorithm using a modification of a semismooth Newton

direction that makes it a descent direction of the least-square function. Instead of requiring that

the direction satisfies a linear system, it must be a feasible point of a convex polyhedron; hence, it

can be computed in polynomial time. This polyhedron is defined by the often very few inequalities,

obtained by linearizing pairs of functions that have close negative values at the current iterate; hence,

somehow, the algorithm feels the proximity of a “negative kink” of the minimum function and acts

accordingly. In order to avoid as often as possible the extra cost of having to find a feasible point of

a polyhedron, a hybrid algorithm is also proposed, in which the Newton-min direction is accepted if

a sufficient-descent-like criterion is satisfied, which is often the case in practice. Global convergence

to regular points is proved.

Keywords complementarity problem · global convergence · least-square merit function · linesearch ·
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1 Introduction

1.1 The complementarity problem

Let be given a positive integer n and two smooth functions F : Ω → R
n and G : Ω → R

n defined

on an open subset Ω of Rn. This paper considers, with an algorithmic point of view, the standard

(nonlinear) complementarity problem. This problem consists in finding a vector x ∈ Ω such that

F (x) > 0, G(x) > 0, and F (x)TG(x) = 0, (1.1a)

where vector inequalities must be taken in a componentwise fashion and (u, v) ∈ R
n × R

n 7→

uTv =
∑n

i=1 uivi is the Euclidean scalar product of Rn (the sign “T” is used to denote transposition

of vectors and matrices). We denote by [1 :n] := {1, . . . , n} the set of the first n positive integers.

Below, the system (1.1a) is written compactly as follows:

0 6 F (x) ⊥ G(x) > 0, (1.1b)

where the sign “⊥” refers to the required orthogonality of the vectors F (x) and G(x). In many

contributions [84], the map G is supposed to be the identity ; like in [39,40], we have preferred the

balanced model (1.1), not only for its higher generality, but also because it presents the technical

advantage of avoiding repeating reasoning, thanks to the possibility to switch F and G. The term

“complementarity” comes from the fact that, due to the nonnegativity of F (x) and G(x) in (1.1), for

all i ∈ [1 :n], either Fi(x) or Gi(x) must vanish and determining which of them is zero is part of the

difficulty of the problem. The fact that these last conditions can be realized in 2n different ways is at

the origin of the complexity of the problem. It can be shown indeed that, even when the functions F

and G are affine, finding a solution to (1.1) is NP-hard [24,68; 1989-1991]. The algorithms considered

in this paper can be easily adapted to the mixed nonlinear complementarity problem, in which the

number p of complementarity conditions is less than the number n of unknowns and there are n− p

additional nonlinear equality constraints. Less or more recent states of the art on the analysis of

complementarity problems and numerical methods to solve them, in finite dimension, can be found

in [80,61,84,42,28,29,63].

Occasionally, we shall make reference to the linear complementarity problem (LCP) in its stan-

dard form, which reads

0 6 (Mx+ q) ⊥ x > 0, (1.2)

where the unknown is x ∈ R
n, while q ∈ R

n and M ∈ R
n×n are data. In that case, we shall

consider that it corresponds to the nonlinear complementarity problem (1.1) with the affine map

F : x 7→ Mx+ q and the identity operator G : x 7→ x.

Complementarity conditions arise spontaneously in the first order optimality conditions of an

optimization problem with inequality constraints and these conditions can be written as a mixed

nonlinear complementarity problem. The complementarity system (1.1) is also often used to model

in part problems in which several systems of equations are, to some extend, in competition. The one

that is active in a given place and at a given time, corresponding to a common index of F (x) and

G(x), depends on threshold effects; if the threshold Fi(x) = 0 is not reached, i.e., Fi(x) > 0, then the

equation Gi(x) = 0 is active, and vice versa. Examples include problems in nonsmooth mechanics

and dynamics [5,1,18], the phase transition problem in multiphase flows [78,79,14,7,10,20,30,9],

precipitation-dissolution problems in chemistry [19,70], portfolio management in finance [52], com-

puter graphics [41], discrete Hamilton–Jacobi–Bellman equation solvers [94], meteorology simulation,

economic equilibrium, to mention a few. Surveys on examples of applications of the complementarity

problem can be found in [58,61,84,45,42].
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1.2 A few linearization algorithms

Many techniques have been proposed to solve (1.1) since the problem was introduced by Cottle in

his PhD thesis, dated 1964 [26,27]. It is beyond the scope of this paper to review all of them and we

refer instead the interested reader to the recent monographs [42,63]. Below, we limit our account to

the algorithms in close connection with the numerical methods proposed and analyzed in this paper.

The motivation is to put in perspective the proposed algorithms, essentially within the Newton-min

family of methods. On the way, we introduce notation and concepts used throughout the paper.

The adjacent numerical methods are related to the Newton algorithm to solve the nonsmooth

system of equations

H(x) = 0, (1.3a)

in which H : Ω → R
n is the function defined at x ∈ Ω by

H(x) := min(F (x),G(x)), (1.3b)

where the minimum is taken componentwise [2,83]. It is clear that problems (1.1) and (1.3) have the

same solutions, since, for two real numbers a and b, min(a, b) = 0 if and only if a > 0, b > 0 and

ab = 0 (for other functions having that property, see [76,51,4] and the references therein). The term

“Newton-min” was coined in [11,12,13] to name this solution strategy and we adopt it in this paper.

The proposed methods are globalized by using the classical merit function associated with H [81,

36,16,17], which is the least-square function θ : Ω → R defined at x ∈ Ω by

θ(x) :=
1

2
‖H(x)‖2 =

1

2
‖min(F (x),G(x))‖2, (1.4)

where ‖ · ‖ denotes the Euclidean norm. The goal of this paper is to focus on the reformulation

(1.3) and its globalization, using linesearch on the natural merit function (1.4). More is said on

the proposed approaches in section 1.3 below, after the presentation of some related linearization

methods.

Many other equation reformulations of the complementarity problem have been proposed, see

[76,32,66,65,91,21,33,47,43,85,60] and the references therein. Our choice of a reformulation by the

minimum function is not only motivated by an intellectual curiosity (as we shall see, there are

still holes in its implementation and its analysis), but also by its observed efficiency. This one is

sometimes explained by the piecewise affine nature of the minimum function, which provides no

additional nonlinearity besides its nondifferentiability. From a theoretical point of view, the required

regularity at the solution to guarantee fast local convergence of a Newton-like algorithm on (1.3) is

also less restrictive than with the Fischer reformulation [46], for instance; in addition, this algorithm

has finite termination for the linear complementarity problem (1.2) [48], which cannot be expected

when the reformulation is more nonlinear [42; § 9.2].

A first linearization method to solve (1.1) consists in applying Josephy-Newton (JN) itera-

tions [64] on a functional inclusion reformulation of the problem [67] (see [42; § 7.3] for a refor-

mulation using the normal map). This results in linearizing the functions in (1.1b) while keeping its

complementarity problem structure: the new iterate x+d, following the current one x, is determined

by taking for d an appropriate solution to the linear complementarity problem in d (if this solution

exists)

0 6
(
F (x) + F ′(x)d

)
⊥
(
G(x) +G′(x)d

)
> 0. (1.5)

The SQP algorithm in nonlinear optimization can also be derived from this technique [64], so that

the two methods have common features. The local quadratic convergence of this algorithm can

be deduced from the one of the JN iterations for a functional inclusion (Josephy [64] assumes

that the sought solution is strongly regular in the sense of Robinson [88], while Bonnans [15] only

assumes the weaker so-called semistability and hemistability; see also [42; § 7.3] for related results).

The globalization of this linearization approach for complementarity problems uses adapted merit
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functions (see [75] for an entry point). The JN approach has many attractive features, but, with

respect to the methods proposed in section 1.3, the system (1.5) has the inconvenient of requiring the

computation of a solution to a linear complementarity problem of dimension n at each iteration and

we have already mentioned that such a problem is NP-hard. We also point out that this approach is

not relevant in the case when the original problem (1.1) is a linear complementarity problem, since

then (1.5) is exactly the same problem as the original one.

Another linearization approach to solve (1.1) consists in applying a Newton-like method to solve

directly the equivalent nonsmooth system (1.3). Among these methods, one finds the B-Newton

algorithm [82], which is adapted to B-differentiable maps [35,89,90]. For a locally Lipschitz function

defined on a space of finite dimension, like H in (1.3b), the B-derivative is identical to the directional

derivative [89,90], so that the direction d giving the new iterate x+ d in the B-Newton algorithm is

taken as a solution (if any) to the (usually nonlinear) system

H(x) +H ′(x; d) = 0, (1.6)

where H ′(x; d) := limt↓0[H(x+ td)−H(x)]/t is the usual one-side directional derivative. It is easy

to see that the function H given by (1.3b) is directionally differentiable (recall that F and G are

supposed to be smooth) and that its directional derivative is given by

H ′
i(x; d) =







F ′
i (x)d if i ∈ F(x),

G′
i(x)d if i ∈ G(x),

min(F ′
i (x)d,G

′
i(x)d) if i ∈ E(x),

(1.7)

where we have used the following mnemonic notation for index sets, which will be frequently en-

countered below:
E(x) := {i ∈ [1 :n] : Fi(x) = Gi(x)},
F(x) := {i ∈ [1 :n] : Fi(x) < Gi(x)},
G(x) := {i ∈ [1 :n] : Fi(x) > Gi(x)}.

(1.8)

Combining (1.6), (1.3b) and (1.7), we see that the search direction d of the B-Newton-min algorithm

is determined as a solution (if any) to the system






(F (x) + F ′(x)d)F(x) = 0,
(G(x) +G′(x)d)G(x) = 0,
0 6 (F (x) + F ′(x)d)E(x) ⊥ (G(x) +G′(x)d)E(x) > 0.

(1.9)

Note that a solution to (1.5) may not be a solution to (1.9) (because (1.9)1 and (1.9)2 may not

hold) and vice versa (because (F (x) + F ′(x)d)G(x) > 0 and (G(x) + G′(x)d)F(x) > 0 may not

hold). An interesting asset of the B-Newton-min approach, compared to the JN algorithm, is that

the system (1.9) can be much easier to solve than (1.5), since its number |E(x)| of complementarity

conditions is reduced to the number of indices i giving the equality Fi(x) = Gi(x) at the current x

and that this number can be very small. The convergence properties of this algorithm based on (1.9)

derive from the one of the B-Newton algorithm (1.6) for solving the equation H(x) = 0, with a

B-differentiable function H . According to [82; theorem 3], the algorithm converges when the first

iterate is in some neighborhood of a zero x∗ of H at which H is strongly Fréchet differentiable

with a nonsingular H ′(x∗); this required smoothness assumption on H is awkward and rather re-

strictive when one aims at solving a nonsmooth system. Another interesting asset of the B-Newton

direction d is that it is a descent direction of θ at x [82; lemma 1], which gives rise to a linesearch

algorithm, generating sequences whose accumulation points x∗ are solutions to (1.3a), provided H

is strongly Fréchet differentiable at x∗ and H ′(x∗) is injective [82; theorem 4(iii)]; these are again

rather restrictive assumptions. In terms of the data of problem (1.1), when G is the identity, these

conditions are guaranteed if the accumulation point x∗ is regular in the sense of [82; definition 2]

and (x∗)i = Fi(x∗) = 0 for i ∈ E(x∗) [82; theorem 6]. Finally, we point out that the B-Newton-min

is not appropriate to solve the linear complementarity problem (1.2), since (1.9) is identical to the

original problem when E(x) = [1 :n].
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The B-Newton-min algorithm is modified in [83] in order to obtain convergence results with less

demanding assumptions and the modification is shown in [57] to be part of a larger family of globally

convergent algorithms for solving a nonsmooth system H(x) = 0. In the case of problem (1.1), the

modified B-Newton-min algorithm consists in computing the new iterate x + d, from the current

one x, by determining d as a solution (if any) to the nonlinear system [57; (4)]

H(x) +D(x, d) = 0, (1.10)

where D : Rn×R
n → R

n is no longer the directional derivative of H like in (1.6)-(1.7) but is defined

by [57; (12)]

Di(x, d) =







F ′
i (x)d if Fi(x) < Gi(x), Gi(x) > 0,

G′
i(x)d if Fi(x) > Gi(x), Fi(x) > 0,

min(F ′
i (x)d,G

′
i(x)d) otherwise.

(1.11)

In comparison with (1.6), we see that some indices of F(x) and G(x) are now handled like those

of E(x). Rewriting (1.10), with the form of H from (1.3b) and that of D from (1.11), we see that d

has to solve the system







Fi(x) + F ′
i (x)d = 0 if Fi(x) < Gi(x), Gi(x) > 0,

Gi(x) +G′
i(x)d = 0 if Fi(x) > Gi(x), Fi(x) > 0,

0 6 (Fi(x) + F ′
i (x)d) ⊥ (Fi(x) +G′

i(x)d) > 0 if Fi(x) < Gi(x) < 0,
0 6 (Gi(x) + F ′

i (x)d) ⊥ (Gi(x) +G′
i(x)d) > 0 if 0 > Fi(x) > Gi(x),

0 6 (Fi(x) + F ′
i (x)d) ⊥ (Gi(x) +G′

i(x)d) > 0 otherwise.

(1.12)

This heterogeneous system has therefore more complementarity conditions than (1.9), but has also

better convergence results. Conditions ensuring the existence and uniqueness of the solution to the

mixed linear complementarity problem (1.12) can be obtained [83; § 5]. Furthermore, it can be shown

that this direction d is a descent direction of θ at x, which gives rise to a linesearch algorithm whose

global convergence (without the previously required smoothness of H) and the admissibility of the

unit stepsize are studied in [83; §§ 6-8]. For the same reason as for the B-Newton-min algorithm, the

present modification is not appropriate for linear complementarity problem (LCP), since the system

(1.12) is identical to the original problem when E(x) = [1 :n].
A more drastic approach to solve a nonsmooth system H(x) = 0 is to use the semismooth

Newton method [87,86], provided H is semismooth, which is the case of the function defined by

(1.3b) when F and G are smooth. This method only requires to solve a linear system per iteration:

one chooses a Jacobian Jx in the generalized Clarke differential ∂CH(x) of H at x [25] and defines

the displacement d at x as a solution (if any) to

H(x) + Jxd = 0. (1.13)

Despite its poor description of the function H at a point of nondifferentiability, this method has

the remarkable property of having a superlinear speed of convergence (or quadratic, if H is strongly

semismooth), when the first iterate is close enough to a regular point x∗ of H , which means here that

all the Jacobians of ∂CH(x∗) are nonsingular [42,63]. A drawback of this method is that it is often

difficult to compute an element of ∂CH(x), for a particular function H , because this generalized

Jacobian is not known or evaluating one of its elements is computationally expensive. Nevertheless,

one can sometimes use a surrogate of the generalized Jacobian Jx in (1.13), while keeping the

fast local convergence property of the pure approach (see [56,72] for the projection on a convex

polyhedron) and for the function H given by (1.3), one can use the inexpensive central Jacobian

of Xiang and Chen [93; theorem 2.2]. A drawback of the semismooth Newton direction, however,

is that it is not necessarily a descent direction of the natural least-square merit function θ (see

counter-example 2.3 below, for a linear complementarity problem), which explains why it is difficult

to define a globally convergent algorithm based on this direction and the merit function (1.4).
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A method inspired from the semismooth Newton algorithm or from [69], applied to (1.3), com-

putes the displacement d from x to the next iterate x+ d by solving (if possible) the linear system

{
Fi(x) + F ′

i (x)d = 0 if i ∈ F̃(x),

Gi(x) +G′
i(x)d = 0 if i ∈ G̃(x),

(1.14)

where the pair (F̃(x), G̃(x)) forms a partition of [1 :n] and satisfies F̃(x) ⊇ F(x) and G̃(x) ⊇ G(x).
This method differs from the semismooth Newton approach in that the matrix used in the system

(1.14), namely
(

F ′
F̃(x)

(x)

G′
G̃(x)

(x)

)

,

may not be in the C-differential ∂CH(x) = co ∂BH(x) (or convex hull of the B-differential) of H

at x [40]. This economical approach has the same drawback as the semismooth Newton direction

(1.13), which is that its directions are not necessarily descent directions of the natural least-square

merit function θ, because of an inappropriate choice of the indices of E(x) going into F̃(x) and G̃(x)
(see again counter-example 2.3 below).

Finally, we quote the algorithm of [50], which uses the merit function (1.4) and computes its

directions by solving a piecewise quadratic convex function subject to linear constraints, for a com-

plementarity problem of the form 0 6 F (x) ⊥ x > 0. Note also that there are other approaches,

which use the least-square merit function and the Fischer complementarity function [44,73,33,85].

1.3 A foretaste of the proposed algorithms

The methods proposed and analyzed in this paper are progressively introduced in section 2, but

we can already give here a foretaste of their nature. They find their place in the panorama of

linearization methods of the minimum function (1.3b) presented in the previous section, in the sense

that their directions can be viewed as intermediates between the B-Newton direction d given by (1.9),

or its modification given by (1.12), and the semismooth-like direction computed by (1.14), called the

plain Newton-min direction in section 2.1. Their main advantage is to avoid the need of solving an

LCP at each iteration, hence unlike in (1.9) or (1.12), and to guarantee global convergence, hence

unlike (1.14).

Instead of having to solve an LCP, the direction must satisfy a system, made of affine equalities

and (generally very few) inequalities, in order to guarantee the descent of the least-square merit

function θ, defined in (1.4); see section 2.2. A least-norm displacement of this system can, for example,

be obtained by solving a convex quadratic optimization problem, which can be done in polynomial

time. An improvement of this direction is needed, however, to guarantee convergence in the sense

and with the technique of proof presented in section 3.2: the set of inequalities defining the direction

must be slightly enlarged when the iterate is near a “negative kink” of H (we call a kink a locus

of points of nondifferentiability); see section 2.3. Finally, to avoid these more expensive directions,

due to the presence of inequalities in their definition, a hybrid algorithm is proposed in section 2.4,

in which the descent property of the plain Newton-min direction (1.14) is first tested: if a sufficient

decrease along that direction is guaranteed, this one is adopted by the algorithm.

Like any linearization algorithm with linesearch, convergence is restricted by a regularity as-

sumption of the limit point. This notion of regularity depends on the computed direction. This issue

is analyzed with care in section 3.1. Finally, a global convergence result is given in section 3.2. The

paper ends with the conclusion section 4.

The design of the algorithms presented in this paper has been oriented by an intensive numerical

exploration, which has shown that the proposed method is competitive with other solvers on various

applications, on some reference academic examples, and on randomly generated problems. These

experiments are reported in [49] for the linear complementarity problem (1.2).

This paper is an abridged version of the more detailed report [38].



Polyhedral Newton-min algorithms for complementarity problems 7

1.4 Notation and definition

We denote by ‖ · ‖ the Euclidean norm and by ||| · ||| an arbitrary norm, both on R
n. The cardinality

of a set S (i.e., its number of elements, which will be always finite) is denoted by |S|. The set of

partitions of [1 :n] is denoted by P([1 :n]).

We say that a function is continuously differentiable at x if it is differentiable near (i.e., in a

neighborhood of) x and its derivative is continuous at x.

2 Polyhedral Newton-min directions

This section introduces the directions of the proposed algorithms. It proceeds gradually, insisting on

the motivation, which is to obtain descent directions of θ and to guarantee some global convergence

property. We first observe that the plain Newton-min (NM) direction of section 2.1, already presented

in (1.14) and obtained by solving a single linear system, is not necessarily a descent direction of θ

(counter-example 2.3). We then examine in section 2.2 the reason of this descent property failure

and propose a descent direction (proposition 2.4), which must satisfy a similar system as the one of

the plain NM direction, but whose equations corresponding to the indices in {i ∈ [1 :n] : Fi(x) =
Gi(x) < 0} are transformed into pairs of inequalities. This yields what we call a polyhedral Newton-

min (PNM) direction since this one must be a feasible point of a certain polyhedron. This plain

PNM direction is always a descent direction of θ. Nevertheless, it did not allowed us to prove the

global convergence result of theorem 3.8 for a reason discussed in section 2.3. It seems important,

indeed, that, when the current iterate is near “negative kinks” of H , the direction is built by picking

information on the behavior of the function H on both sides of the kink. This leads us to propose

in section 2.3.1 the secure PNM direction (2.13), whose definition depends on the proximity of

the current iterate to these special kinks of H . Its descent property is viewed in section 2.3.2 as

a consequence of proposition 2.6, which analyzes the potential descent property of a direction by

averaging its effect on each term Hi(x)
2 defining the merit function θ. Section 2.3.2 also introduces

the very permissive inexact secure PNM direction (2.22), for which descent property and global

convergence hold, which is expensive to compute, but the inequalities in its definition can be used

as stopping test. We conclude with section 2.4, which presents the hybrid Newton-min direction and

the associated hybrid Newton-min algorithm. This algorithm takes the plain NM direction (1.14)

(because it is cheap to compute) if this one can ensure a sufficient decrease of the merit function θ

(this is not guaranteed) or, otherwise, it computes a more expensive secure PNM direction. Both

the secure PNM algorithm and the hybrid PNM algorithm have their global convergence analyzed

in section 3.2.

2.1 Plain Newton-min direction

The plain Newton-min (NM) algorithm is a semismooth Newton-like method on the reformula-

tion (1.3) of the nonlinear complementarity problem (1.1), which uses the minimum function (algo-

rithm 7.2.17 in [42]). It computes its direction d at x ∈ Ω by solving the linear system (1.14), which

is reproduced here for the reader’s convenience:

{
Fi(x) + F ′

i (x)d = 0 if i ∈ F̃(x),

Gi(x) +G′
i(x)d = 0 if i ∈ G̃(x).

(2.1)

In this system, (F̃(x), G̃(x)) ∈ P([1 :n]) and satisfies F̃(x) ⊇ F(x) and G̃(x) ⊇ G(x). By the

“symmetry” in F and G of the complementarity problem (1.1), there is no natural reason to put

all the indices of E(x) in F̃(x) or G̃(x), which motivates the flexibility admitted in the direction
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definition (2.1). We see that, at a point x on a possible kink of H , due to one of its components

i ∈ E(x), a pseudo-derivative of Hi at x is chosen in {F ′
i (x),G

′
i(x)}.

To identify the points x at which the linear system (2.1) is guaranteed to have a solution, we

introduce the notion of NM-regularity. This notion is linked to the plain NM algorithm (hence the

prefix NM), like the nonsingularity of the Jacobian of a nonlinear system is a regularity assumption

linked to Newton’s method. In the following definition, we do not assume that the considered point x

is a solution to the complementarity problem (1.1), which is motivated by the fact that this regularity

assumption will be required at accumulation points that are not known a priori to be solutions to

the problem (see the proof of theorem 3.8).

Definition 2.1 (NM-regularity) A point x ∈ R
n is said to be NM-regular (we also say that the

complementarity problem (1.1) is NM-regular at x ∈ R
n) if F and G are differentiable at x and if,

for any (F̃ , G̃) ∈ P([1 :n]) satisfying F̃ ⊇ F(x) and G̃ ⊇ G(x), the Jacobian

(
F ′
F̃
(x)

G′
G̃
(x)

)

(2.2)

is nonsingular. ✷

When G is the identity and x is nonnegative, this is a notion slightly weaker than the b-regularity

of [50; definition 2] (any set F̃ lying between {i ∈ F(x) : Gi(x) ≡ xi > 0}, which is smaller than

F(x), and G(x) can be chosen in [50]); moreover, when x is also a solution to the complementarity

problem (1.1), this is the notion of b-regularity of [42; definition 3.3.10].

The next proposition gives some consequences of the NM-regularity. The first property claims

that the NM-regularity diffuses to the neighboring points. The second property will be useful for

establishing the global convergence result of theorem 3.8 (see [50; lemma 3] for a similar property).

Proposition 2.2 (NM-regularity properties) Suppose that F and G are continuously differen-

tiable at x̄ ∈ R
n and that x̄ is NM-regular. Then, there is a neighborhood V of x̄ and a constant C,

such that, for all x ∈ V :

1) x is NM-regular,

2) the system (2.1) has a unique solution d and the norm of d is bounded by C.

Proof By their differentiability property, F and G are continuous at x̄. Furthermore, F(x̄) and G(x̄)
are finite sets. Then, it follows that there is a neighborhood V1 of x̄ such that

∀ x ∈ V1 : F(x̄) ⊆ F(x) and G(x̄) ⊆ G(x). (2.3)

1) Let (F̃ , G̃) ∈ P([1 :n]) satisfying F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄). By the NM-regularity at x̄,

(
F ′
F̃
(x̄)

G′
G̃
(x̄)

)

is nonsingular.

By the Banach perturbation lemma, there is a neighborhood VF̃,G̃ ⊆ V1 of x̄ and a constant CF̃,G̃ ,

such that for all x ∈ VF̃,G̃ ,

(
F ′
F̃
(x)

G′
G̃
(x)

)

is nonsingular and

∥
∥
∥
∥
∥

(
F ′
F̃
(x)

G′
G̃
(x)

)−1
∥
∥
∥
∥
∥
6 CF̃ ,G̃

Define

V2 :=
⋂

(F̃,G̃)∈P([1 :n])

F̃⊇F(x̄)

G̃⊇G(x̄)

VF̃,G̃ ⊆ V1 and C1 := sup
(F̃,G̃)∈P([1 :n])

F̃⊇F(x̄)

G̃⊇G(x̄)

CF̃,G̃
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Since the number of partitions (F̃ , G̃) ∈ P([1 :n]) is finite, V2 is a neighborhood of x̄ and C1 < ∞.

Therefore,
∀ x ∈ V2, ∀ (F̃ , G̃) ∈ P([1 :n]) satisfying F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄) :

(
F ′
F̃
(x)

G′
G̃
(x)

)

is nonsingular and

∥
∥
∥
∥
∥

(
F ′
F̃
(x)

G′
G̃
(x)

)−1
∥
∥
∥
∥
∥
6 C1.

(2.4)

Suppose now that x ∈ V2 and that (F̃ , G̃) ∈ P([1 :n]) satisfies F̃ ⊇ F(x) and G̃ ⊇ G(x). By (2.3)

and V2 ⊆ V1, (F̃ , G̃) satisfies F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄). By (2.4), the matrix (2.2) is nonsingular.

Hence x is NM-regular.

2) By restricting the neighborhood V2 to a neighborhood V of x̄, in order to have F (x) and G(x)
bounded in norm by C2 on V (this is possible by the continuity of F and G at x̄), we see that,

using the bound C1 on the matrix inverse in (2.4), for any x ∈ V , the direction d is uniquely defined

by (2.1) and is also bounded by C := C1C2. ✷

The plain NM direction is very attractive since it can be computed by solving a single linear

system and because it guarantees a local quadratic convergence [69,71]. Unfortunately, this direction

may not be a descent direction of the least-square merit function θ defined in (1.4), although this one

is naturally associated with the system (1.3). Here is a counter-example of this phenomenon in the

case of a linear complementarity problem (1.2) with a P-matrix M (recall that a square matrix M

is a P-matrix if its principal minors are positive; a property that is denoted by “M ∈ P”). This fact

was already observed during the preparation of the PhD thesis of I. Ben Gharbia [8; example 5.8].

Counter-examples 2.3 (no descent direction from (2.1)) Consider the linear complementarity

problem (1.2) in dimension n = 2 and the point x given by

M =

(
1 µ

0 1

)

, q =

(
−µ

−2

)

and x =

(
−2
1

)

, (2.5)

where µ > 0 is a positive parameter. Note that M ∈ P. Since F (x) ≡ Mx+q = (−2,−1) and G(x) ≡
x = (−2,1), the index sets (1.8) read E(x) = {1}, F(x) = {2} and G(x) = ∅. If one computes the

NM direction d by (2.1) with F̃(x) = {1, 2} and G̃(x) = ∅, one gets d = −x−M−1q = (2− µ, 1).
Then, for t > 0:

θ(x+ td) =
(5− 4µ+ µ2)t2 + 2(2µ− 5)t+ 5

2
and θ′(x; d) = 2µ− 5,

which shows that the chosen NM direction d is an ascent direction of θ at x, provided µ > 5/2. The

figure 2.1 below gives the level curves of θ, which highlight the nonsmoothness and nonconvexity of

the least-square merit function, as well as the chosen NM direction d, along which θ clearly increases.

The increase of θ along the chosen NM direction is due to an unfortunate choice of F̃(x) and G̃(x).
If one chooses the index sets F̃(x) = {2} and G̃(x) = {1}, the solution to (2.1) becomes d = (2,1),
which is also the solution to the linear complementarity problem (1.9), and x + d = (0, 2) is the

solution to the LCP.

Note also that the matrices used in (2.1) to compute the directions d = (2−µ, 1) and d = (2,1)
above, namely M and I , are both in the B-differential ∂BH(x) of H at x; see [38,40]. Therefore,

the belonging of the Jacobian (2.2) to ∂BH(x) is not a guarantee to get the descent property. To

put it more synthetically, a semismooth Newton direction of the form (1.13) may not be a descent

direction of the least-square merit function θ.

To conclude, note that the semismooth Newton direction (1.13) with the Xiang-Chen central

Jacobian [93; (2.4)], which is in the C-differential of H at x and reads here

J1/2 :=
1

2
(M + I) =

(
1 µ/2
0 1

)

,

is also not a descent direction of θ, when µ > 5; see [38]. ✷
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0

0.5

1

1.5
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2.5

3

d

x

x̄

Fig. 2.1 The level curves of θ in counter-example 2.3 with µ = 3 (and the dotted level curves of x 7→
1
2
‖Mx+ q‖2), the solution x̄ to the LCP, the current point x and the unfortunate NM direction d, which is

an ascent direction of θ.

To the best of our knowledge, this intrinsic difficulty of the plain NM algorithm has not been

considered with full attention (we quote, however, algorithm 9.2.2 in [42], which requires to solve a

convex piecewise quadratic optimization problem at each iteration with n bound constraints and is

therefore more expensive than the algorithms proposed below). In sections 2.2 and 2.3, we propose

to overcome the difficulty by imposing the direction to be a feasible point of a particular polyhedron,

defined by a very small number of linear inequalities, instead of being the solution to a linear system.

The computation of these directions is therefore more expensive than for the plain NM direction,

but remains polynomial. In addition, in sections 2.4, a heuristics is proposed to avoid as much as

possible the need to find a point in a polyhedron.

2.2 Plain polyhedral Newton-min direction

The direction proposed in this section is based on the following computation, which highlights the

reason why a plain NM direction may not be a descent direction of the least-square merit function θ

defined in (1.4).

First, observe that the map θ is directionally differentiable as a composition of H , which is

directionally differentiable, and 1
2‖ · ‖2 which is locally Lipschitz continuous and smooth. In this

case, the chain rule applies (see [17; lemma 11.1] for example):

θ′(x; d) = H(x)TH ′(x; d).

From (1.3b) and (1.7), one gets

θ′(x; d) = FF(x)(x)
TF ′

F(x)(x)d+GG(x)(x)
TG′

G(x)(x)d

+ FE(x)(x)
Tmin(F ′

E(x)(x)d,G
′
E(x)(x)d). (2.6)

Since, for x̃ near x, HF(x)(x̃) ≡ FF(x)(x̃) and HG(x)(x̃) ≡ GG(x)(x̃), it is natural to impose to

a Newton-like direction d to verify

(F (x) + F ′(x)d)F(x) = 0 and (G(x) +G′(x)d)G(x) = 0. (2.7)

Note, however, that it will be necessary to infringe this rule below, in order to approach the “negative

kinks” of H with caution. Using (2.6), (2.7), and FE(x)(x) = GE(x)(x), the directional derivative
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θ′(x; d) becomes

θ′(x; d) = −‖FF(x)(x)‖
2 − ‖GG(x)(x)‖

2 − ‖FE(x)(x)‖
2

+ FE(x)(x)
Tmin

(

FE(x)(x) + F ′
E(x)(x)d,GE(x)(x) +G′

E(x)(x)d
)

= −2 θ(x) + FE(x)(x)
Tmin

(

FE(x)(x) + F ′
E(x)(x)d,GE(x)(x) +G′

E(x)(x)d
)

.

The first term in the right-hand side is satisfactory since it corresponds to the formula of the

directional derivative of the least-square function when H is smooth, while the second term is at the

origin of the positive directional derivative observed in counter-example 2.3. Let us dissect this last

term in order to see what conditions the direction must verify to make it nonpositive (we take up

again an observation already made during the preparation of the PhD thesis of I. Ben Gharbia [8;

2012] for the LCP (1.2)). For this, we introduce the following partition (E−(x),E0(x),E+(x)) of E(x),
as well as the index set E0+(x) := E0(x) ∪ E+(x):

E−(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) < 0},
E0(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) = 0},
E+(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) > 0},
E0+(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) > 0}.

(2.8)

Let i ∈ E(x) = E0+(x) ∪ E−(x).

r If i ∈ E0+(x), then Fi(x) > 0. If one of the linearized functions Fi(x)+F ′
i(x)d or Gi(x)+G′

i(x)d
vanishes, their minimum is nonpositive, yielding Fi(x)min(Fi(x)+F ′

i (x)d,Gi(x)+G′
i(x)d) 6 0.

r If i ∈ E−(x), then Fi(x) < 0. To get Fi(x)min(Fi(x) + F ′
i (x)d,Gi(x) + G′

i(x)d) 6 0, it is

now necessary to have min(Fi(x) + F ′
i (x)d,Gi(x) + G′

i(x)d) > 0, meaning that the following

inequalities must hold:

Fi(x) + F ′
i (x)d > 0 and Gi(x) +G′

i(x)d > 0. (2.9)

Therefore, the decrease of θ is ensured along a direction d if this one satisfies (2.7), either Fi(x) +
F ′
i (x)d = 0 or Gi(x) +G′

i(x)d = 0 when i ∈ E0+(x), and both inequalities in (2.9) for i ∈ E−(x).
The above discussion leads us to the definition of the following direction. Let us denote by

(E0+
F (x),E0+

G (x)) an arbitrary partition of E0+(x), meaning that

E0+(x) = E0+
F (x) ∪ E0+

G (x) and E0+
F (x) ∩ E0+

G (x) = ∅. (2.10)

A plain polyhedral Newton-min (PNM) direction is a direction d that satisfies the following system







Fi(x) + F ′
i (x)d = 0 if i ∈ F(x) ∪ E0+

F (x)
Gi(x) +G′

i(x)d = 0 if i ∈ G(x) ∪ E0+
G (x)

Fi(x) + F ′
i (x)d > 0 if i ∈ E−(x)

Gi(x) +G′
i(x)d > 0 if i ∈ E−(x).

(2.11)

Therefore, we have imposed inequality constraints on the linearized functions Fi(x) + F ′
i (x)d and

Gi(x) +G′
i(x)d for the indices in i ∈ E−(x), like suggested by (2.9), rather than arbitrarily forcing

one of them to vanish, like in the plain NM algorithm (2.1).

The computation of a plain PNM direction is more expensive than the computation of the

plain NM direction (2.1), since a feasible point of a convex polyhedron must be found instead

of the solution to a linear system. Nevertheless, a direction satisfying (2.11) can be computed in

polynomial time using linear or quadratic optimization (see [34,22] and the references therein) or

other approaches (see [23] for a polynomially convergent algorithm and [3,54,55,31] for the linearly

convergent relaxation method). Such an extra cost is acceptable, even when one solves a linear
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complementarity problem. In the next section, we continue to explore this vein and in section 2.4,

we introduce a way of reducing the cost of the direction computation that is very successful in

practice.

We summarize the discussion of this section in the following proposition.

Proposition 2.4 (descent property with (2.11)) For any direction d satisfying (2.11), one has

θ′(x; d) 6 −2 θ(x).

2.3 Secure polyhedral Newton-min direction

Although a vector d satisfying (2.11) is a descent direction of θ, we were not able to get a global

convergence result like those of section 3.2 below with that direction. Our first attempt in [49] to

get global convergence involved adding all indices from {i ∈ [1 :n] : Fi(x) < Gi(x) < 0} and

{i ∈ [1 :n] : Gi(x) < Fi(x) < 0} in the inequalities in (2.11), which corresponds to the index set

E−
∞(x) in (2.12c) below. This is clearly very costly, which motivates us to develop the more economic

strengthening which we present now under the name secure PNM direction.

In the approach followed in the proof of theorem 3.6, on which theorems 3.7 and 3.8 rest, a

difficulty may arise with a limit point x̄ for which E−(x̄) 6= ∅, which is likely to be on a kink

of H , then called a negative kink. When an iterate xk is close to such an x̄ and i ∈ F(xk) say (by

symmetry, the reasoning is the same if i ∈ G(xk)), the system (2.11) gives an information on the

variation of Fi at xk along dk (through the equation Fi(xk)+F ′
i (xk)dk = 0) but nothing is said on

the variation of Gi along the same direction (since Gi(xk)+G′
i(xk)dk may take any value), while an

information on G′
i(xk)dk may also be necessary when the linesearch at xk explores the two sides of

the kink. It happens, actually, that relaxing the equality Fi(xk) + F ′
i (xk)dk = 0 into the inequality

Fi(xk) + F ′
i (xk)dk > 0 and adding the inequality Gi(xk) + G′

i(xk)dk > 0 suffice to complete the

proof (see its point 4.1.2), while keeping the descent property (see corollary 2.7).

We first present in section 2.3.1 the exact version (2.13) of the direction described in the previous

paragraph and discuss its links with directions proposed in other contributions. Next, we analyze its

descent property in section 2.3.2 and exhibit the inexact version (2.22) of the direction, which also

enjoys the descent property.

2.3.1 Direction

Based on the previous discussion, we introduce a device that is able to measure the proximity to a

point x̄ with a nonempty index set E−(x̄) (rather mysteriously, the proximity to a point x̄ on a kink

of H due to an index in E0+(x̄) is not troublesome). Let τ ∈ (0,∞) be the kink tolerance, used to

detect such a proximity (normally τ should be small, but we want to be rather general at this stage

of the presentation) and define the index set

E−
τ (x) := {i ∈ [1 :n] : Fi(x) < 0, Gi(x) < 0, |Fi(x)−Gi(x)| < τ}. (2.12a)

We also define

E−
0 (x) := ∩τ>0E

−
τ (x) = {i ∈ [1 :n] : Fi(x) = Gi(x) < 0} = E−(x), (2.12b)

E−
∞(x) := ∪τ>0E

−
τ (x) = {i ∈ [1 :n] : Fi(x) < 0, Gi(x) < 0}. (2.12c)

Note that the set E−
τ (x) is expanding with τ , meaning that E−

τ1(x) ⊆ E−
τ2(x) when 0 6 τ1 6 τ2 6 ∞.

A direction d is said to be a secure PNM direction if it satisfies







Fi(x) + F ′
i (x)d = 0 if i ∈ EF (x)

Gi(x) +G′
i(x)d = 0 if i ∈ EG(x)

Fi(x) + F ′
i (x)d > 0 if i ∈ I(x)

Gi(x) +G′
i(x)d > 0 if i ∈ I(x),

(2.13)
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where we have used the following index sets:

EF (x) :=
[
F(x) \ E−

τ (x)
]
∪ E0+

F (x), (2.14a)

EG(x) :=
[
G(x) \ E−

τ (x)
]
∪ E0+

G (x), (2.14b)

I(x) := E−
τ (x), (2.14c)

in which τ ∈ [0,∞] and (E0+
F (x),E0+

G (x)) is a partition of E0+(x). In some proofs and discussions

below, we have found convenient to detect the index set to which a particular index i ∈ [1 :n] belongs

by looking at the position of (Fi(x),Gi(x)) in the graph of figure 2.2. The index sets EF (x), EG(x),

i ∈ EF (x)
i ∈ E0+(x) = E0+

F (x) ∪ E0+
G (x)

i ∈ EG(x)

−τ

−τ
Fi(x)

Gi(x)

i ∈ I(x) ≡ E−
τ (x)

Fig. 2.2 The pair (Fi(x), Gi(x)) determines which index sets EF (x), EG(x), or I(x), i belongs to; see (2.14)
for the definition of these index sets. The nondifferentiability of Hi can only occur on the main diagonal, at
points x for which Fi(x) = Gi(x). Nevertheless the secure PNM direction (2.13) carefully deals with points
that are near an x such that Fi(x) = Gi(x) < 0, those with a pair (Fi(x), Gi(x)) inside the fork in the
left-bottom part of the picture (it then replaces one equality defining the plain NM direction (2.1) by a pair
of inequalities). The width of this fork is controlled by the kink tolerance τ > 0, which can be taken very
small in practice, in order to avoid having too many inequalities in (2.13).

and I(x) will be continually used in the sequel and it is important to observe that they form a

partition of [1 :n], which is claimed in the next lemma.

Lemma 2.5 ((EF , EG, I) partition) One has
(
EF (x), EG(x), I(x)

)
∈ P([1 :n]).

Proof Observe first that the triplet (EF (x),EG(x), I(x)) covers [1 :n]:

EF (x) ∪EG(x) ∪ I(x)

=
(
F(x) ∪ E0+

F (x)
)
∪
(
G(x) ∪ E0+

G (x)
)
∪ E−

τ (x) [(2.14)]

⊇ F(x) ∪ G(x) ∪ E0+(x) ∪ E−(x) [E0+
F (x) ∪ E0+

G (x) = E0+(x), E−
τ (x) ⊇ E−(x)]

= [1 :n] [E0+(x) ∪ E−(x) = E(x) and E(x) ∪ F(x) ∪ G(x) = [1 :n]].

To conclude, it suffices to show that the sets of the triplet are two by two disjoint:

r EF (x) ∩ EG(x) = ∅, since EF (x) ⊆ F(x) ∪ E0+
F (x), EG(x) ⊆ G(x) ∪ E0+

G (x) and (F(x) ∪

E0+
F (x)) ∩ (G(x) ∪ E0+

G (x)) = ∅;
r EF (x) ∩ I(x) = ∅, since (F(x) \ E−

τ (x)) ∩ E−
τ (x) = ∅ and E0+

G (x) ∩ E−
τ (x) = ∅;

r EG(x) ∩ I(x) = ∅ for a similar reason as in the previous case (switch F and G). ✷

As a consequence of this lemma, the system (2.13) has |EF (x)|+ |EG(x)| = n− |I(x)| equalities

and 2|I(x)| inequalities.
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By taking a value of τ close to zero, the number of inequalities in (2.13) should be small and

the computation of the direction should be inexpensive. Our proof of global convergence (theo-

rems 3.6, 3.7 and 3.8) requires to have τ > 0, however. Then, the set E−
τ (x) is stable with respect to

(or unchanged by) a small perturbation of x, which makes it adapted to floating point calculation.

By setting τ = 0, at the left bound of the interval [0,∞], one has E−
0 (x) = E−(x), F(x)\E−

0 (x) =
F(x), and G(x) \ E−

0 (x) = G(x), so that the system (2.13) becomes







Fi(x) + F ′
i (x)d = 0 if i ∈ F(x) ∪ E0+

F (x)
Gi(x) +G′

i(x)d = 0 if i ∈ G(x) ∪ E0+
G (x)

Fi(x) + F ′
i (x)d > 0 if i ∈ E−(x)

Gi(x) +G′
i(x)d > 0 if i ∈ E−(x).

(2.15)

This is the system (2.11) defining the plain PNM direction.

By setting τ = ∞, at the right bound of the interval [0,∞], one has F(x)\E−
∞(x) = {i : Fi(x) <

Gi(x), Gi(x) > 0}, G(x) \ E−
∞(x) = {i : Gi(x) < Fi(x), Fi(x) > 0}, so that the system (2.13)

becomes 





Fi(x) + F ′
i (x)d = 0 if [Fi(x) < Gi(x) and Gi(x) > 0] or i ∈ E0+

F (x)
Gi(x) +G′

i(x)d = 0 if [Gi(x) < Fi(x) and Fi(x) > 0] or i ∈ E0+
G (x)

Fi(x) + F ′
i (x)d > 0 if Fi(x) < 0 and Gi(x) < 0

Gi(x) +G′
i(x)d > 0 if Fi(x) < 0 and Gi(x) < 0.

(2.16)

This system can be viewed as a relaxation of the following mixed LCP







Fi(x) + F ′
i (x)d = 0, if [Fi(x) < Gi(x) and Gi(x) > 0] or i ∈ E0+

F (x)
Gi(x) +G′

i(x)d = 0, if [Gi(x) < Fi(x) and Fi(x) > 0] or i ∈ E0+
G (x)

0 6 (F (x) + F ′(x)d)E−

∞
(x) ⊥ (G(x) +G′(x)d)E−

∞
(x) > 0,

which has an orthogonality condition that is not present in (2.16). This last system has some simi-

larities with the system (1.12), obtained in [83] using other considerations.

2.3.2 Descent property

The computation of a secure PNM direction satisfying (2.13), can be more time consuming than

solving the linear system (2.1) defining the plain Newton-min direction. This is due to the presence

of inequalities in the system (2.13). It is therefore tempting to see whether it is possible to design a

criterion allowing an algorithm to take as often as possible the plain NM direction. This is the idea

supporting the hybrid algorithm defined in section 2.4 (algorithm 2.11) and the first steps towards

that algorithm are done in the present section: we focus on the design of such a criterion and on its

validation.

Around a solution, the plain NM direction is known to be appropriate because it yields fast

convergence [69,71], while this might not be the case far from a solution because it may fail to be a

descent direction of the least-square merit function θ defined in (1.4); see counter-example 2.3. This

observation speaks for a criterion based on the directional derivative of θ. Taking some safeguard,

there is a temptation to accept the plain NM direction d when it satisfies the inequality

θ′(x; d) 6 −2(1− η) θ(x) (2.17)

where η is some constant in [0,1). This inequality is natural since it is satisfied with η = 0 when d

is the Newton direction on a smooth function H and θ is the map x 7→ 1
2‖H(x)‖2. We have not

been able to prove a global convergence result in the style of theorem 3.8 below with such a simple

criterion, so that we design below a more robust one.

For an arbitrary direction d ∈ R
n, proposition 2.6 below will show that

θ′(x; d) 6 −
∑

i∈[1 :n]

(1− ρi(x, d))Hi(x)
2, (2.18)
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provided the ρi(x, d)’s are the unsigned values defined by formula (2.20) below (note that these

values depend on τ through the index sets EF (x), EG(x), and I(x)). We shall see in corollary 2.7

that ρi(x, d) 6 0 for the secure PNM direction (2.13), so that the inequality (2.17) with η = 0
follows from (2.18) for that direction. As a result, the secure PNM direction is a descent direction

of θ at x (corollary 2.7).

The criterion for accepting an arbitrary direction d in the linesearch will be that the right-hand

side of (2.18) is less than the right-hand side of (2.17), namely

−
∑

i∈[1 :n]

(1− ρi(x, d))Hi(x)
2
6 −2(1− η) θ(x), (2.19a)

where η is some constant in [0,1). From the expression (1.4) of θ, we see that this criterion simplifies

into
1

2

∑

i∈[1 :n]

ρi(x, d)Hi(x)
2
6 η θ(x), (2.19b)

where, again, the ρi(x, d)’s are the unsigned values defined by formula (2.20) below. The acceptation

criterion (2.19) is more demanding than (2.17) since, thanks to (2.18), it implies (2.17). We see that

the contributions of the terms in the sum in the right-hand side of (2.18) can be compensated by each

other: the negativity of the directional derivative θ′(x; d) can be obtained by some negative terms

in this sum, despite the positivity of other terms. This flexibility will allow the hybrid algorithm of

section 2.4 to accept very often the plain NM direction (as observed in our experiments [49]). The

important point is that the criterion (2.19) happens to be sufficient to get the global convergence of

theorem 3.8, because it is the left-hand side of the inequality (2.19a) that appears in its proof (see

the one of theorem 3.6).

In the rest of this section, we focus on the proof of the inequality (2.18) and on its ability to

detect descent directions. First, let us define the quantities ρi(x, d) appearing in the right-hand

side of (2.18). Let x ∈ R
n be an arbitrary point and d ∈ R

n be an arbitrary direction. We define

ρi(x, d) by

ρi(x, d) :=







Fi(x)+F ′

i
(x)d

Fi(x)
if i ∈ EF (x) and Fi(x) 6= 0

0 if i ∈ EF (x) and Fi(x) = 0
Gi(x)+G′

i
(x)d

Gi(x)
if i ∈ EG(x) and Gi(x) 6= 0

0 if i ∈ EG(x) and Gi(x) = 0

max
(
Fi(x)+F ′

i
(x)d

Fi(x)
,
Gi(x)+G′

i
(x)d

Gi(x)

)

if i ∈ I(x),

(2.20)

where the partition (EF (x),EG(x), I(x)) of [1 :n] has been defined in (2.14) (hence, the five groups

of indices in (2.20) also form a partition of [1 :n]). The zero value given to ρi(x, d) when Fi(x) = 0
or Gi(x) = 0 allows us to simplify the statement of corollary 2.7 below but, as we shall see, an

arbitrary value could have been given instead, since this one does not occur in the calculations that

follow. Note that the ρi(x, d)’s depend on τ through the index sets EF (x), EG(x), and I(x).
Let us stress the fact that the ρi(x, d)’s given by (2.20) are not necessarily less than one and

such a restriction on d is not imposed in the next proposition. Hence, the formula (2.18) does not

give an upper bound of θ′(x; d) as a sum of nonpositive terms and does not imply the negativity of

that directional derivative. This is quite normal, since d is arbitrary in this definition.

Proposition 2.6 (overestimation of θ′(x; d)) Let x ∈ R
n, d ∈ R

n, H be the function defined

by (1.3b), and the ρi(x, d)’s be defined by (2.20). Then (2.18) holds.

Proof Let us first show that

∀ i ∈ F(x) : Fi(x)F
′
i (x)d 6 −(1−ρi)Fi(x)

2, (2.21a)

∀ i ∈ G(x) : Gi(x)G
′
i(x)d 6 −(1−ρi)Gi(x)

2, (2.21b)
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where we set ρi := ρi(x, d) to alleviate notation. Consider first (2.21a). Observe that i ∈ F(x) if

and only if (i ∈ F(x) \ E−
τ (x) and Fi(x) 6= 0) or (i ∈ F(x) and Fi(x) = 0) or (i ∈ F(x) ∩ E−

τ (x)).

r If i ∈ F(x) \E−
τ (x) ⊆ EF (x) and Fi(x) 6= 0, (2.20)1 gives F ′

i (x)d = −(1−ρi)Fi(x), hence (2.21a)

with equality follows by multiplying both sides of this identity by Fi(x).
r If i ∈ F(x) and Fi(x) = 0, (2.21a) is clearly satisfied with equality.
r If i ∈ F(x) ∩ E−

τ (x) ⊆ I(x), (2.20)5 gives −F ′
i (x)d 6 (1−ρi)Fi(x), hence (2.21a) follows by

multiplying both sides of this inequality by −Fi(x) > 0.

To get (2.21b), use the same arguments, with G instead of F and with (2.20)3 instead of (2.20)1.

Now using (2.6), (2.21), and Fi(x) = Gi(x) for i ∈ E(x), we get

θ′(x; d) 6 −
∑

i∈F(x)

(1− ρi)Fi(x)
2 −

∑

i∈G(x)

(1− ρi)Gi(x)
2 −

∑

i∈E(x)

(1− ρi)Fi(x)
2

+
∑

i∈E(x)

Fi(x)min
(
(1− ρi)Fi(x) + F ′

i (x)d, (1− ρi)Gi(x) +G′
i(x)d

)
.

Therefore, to get (2.18), it suffices to show that the last term in the right-hand side of the previous

inequality is nonpositive. For this, we consider the partition (E0(x),E+(x),E−(x)) of E(x).

r If i ∈ E0(x), then Fi(x) = Gi(x) = 0 and the corresponding term vanishes.
r If i ∈ E+(x) = (E0+

F (x) ∪ E0+
G (x)) \ E0(x) ⊆ EF (x) ∪ EG(x), then one of the arguments of

the minimum vanish by the definition of ρi in (2.20)1 and (2.20)3, so that the minimum if

nonpositive. Since Fi(x) > 0, the term of the sum corresponding to the considered i ∈ E+(x) is

also nonpositive.
r If i ∈ E−(x) = E−

0 (x) ⊆ E−
τ (x) = I(x), then, by (2.20)5 and Fi(x) = Gi(x) < 0, the minimimum

vanishes. ✷

Corollary 2.7 (descent secure PNM direction) Suppose that d is a secure PNM direction,

hence satisfying (2.13) for some τ ∈ [0,∞]. Then, the ρi(x, d)’s defined by (2.20) are nonpositive

and, consequently, (2.17) and (2.19) hold with η = 0. In particular, if θ(x) 6= 0, d is a descent

direction of θ at x.

Proof Suppose that d satisfies (2.13) at x ∈ R
n, for some τ ∈ [0,∞]. For i ∈ EF (x), (2.13)1 shows

that Fi(x) + F ′
i (x)d = 0, so that ρi(x, d) = 0 by (2.20)1 and (2.20)2. Similarly, ρi(x, d) = 0 for

i ∈ EG(x). For i ∈ I(x), (2.13)3 and (2.13)4 show that ρi(x, d) 6 0 by (2.20)5. We have shown that

the ρi(x, d)’s defined by (2.20) are nonpositive.

Now, the inequality θ′(x; d) 6 −2 θ(x), which is (2.17) with η = 0, follows immediately from

(2.18), which holds by proposition 2.6, since the terms with ρi(x, d) in factor in the right-hand side

are nonpositive and can be discarded. For the same reason, (2.19) holds with η = 0.

Finally, if θ(x) 6= 0, the inequality θ′(x; d) 6 −2 θ(x) yields θ′(x; d) < 0, showing that d is a

descent direction of θ at x. ✷

As another illustration of the usefulness of proposition 2.6, consider an inexact secure PNM

direction d, which, by definition, verifies, for some η > 0, the following inequalities:

Fi(x) + F ′
i (x)d 6 ηFi(x), ∀ i ∈ F0+(x) ∪ E0+

F (x),
ηFi(x) 6 Fi(x) + F ′

i (x)d, ∀ i ∈ F−(x) ∪ E−
τ (x),

Gi(x) +G′
i(x)d 6 ηGi(x), ∀ i ∈ G0+(x) ∪ E0+

G (x),

ηGi(x) 6 Gi(x) +G′
i(x)d, ∀ i ∈ G−(x) ∪ E−

τ (x),

(2.22)
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where the index sets F−(x), F0+(x), G−(x), and G0+(x) are defined by

F−(x) := {i ∈ F(x) : Fi(x) < 0}, F0+(x) := {i ∈ F(x) : Fi(x) > 0}, (2.23a)

G−(x) := {i ∈ G(x) : Gi(x) < 0}, G0+(x) := {i ∈ G(x) : Gi(x) > 0}. (2.23b)

The system (2.22) brings much flexibility regarding the realization of the equations in the previous

systems (2.1), (2.11) and (2.13). The following result can be shown for the direction (2.22). See [38]

for a proof.

Corollary 2.8 (descent inexact secure PNM direction) Suppose that d is an inexact secure

PNM direction, hence satisfying (2.22) for some τ ∈ [0,∞] and η > 0. Then, the ρi(x, d)’s defined

by (2.20) do not exceed η and, consequently, (2.17) and (2.19) hold with the given η. In particular,

if θ(x) 6= 0 and η ∈ [0,1), d is a descent direction of θ at x.

2.4 The hybrid Newton-min algorithm

The directions presented in section 2.3 give rise to several algorithms that follow the same principles.

These are gathered in the following generic algorithm. It is the global convergence of this generic

algorithm that will be analyzed in section 3.2, and more particularly in theorem 3.6, in which an

additional assumption is made on the computed directions (their boundedness). In this algorithm,

the term “constant” means “independent of the iteration”.

Algorithm 2.9 (generic NM algorithm) Let x be the current iterate. Let η ∈ [0,1) be

the constant appearing in the acceptation criterion (2.19), let τ ∈ (0,∞] be the constant

kink tolerance used in the definition of the index sets EF (x), EG(x), and I(x) by (2.14), and

let ω ∈ (0,1) and β ∈ (0,1) be the two constants used in the linesearch of step 4 below. The

next iterate x+ ∈ R
n is computed as follows.

1. Stopping criterion. If θ(x) = 0, stop (then, x is a solution to (1.1)).

2. Index sets. Choose some partition (E0+
F (x),E0+

G (x)) of E0+(x) and compute the index

sets EF (x), EG(x), and I(x) defined by (2.14).

3. Direction. Compute a direction d ∈ R
n satisfying (2.19) for the ρi(x, d)’s defined in

(2.20),

4. Stepsize. Set α := βi, where i is the smallest nonnegative integer such that

θ(x+ αd) 6 (1−2ωα(1−η)) θ(x). (2.24)

5. New iterate. x+ := x+ αd.

The well-posedness of this algorithm is discussed below, after having presented two of its instances,

which only differ by their way of computing the direction d in step 3.

A first instance of the generic NM algorithm is the one that computes the direction d as the

minimum norm solution to (2.13).

Algorithm 2.10 (PNM algorithm) It is the instance of algorithm 2.9, in which the di-

rection d in step 3 is computed as a solution to the following problem

min {|||d||| : d satisfies (2.13)}, (2.25)

where ||| · ||| is an arbitrary norm.
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The norm ||| · ||| in (2.25) may be arbitrary with regard to the convergence of the algorithm; if the

Euclidean norm is used, (2.25) is a standard strictly convex quadratic optimization problem (with

the squared norm), which has a unique solution and can be solved in polynomial time. Since the

solution d to (2.25) satisfies (2.13), it also satisfies (2.19) with η = 0 (corollary 2.7), which shows

that algorithm 2.10 is indeed an instance of algorithm 2.9.

As already discussed at the beginning of section 2.3.2, the hybrid Newton-min (HNM) algorithm

presented below aims at reducing the cost of the computation of a descent direction of algorithm 2.10

by accepting the plain NM direction (2.1) as soon as it satisfies the criterion (2.19) ; if this criterion is

not satisfied, a least-norm secure PNM direction is computed by (2.25). As we shall see in section 3.2,

in addition to minimizing the cost of the iteration, this approach also ensures global convergence.

Algorithm 2.11 (HNM algorithm) It is the instance of algorithm 2.9, in which the

direction d in step 3 is computed as follows.

3.1. For some (F̃(x), G̃(x)) ∈ P([1 :n]) that satisfies F̃(x) ⊇ F(x) and G̃(x) ⊇ G(x),
computes a plain NM direction d ∈ R

n as a solution to (2.1),

3.2. If (2.19) does not hold with that d, recompute the direction d as a solution to (2.25).

For the same reason as for algorithm 2.10, the direction d computed in algorithm 2.11 satisfies (2.19)

for the given η, which shows that algorithm 2.11 is indeed an instance of algorithm 2.9.

The acceptation criterion (2.19) used in point 3.2 of the HNM algorithm depends on the kink

tolerance τ and on the partition (E0+
F (x),E0+

G (x)) of E0+(x) chosen to define EF (x) and EG(x),
which intervene in the definition (2.20) of the ρi’s. It is natural to make the choice of this partition

in accordance with the partition (F̃(x), G̃(x)) of [1 :n] made in point 3.1 of the HNM algorithm,

that is E0+
F (x) ⊆ F̃(x) and E0+

G (x) ⊆ G̃(x), which implies that EF (x) ⊆ F̃(x) and EG(x) ⊆ G̃(x).
Then, like at the beginning of the proof of corollary 2.7, ρi(x, d) = 0 for i ∈ EF (x) ∪EG(x) for the

plain NM direction d, which is satisfactory for the validity of the acceptation criterion. Now, since

I(x) shrinks when τ > 0 decreases, the acceptation criterion has more chance to be satisfied when

τ > 0 decreases.

The algorithms 2.9, 2.10, and 2.11 are rather standard in their structure. Only the computation of

the direction in step 3, whose conception has been progressively introduced above, makes exception.

Let us give some more comments.

1. There are implicit assumptions in step 3, which will have to be clarified in the results on these

algorithms, namely

r algorithm 2.11 assumes that (2.1) has a solution at each iterations, which may not be the case

if the Jacobian of this linear system is singular;
r similarly, algorithms 2.10 and 2.11 assume that problem (2.25) has a solution at each iteration

(or at some iteration for algorithms 2.11), which may not be the case if the affine system (2.13)

is infeasible; a rather weak condition guaranteeing the feasibility of (2.13), for x near a limit

point x̄, is introduced and discussed in section 3.1.

2. If not empty, the polyhedron defined by (2.13) may be unbounded, which raises some difficulty

in the convergence proof of section 3.2. For this reason, in (2.25), we take the option of tak-

ing a minimum norm direction in that polyhedron, but any other technique guaranteeing the

boundedness of the directions computed at a converging sequence of x’s would be appropriate.

3. The directions computed in step 3 of algorithm 2.9, if any, are necessarily descent directions

of θ at x. This is because they satisfy (2.19) with η < 1, hence (2.17) with the same η < 1,
implying that θ′(x; d) < 0 when x is not a solution to the complementarity problem (1.1) (this

is guaranteed by step 1). As a result, in that case, the linesearch in step 4 is able to compute a

stepsize α > 0 in a finite number of trials [17,53].

4. Condition (2.24) derives from the standard Armijo inequality [6,36,17]

θ(x+ αd) 6 θ(x) + ωαθ′(x; d),
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in which the negative upper bound −2(1− η) θ(x) of θ′(x; d) given by (2.17) has replaced the

directional derivative.

3 Algorithm analysis

This section starts with giving a regularity condition at a point x̄ ∈ R
n that ensures several properties

(section 3.1). First, it implies that the system (2.13), defining the secure PNM direction d, has a

solution when x is near x̄ (proposition 3.2). Next, it also certifies that the algorithm can choose a

solution to (2.13) that has a continuity property (proposition 3.4). Finally, the continuity property

guarantees that the chosen directions are bounded for x near x̄ (corollary 3.5). This boundedness

property is useful for establishing global convergence results (section 3.2).

3.1 Regularity

3.1.1 Regularity at a point

Let x̄ ∈ R
n be a point that is not necessarily a solution to the complementarity problem (1.1), a

choice that is important in the proof of the global convergence result (theorem 3.6), since there the

accumulation points of the generated sequence have a priori no particular properties. Our vehicle

for highlighting conditions ensuring the solvability of the affine system (2.13), when x is near x̄, is

the Mangasarian-Fromovitz constraint qualification (MFCQ) [77], which reads
∑

i∈EF (x) αi∇Fi(x) +
∑

i∈EG(x) βi∇Gi(x) +
∑

i∈I(x)

[

αi∇Fi(x) + βi∇Gi(x)
]

= 0

and (αI(x), βI(x)) > 0 imply that (α, β) = 0.
(3.1a)

Another equivalent version reads

For all (a, a′, b, b′) ∈ R
|EF (x)| × R

|EG(x)| × R
|I(x)| × R

|I(x)|, there is a direction d ∈ R
n

such that F ′
EF (x)

(x)d = a, G′
EG(x)

(x)d = a′, F ′
I(x)

(x)d > b and G′
I(x)

(x)d > b′. (3.1b)

Clearly, the system (2.13) has a solution d when (3.1b) holds at x (and this MFCQ condition is almost

necessary, since the independent terms in (2.13), deduced from F (x) and G(x), can be arbitrary).

It is not sufficient to require the satisfaction of the MFCQ condition (3.1) at x = x̄ to get it

at x near x̄, like above. The reason comes from the change in the index sets EF (x), EG(x) and I(x)
with x. Suppose indeed that only (3.1a) holds at x = x̄. It is well known that the implication in

(3.1a) is insensitive to small perturbations in the gradients ∇Fi(x) and ∇Gi(x) in its premise (see

[53; exercise 4.16] for instance). Therefore, if we assume the continuity of the derivatives F ′ and G′

at x̄ and if x is near x̄, it follows from (3.1a) at x = x̄ that
∑

i∈EF (x̄) αi∇Fi(x) +
∑

i∈EG(x̄) βi∇Gi(x) +
∑

i∈I(x̄)

[
αi∇Fi(x) + βi∇Gi(x)

]
= 0

and (αI(x̄), βI(x̄)) > 0 imply that (α, β) = 0,

where the gradients are evaluated at x, while the index sets are evaluated in x̄. Here, however, none

of these sets EF (x̄), EG(x̄) and I(x̄) are guaranteed to be invariant when x̄ is slightly modified.

Therefore, (3.1) at x = x̄ may not imply that (3.1) holds at x near x̄. For this reason, we adopt a

stronger regularity condition.

The set of partitions (EF , EG, I) of [1 :n], such that (EF , EG, I) = (EF (x), EG(x), I(x)) for

some x in a neighborhood V of x̄ and some partition (E0+
F (x), E0+

G (x)) of E0+(x), decreases when V

gets smaller. Since the number of partition of [1 :n] is finite, one can find a neighborhood Vpnm of x̄

for which these partitions (EF , EG, I) are minimal. Then, denote by

Ppnm := {(EF (x), EG(x), I(x)) : x ∈ Vpnm, (E0+
F (x), E0+

G (x)) is a partition of E0+(x)}

this smallest set of partitions.
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Definition 3.1 (PNM-regularity) Let be given τ ∈ (0,∞]. A point x̄ ∈ R
n is said to be PNM-

regular (we also say that PNM-regularity holds at x̄ ∈ R
n) if, for all x ∈ Vpnm, F and G are

differentiable at x and for all (EF , EG, I) ∈ Ppnm, one has

∑

i∈EF
αi∇Fi(x̄) +

∑

i∈EG
βi∇Gi(x̄) +

∑

i∈I

[
αi∇Fi(x̄) + βi∇Gi(x̄)

]
= 0

and (αI , βI ) > 0 imply that (α, β) = 0,
(3.2a)

or, equivalently,

for all (a, a′, b, b′) ∈ R
|EF |×R

|EG|×R
|I|×R

|I|, there is a direction d ∈ R
n such

that F ′
EF

(x̄)d = a, G′
EG

(x̄)d = a′, F ′
I(x̄)d > b and G′

I (x̄)d > b′.
(3.2b)

✷

Proposition 3.2 ((3.1) near a PNM-regular point) Suppose that the PNM-regularity condition

3.1 holds at x̄. Then, there is a neighborhood V ′
pnm ⊆ Vpnm of x̄ such that for all x ∈ V ′

pnm, (3.1)

holds at x.

Proof By the PNM-regularity definition 3.1, for all (EF , EG, I) ∈ Ppnm, (3.2b) holds. This implies

that there a neighborhood V of x̄ such that, for all x ∈ V :

for all (a, a′, b, b′) ∈ R
|EF |×R

|EG|×R
|I|×R

|I|, there is a direction d ∈ R
n such

that F ′
EF

(x)d = a, G′
EG

(x)d = a′, F ′
I(x)d > b and G′

I(x)d > b′.
(3.3)

Since Ppnm is finite, there is a neighborhood V ′
pnm ⊆ Vpnm of x̄ such that for all x ∈ V ′

pnm and all

(EF , EG, I) ∈ Ppnm, (3.3) holds. By definition of Ppnm, for any x ∈ Vpnm (hence x ∈ V ′
pnm) and

any partition (E0+
F (x),E0+

G (x)) of E0+(x), (EF (x), EG(x), I(x)) ∈ Ppnm. It follows that, for any

x ∈ V ′
pnm, one has

for all (a, a′, b, b′) ∈ R
|EF (x)| × R

|EG(x)| × R
|I(x)| × R

|I(x)|, there is a direction d ∈ R
n

such that F ′
EF (x)(x)d = a, G′

EG(x)(x)d = a′, F ′
I(x)(x)d > b and G′

I(x)(x)d > b′.

This is (3.1) at x. ✷

We conclude this section by giving a counter-example showing that the PNM-regularity of defi-

nition 3.1 does not imply the NM-regularity of definition 2.1. Now, with the pair of inequalities that

must be satisfied for the indices in I(x) in (2.13), a priori, the NM-regularity may not imply the

PNM-regularity. Therefore, the two concepts of regularity cannot really be compared.

Counter-examples 3.3 (PNM-regularity 6⇒ NM-regularity) Consider the LCP (1.2), in which

n = 2, M =

(
0 1
1 0

)

and q =

(
1
−1

)

.

Let us make the correspondence between the LCP (1.2) and the general complementarity problem

(1.1) by defining F and G at x by F (x) = Mx+ q and G(x) = x. Then, at x̄ = (−1,−2), one has

F(x̄) = G(x̄) = ∅ and E(x̄) = {1, 2}. Taking (F̃ , G̃) = ({2}, {1}) as partition of {1, 2} satisfying

F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄), the Jacobian of the system (2.1) reads

(
F ′
2(x̄)

G′
1(x̄)

)

=

(
1 0
1 0

)

.

This one is singular, showing the x̄ is not NM-regular in the sense of definition 2.1 (and in the present

case, the system (2.1) has no solution). However, the PNM-regularity in the sense of definition 3.1

holds at x̄, since, for x near x̄, EF (x) = EG(x) = ∅ and I(x) = {1, 2}, so that

Ppnm = {(∅,∅, {1, 2})}.
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The premise in (3.2a) reads

α1

(
0
1

)

+ β1

(
1
0

)

+ α2

(
1
0

)

+ β2

(
0
1

)

= 0 and (α, β) > 0.

This one clearly implies that α = β = 0, showing the PNM-regularity holds at x̄. As desired and

proved in proposition 3.4(2) below, for x near x̄, the system (2.13), namely
(
x2 + 1
x1 − 1

)

+

(
0 1
1 0

)

d > 0 and

(
x1

x2

)

+

(
1 0
0 1

)

d > 0

has a solution, since it consists in the system of inequalities d1 > max(1 − x1,−x1) = 1 − x1 and

d2 > max(−1− x2,−x2) = −x2, which presents no compatibility problem. ✷

3.1.2 Continuity of selected directions

We now consider the question of whether a solution d to (2.13) at x can be chosen in such a way that

these directions are bounded when x is near a given arbitrary point x̄. This will be a consequence of

the continuity property stated in the next proposition, which is guaranteed when the PNM-regularity

condition 3.1 holds at x̄. The boundedness property is useful for establishing the global convergence

result of theorems 3.7 and 3.8 below.

We say that a function ϕ : Rn → R
m is locally radially Lipschitz continuous at x̄ ∈ R

n for the

Euclidean norm ‖ · ‖ if there is a neighborhood V of x̄ in R
n and a constant L > 0, such that for all

x ∈ V , ‖ϕ(x)− ϕ(x̄)‖ 6 L‖x− x̄‖.

Proposition 3.4 (continuity of the selected directions) Suppose that F and G are continu-

ously differentiable at x̄ ∈ R
n, that τ ∈ (0,∞] and that the PNM-regularity condition 3.1 holds at x̄.

Then, the following properties hold.

1) For any (EF , EF , I) ∈ Ppnm, the system

FEF
(x̄) + F ′

EF
(x̄)d = 0, GEG

(x̄) +G′
EG

(x̄)d = 0,

FI(x̄) + F ′
I(x̄)d > 0, GI(x̄) +G′

I(x̄)d > 0
(3.4)

has a solution d̄. Denote by D̄ the finite set of these selected d̄’s, each of them being associated

with one (EF , EF , I) ∈ Ppnm.

2) For any δ > 0, there is a neighborhood V of x̄ such that, for any x ∈ V and any partition

(E0+
F (x), E0+

G (x)) of E0+(x), the system (2.13) has a solution d(x) that satisfies

min
d̄∈D̄

‖d(x)− d̄‖ < δ.

3) If, in addition, F ′ and G′ are locally radially Lipschitz continuous at x̄, then, there is a neigh-

borhood V ′ of x̄ and a constant L > 0 such that, for any x ∈ V ′ and any partition (E0+
F (x),

E0+
G (x)) of E0+(x), the system (2.13) has a solution d(x) that satisfies

min
d̄∈D̄

‖d(x)− d̄‖ 6 L‖x − x̄‖.

Proof 1) Let (EF , EF , I) ∈ Ppnm be one of the partitions of [1 :n] considered in the PNM-regularity

condition 3.1. By (3.2b), the system (3.4) has a solution d̄. Since Ppnm is finite, the set D̄ of these

selected d̄’s is finite.

2) Let V ′
pnm be the neighborhood of x̄ given by proposition 3.2, which assumes the PNM-regularity

condition 3.1 at x̄. This proposition tells us that, for any x ∈ V ′
pnm and any partition (E0+

F (x),

E0+
G (x)) of E0+(x), the MFCQ condition (3.1b) holds at x, so that the convex polyhedron

P(x) := {d ∈ R
n : FEF (x)(x) + F ′

EF (x)(x)d = 0, GEG(x)(x) +G′
EG(x)(x)d = 0,

FI(x)(x) + F ′
I(x)(x)d > 0, GI(x)(x) +G′

I(x)(x)d > 0},
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is nonempty (recall that the partition (EF (x), EG(x), I(x)) of [1 :n] is given by (2.14)).

For each x ∈ V ′
pnm and each partition (E0+

F (x), E0+
G (x)) of E0+(x), one determines an ele-

ment d(x) of P(x) as follows. Let d̄(x) be the direction of D̄ associated with (EF , EF , I) =
(EF (x), EF (x), I(x)) ∈ Ppnm. Then, define d(x) as the Euclidean projection of d̄(x) on P(x), which

is written

d(x) := PP(x)(d̄(x)).

By Hoffman’s error bound for polyhedron [59; 1952], one has the following upper bound on the

distance from d̄(x) to P(x):

‖d(x)− d̄(x)‖ 6 h(x)

∥
∥
∥
∥
∥
∥
∥
∥







FEF
(x) + F ′

EF
(x)d̄(x)

GEG
(x) +G′

EG
(x)d̄(x)

[FI(x) + F ′
I(x)d̄(x)]

−

[GI(x) +G′
I(x)d̄(x)]

−







∥
∥
∥
∥
∥
∥
∥
∥

, (3.5a)

where ‖·‖ denotes the Euclidean norm (for example), the Hoffman factor h(x) only depends on F ′(x)
and G′(x), t− := max(0,−t) for t ∈ R, and v− is defined componentwise when v is a vector. Now,

by (3.4) and the definition of d̄(x), one has






FEF
(x̄) + F ′

EF
(x̄)d̄(x)

GEG
(x̄) +G′

EG
(x̄)d̄(x)

[FI(x̄) + F ′
I(x̄)d̄(x)]

−

[GI(x̄) +G′
I(x̄)d̄(x)]

−







= 0, (3.5b)

so that (3.5a) becomes

‖d(x)− d̄(x)‖ 6 h(x)

∥
∥
∥
∥
∥
∥
∥
∥







FEF
(x) + F ′

EF
(x)d̄(x)− [FEF

(x̄) + F ′
EF

(x̄)d̄(x)]
GEG

(x) +G′
EG

(x)d̄(x)− [GEG
(x̄) +G′

EG
(x̄)d̄(x)]

[FI(x) + F ′
I(x)d̄(x)]

− − [FI(x̄) + F ′
I(x̄)d̄(x)]

−

[GI(x) +G′
I(x)d̄(x)]

− − [GI(x̄) +G′
I (x̄)d̄(x)]

−







∥
∥
∥
∥
∥
∥
∥
∥

. (3.5c)

Suppose that h(x) is bounded for x near x̄ (this will be proven below). Then, using the 1-Lipschitz

continuity of t− (which means that |t−2 − t−1 | 6 |t2 − t1| for all t1 and t2 ∈ R), the continuity of F ,

G, F ′ and G′ at x̄ and the fact that d̄(x) is bounded (it belongs to the finite set D̄), we see that

for any δ > 0 and for x sufficiently close to x̄, one can find d(x) ∈ P(x) and d̄(x) ∈ D̄ such that

‖d(x)− d̄(x)‖ < δ. The inequality in conclusion of point 2 follows.

To prove the boundedness for x near x̄ of the Hoffman factor h(x), appearing in (3.5a), we trust

the perturbation property in [74; theorem 5.5]. This property claims that if the MFCQ holds for a

system “Ad = a and Bd 6 b in d” (A and B are matrices and a and b are vectors of appropriate

dimensions), then the Hoffman constant is bounded for any convex polyhedron {d ∈ R
n : Ãd = ã,

B̃d 6 b̃} with arbitrary (ã, b̃) and with (Ã, B̃) close enough to (A,B) (the reciprocal is also true).

The Hoffman factor h(x) was associated in (3.5a) with the convex polyhedron P(x) or, with

(EF , EF , I) := (EF (x), EF (x), I(x)),

{d ∈ R
n : FEF

(x) + F ′
EF

(x)d = 0, GEG
(x) +G′

EG
(x)d = 0,

FI(x) + F ′
I(x)d > 0, GI(x) +G′

I(x)d > 0}.

With the fixed partition (EF , EF , I) of [1 :n] in Ppnm, this one can be viewed as a perturbation of

the convex polyhedron

{d ∈ R
n : FEF

(x̄) + F ′
EF

(x̄)d = 0, GEG
(x̄) +G′

EG
(x̄)d = 0,

FI(x̄) + F ′
I(x̄)d > 0, GI(x̄) +G′

I(x̄)d > 0}.

By (3.2b), MFCQ holds for this polyhedron. Therefore, by [74; theorem 5.5], the Hoffman factor is

constant for x near x̄ and the chosen partition (EF , EF , I). Now, Ppnm is finite, so that the Hoffman

factor h(x) appearing in (3.5a) is bounded for x near x̄.
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3) The reasoning is identical to the one presented in point 2. But now, one can use the local radial

Lipschitz property of F , G, F ′ and G′ at x̄ to deduce from (3.5c) the existence of a neighborhood

V ′ ⊆ Vpnm and a constant L > 0, such that, for x ∈ V ′, one can find d(x) ∈ P(x) and d̄(x) ∈ D̄

such that ‖d(x)− d̄(x)‖ 6 L ‖x− x̄‖. The inequality in point 3 follows. ✷

The next property will be useful for establishing the global convergence result of theorems 3.7

and 3.8.

Corollary 3.5 (local boundedness of the directions) Suppose that F and G are continuously

differentiable at x̄ ∈ R
n, that τ ∈ (0,∞] and that the PNM-regularity condition 3.1 holds at x̄.

Then, there is a constant C, such that, for x near x̄, the system (2.13) has a solution d that satisfies

‖d‖ 6 C.

Proof It is a consequence of proposition 3.4(2), since D̄ is bounded by its finite cardinality. ✷

3.2 Global convergence

The global convergence results of this section accept directions d such that the right-hand side of

(2.18) is sufficiently negative in the sense of (2.19a), an inequality that we reproduce here for the

reader’s convenience:

−
∑

i∈[1 :n]

(1− ρi(x, d))Hi(x)
2
6 −2(1− η) θ(x), (3.6)

where ρi(x, d) is defined by (2.20), H is the function defined by (1.3b) and η is a constant (indepen-

dent of k) such that η < 1. By proposition 2.6, this inequality implies that d is a descent direction

of θ at x, since then

θ′(x; d) 6 −2(1− η) θ(x), (3.7)

and the right-hand side is negative when θ(x) 6= 0, that is when x is not a solution to the NCP

(1.1). It would have been less restrictive to impose the satisfaction of (3.7), instead of that of (3.6),

but the technique used in the proof of theorem 3.6 below would have then required to have a reverse

inequality in (2.18) in order to recover (3.6), since it is (3.6) that is required in the adopted proof;

the reverse inequality in (2.18) looks problematic to us. Recall that inequality (3.6) simplifies into

(2.19b).

We start the global convergence analysis with theorem 3.6, which assumes that the generic al-

gorithm 2.9 generates a sequence {xk}, hence is well-posed, and the boundedness of the direction

subsequence {dk}k∈K when the subsequence {xk}k∈K of {xk} converges to some point x̄. Conditions

ensuring the convergence of the algorithms 2.10 and 2.11 will be examined in theorems 3.7 and 3.8,

respectively. The proof of theorem 3.6 contains the main arguments. We have preferred presenting

the convergence result in two stages (theorem 3.6 and theorems 3.7 and 3.8), since the boundedness

assumption may be due to the structure of the problem, making the theorem useful in that circum-

stance. In theorems 3.7 and 3.8, which can also be viewed as corollaries of theorem 3.6, it is the

assumed regularity of the limit point x̄ that ensures the boundedness of {dk}k∈K and therefore the

global convergence of the algorithm. These global convergence results of theorems 3.7 and 3.8 are

rather weak since they assume that the generated sequence has a limit point (this will be certainly

the case when this sequence is bounded) and that the limit point is regular in a certain sense (a

typical assumption of linesearch methods). It may occur, however, that the generated sequence {xk}

has no regular limit points, in which case the theorem provides no information. Nevertheless, it acts

as a filter that the algorithms must pass, which was very useful to us for the design of an acceptation

test (2.19)-(3.6) for the hybrid algorithm 2.11.
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As a last remark on the assumptions, let us stress the fact that claiming that the algorithms

generate a sequence {xk} implicitly assumes that the algorithms are not stuck at an iterate, for

example because the system (2.13) has no solution in the case of the PNM and HNM algorithms 2.10

and 2.11. If this last event will not occur close to a point x̄ satisfying the PNM-regularity 3.1

(corollary 3.5), this is not guaranteed far from such a point. Therefore, the global nature of the

obtained convergence must be put into perspective.

Theorem 3.6 (global convergence of the generic NM algorithm 2.9) Let F and G : Ω → R
n

be differentiable functions defined on an open set Ω of Rn. Suppose that the generic algorithm 2.9

generates a sequence {xk} ⊆ Ω. If x̄ ∈ Ω is an accumulation point of {xk}, at which F ′ and G′ are

continuous, and if the subsequence {dk : xk is near x̄} is bounded, then all the sequence {θ(xk)}k>1

converges to zero and x̄ is a solution to (1.1).

Proof By the Armijo inequality (2.24), the sequence {θ(xk)} decreases; since this sequence is also

bounded below (by zero), it converges. By the Armijo inequality (2.24) again and the fact that η < 1,
it follows that

lim
k→∞

αk θ(xk) = 0. (3.8)

Let us examine two complementary cases.

If lim supk→∞ αk > 0 (or, equivalently, αk 6→ 0), there is a subsequence K′ ⊆ N such that

{αk}k∈K′ is bounded away from zero. Then, (3.8) implies that limk→∞, k∈K′ θ(xk) = 0 and actually

limk→∞ θ(xk) = 0, since the sequence {θ(xk)} decreases. By the continuity of θ, any accumulation

point x̄ of {xk} satisfies θ(x̄) = 0, which means that x̄ solves (1.1). We have shown the conclusions

of the theorem in that case.

We now consider the more difficult case when lim supk→∞ αk = 0 (or, equivalently, αk → 0).
Let us first sketch the proof, which is inspired from that in [57]; see also [83]. Let {xk}k∈K be a

subsequence converging to the accumulation point x̄ (k → ∞ in some infinite subset K of N). With

no loss of generality, one can assume that αk < 1, which implies that the stepsize α̂k := αk/β is

rejected by the Armijo rule (2.24). Of course α̂k → 0. Let

x̂k := xk + α̂kdk

be the corresponding rejected point. Then, θ(x̂k) > θ(xk)− 2ωα̂k(1−η) θ(xk) or

4ωα̂k(1−η) θ(xk) > 2[θ(xk)− θ(x̂k)]. (3.9)

The tactic of the proof consists in writing the right-hand side of this inequality as follows

2[θ(xk)− θ(x̂k)] =
n∑

i=1

[

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k),Gi(x̂k))

2
]

(3.10)

and to find a lower bound of each term of the sum in the right-hand side of the previous identity.

More specifically, we shall show that, since {dk}k∈K is assumed to be bounded, for any i ∈ [1 :n]
and any iterate xk sufficiently close to x̄, the following inequality holds

min(Fi(xk),Gi(xk))
2 −min(Fi(x̂k),Gi(x̂k))

2

> 2(1−ρk,i)α̂k min(Fi(xk),Gi(xk))
2 + o(α̂k), (3.11)

where ρk,i is an abbreviation for ρi(xk, dk) and the term o(α̂k) means that o(α̂k)/α̂k → 0 when

k → ∞ in K. Then, the inequality (3.9), with its right-hand side bounded below thanks to the

identity (3.10) and the inequalities (3.11), yields

4ωα̂k(1−η) θ(xk)

> 2α̂k

∑

i∈[1 :n]

(1−ρk,i)min(Fi(xk),Gi(xk))
2 + o(α̂k) [(3.9), (3.10), (3.11)]

> 4α̂k(1− η) θ(xk) + o(α̂k). [(2.19)]
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After division by 4α̂k(1−η), we get

ω θ(xk) > θ(xk) +
o(α̂k)

α̂k
. (3.12)

Taking the limit when k → ∞ in K shows that ω θ(x̄) > θ(x̄). Since ω ∈ (0, 1) and θ(x̄) > 0, this

implies that θ(x̄) = 0. Therefore, all the sequence {θ(xk)} tends to zero and x̄ solves (1.1). We have

also shown the conclusions of the theorem in that case.

Therefore, to conclude the proof, we only have to show (3.11), for all i ∈ [1 :n] and xk sufficiently

close to x̄.

Since {dk}k∈K is bounded by assumption and αk → 0, it follows that x̂k → x̄ when k → ∞

in K. Now, for i ∈ [1 :n], the differentiability of Fi and the mean value theorem provide

|Fi(x̂k)− Fi(xk)− F ′
i (xk)(x̂k − xk)| 6

(

sup
z∈(xk,x̂k)

‖F ′
i (z)− F ′

i (xk)‖

)

‖x̂k − xk‖,

where (xk, x̂k) is the open segment {(1 − t)xk + tx̂k : t ∈ (0,1)}. A similar estimation holds for

Gi. By the continuity of F ′ at x̄, the factor in parenthesis in the right-hand side tends to zero when

k → ∞ in K. Using x̂k − xk = α̂kdk and the boundedness of {dk}, we get

Fi(x̂k) = Fi(xk) + α̂kF
′
i (xk)dk + o(α̂k),

Gi(x̂k) = Gi(xk) + α̂kG
′
i(xk)dk + o(α̂k).

Below, we shall need to give a lower bound on Fi(xk)
2 − Fi(x̂k)

2 and Gi(xk)
2 − Gi(x̂k)

2. By the

previous estimates, we have

Fi(xk)
2 − Fi(x̂k)

2 = −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k), (3.13a)

Gi(xk)
2 −Gi(x̂k)

2 = −2α̂kGi(xk)G
′
i(xk)dk + o(α̂k). (3.13b)

Let us now examine each term of the sum in (3.10) for the indices i in the following partition

of [1 :n]:
(

F(x̄), G(x̄), E+(x̄), E−(x̄), E0(x̄)
)

.

Note that τ does not intervene in that partition.

1. i ∈ F(x̄).

By the strict inequality Fi(x̄) < Gi(x̄) defining F(x̄) in (1.8), the continuity of F and G at x̄,

and the fact that xk is close to x̄ when k is large in K, we have Fi(xk) < Gi(xk) or i ∈ F(xk)
for large k in K. Let us show that

− Fi(xk)F
′
i (xk)dk > (1−ρk,i)Fi(xk)

2. (3.14)

One of the following three complementary cases must occurs.

r If Fi(xk) = 0, (3.14) is clearly verified with equality.

r If i ∈ F(xk) \ E
−
τ (xk) ⊆ EF (xk) and Fi(xk) 6= 0, (2.20)1 gives F ′

i (xk)dk = −(1−ρk,i)Fi(xk).
Multiplying both sides of this equality by −Fi(xk) yields (3.14) with equality.

r If i ∈ F−(xk) ∩ E−
τ (xk) ⊆ I(xk) (in which case Fi(xk) < 0), (2.20)5 gives F ′

i (xk)dk >

−(1−ρk,i)Fi(xk). Multiplying both sides of this inequality by −Fi(xk) > 0 yields (3.14).
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Next, since x̂k → x̄ when k → ∞ in K and since Fi(x̄) < Gi(x̄) when i ∈ F(x̄), one also has

Fi(x̂k) < Gi(x̂k). Therefore,

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k),Gi(x̂k))

2

= Fi(xk)
2 − Fi(x̂k)

2 [Fi(xk) < Gi(xk) and Fi(x̂k) < Gi(x̂k)]

= −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k) [(3.13a)]

> 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.14)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) < Gi(xk)].

We have obtained the desired inequality (3.11).

2. i ∈ G(x̄).

One can proceed like in case 1, by switching the roles of F and G [38].

3. i ∈ E+(x̄).

In this case, Fi(xk), Gi(xk), Fi(x̂k) and Gi(x̂k) are positive for k large in K, which implies that i

is in one of the sets F+(xk) ∪ E0+
F (xk) or G+(xk) ∪ E0+

G (xk), where

F+(x) := {i ∈ F(x) : Fi(x) > 0} and G+(x) := {i ∈ G(x) : Gi(x) > 0}.

We now consider these sets one after the other.

3.1. i ∈ F+(xk) ∪ E0+
F (xk).

In this case, 0 < Fi(xk) 6 Gi(xk). Because i ∈ [F(xk) \ E
−
τk(xk)] ∪ E0+

F (xk) = EF (xk) and

Fi(xk) 6= 0, (2.20)1 tells us that F ′
i (xk)dk = −(1−ρk,i)Fi(xk) and finally

− Fi(xk)F
′
i (xk)dk = (1−ρk,i)Fi(xk)

2. (3.15)

Therefore, for k large in K:

min(Fi(xk), Gi(xk))
︸ ︷︷ ︸

=Fi(xk)

2 −min(Fi(x̂k), Gi(x̂k))
︸ ︷︷ ︸

06 ·6Fi(x̂k)

2

> Fi(xk)
2 − Fi(x̂k)

2

= −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k) [(3.13a)]

= 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.15)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) 6 Gi(xk)].

We have obtained the desired inequality (3.11).

3.2. i ∈ G+(xk) ∪ E0+
G (xk).

One can proceed like in case 3.1, by switching the roles of F and G [38].

4. i ∈ E−(x̄).

In this case, for k large in K, Fi(xk), Gi(xk), Fi(x̂k) and Gi(x̂k) are negative and |Fi(xk) −
Gi(xk)| < τ , so that i ∈ E−

τ (xk) = I(xk). Then, by (2.20)5,

F ′
i (xk)dk > −(1−ρk,i)Fi(xk), (3.16a)

G′
i(xk)dk > −(1−ρk,i)Gi(xk), (3.16b)

so that

−Fi(xk)F
′
i (xk)dk > (1−ρk,i)Fi(xk)

2, (3.17a)

−Gi(xk)G
′
i(xk)dk > (1−ρk,i)Gi(xk)

2. (3.17b)

Now, one (or both) of the following two cases must occur.
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4.1. Fi(xk) 6 Gi(xk), which are both negative. We divide the analysis of this case into two

complementary subcases.

4.1.1. Fi(x̂k) 6 Gi(x̂k), which are both negative.

For k large in K, the following holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k),Gi(x̂k))

2

= Fi(xk)
2 − Fi(x̂k)

2 [Fi(xk) 6 Gi(xk) and Fi(x̂k) 6 Gi(x̂k)]

= −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k) [(3.13a)]

> 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.17a)]

= 2(1−ρk,i)α̂k min(Fi(xk),Gi(xk))
2 + o(α̂k) [Fi(xk) 6 Gi(xk)].

We have obtained the desired inequality (3.11).

4.1.2. Gi(x̂k) < Fi(x̂k), which are both negative.

Let us show that

2(1−ρk,i)α̂k 6 1, for k large in K. (3.18)

This is certainly the case when ρk,i > 0, since then, 2(1−ρk,i)α̂k 6 2α̂k 6 1 because

α̂k → 0 for k → ∞ in K. When ρk,i < 0, we use (3.16a), which also reads

ρk,i Fi(xk) 6 Fi(xk) + F ′
i (xk)dk.

Hence, for k large enough in K:

0 <
1

2
ρk,i Fi(x̄) 6 ρk,i Fi(xk) 6 Fi(xk) + F ′

i (xk)dk 6 C,

where the constant C > 0 comes for the fact that xk → x̄ for k → ∞ in K, from

the assumed continuity of F ′ at x̄, and from the assumed boundedness of {dk}. This

shows that ρk,i is bounded below, so that (3.18) also holds when ρk,i < 0. Then, the

following holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k),Gi(x̂k))

2

= Fi(xk)
2 −Gi(x̂k)

2 [Fi(xk) 6 Gi(xk) and Gi(x̂k) < Fi(x̂k)]

= Gi(xk)
2 −Gi(x̂k)

2 + Fi(xk)
2 −Gi(xk)

2

= −2α̂kGi(xk)G
′
i(xk)dk + Fi(xk)

2 −Gi(xk)
2 + o(α̂k) [(3.13b)]

> 2(1−ρk,i)α̂kGi(xk)
2 + Fi(xk)

2 −Gi(xk)
2 + o(α̂k) [(3.17b)]

= 2(1−ρk,i)α̂kFi(xk)
2+(1−2(1−ρk,i)α̂k)(Fi(xk)

2−Gi(xk)
2)+o(α̂k)

> 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.18) and Fi(xk)

2
> Gi(xk)

2]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) 6 Gi(xk)].

We have obtained the desired inequality (3.11).

4.2. Gi(xk) 6 Fi(xk), which are both negative. One can proceed like in case 4.1, by switching

the roles of F and G [38].

5. i ∈ E0(x̄).

In this case, we write

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

=
(

min(Fi(xk),Gi(xk))−min(Fi(x̂k), Gi(x̂k))
)

×
(

min(Fi(xk),Gi(xk)) +min(Fi(x̂k), Gi(x̂k))
)

.
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Since x 7→ min(F (x),G(x)) is Lipschitz continuous near x̄, the first factor in the right-hand side

is bounded by a constant times ‖x̂k − xk‖, which is an O(α̂k) by the boundedness of {dk}, while

the second factor in the right-hand side converges to zero (since in this case Fi(x̄) = Gi(x̄) = 0).
Thus the whole term is o(α̂k). This is enough to get (3.11), since the first term in the right-hand

side of (3.11) is also an o(α̂k), so that the left-hand side of (3.11) minus the first term in its

right-hand side is indeed (larger than) an o(α̂k). ✷

Theorem 3.7 (global convergence of the PNM algorithm 2.10) Let F and G : Ω → R
n

be differentiable functions defined on an open set Ω of Rn. Suppose that the PNM algorithm 2.10

generates a sequence {xk} ⊆ Ω. If x̄ ∈ Ω is an accumulation point of {xk} that is PNM-regular in

the sense of definition 3.1 and if F ′ and G′ are continuous at x̄, then all the sequence {θ(xk)}k>1

converges to zero and x̄ is a solution to (1.1).

Proof According to theorem 3.6, we just have to prove that the subsequence {dk : xk is near x̄}

is bounded. Since the directions dk are computed by (2.25), this property is given by corollary 3.5,

which rests on the additional assumption on the PNM-regularity at x̄, in the sense of definition 3.1.

✷

Theorem 3.8 (global convergence of the HNM algorithm 2.11) Let F and G : Ω → R
n

be differentiable functions defined on an open set Ω of Rn. Suppose that the HNM algorithm 2.11

generates a sequence {xk} ⊆ Ω. If x̄ ∈ Ω is an accumulation point of {xk} that is NM and PNM-

regular in the sense of definitions 2.1 and 3.1 and if F ′ and G′ are continuous at x̄, then all the

sequence {θ(xk)}k>1 converges to zero and x̄ is a solution to (1.1).

Proof According to theorem 3.6, we just have to prove that the subsequence {dk : xk is near x̄} is

bounded. Recall that, in the HNM algorithm 2.11, the direction is computed either as the solution

to the linear system (2.1) or as the solution to the optimization problem (2.25).

When dk is the solution to the system (2.1), the boundedness property of dk is given by point 2

of proposition 2.2. When dk is the solution to problem (2.25), the boundedness property of dk is

given by corollary 3.5 (like in the proof of theorem 3.7). ✷

4 Conclusion

This paper presents algorithms for solving the complementarity problem (1.1), based on semismooth-

like iterations on the nonsmooth equation (1.3), reformulating the problem with the minimum func-

tion. In practice, this solution strategy is often more efficient than with other reformulations but

it is difficult to implement up to completeness, because the associated least-square merit function

may not decrease along the semismooth direction. The paper proposes to overcome the difficulty by

slightly modifying this direction in the neighborhood of the negative kinks of the minimum function.

A global convergence result can be established, provided some specific regularity condition holds at

the accumulation points of the generated sequence. The algorithms can also be used to solve linear

complementarity problems.

A number of issues still need to be considered to improve the robustness of the proposed algo-

rithms, to finalize their analysis, to estimate their complexity and to highlight their attractiveness.

Some of them are explored in [92,37,39,40] and others will be considered in subsequent contributions.
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