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Recently, a new form of dark matter has been suggested to naturally reproduce the empirically
successful aspects of Milgrom’s law in galaxies. The dark matter particle candidates are axion-like,
with masses of order eV and strong self-interactions. They Bose-Einstein condense into a superfluid
phase in the central regions of galaxy halos. The superfluid phonon excitations in turn couple to
baryons and mediate an additional long-range force. For a suitable choice of the superfluid equation
of state, this force can mimic Milgrom’s law. In this paper we develop in detail some of the main
phenomenological consequences of such a formalism, by revisiting the expected dark matter halo
profile in the presence of an extended baryon distribution. In particular, we show how rotation
curves of both high and low surface brightness galaxies can be reproduced, with a slightly rising
rotation curve at large radii in massive high surface brightness galaxies, thus subtly different from
Milgrom’s law. We finally point out other expected differences with Milgrom’s law, in particular in
dwarf spheroidal satellite galaxies, tidal dwarf galaxies, and globular clusters, whose Milgromian or
Newtonian behavior depends on the position with respect to the superfluid core of the host galaxy.
We also expect ultra-diffuse galaxies within galaxy clusters to have velocities slightly above the
baryonic Tully-Fisher relation. Finally, we note that, in this framework, photons and gravitons
follow the same geodesics, and that galaxy-galaxy lensing, probing larger distances within galaxy
halos than rotation curves, should follow predictions closer to the standard cosmological model than
those of Milgrom’s law.

PACS numbers: 98.10.+z, 98.62.Dm, 95.35.+d, 95.30.Sf

I. INTRODUCTION

The standard Λ Cold Dark Matter (ΛCDM) cosmo-
logical model provides an excellent fit to the Cosmic Mi-
crowave Background (CMB) angular power spectrum, to
the large-scale structure matter power spectrum, to the
Hubble diagram of Type Ia supernovae, and to the de-
tailed scale of baryonic acoustic oscillations. In the con-
text of simulations of structure formation, it has proven
successful down to the scale of galaxy clusters and groups.

On galactic scales, however, the ΛCDM model faces
some challenges [1]. These include the internal structure
of dwarf galaxies in the Local Group [2, 3] and possibly
beyond [4], and the vast planar structures seen around
the Milky Way and Andromeda [5–8]. Some other is-
sues, notably those related to the frequency, size and
pattern speeds of galactic bars, are related to dynamical
friction between baryons and a live dark matter (DM)
halo, e.g., [9, 10].

Chief among these challenges is arguably the tight cor-
relation between the distribution of baryons and the grav-
itational acceleration in galaxies [11, 12]. This appar-
ent conspiracy, known as the mass discrepancy accelera-
tion relation (MDAR), states that the acceleration expe-

rienced by a baryonic particle (irrespective of whether
it is actually due to DM, modified gravity, or both)
can be uniquely predicted from the baryon density pro-
file. At large distances, the MDAR implies the baryonic
Tully-Fisher relation (BTFR) [13], which relates the total
baryonic mass to the asymptotic/flat rotation velocity as
Mb ∼ V 4

f . This relation holds over five decades in mass,
with remarkably small scatter [14]. Another scaling re-
lation is the correlation between the central stellar and
dynamical surface densities in disk galaxies [15].

All of these relations involve a universal acceleration
constant a0 ∼ 10−8cm/s2. This constant independently
defines i) the zero-point of the BTFR; ii) the transition
of the acceleration at which the mass discrepancy be-
tween baryonic and total mass appears; iii) the transi-
tion surface density between DM-dominated Low Surface
Brightness (LSB) galaxies and baryon-dominated High
Surface Brightness (HSB) galaxies; iv) the observed max-
imal baryonic surface density for disk galaxies [16]; and
v) the DM halo central surface density [17].
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A. Milgrom’s law

These independent occurrences of a0 in observations
can all be summarized by a simple empirical law pro-
posed by Milgrom over thirty years ago [18–20]. Mil-
grom’s law states that the total gravitational attraction
a is approximately aN in the regime aN � a0, and ap-
proaches the geometric mean

√
aNa0 whenever aN � a0,

where aN is the usual Newtonian gravitational field gen-
erated from the observed distribution of baryonic mat-
ter alone. This simple recipe successfully accounts for a
wide range of galactic phenomena. It is remarkable that
it was suggested by Milgrom well before being corrobo-
rated by detailed data: hence, Milgrom made succesful
predictions for the behavior of, for instance, LSB galaxies
which were not even known to exist at the time. Today,
the detailed shape of rotation curves of disk galaxies with
vastly different structural parameters is reproduced with
uncanny precision by this empirical law. See [21, 22] for
comprehensive reviews.

Although historically proposed as an alternative to
DM, hence the name Modified Newtonian Dynamics
(MOND), the empirical power of Milgrom’s formula at
fitting galaxy properties is unequivocal, especially in ro-
tationally supported systems. A debate exists, however,
as to the possible origin of this law:

1. The conservative viewpoint is that Milgrom’s law is
an emergent phenomenon, linked to efficient feed-
back effects on galaxy scales. This possibility faces
a number of challenges. Firstly, semi-empirical
models with cored DM halos can reproduce the
observed slope and normalization of the BTFR,
but not yet the small scatter [14, 23, 24]. Sec-
ondly, the diversity of shapes of rotation curves at
a given maximal circular velocity remains a puzzle
in ΛCDM [25] (though see also [26]). Finally, the
observation that the central slope of the rotation
curve correlates instead with the baryonic surface
density means that feedback processes should be
more efficient at removing DM from the central re-
gions of galaxies with lower surface density, which
are often more gas-dominated. Hence, the feed-
back efficiency would have to increase with decreas-
ing star formation rate [13], and be tightly anti-
correlated with baryonic surface density (or corre-
lated with scale-length at a given mass scale).

More generally, the feedback explanation could
present a fine-tuning problem for galaxies that have
had a complex formation history, as all effects not
taken into account when dealing with internal feed-
back processes [26], such as the effect of environ-
ment and the merger history of each individual
galaxy, must then be precisely tuned with the inter-
nal feedback in order to give precisely the observed
relation [22].

2. At the other end of the spectrum is the viewpoint

that Milgrom’s law represents a fundamental mod-
ification of gravity (e.g., [27–29]). See [22, 30] for
reviews of such theories. By now this possibility
seems however rather unlikely, given the observa-
tional evidence for DM behaving as a collision-
less fluid on cosmological and cluster scales. In-
deed, Milgrom’s law does not work on galaxy clus-
ter scales [31–36], and modified gravity theories
cannot a priori explain the angular power spec-
trum of the CMB without additional DM or unre-
alistically massive ordinary neutrinos, with a mass
above the terrestrial experimental constraints [37].
Such theories are also highly constrained in the So-
lar System [38, 39] (though see [40]). Moreover,
Milgrom’s law has some problems at subgalactic
scales (e.g., [41]).

3. A middle-ground interpretation is that Milgrom’s
law is telling us something about the fundamental
nature of DM. Indeed, while the existence of a new
degree of freedom acting as a pressureless and dissi-
pationless fluid is on firm grounds within the linear
regime in cosmology, the exact nature of this dark
fluid is far from known.

Already in the context of self-interacting DM
(SIDM) [42], some recent encouraging results have
shown how underdense halos could indeed be as-
sociated with extended baryonic disks [43, 44], in
line with observations. However, getting a BTFR
as tight as observed, as well as a MDAR at all radii
remains challenging. A more radical possibility is
Modified DM, inspired by gravitational thermody-
namics [45–48].

Our viewpoint here is that the correlation between
DM and visible matter embodied in Milgrom’s law
could be the result of a novel interaction between
DM and baryons [49–54]. Indeed, this could nat-
urally avoid the problems of pure-CDM and pure-
MOND, while in principle also reproducing the ob-
served phenomenology on galactic scales.

B. Superfluid dark matter

Recently, in [55, 56], we proposed a novel theory of
DM superfluidity, inspired by recent developments in cold
atom physics. See also [57–59]. The framework mar-
ries the phenomenological success of the ΛCDM model
on cosmological scales with that of Milgrom’s empirical
law [18] at fitting galaxy properties. The DM and MOND
components have a common origin, representing different
phases of a single underlying substance. This is achieved
through superfluidity.

The DM candidate proposed in [55, 56] consists
of axion-like particles with sufficiently strong self-
interactions (σ/m ∼> 0.1 cm2/g, where σ is the self-
interaction cross-section and m the particle mass) such
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TABLE I: Summary of observational consequences of superfluid DM

System Behavior
Rotating Systems
Solar system Newtonian
Galaxy rotation curve shapes MOND (+ small DM component making HSB curves rise)
Baryonic Tully–Fisher Relation MOND for rotation curves (but particle DM for lensing)
Bars and spiral structure in galaxies MOND
Interacting Galaxies
Dynamical friction Absent in superfluid core
Tidal dwarf galaxies Newtonian when outside of superfluid core
Spheroidal Systems
Star clusters MOND with EFE inside galaxy host core — Newton outside of core
Dwarf Spheroidals MOND with EFE inside galaxy host core — MOND+DM outside of core
Clusters of Galaxies Mostly particle DM (for both dynamics and lensing)
Ultra-diffuse galaxies MOND without EFE outside of cluster core
Galaxy-galaxy lensing Driven by DM enveloppe =⇒ not MOND
Gravitational wave observations As in General Relativity

that they thermalize in galaxies. With m ∼ eV, their
de Broglie wavelengths overlap in the (cold and dense
enough) central region of galaxies, resulting in Bose-
Einstein condensation into a superfluid phase.

The superfluid nature of DM dramatically changes its
macroscopic behavior in galaxies. Instead of behaving as
individual collisionless particles, the DM is more aptly
described as collective excitations, in particular phonons.
The DM phonons couple to ordinary matter, thereby me-
diating a long-range force (beyond Newtonian gravity)
between baryons. In contrast with theories that pro-
pose to fundamentally modify Newtonian gravity, in this
case the new long-range force mediated by phonons is an
emergent property of the DM superfluid medium.

For a particular choice of the superfluid equation of
state, the resulting phonon effective Lagrangian is similar
to the Bekenstein-Milgrom MOND theory [27]. Remark-
ably, as reviewed below in Sec. II, the desired superfluid
phonon effective theory is strikingly similar to that of the
Unitary Fermi Gas [60, 61], which has generated much
excitement in the cold atom community in recent years.

The aim of this paper is to develop novel distinctive
predictions of such a model, especially on galaxy scales.
For this purpose we will derive a realistic superfluid
halo density profile, improving on the original derivation
of [55, 56] by carefully modeling the superfluid at finite
temperature. The density profile of [55, 56] used the
mean-field Gross-Pitaevskii approach [62, 63], which as-
sumes that DM is entirely in the condensed phase. In re-
ality, owing to their velocity dispersion DM particles have
a small non-zero temperature in galaxies. As is familiar
from liquid helium, a superfluid at finite (sub-critical)
temperature is best described phenomenologically as a
mixture of two fluids [64–66]: i) the superfluid, which by
definition has vanishing viscosity; ii) the “normal” com-
ponent, comprised of excitations, which is viscous and
carries entropy.

The DM density profile should consist of a super-
fluid core, with approximately homogeneous density, sur-

rounded by an envelope of DM particles in the nor-
mal phase following a collisionless Navarro-Frenk-White
(NFW) density profile [67]. In the present contribution,
the transition radius will be estimated in two ways. The
first estimate, denoted by RT, is determined by the den-
sity dropping to a value where the interaction rate is too
low to maintain local thermal equilibrium. The second
estimate, denoted by RNFW, is the radius at which both
density and pressure (or equivalently, velocity dispersion)
can be matched continuously to an NFW profile. As we
shall demonstrate hereafter, for the range of theory pa-
rameters that give reasonable fit to rotation curves, RT

and RNFW coincide to within 30%.

A key difference with the original papers [55, 56] is
that we now choose parameters such that the superfluid
core makes up only a fraction of the total mass/volume
of the halo. For the representative massive disk galaxy
described in Sec. VII, for instance, the superfluid core
makes up 22% of the total DM mass. The superfluid
core must be large enough to encompass the observed ro-
tation curve, since we rely on the phonon-mediated force
to reproduce the rotation curve phenomenology. But it is
small enough that most of the DM halo mass is approx-
imately in collisionless form and hence should be triax-
ial exactly as ΛCDM halos and consistent with observa-
tions [68].

A by-product of having a relatively small superfluid
core is that most of the gravitational lensing signal will
come from the NFW envelope. As a corollary, to re-
produce galaxy-galaxy lensing statistics we need not as-
sume any non-minimal coupling between DM superfluid
phonons and photons. Both photons and gravitons travel
at the speed of light along the same geodesics, consistent
with the tight constraint recently established by the neu-
tron star merger GW170817 [69]. In contrast, some DM-
free relativistic completions of MOND, such as [28], rely
on non-minimal photon couplings and are now ruled out
by GW170817 [70]. Potentially measurable effects of non-
vanishing phonon sound-speed in the context of future
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gravitational wave experiments were discussed in [71].
After a few general constraints on the theory param-

eters in Secs. III and IV, the main focus of this paper
will be the explicit rotation curve fitting of disk galax-
ies in Secs. V–VII. For this purpose, we will illustrate
the method with two representative LSB and HSB disk
galaxies (Sec. VII). Given the lack of symmetry, an ex-
act solution for the superfluid/phonon profile would be a
daunting task. Instead we will adopt the following hybrid
approximation method.

In general the acceleration ~a on a test baryon particle
receives three contributions within the superfluid region:

~a = ~ab + ~aDM + ~aphonon . (1)

We calculate the actual Newtonian acceleration gener-
ated by the baryons, ~aactual

b , exactly from the actual non-
spherical baryon density. The second term is the gravi-
tational acceleration from the superfluid core, which we
derive from a spherically symmetric approximation. The
phonon-mediated acceleration ~aphonon is sourced by the
actual non-spherical baryon density distribution, but also
depends indirectly on the Newtonian gravitational po-
tential Φ, which we approximate as spherically symmet-
ric for this derivation. As we will show in Sec. VII, the
superfluid model offers a satisfactory fit of the rotation
curve in both the LSB and HSB cases.

In Secs. VIII–X, we will describe some of the observa-
tional consequences of DM superfluidity for other sys-
tems, including galaxy clusters, dwarf satellite galax-
ies, globular clusters and ultra-diffuse galaxies residing
in clusters. A key distinction compared to the MOND
predictions for satellites, in particular, is that the MON-
Dian force in our case is mediated by superfluid phonons
and therefore requires superfluidity. In particular, the
phonon-mediated force between two bodies only applies
if both bodies reside within the superfluid region. If one
body is inside while the other is outside, the only force
acting on them is gravity.

The same applies to the so-called external field ef-
fect (EFE), an essential aspect of MOND phenomenol-
ogy. Consider a subsystem with low internal acceleration
aint � a0 in the presence of a large homogeneous exter-
nal acceleration aext � a0. In General Relativity (GR),
we know from the equivalence principle that aext has no
physical consequence and can be removed by moving to
the freely-falling elevator. In MOND, however, the back-
ground acceleration is physical and renders the subsys-
tem Newtonian.

The EFE is an example of a more general phenomenon
in scalar field theories known as kinetic screening [72–74].
In theories with gradient interactions, non-linearities in
the scalar field gradient — the scalar acceleration — can
result in the suppression of the scalar field effects and the
local recovery of standard gravity. See [75] for a review.

The key difference in the superfluid context is that the
EFE is the result of phonon non-linearities, and therefore
only applies within the superfluid core. In particular,
close-by globular clusters, such as Pal 5 [76], and satellite

galaxies residing within the superfluid core of the Milky
Way should follow MOND predictions with the EFE. On
the other hand, globular clusters at large distances from
the Milky Way, such as NGC 2419 [41] or Pal 14 [77], are
expected to be Newtonian as long as they do not harbor
their own DM halo. The same applies to tidal dwarf
galaxies resulting from the interaction of massive spiral
galaxies. Those are not expected to harbor a significant
DM halo, and thus should be Newtonian [78, 79] as long
as they are located outside the superfluid core of their
host.

As a preview of the main results of this paper, Table I
summarizes the observational consequences of superfluid
DM for various systems.

II. EFFECTIVE DESCRIPTION OF
SUPERFLUID DM

In field theory language, an (abelian) superfluid is de-
scribed by the theory of a spontaneously broken global
U(1) symmetry, in a state of finite U(1) charge den-
sity. At low energy the relevant degree of freedom is
the Goldstone boson for the broken symmetry — the
phonon field φ. The U(1) symmetry acts non-linearly
on φ as a shift symmetry, φ → φ + c. Furthermore, in
the non-relativistic regime the theory should be Galilean
invariant (ignoring gravity). At finite chemical potential
µ, the most general effective theory at leading order in
derivatives consistent with these symmetries is [80, 81]

LT=0 = P (X) , (2)

whereX = µ−mΦ+φ̇−(~∇φ)2/2m. Herem is the particle
mass and Φ the Newtonian gravitational potential. The
conjecture of [55, 56] is that the DM superfluid phonons
are governed by the MOND Lagrangian (see [22, 30])

LDM, T=0 =
2Λ(2m)3/2

3
X
√
|X| . (3)

Remarkably, (3) is strikingly similar to that of the Uni-
tary Fermi Gas (UFG) [60, 61], which has generated
much excitement in the cold atom community in recent
years. Indeed, the fractional power ofX would be strange
if (3) described a fundamental scalar field. As a theory of
phonons, however, the power determines the superfluid
equation of state, and fractional powers are not uncom-
mon. Indeed, the effective field theory for the UFG su-
perfluid is L ∼ Xn, where n = 5/2 in 3+1 dimensions
and 3/2 in 2+1 dimensions, and is therefore also non-
analytic [82].

To mediate a force between baryons, DM phonons
must couple to the baryon density as

Lint = αΛ
φ

MPl
ρb , (4)

with α being a constant, ρb the baryonic density, and
MPl the Planck mass. At zero temperature, the effective
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theory thus has three parameters: the particle mass m, a
parameter Λ related to the self-interaction strength, and
the coupling constant α between phonons and baryons.
A fourth parameter of the particles themselves is their
self-interaction cross-section σ setting the conditions for
their thermalization, while a fifth parameter β will later
be introduced to accommodate for finite-temperature ef-
fects.1

From the superfluid perspective, the form of the cou-
pling term (4) is unusual: it breaks the U(1) shift sym-
metry explicitly (albeit softly), making the phonon φ
a pseudo-Goldstone boson. The origin of this particle
non-conserving term could be non-perturbative; or more
simply, there could be a soft fundamental coupling be-
tween DM and baryons which explicitly breaks the rel-
evant symmetries. One way or the other, this makes
our quantum liquid a pseudo-superfluid. In particular,
the phonon will acquire a mass via radiative corrections,
though it is easy to check that the explicit breaking is
soft enough that this has no observable effects on galac-
tic scales.

As mentioned already, we do not assume any non-
minimal coupling to photons and/or gravitons. Both
electromagnetic and gravitational waves travel at the
speed of light, consistent with the recent observations
of GW170817 [69].

Let us briefly review why the action, composed of the
terms (3) and (4), gives rise to the MOND force law.
Assuming a static profile, the phonon equation of motion
then is

~∇ ·

 (~∇φ)2 − 2mµ̂√
(~∇φ)2 − 2mµ̂

~∇φ

 =
αρb

2MPl
, (5)

where µ̂ ≡ µ − mΦ. In the limit (~∇φ)2 � 2mµ̂, the
solution is, ignoring a homogeneous curl term,

|~∇φ|~∇φ ' αMPl~ab , (6)

where ~ab is the Newtonian acceleration due to baryons
only. The φ-mediated acceleration that derives from (4)
is

~aφ = α
Λ

MPl

~∇φ . (7)

Thus (6) implies

aφ =

√
α3Λ2

MPl
ab . (8)

1 Note that we will be working mostly hereafter in natural units,
where the gravitational potential (∝ c2) is dimensionless, where
mass, energy, and acceleration are expressed in eV, and where
length and time are in eV−1. When dealing with rotation curves
or halo masses, we will of course switch back to physical units.
In natural units, m and Λ can be expressed in eV, while α and
β are dimensionless.

As advocated, this matches the deep-MOND form with
critical acceleration

a0 =
α3Λ2

MPl
. (9)

In the context of MOND, it has long been established
that the best-fit value for a0 from galactic rotation curves
is

aMOND
0 ' 1.2× 10−8 cm/s2 . (10)

In our case, the situation is different for two reasons:
i) the deep-MOND form (8) is not exact and only ap-

plies in the regime (~∇φ)2 � 2mµ̂; ii) the total acceler-
ation experienced by baryons includes not only ~ab and
~aφ, but also ~aDM — the Newtonian acceleration from the
DM halo itself. Because the superfluid core is pressure
supported, the DM density profile is approximately ho-
mogeneous in the central region of galaxies. Its density
is moreover rather low. This should be contrasted with
the CDM scenario, where DM-only simulations display a
cuspy profile [67].

The story is further complicated by the fact that per-
turbations around this zero-temperature, static back-
ground are unstable (ghost-like). However it was ar-
gued in [55, 56] that this instability can naturally be
cured by finite-temperature effects. Indeed, our DM par-
ticles in galactic halos have non-zero temperature, owing
to their velocity dispersion, hence we expect the zero-
temperature Lagrangian (3) to receive finite-temperature
corrections in galaxies. One way to understand the insta-
bility physically is that, if a galactic halo had zero tem-
perature, then the emergent MOND force would desta-
bilize it.

As it was originally suggested by Landau, a super-
fluid at finite temperature phenomenologically behaves
as a mixture of two fluids. Only a fraction of the total
mass forms a degenerate quantum liquid, hydrodynam-
ically described as a potential flow carrying no entropy.
The rest of the mass is stored in thermally excited states,
behaving as a regular fluid which carries the entropy of
the entire system. The general, finite-temperature effec-
tive theory, once again at leading order in derivatives,
is [83]

LT 6=0 = F (X,B, Y ) . (11)

This generalizes (2) through the dependence on two ad-
ditional scalar quantities B and Y defined by

B ≡
√

det ∂µψI∂µψJ ;

Y ≡ µ̂+ φ̇+ ~v · ~∇φ , (12)

where ψI(~x, t), I = 1, 2, 3 and ~v are respectively the La-
grangian coordinates and velocity vector of the normal
fluid component. Physically, B measures the density of
the normal fluid, while Y is the scalar product of the
fluid velocities.
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The general finite-temperature effective theory (11) is
only mildly constrained, and further specification of its
form requires first-principle knowledge of the superfluid
constituents. Since a fundamental underlying description
of our DM superfluid is still lacking, [55, 56] proceeded
empirically and considered various finite-temperature ac-
tions leading to MOND-like static profiles with stable
perturbations. One such form, which in this paper we
will take as our working model, is

L =
2Λ(2m)3/2

3
X
√
|X − βY | − α Λ

MPl
φρb , (13)

where for completeness we have included the coupling
term (4). This fiducial action may appear ad hoc, and
simpler finite-temperatures corrections were considered
in [55, 56], but it has the practical advantage of making
the algebra straightforward. Here β is a dimensionless
constant that parametrizes finite-temperature effects. In
particular the limit β → 0 recovers the original action (3).
In what follows we will fix β = 2 as the fiducial value.

The temperature dependence of the theory is also wel-
come for another reason. To obtain an acceptable back-
ground cosmology and linear perturbation growth, both
Λ and α must assume different values cosmologically than
in galaxies. This is not unreasonable, since parameters
of the superfluid effective field theory are expected to
depend on temperature, and thus on velocity, most nat-
urally through the ratio of the temperature over the crit-
ical temperature for phase-transition T/Tc. In partic-
ular they can assume different values on cosmological
scales (where T/Tc ∼ 10−28) than in galaxies (where
T/Tc ∼ 10−6 − 10−2). In [55, 56] it was shown that α
must be ∼ 10−4 smaller cosmologically, while Λ must be
∼ 104 larger, in order to obtain an acceptable cosmology.
Hence, the phonon-baryon coupling (4) can be taken as
constant.

In the present work, we perform a more detailed analy-
sis of the rotation curves for a more realistic distribution
of baryons in two different types of galaxies. As a re-
sult we find that, although subdominant in the central
parts of the galaxy, the gravitational force due to the su-
perfluid is not always negligible and can be as large as
∼ 30%. To compensate for this effect and reproduce the
observed rotation curves, we will use a somewhat lower
best-fit value, a0 ' 0.87× 10−8 cm/s2.

Another important point to bear in mind concerns the
DM mass distribution throughout the halo. It is well
known that galaxy clusters pose a problem for MOND.
Therefore in order to avoid the tension between our
model and observations on cluster scales, it would be
most desirable to avoid having a superfluid halo in clus-
ters altogether. It was argued in [56] that this is possible
if the mass of the DM particles is appropriately chosen,
and then partly tested in [59], albeit with slightly more
simplified assumptions than in the following. Our more
careful analysis will yield somewhat altered bounds on
the parameters m, Λ and α of the theory.

III. BACK-OF-THE-ENVELOPE ESTIMATES

In this Section we revisit the derivation of the DM-only
superfluid halo profile originally given in [56], and refine
various steps in the argument. As in standard ΛCDM,
we expect virialization of halos to proceed through vi-
olent relaxation, a manifestly out-of-equilibrium process
that should take DM particles out of any pre-existing
superfluid state. Therefore, at virialization the halo is
expected to have an NFW profile [67]. This initial pro-
file will then be altered in the central regions of the halo,
where DM thermalization and condensation occur.

The final equilibrium profile consists of a superfluid
core, within which DM particles interact sufficiently fre-
quently to thermalize and form a Bose Einstein con-
densate, surrounded by an envelope describing approx-
imately collisionless particles, which we assume for con-
creteness to be of the NFW form. For the purpose of the
simple analytical estimates of this Section, we will ap-
proximate the collisionless envelope as a ρ ∼ r−3 tail of
the NFW profile. In the next Section, we will come back
and describe a more realistic matching procedure to the
full NFW profile, to be applied using numerical analysis.

The conditions for thermal equilibrium and Bose Ein-
stein condensation both depend on the density and ve-
locity profiles, and therefore on the distance r from the
center. The radii within which thermalization and con-
densation take place will be denoted respectively by RT

and Rdegen. It is easy to argue, however, that RT must
be smaller than Rdegen. Indeed, otherwise there would
be a region Rdegen < r < RT where thermalization is
reached without degeneracy, which would in turn require
an unacceptably large self-interaction cross section.

On the other hand, since thermalization is necessary
to achieve condensation, it would be inconsistent to as-
sume that DM remains in a coherent BEC state for
RT < r < Rdegen. Therefore, we conclude there is
only one radius of interest, RT. For r < RT, our DM
is degenerate and thermalizes through self-interactions.
Within this region our density profile consists of a super-
fluid core, with approximately homogeneous density. As
mentioned above, for the purpose of making analytical
estimates we assume that at r = RT the profile switches
to the NFW fall-off ρ ∼ r−3, which extends up to the
virial radius.

Before deriving an expression for RT, we should be
more precise about how large the self-interaction cross
section σ (assumed velocity-independent) should be to
achieve thermal equilibrium. Thermal equilibrium re-
quires the interaction rate of DM particles to be greater
than the inverse of the dynamical time, which we take
here as

tdyn ≡
r

v(r)
, (14)

where v is the characteristic velocity dispersion at r. It
is natural to compare DM interactions to tdyn, since the
latter sets the characteristic time scale for the motion of
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perturbers (such as DM subhalos or halo stars) which
can disturb the equilibrium state.

The local self-interaction rate in a region with density
ρ and velocity v is given by

Γ =
σ

m
N vρ , (15)

where N ≥ 1 denotes the Bose degeneracy factor,

N =
ρ

m

(
2π

mv

)3

. (16)

We will then require Γ > t−1
dyn for thermal equilibrium.

In the above, both v and ρ depend on the distance
r from the center of the halo. This is a key difference
from [56], where v and ρ were taken as the virial velocity
and density respectively. In what follows we will assume
N � 1, consistent with the degeneracy discussion above.
It is easy to show a posteriori that this is justified for
galaxies if m ∼ eV.

We will assume for concreteness that thermalization
takes place in the outskirts of the halo where the density
distribution is given by the tail of the NFW profile

ρ(r) = ρ(R200)

(
R200

r

)3

. (17)

In this region, up to slowly varying factors (related to the
logarithmic growth of the enclosed mass and the varying
ratio of velocity dispersion over circular velocity), the
velocity profile roughly falls off in a Keplerian fashion as

v ∼ v200

√
R200

r
. (18)

In the above, R200 and v200 are as usual defined as the ra-
dius and velocity at which the mean density is 200 times
the present critical density:

ρ200 = 200
3H2

0

8πGN
' 1.95× 10−27 g/cm3 ;

R200 =

(
3M

4πρ200

)1/3

' 203

(
M

1012M�

)1/3

kpc ;

v200 =

√
1

3

GNM

R200
' 85

(
M

1012M�

)1/3

km/s , (19)

where we have assumed H0 = 70 kms−1Mpc−1 for con-
creteness.

Meanwhile, the quantity ρ(R200), on the other hand, is
the local density at R200, which is of course less than the
mean density ρ200 within that radius. For instance, for a
NFW profile with concentration in the range 5 < c < 15,
one finds 4 <∼

ρ200
ρ(R200)

<∼ 6. For the purposes of our

back-of-the-envelope estimate, we will assume the central
value

ρ200

ρ(R200)
= 5 . (20)

Substituting these expressions, the requirement Γ >
t−1
dyn translates to a bound on the cross section:

σ

m
>∼
( m

eV

)4
(

M

1012M�

)2/3(
r

R200

)7/2

0.2
cm2

g
.

(21)

It is thus easier to reach equilibrium in the inner regions
where the density is high.

Conversely, for a given σ/m, (21) translates to a
threshold radius RT within which thermal equilibrium
is achieved. The result is

RT . 310 kpc
( m

eV

)−8/7
(

M

1012M�

)1/7(
σ/m

cm2/g

)2/7

.

(22)

Note that this bound is a rather insensitive function of
M , and depends more sensitively on m.

Since we hope to explain galaxy rotation curves using
DM superfluidity, the superfluid core should extend at
least as far as the last observed point on the rotation
curve in each galaxy. In other words, the viability of our
scenario requires RT to be larger than the radius within
which the circular motion of stars and gas is observed.
For instance, consider a Milky Way-like galaxy with M '
1012 M�, whose rotation curve (or the equivalent circular
velocity curve derived from stellar kinematics, see [84]) is
typically measured out to ' 60 kpc. For such a galaxy,
we impose that

RT > 60 kpc ; for M = 1012 M� . (23)

Using (22) this translates to an upper bound on the mass
of the DM particle:

m . 4.2

(
σ/m

cm2/g

)1/4

eV . (24)

Smaller and less massive galaxies result in a somewhat
weaker bound.

The bound (24) on the DM particle mass is the main
result of this Section. It shows that for values of σ/m
satisfying the merging-cluster bound ∼ 1 cm2/g [85–88],
m must be somewhat below 4 eV. The dependence on the
cross section is rather weak, however, scaling as the 1/4
power. It should be mentioned that the upper bound (24)
would be somewhat tighter had we assumed a ρ ∝ r−2

transition density profile outside the superfluid core, in-
stead of ρ ∝ r−3.

In practice, for the fiducial parameter values that we
will use later to fit rotation curves, we will find that the
superfluid cores make up a modest fraction of the total
DM mass, ranging between ∼ 20% and ∼ 50%. This
has important consequences for observations. Firstly,
since most of the mass is in the approximately collision-
less NFW envelope, our halos should be triaxial near the
virial radius, exactly as in ΛCDM halos and consistent
with observations [68].
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Secondly, most of the gravitational lensing signal will
come from the NFW envelope, particularly for HSB
galaxies, hence we need not assume any non-minimal
coupling between DM superfluid phonons and photons.
If we assume that the relation between stellar mass and
halo mass is mostly unaltered with respect to ΛCDM (we
will explicitly show that this leads to acceptable rotation
curves in Sec. VII), then galaxy-galaxy lensing statistics
would be mostly unaletered too. In particular, if Mil-
grom’s law were valid as a fundamental law out to large
distances from the baryonic bulk of galaxies, then one
would expect a fine relation between the baryonic mass
and the weak lensing signal, of the form rE ∝

√
Mb,

where rE is the Einstein radius [89]. Such a relation is
not expected to hold in the superfluid DM context.

IV. LOWER BOUND ON HALO MASS

Simulations indicate that virialization takes place
when the average density of a perturbation reaches about
two hundred times the mean density. Simply put, the
over-density is then sufficient for the perturbation to
withstand the Hubble expansion. This fact, combined
with the observation that pressure supported halos tend
to have lower central densities, raises the caution flag re-
garding the lightest possible haloes one could have in the
model in question (see [90] and references therein).

As argued in Sec. III, the galactic halo consists of a
superfluid core surrounded by the NFW envelope. How-
ever, the picture simplifies for low mass galaxies, for
which ρT � ρ200. Here, ρT denotes the DM density
at the thermalization radius given by (22). In this case
most of the mass resides in the superfluid phase. Ignor-
ing the contribution from phonon gradients, the equation
of state implied by (3) is

P =
ρ3

12Λ2m6
. (25)

In [56] it was shown that this equation of state, together
with the condition of hydrostatic equilibrium, results in
a cored density profile with central density

ρ0 '
(

M

1012M�

)2/5(
Λ

meV

m3

eV3

)6/5

6.2× 10−25 g/cm3 .

(26)

For consistency, the central density ρ0 should be larger
than ρ200, given in (19). (Instead of ρ0, [90] uses the
average density within r1/2, resulting in a tighter con-
straint.) This translates to a minimum halo mass Mmin

for the superfluid scenario

Mmin '
(

12
Λ

meV

m3

eV3

)−3

109M� . (27)

The superfluid pressure suppresses the formation of halos
of mass less than Mmin.

To be consistent with observations, Mmin should be
sufficiently small to accommodate the least massive
galaxies observed. Ultra-faint dwarf satellites around the
Milky Way are estimated to have virial masses between
108 and 109 M� (before tidal stripping). Demanding
that Mmin

<∼ 109M� to be generous translates to

Λm3 & 0.08 meV × eV3 . (28)

The combination Λm3, which will be a recurring theme
in our analysis, traces back to the equation of state (25)
depending on this combination of parameters. In partic-
ular, we will see in the next Section that rotation curves
are controlled precisely by this combination and tend to
favor lower values of Λm3. There is therefore an inter-
esting tension between the ability to form light enough
halos, and obtaining a reasonable fit to rotation curves.
In practice we will find that values of Λm3 that barely
satisfy (28) result in acceptable fits.

V. HALO PROFILE: ALGORITHM

In this Section we show how to derive the superfluid
DM density profile in a galaxy, and the predicted rotation
curve, for a given (observed) baryonic density profile. As
already discussed, the central parts of the halo are ex-
pected to be in the superfluid phase while the outskirts
of the halo are in the normal phase. Apart from theory
parameters, our density profile will depend ultimately on
a single parameter — the total halo mass. This parame-
ter will in turn fix the central value of the potential and
DM density. To go further, we thus need a prescription
relating the baryonic mass to the halo mass.

Since cosmological simulations of DM superfluid are
yet to be devised, we must speculate somewhat on a re-
alistic scenario, which will have to be backed by simula-
tions. To cover the range of possibilities, we will focus
on two radically different scenarios. The first scenario
assumes that the DM halo mass function is the same as
in ΛCDM (at least at halo masses above the cutoff), and
that the same abundance matching prescriptions can be
applied (e.g., [91]). This scenario implies very different
baryon fractions in galaxies of different stellar masses.
The second scenario assumes that a given DM halo can,
to a first approximation, be thought of as a microcosm
of the whole Universe, and can a priori be expected to
host a fraction of baryons representative of the cosmo-
logical ratio. On galaxy scales, we could expect a con-
stant fraction (typically of the order of one half) of those
baryons to condense towards the center of the halo to
form the visible galaxy, thus assuming a negligible effect
of feedback. This second scenario thus implies assuming
a constant DM over visible baryons ratio MDM/Mb = 10.
Remarkably, we will show in Sec. VII that those two ex-
treme assumptions have a relatively small influence on
the rotation curve predictions.

Let us begin with the superfluid region. The Poisson
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equation is as usual given by

∇2Φ = 4πGN (ρSF + ρb) . (29)

The baryonic mass density ρb is prescribed by observa-
tions. The superfluid DM mass density ρSF can readily
obtained by differentiating the action (13) with respect
to the Newtonian gravitational potential Φ:

ρSF =
2
√

2m5/2Λ
(

3(β − 1)µ̂+ (3− β) (~∇φ)2
2m

)
3

√
(β − 1)µ̂+ (~∇φ)2

2m

. (30)

We will solve Poisson’s equation together with the
phonon equation

~∇ ·

 (~∇φ)2 + 2m
(

2β
3 − 1

)
µ̂√

(~∇φ)2 + 2m(β − 1)µ̂

~∇φ

 =
αρb

2MPl
. (31)

The baryon density is of course not spherically symmet-
ric in general. Nevertheless, if we ignore a homogeneous
“pure curl” solution, then this equation can be readily
integrated:

(~∇φ)2 + 2m
(

2β
3 − 1

)
µ̂√

(~∇φ)2 + 2m(β − 1)µ̂

~∇φ = αMPl~ab , (32)

where ~ab is the Newtonian acceleration due to baryons
only. The approximation of neglecting a curl term
has been shown in MOND to be accurate to within
∼ 20% [92].

The upshot of this approximation is that (32) implies
an algebraic equation for the gradient of the phonon field.
Specifically, it can be massaged into a cubic equation for

(~∇φ)2. Only one root of this cubic equation is physical
— it is easy to see that the other two roots are complex

at large distances where (~∇φ)2 → 0. The explicit ex-
pression for the physical solution is complicated and not
particularly illuminating. Suffice to say the result is we
have now determined the phonon gradient as a function
of Φ and ab:

~∇φ = F (Φ, ab)~ab . (33)

Substituting the resulting (~∇φ)2 into (30) then gives the
superfluid mass density in terms of Φ and ab:

ρSF = ρSF(Φ, ab) . (34)

Let us stress again that this result holds for an arbitrary
(non spherically-symmetric) baryon distribution. Our
only approximation was neglecting a pure-curl homoge-
neous solution in (32). Given a general ρb, the DM-free
Poisson equation ∇ · ~ab = −4πGNρb can be solved for
~ab. In turn, the resulting ~ab can be substituted in (34)
to obtain ρSF as a function of Φ, which remains as the
last unknown variable.

The gravitational potential is of course determined by
Poisson’s equation (29). Upon substituting ρSF(Φ, ab),
this becomes a highly non-linear equation, whose general
solution absent any symmetries is complicated to find.
To simplify the analysis in the present paper, we will re-
place the real baryon distribution by a spherical density
profile ρ̃b(r) which gives the same purely-baryonic New-
tonian acceleration ~ab in the disk. The simplified Poisson
equation becomes

1

r2

d

dr

(
r2 dΦ

dr

)
= 4πGN

(
ρ̃b(r) + ρSF(Φ(r), ab)

)
, (35)

where ãb = GNM̃b(r)/r2 is the purely-baryonic Newto-
nian acceleration derived from the spherical distribution
ρ̃b(r).

We integrate this equation numerically with two
boundary conditions: i) imposing regularity at the ori-
gin, dΦ/dr|r=0 = 0; ii) specifying the value of Φ at the
origin, Φ(r = 0). The latter determines the size and the
mass of the superfluid core. In other words, halo cores of
different sizes have different central values of the gravi-
tational potential.

Upon matching to the normal-phase NFW envelope,
discussed below, the mass of the superfluid core in turn
fixes the total mass of the halo. In practice, when fitting
rotation curves (Sec. VII) we will proceed through reverse
engineering: we first prescribe the total mass MDM of
the halo, either as a fixed factor of the baryonic mass
(e.g., MDM = 10 Mb) or to its value determined by the
abundance matching prescription in ΛCDM; and then
find numerically the value of Φ(r = 0) which gives the
desired MDM.

A. Matching to NFW

Let us discuss in more detail our matching procedure
to the NFW envelope. For this purpose we will improve
on the basic analytical estimates of Sec. III, where we
assumed for simplicity a sharp transition at the thermal-
ization radius RT to a 1/r3 NFW tail. The first improve-
ment is that we now match to a full NFW profile

ρNFW(r) =
ρc

x(1 + x)2
; x ≡ r

rs
. (36)

The density ρc and concentration radius rs (equivalently,
the concentration parameter c = R200/rs) are deter-
mined by our matching conditions.

The second improvement pertains to the matching ra-
dius. In reality, we do not expect a sharp transition at
RT. Instead, there should be a transition region around
RT within which the DM is nearly in equilibrium but
is incapable of maintaining long range coherence. In
the simpler context of self-interacting DM, for instance,
recent simulations have shown that the density profile
starts to deviate from the NFW profile at a radius within
which DM particles had a chance to re-scatter at least
once over the lifetime of the halo [93].
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To shed light on the nature and spatial extent of the
transition regime, we introduce a second characteristic
radius RNFW as the location where the profile can be
consistently matched to an NFW profile. The matching
conditions at RNFW are:

1. Continuity of density: ρSF = ρNFW.

2. Continuity of pressure: PSF = PNFW.

To evaluate the second condition, we compute the radial

superfluid pressure using PSF = L + ∂L
∂X

(∂rφ)2

m , reduc-
ing to the following expression for the Lagrangian den-
sity (13) (with β = 2)

PSF =
2(2m)3/2Λ

3

µ̂
(
µ̂+ (~∇φ)2

2m

)
+ 2

(
(~∇φ)2

2m

)2

√
(~∇φ)2

2m + µ̂

. (37)

The NFW pressure simply follows from integrating the
hydrostatic equilibrium condition:

PNFW(RNFW) =

∫ ∞
RNFW

dr ρNFW(r)
GNM(r)

r2
, (38)

where M(r) is the total (DM + baryonic) mass enclosed.
Together with the constraint of fixed total mass and

these matching conditions we need to impose an addi-
tional requirement in order to uniquely fix the NFW pro-
file and determine RNFW. In particular, we further re-
quire that the concentration parameter thus determined
is close to its ΛCDM value.

Meanwhile, as before the thermalization radius RT is
defined as the location where the interaction rate Γ given
by (15) drops to t−1

dyn =
√
GNρ. As another refinement

on our earlier estimates, we will now evaluate this self-
consistently by keeping tracking of Γ and tdyn as we inte-
grate the equations of motion numerically from the cen-
ter. (Note that for this purpose Γ correctly includes the
degeneracy factor N appropriate for the superfluid re-
gion, but is otherwise a “vacuum” scattering rate, i.e.,
it ignores possible dressing effects from the superfluid
medium.)

For the range of theory parameters that give a good fit
to rotation curves, we found that RNFW and RT agree to
within 30%. A calculation of the exact profile between
these radii is beyond the scope of the present work and is
left for the future. But these estimates at least instruct
us on the likely spatial extent of the transition region.

B. Fiducial theory parameters

The DM density profile is determined by two combina-
tions of theory input parameters. The first combination

is m
(
σ/m

cm2/g

)−1/4

, which enters in Γtdyn and hence deter-

mines the size of the superfluid region. As fiducial values

we will set

m = 1 eV ;
σ

m
= 0.01

cm2

g
. (39)

These values are optimal for ensuring that the superfluid
core is large enough in galaxies to encompass the bary-
onic disk, while being small enough in clusters not to
contradict observations.

The second combination is Λm3. This controls the
superfluid pressure and correspondingly the density pro-
file of the core. Furthermore, as argued in Sec. IV, this
quantity also determines the lowest possible halo mass
that can form in our scenario. As a fiducial value we will
choose

Λm3 = 0.05 meV × eV3 . (40)

Although strictly speaking this violates the bound (28)
on the lowest mass halo, we will see in Sec. VII that
values of Λm3 consistent with (28) also give reasonable
fits to rotation curves.

Finally, the coupling constant will be set to α = 5.7 to
allow for our best-fit value of a0 = 0.87 × 10−8 cm/s2,
while we have set from the start β = 2 in the action (13).

VI. HALO PROFILE FOR A TOY BARYON
DISTRIBUTION

Before comparing to actual data, it is instructive to
calculate our predicted profile and rotation curve for a
toy baryonic distribution. For this purpose we assume a
“spherical exponential” profile

ρtoy
b (r) =

Mb

8πL3
e−r/L , (41)

where the characteristic scale L plays the role of a radial
“scale length”.

Following the algorithm outlined in the previous Sec-
tion, we can calculate the DM density profile for this
exponential baryon distribution once we fix the DM
halo mass. Figure 1 illustrates the result (solid black),
normalized to the central density, for Mb = 1010M�
and L = 2 kpc. The value of the central density (or
gravitational potential) in this case is fixed to achieve
MDM = 10 Mb. For the theory parameters, we assume
the fiducial values (39) and (40). The resulting transition
radii (shown as dashed vertical lines on the Figure) are

RNFW = 52 kpc ; RT = 60 kpc , (42)

a difference of 13%. Relative to R200 ' 97 kpc for this
galaxy, (42) implies a significant superfluid core, encom-
passing 39% of the total DM mass.

The matching conditions then fix the concentration pa-
rameter of the NFW envelope c = 6.5. For comparison,
also shown in the Figure are the “pure” superfluid pro-
file (T = 0, no baryons) derived in [55, 56] (blue dashed-
dotted curve), together with the NFW profile (red dashed
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FIG. 1: Comparison of our DM density profile (solid black
curve) for the toy baryon exponential profile (41) with Mb =
1010 M� and L = 2 kpc. The parameters are m = 1 eV,
Λ = 0.05 meV and MDM = 10Mb = 1011 M�. The transition
radii (dashed vertical lines) are RNFW = 52 kpc and RT =
60 kpc. For comparison, also plotted are the “pure” (T = 0,
no baryons) superfluid profile (blue dashed-dotted curve), and
the NFW profile (red dashed curve) for the same MDM and
concentration parameter c = 6.5.

curve) for the specified mass and concentration. Note
that the small feature within r <∼ 2 kpc is due to the
energy density in phonon gradients dominating the su-
perfluid DM mass density.

Using this profile, we can also calculate the radial ac-
celeration on a test baryonic particle. Within the super-
fluid core this is given by the sum of three contributions:

a = ab(r) + aSF(r) + aphonon(r) . (43)

The first term is just the baryonic Newtonian accelera-
tion. The second term is the gravitational acceleration
from the superfluid core, aSF = GNMSF(r)/r2. The third
term is the phonon-mediated acceleration (7):

aphonon(r) = α
Λ

MPl

dφ

dr
. (44)

The strength of this term is set by α and Λ, or equiva-
lently the critical acceleration a0 given by (9).

It is instructive to compare our predicted rotation
curve with the MOND prediction for a fixed toy bary-
onic profile. For the MOND calculation, we assume the
‘simple’ interpolating function:

aMOND(r) =
ab(r)

2

1 +

√
1 +

4aMOND
0

ab(r)

 , (45)

where ab(r) = GNMb(r)/r2. This is well known to pro-
vide good fits to galaxy rotation curves [94, 95], as well
as elliptical galaxies [96–98].

Figure 2 compares our predicted radial acceleration
curve (solid black curve) with that of the MOND sim-
ple interpolating function (45) (red dashed curve) for the

10 20 30 40 50
r [kpc]

2. ×10-9

4. ×10-9

6. ×10-9

8. ×10-9

a [cm/s^2]

FIG. 2: Comparison of our predicted radial acceleration
curve (solid black) for the toy baryon exponential profile (41).
The parameters are the same as in Fig. 1. The critical acceler-
ation is a0 = 0.87× 10−8 cm/s2. The MOND prediction (red
dashed curve) with the simple interpolating function (45) and
aMOND
0 ' 1.2 × 10−8 cm/s2 for the same baryonic profile is

found to agree well (within 25%) with our prediction.

same Mb = 1010M� and L = 2 kpc galaxy as before.
All parameters are identical to Fig. 1. The critical accel-
eration a0, which normalizes the phonon-mediated force
is assumed to be

a0 = 0.87× 10−8 cm/s2 , (46)

which, as we will show in Sec. VII, offers an excellent fit
to actual galaxy rotation curves. With Λ = 0.05 meV,
this corresponds to α ' 5.7.

As can be seen from the Figure, we find good agree-
ment with the MOND prediction, to within <∼ 25%.
When fitting galaxy rotation curves in Sec. VII, we will
keep our parameters fixed to the values quoted above.

VII. GALAXY ROTATION CURVES

In this Section we apply the method outlined above
to fit actual galaxy rotation curves. As it would repre-
sent an extremely long exercise to fit a large sample of
galaxy rotation curves, we delay such a systematic analy-
sis to future work, and only analyze here, for illustrative
purposes, the rotation curves of two disk galaxies, char-
acteristic of the LSB and HSB regime. The LSB galaxy
is IC 2574, with total baryonic content Mb ∼ 2×109M�.
The HSB galaxy is UGC 2953 with Mb ∼ 1.6× 1011M�.

Our numerical calculation of the superfluid profile and
phonon-mediated force in Sec. VI was performed for a
spherically symmetric baryon distribution, whereas the
real baryonic distribution is of course far from spherical.
To proceed we adopt a hybrid method. As before, the
acceleration consists of three terms:

~ahybrid = ~aactual
b + ~aDM + ~aphonon . (47)

The different terms are computed as follows:
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FIG. 3: Superfluid DM density profile (solid black curve)
for IC 2574 (Mb ∼ 2 × 109M�). The parameters are m =
1 eV, Λ = 0.05 meV and MDM = 10Mb. The transition radii
(dashed vertical lines) are RNFW = 40 kpc and RT = 49 kpc,
compared to R200 = 57 kpc for this mass ratio. For the
NFW envelope/profile, we have the concentration parameter
c = 5.7. The conventions are the same as in Fig. 1.

1. The baryonic acceleration ~aactual
b is the Newtonian

acceleration computed for the actual non-spherical

baryon density. In other words, ~∇ · ~aactual
b =

−4πGNρ
actual
b (~x).

2. The DM acceleration ~aDM is the result of our
numerical analysis for a simplified spherically-

approximated baryon distribution ρspherical
b .

3. The phonon-mediated acceleration ~aphonon is then
computed using (32) sourced by the actual baryon
distribution ~aactual

b , but with the Newtonian poten-
tial Φ(r) taken from our numerical solution to the
spherically symmetric problem. Interestingly, de-
spite the non-standard form for the phonon equa-
tion (5), for instance compared to its Bekenstein-
Milgrom counterpart [27], we nevertheless found
that aphonon '

√
a0ab to within a couple of percent.

In other words, the phonon force closely matches
the deep-MOND acceleration.

A. LSB galaxy (IC 2574)

Our example of an LSB galaxy is IC 2574 (Mb ∼
2×109M�). The simplified spherical baryon distribution

ρspherical
b , necessary to evaluate the DM density profile,

was modeled as a constant-density core out to 7.85 kpc,
matched to a 1/r2 profile out to 9.22 kpc, such that the
total mass is Mb ' 2× 109M�, and that the slope of the
baryonic rotation curve is roughly reproduced.

Figure 3 shows the DM profile for the fiducial theory
parameters (39) and (40), assuming a constant baryon
fraction MDM = 10Mb. The resulting transition radii
(dashed vertical lines) in this case are

RNFW = 40 kpc ; RT = 49 kpc , (48)

2 4 6 8
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FIG. 4: Predicted rotation curve of IC 2574, evaluated using
the hybrid method outlined in the text. The orange points
are the data from [99] assuming a distance of 3 Mpc [100].
The black curve is for MDM = 10 Mb, and assumes the same
theory parameter values as Fig. 3 and a0 = 0.87×10−8 cm/s2.
The red dashed curve assumes the same parameter values ex-
cept for MDM ' 50 Mb, which is the upper total mass ob-
tained from ΛCDM abundance matching. The gray band cor-
responds to a0 ∈ (0.6, 1.2)× 10−8 cm/s2, while the light blue
band corresponds to Λ ∈ (0.02, 0.1) meV, with MDM = 10 Mb

and other parameters fixed to their fiducial values. The inset
zooms in to show the width of the light blue band.

a difference of 18%. The matching conditions then fix
the concentration radius to rs = 10 kpc. Relative to
R200 ' 57 kpc for this galaxy, (48) implies a relatively
large superfluid core, encompassing ' 55% of the total
DM mass.

In the abundance matching case [91], where MDM '
51 Mb and R200 ' 96 kpc, we instead get RNFW = 47 kpc
and RT = 67 kpc; corresponding to 30% difference. In
this case the superfluid core containing only 33% of the
total DM mass.

Figure 4 compares the predicted rotation curve, calcu-
lated following the hybrid method described above, with
the actual data for IC 2574 [99].

• The black solid curve corresponds to MDM =
10 Mb, with theory parameters set to their fidu-
cial values.

• The red dashed curve (which in this case is barely
distinguishable from the black curve) instead as-
sumes MDM ' 51Mb, which is consistent with
ΛCDM abundance matching [91].

• The shaded bands illustrate the sensitivity of our
result to variations in Λ (light blue band, spanning
0.02 to 0.1 meV) and a0 (gray band, spanning 0.6
to 1.2×10−8 cm/s2), assuming MDM = 10 Mb and
keeping other parameters fixed.

The superfluid model recovers the observed rotation
curve (orange points) rather well over the specified range
of parameters.
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FIG. 5: Superfluid DM density profile (solid black curve) for
UGC 2953 (Mb ' 1.6×1011M�), with MDM = 10Mb. Other
parameters are the same as in Fig. 3. The transition radii
(dashed vertical lines) are RNFW = 76 kpc and RT = 82 kpc,
compared to R200 = 245 kpc for this mass ratio. For the
NFW envelope/profile, we have the concentration parameter
c = 5.4. The conventions are the same as in Fig. 1.

B. HSB galaxy (UGC 2953)

Our example of a HSB galaxy is UGC 2953 (Mb '
1.6 × 1011M�). The spherically-approximated baryon

distribution ρspherical
b in this case was modeled with two

components:

1. A bulge component modeled by

ρ
(0)
bulge

(
Lbulge

r

)α
e
−
(

r
Lbulge

)β
, with α = 1.9, β = 0.8,

ρ
(0)
bulge = 3.1 × 108M�/kpc3 and Lbulge = 2 kpc.

This profile approximates a deprojected Sérsic
profile [101]. The corresponding mass of the bulge
is Mbulge = 3.5× 1010M�.

2. A sphericized exponential disk Σdisk

r e−r/Ldisk , with
scale length Ldisk = 4 kpc and central surface den-
sity Σdisk = 6.25×108M�/kpc2. This profile is cut
off at r = 60 kpc, corresponding to the last mea-
sured data point on the rotation curve. The total
enclosed mass in the disk is Mdisk = 1.25×1011M�.

Figure 5 shows the superfluid DM profile for the fidu-
cial theory parameters (39) and (40), assuming a con-
stant baryon fraction MDM = 10Mb. The resulting tran-
sition radii (dashed vertical lines) are

RNFW = 76 kpc ; RT = 82 kpc , (49)

a difference of only 7%. The matching conditions then
fix the concentration radius to rs = 45 kpc. Relative
to R200 ' 245 kpc for this galaxy, (49) implies a modest
superfluid core, encompassing 22% of the total DM mass.

Figure 6 compares the predicted rotation curve with
data (orange points) obtained from [102]. The parameter
values and conventions are the same as for IC 2574.

10 20 30 40 50 60
r [kpc]

200

250

300

350
v [km/s]

FIG. 6: The rotation curve of UGC 2953, with data (orange
points) taken from [102]. The parameter values and conven-
tions are the same as in Fig. 4. The only difference is the red
dashed curve, which in this case assumes MDM = 65 Mb, as
determined by ΛCDM abundance matching.

The main difference is the red dashed curve, where the
total DM mass in this case is set to the ΛCDM abundance
matching value of [91] MDM = 65 Mb. For this case, we
get RNFW = 95 kpc and RT = 129 kpc, corresponding to
a 26% difference. Therefore, the superfluid core, encom-
passing about 13% of the total DM mass, is significantly
smaller than R200 ' 446 kpc. Interestingly, we see a
slight increase in the rotation curve at large distances.
In contrast with MOND, where the rotation curve be-
comes flat (or slightly decreases, because of the external
field effect [39, 103]), the slight increase in our case is due
to the gravitational force of the superfluid DM itself, on
top of the MONDian phonon-mediated force. A precise
assessment of the rise of observed rotation curves of HSB
galaxies towards the edge of their disk would be a subtle
but clean way to distinguish our model from traditional
MOND.

As a final note, we point out that the BTFR in the
superfluid DM context is thus tight and MONDian by
construction, but that statistical galaxy-galaxy lensing
observations, probing larger distances in the halo, should
in principle not give the same “BTFR”, but rather give
results closer to those expected in ΛCDM, especially if
the stellar to halo mass relation remains the same.

To summarize, the above fiducial galaxies illustrate
that the predicted rotation curves of spiral galaxies in the
superfluid framework closely resemble those of MOND,
both for LSB and HSB galaxies. The main difference is
limited to the rise of HSB galaxy rotation curves towards
the edge of their observed disks.

VIII. GALAXY CLUSTERS

In this Section, we make a few basic observations about
superfluid DM in galaxy clusters [59]. For this purpose
it suffices to revert to the back-of-the-envelope approach
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of Sec. III.
Because of the larger velocity dispersion in galaxy clus-

ters, it is easy to show that for the parameter values of
interest the Bose enhancement factor N given in (15) is
small at distances comparable to R200. Thermalization
cannot be achieved at such large distances, thus galaxy
clusters are mostly in the normal (collisionless) phase.
Nevertheless, as we go towards the central region and
density increases, DM particles can become degenerate
and thermalize efficiently.

Unlike galaxies, clusters are better off, observation-
ally speaking, without a significant superfluid compo-
nent. Taking into account that the thermalized part of
the halo is expected to be highly spherical, it is reason-
able to demand

RT

R200

<∼ 0.1 . (50)

Equivalently, substituting for R200 using (19) we can
write this condition as

RT
<∼ 200

(
M

1015M�

)1/3

kpc . (51)

As in Sec. III, we use the criterion Γ tdyn ∼ 1 as an
estimator for the size of the superfluid core. For such
relatively small RT, however, we cannot assume that the
phase transition happens in the 1/r3 tail of the NFW pro-
file. We must instead use an actual NFW profile. On the
other hand, because the superfluid region is constrained
to be small, we can safely assume that the NFW pro-
file matches the ΛCDM expectation. Specifically, for a
M = 1015M� cluster (corresponding to R200 ' 2 Mpc),
we assume c = 4 as concentration parameter, consistent
with the mass-concentration relation in ΛCDM cosmol-
ogy [104].

Using this NFW density profile, and the corresponding
velocity profile, we calculate Γ tdyn as a function of r,
starting from R200 and moving inwards. The thermal
radius is estimated as in Sec. III to be the location when
Γ tdyn = 1. Substituting the result into (50), we obtain a
lower bound on the DM mass

m & 2.7

(
σ/m

cm2/g

)1/4

eV . (52)

Combined with the upper bound (24) derived from galax-
ies, we obtain the allowed range:

2.7 eV <∼ m

(
σ/m

cm2/g

)−1/4

<∼ 4.2 eV . (53)

Thus with σ/m around the upper limit ' cm2/g from
merging clusters [85–88], m must be in the few eV range.2

2 An important caveat is that (53) assumes a constant σ for sim-
plicity. Allowing for velocity dependence should weaken the up-
per bound, thereby broadening the allowed range.

The fiducial values m = eV and σ/m = 0.01 cm2/g
adopted in fitting the galaxy rotation curves fall within
this range. For instance, they imply RT ' 163 kpc for
the aforementioned cluster, which satisfies (51).

IX. SUPERFLUID EXTERNAL FIELD EFFECT

An important aspect of the MOND phenomenology is
the so-called external field effect (EFE), which is a con-
sequence of the breaking of the strong equivalence prin-
ciple. In GR, the equivalence principle tells us that a
homogeneous acceleration has no physical consequence
— it can be removed by moving to the freely-falling ele-
vator. This is not so in MOND. The internal dynamics of
a subsystem are affected by the presence of an external
acceleration. See [21, 22] for reviews.

For instance, consider a subsystem with low internal
acceleration (aint � a0) in the background of a large ex-
ternal acceleration (aext � a0). Then the EFE implies
a screening effect, resulting in approximately Newtonian
dynamics in the subsystem. Consider then the situa-
tion of an external-field dominated subsystem (aint �
aext) immersed in a MONDian background acceleration
(aext � a0). In this case, the EFE implies that the sub-
system will remain Newtonian, but with an enhanced
Newton’s constant Geff ∼ a0

a GN.
The EFE is not special to MOND but is an example

of a more general phenomenon in scalar field theories
with kinetic interactions known as kinetic screening [40,
72–74]. In P (X) theories, of which (3) is an example,

non-linearities in the scalar field triggered by ~∇φ (the
acceleration) becoming large can result in the suppression
of the scalar field effects and the local recovery of GR.
See [75] for a review.

The main difference in the superfluid context is that
the MONDian effective theory (3), or more precisely its
finite-temperature version (13), is only valid within the
superfluid core. This implies, first of all, that the phonon-
mediated force between two bodies only applies if both
bodies reside within the superfluid region. If one body is
inside while the other is outside, the only force acting on
them is gravity. The same holds true for the EFE — it
is only active within the superfluid core of the host.

Below we apply these observations to various subsys-
tems in galaxies and in galaxy clusters.

A. Satellite galaxies and globular clusters

Based on the above discussion, we expect that within
the superfluid core of the Milky Way, both globular clus-
ters and satellite galaxies are expected to follow MOND
predictions. In particular, the tidal streams of globu-
lar clusters, such as Pal 5, orbiting within the super-
fluid core should be affected by the EFE just as in tradi-
tional MOND [76]. The case of dwarf spheroidal galax-
ies depends on the actual exact size of the superfluid
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core around the Milky Way. With a core of ∼ 60 kpc,
most dwarf spheroidals would sit outside of the core, and
should thus not be affected by the phonons of the su-
perfluid core. In this case, if the dwarf spheroidals are
primordial (hence not tidal dwarfs), the expected DM
masses from abundance matching being very large, they
would mostly be expected to display higher velocities
than predicted in MOND, even without the EFE, as ob-
served [105–108]. Also, globular clusters at large dis-
tances from the Milky Way, such as NGC 2419 [41] or
Pal 14 [77], would be expected to be Newtonian as long
as they do not harbor their own DM halo.

In the case of a larger superfluid core of size ∼ 120 kpc,
dwarfs such as Sextans and Draco would sit well within
the core, and would thus need to be explained by a com-
bination of outliers, binaries, extreme anisotropy, and
out-of-equilibrium dynamics [109, 110]. Globular clusters
such as Pal 14 and NGC 2419 would moreover become
MONDian. Such a large core would have the advantage,
however, to naturally explain the observed velocity dis-
persion of Crater II [111, 112], which is surprisingly low
in the standard context.

The same reasoning applies to tidal dwarf galaxies re-
sulting from the interaction of massive spiral galaxies.
Those are not expected to harbor a significant DM halo,
and thus should be Newtonian [78, 79] as long as they
are located outside the superfluid core of their host.

Finally, tidal stellar streams of satellite galaxies such
as the Sgr dwarf would be expected to display very pecu-
liar features linked to the crossing of the transition radius
between the superfluid and normal phase. Once reach-
ing this transition radius, they could be ejected to much
larger distances and then come back within the superfluid
core on a different orbit. This could leave distinct signa-
tures in tidal streams, such as bifurcations, which would
be unexplainable in any other framework. We leave a
detailed study of tidal streams to future work.

B. Ultra-diffuse galaxies in galaxy clusters

As shown in Sec. VIII, galaxy clusters have a rela-
tively small superfluid core, of order 100 kpc for m =
1 eV. Nevertheless, galaxies within galaxy clusters are
still expected to be surrounded by their own superfluid
cores. This is interesting, for instance, in view of the
recent observations of ultra-diffuse galaxies within clus-
ters [113, 114], which are observed to be extremely DM
dominated [115]. This class of objects poses a problem
for MOND because of the EFE [59, 116]. Indeed, al-
though ultra-diffuse galaxies have small internal acceler-
ations, and thus in isolation should be deeply MONDian,
the large external acceleration from the galaxy cluster
should cause them to be Newtonian, in conflict with ob-
servations.

In the superfluid case, however, there is no EFE in
those galaxies since they are clearly orbiting outside of
the superfluid core of the cluster itself. Moreover, these

galaxies are very extended, meaning that their baryon
fraction must be smaller than the one assumed here for
spiral galaxies, in order for their superfluid core to encom-
pass their large observed size. Hence, these LSB galaxies
would share some characteristics of the HSB galaxy ana-
lyzed above in terms of the mass of their DM halo. This
means that they should slightly deviate from the BTFR,
with velocities slightly above the BTFR expectation.

X. DYNAMICAL FRICTION

A distinctive prediction of the superfluid framework
is the absence of dynamical friction for subsonic motion
within the superfluid region [90, 117]. This may alleviate
a number of minor problems for ΛCDM. For instance, in-
stead of being slowed down by dynamical friction, galac-
tic bars in spiral galaxies should achieve a nearly constant
velocity [118], as favored by observations [9].

It may also offer a natural explanation to the long-
standing puzzle of why the five globular clusters orbiting
Fornax have not merged to the center to form a stellar
nucleus. Indeed, in the context of CDM, dynamical fric-
tion should have caused the globular clusters to rapidly
fall towards the center of Fornax [119, 120]. In reality
Fornax shows no sign of such mergers. See [121, 122]
for possible explanations within the classical DM parti-
cles context. In our case, the globular clusters should
be happily swimming within the superfluid core without
dissipation.

As another speculation, the suppression of dynami-
cal friction might shed light on the luminous red galaxy
(LRG) two-point correlation function [123], which re-
mains surprisingly featureless (ξ(r) ∼ 1/r2) down to
small distances where one would expect dynamical fric-
tion and mergers to show up. This observation in fact
implies an upper bound for the LRG-LRG merger rate
of <∼ 0.6 × 104 Gyr−1/Gpc3 [123]. The suppression of
dynamical friction within the superfluid cores of the LRG
may partially explain these observations.

Two other speculations related to reduced dynamical
friction are that it could have interesting consequences on
the long term evolution of Hickson compact groups [124],
provided that their cores are large enough, as well as on
the possible history of the Local Group, allowing for a
past Milky Way-Andromeda encounter [125, 126]. The
latter may require a large superfluid core for the Milky
Way. By reducing (39) down to 0.85 eV, which saturates
the bound acquired for clusters, one can increase the su-
perfluid core radius to ∼ 100 kpc. One could push it
further to even greater values by violating (52); however
the scattering cross section does not have to be a con-
stant, in fact the mild velocity dependence would suffice
to push the core radius well-above 100 kpc for a HSB
galaxy, while simultaneously satisfying (52) in clusters.
Moreover, as we already mentioned, if we set the total
DM mass of HSB to the ΛCDM abundance matching
value then the superfluid core radius is already ∼ 100 kpc
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without even altering (39).
In ongoing work, we are currently analyzing quantita-

tively the effect of dynamical friction in the superfluid
context [127].

XI. CONCLUSION

The theory of DM superfluidity proposed in [55, 56] has
some commonalities with SIDM and fuzzy DM [90, 128].
All three proposals achieve a cored DM profile in cen-
tral regions of galaxies, either through interactions or
quantum effects, to alleviate existing observational puz-
zles/tensions with ΛCDM on galactic scales. In all three
proposals, the DM outside the core is in approximately
collisionless form and assumes an NFW profile. Like the
quantum pressure of fuzzy DM, the classical pressure of
superfluid DM results in lower central densities and im-
plies a minimal halo mass necessary for collapse and viri-
alization.

The main difference is that DM superfluidity achieves a
much larger core, encompassing the entire range of scales
probed by rotation curve observations. Moreover, the su-
perfluid collective excitations (phonons) within the core
mediate a long-range force within the core, thereby affect-
ing the dynamics of orbiting baryons and reproducing the
MOND phenomenology. Unlike most attempts to mod-
ify gravity, there is no fundamental additional long-range
force in the model. Instead the phonon-mediated force is
an emergent phenomenon which requires the coherence
of the underlying superfluid substrate.

This has important implications for the phenomenolog-
ical viability of the scenario vis-à-vis solar system tests
of gravity. Although typical accelerations in the solar
system are large compared to a0, post-Newtonian tests
are sensitive to small corrections to Newtonian gravity
and require further suppression of the new force at short
scales. The superfluid framework offers an elegant expla-
nation. As argued in [55, 56], the large phonon gradient
induced by an individual star results in a breakdown of
superfluidity in its vicinity. Coherence is lost within the
solar system. Individual DM particles still interact with
baryons, but no long-range force can be mediated.

In this paper, using a combination of analytical and nu-
merical arguments, we developed a number of novel dis-
tinctive predictions of the superfluid framework. For this
purpose we derived an approximate finite-temperature
density profile, consisting of a superfluid core, with ap-
proximately homogeneous density, surrounded by an en-
velope of normal-phase DM particles following an NFW
profile. In this context, we constrained the parameters of
the theory from various observational constraints. In par-
ticular, we constrained the mass m of the particles such
that the superfluid core can be large enough in galaxies,
but small enough in clusters. We constrained the combi-
nation Λm3 such that massive enough halos could form.

An important difference of the present analysis com-
pared to the original papers [55, 56] is that the superfluid

core makes up only a modest fraction of the entire halo.
It is large enough to encompass the observed rotation
curves, since the phonon force is critical for reproducing
MOND. But it is small enough that most of the mass lies
in the approximately collisionless envelope, resulting in
triaxial halos near the virial radius.

Since, as we showed, keeping unaltered the relation be-
tween stellar mass and halo mass with respect to ΛCDM
abundance matching leads to acceptable rotation curves,
galaxy-galaxy lensing statistics should be mostly unal-
tered too. In particular, contrary to MOND, one does not
expect a fine relation rE ∝

√
Mb between the baryonic

mass and the weak lensing signal. Also, both photons
and gravitons travel at the speed of light along the same
geodesics, consistent with the tight constraint recently
established by the neutron star merger GW170817.

The main result of this paper is the explicit rota-
tion curve fitting of two disk galaxies: a representative
LSB galaxy IC 2574, and a representative HSB galaxy
UGC 2953. The superfluid model offers an excellent fit in
both cases. This is particularly remarkable for IC 2574,
which is notoriously difficult to recover in ΛCDM cos-
mology with standard feedback recipes [25]. The pre-
dicted rotation curve for IC 2574 is phonon-dominated
and therefore closely matches the MOND prediction.

The rotation curve for UGC 2953 shows a small but
potentially interesting distinguishing feature from tradi-
tional MOND. In contrast with MOND, where the rota-
tion curve becomes flat (or slightly decreases, because of
the EFE [39, 103]), we found a slight rise in the asymp-
totic velocity. This is due the gravitational pull of the
superfluid DM mass itself, which adds to the phonon ac-
celeration. A precise assessment of the rise of observed
rotation curves of HSB galaxies towards the edge of their
disk would be a subtle but clean way to distinguish our
model from traditional MOND.

We also explored the observational consequences, al-
beit at a more qualitative level, for other systems, such
as galaxy clusters, dwarf satellites, globular clusters and
ultra-diffuse galaxies in clusters. A key difference com-
pared to traditional MOND is that the MONDian force in
our case is limited to the superfluid region. Both bodies
must be in the superfluid core to experience a long-range
phonon force.

Similarly, the EFE (or kinetic screening effect) of
MONDian phenomenology only applies within the su-
perfluid core. As a result, globular clusters and satel-
lite galaxies within the superfluid core of the Milky Way
should follow MOND predictions. But globular clusters
at large distances from the Milky Way should be Newto-
nian, assuming they do not harbor their own DM halo,
while dwarf spheroidals outside of the core might dis-
play larger velocities than expected from the BTFR if
the usual abundance matching recipes apply. On the
other hand, tidal dwarf galaxies resulting from the inter-
action of massive spiral galaxies should be expected to be
devoid of DM and purely Newtonian if they sit outside
of the core of their merged host. Finally, ultra-diffuse
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galaxies in galaxy clusters are immune to the EFE in our
case, since they are clearly orbiting outside of the (small)
superfluid core of the cluster itself. All these predictions
are summarized in Table I. They will of course have to be
backed by numerical simulations of superfluid DM, which
are currently underway [129].
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