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AModel Reduction Technique in Space
and Time for Fatigue Simulation

Mainak Bhattacharyya, Amélie Fau, Udo Nackenhorst, David Néron
and Pierre Ladevèze

Abstract The simulation of mechanical responses of structures subjected to cyclic
loadings for a large number of cycles remains a challenge. The goal herein is to
develop an innovative computational scheme for fatigue computations involving non-
linear mechanical behaviour of materials, described by internal variables. The focus
is on the Large Time Increment (LATIN) method coupled with a model reduction
technique, the Proper Generalized Decomposition (PGD). Moreover, a multi-time
scale approach is proposed for the simulation of fatigue involving large number
of cycles. The quantities of interest are calculated only at particular pre-defined
cycles called the “nodal cycles” and a suitable interpolation is used to estimate their
evolution at the intermediate cycles. The proposed framework is exemplified for a
structure subjected to cyclic loading, where damage is considered to be isotropic
and micro-defect closure effects are taken into account. The combination of these
techniques reduce the numerical cost drastically and allows to create virtual S-N
curves for large number of cycles.
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1 Introduction

The phenomenon of fatigue has been of great importance in the design of mechanical
components and civil structures. Fatigue in the most generic case can be defined as
the change in properties of a structure subjected to repetitive loading. The focus
here is on mechanical fatigue involving fluctuations in externally applied load with
respect to time. The nature of the loading however can be completely periodic, non-
periodic, or random.Whatever the nature of fatiguemaybe, the failure of the structure
is composed of three stages [1]:

1. nucleation and growth of micro-voids into a macrocrack,
2. stable propagation of the macro-crack,
3. unstable crack propagation that leads to complete failure.

There are threemain engineering approaches to ensure the safety of a structure [1].
The “safe-life” approach demands that the structure remains safe under a prescribed
load for a certain number of cycles. The “fail-safe” approach requires that a structure
is able to withstand damage without a catastrophic failure of the whole structure.
The “damage tolerance” approach investigates the ability of a structure to survive
with damage before reparation. Whatever the engineering goal, researchers have to
represent the complex phenomena of cyclic fatigue or random fatigue with pertinent
and flexible models.

1.1 Different Modelling Approaches for Fatigue Analysis

Historical approaches for fatigue analysis are based on the exploitation of some
empirical curves introduced by Wöhler [2]. The stress range is plotted against the
experimentally observed number of surviving cycles giving rise to S-N curves. This
may be a straightforward tool for “safe-life” analysis if a perfect periodic loading is
consideredwith the samemean stress as the oneof theS-Ncurve. From the asymptotic
behaviour of the curve, an endurance limit, below which the material will never fail,
may be defined. For loading inducing appreciable plastic deformation e.g. low cycle
fatigue, it is better to introduce a strain-life approach as proposed by Coffin [3] and
Manson [4] for metallic materials. Similar to S-N curves that are used for stress-life
approaches, εa-N or �ε-N curves are generally used for strain-life approaches [5],
where εa and �ε are the total strain amplitude and total strain range respectively.
The empirical method may be extended to different sophisticated cases e.g.:

• taking into account the mean stress effect on fatigue as proposed by Gerber [6],
Goodman [7] and Soderberg [8];

• characterising the fatigue life of a structure when subjected to blocks of cyclic
stresses of different amplitudes by using a cumulative damage rule coupled with
S-N curve. The accumulation damage rule may be linear as the Palmgren-Miner
damage rule [9, 10], or non-linear accumulation rule as proposed by Marco and
Starkey [11];
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• for notched members using the Neuber rule [12], which takes into account the
stress concentration factor and the fatigue notch factor;

• formultiaxial stresses, an effective stress based for example on vonMises criterion,
Crossland criterion [13], Sines criterion [14], or Dang Van criterion [15] is used
together with the Basquin relation. An effective strain or effective plastic strain
may either be estimated according to themaximum shear strain theory or according
to the distortional energy theory;

• for random loading, by cycle counting approach the random load history is rep-
resenting as a discrete number of equivalent cycles, for example using rainflow
counting.

The aforementioned methods, are phenomenological in nature and deal with the
usage of empirical relations that are based on experimental findings. For example,
they do not offer the flexibility to investigate the order in which different levels
of load are applied to the structure. To overcome this limitation, the changes in a
given structure can be described by internal variables using continuum mechanics
approaches. Damage, defined as an internal variable, is used to quantify the initiation
phase of a macro-crack that reduces the load carrying capacity of the material [5].
Continuum damage mechanics to predict fatigue life was introduced by Lemaitre
and Lesne [16] where a non-linear continuous fatigue damage model was used to
describe the different phases of the deterioration process. Various modifications and
developments have been done over the years for the modelling of fatigue damage to
incorporate the physical phenomena as far as possible. For instance, when the load
is large, the structure undergoes appreciable plastic deformation, leading to a fatigue
life less than 105 cycles, which is referred as low-cycle or oligocyclic fatigue. On
the contrary, under high-cycle fatigue (HCF), the loading is much less than the yield
stress. Therefore, nomacro-plastic deformation is involved. The structuremayhandle
a very large number of cycles. The two-scale damage model [17] is an important
development for modelling HCF, and represents the macro-elastic behavior while
the damage is evaluated only at the micro-scale. Different micromechanical models
may be proposed to represent the micro-void growth [18].

To investigatemacro-crack propagation, the premise of fracturemechanics is used
knowing the pre-existence of a crack within the material. The most traditional law
to describe the crack growth is the Paris-Erdogan law [19]. More information on
classical techniques and recent developments on fatigue modelling and simulations
can be found in the review articles [20, 21].

Here, a continuum damage approach is used for modelling the fatigue behaviour.
This allows to consider the chronology of the different cycles or inertial effects due to
high-frequency cycles. However, this approach may lead to very expensive compu-
tational cost. Developments have been done in the light of new and robust numerical
techniques that reduce CPU cost. For example, this problem may be overcome by
using model order reduction techniques.
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1.2 Model Reduction Technique for Fatigue Computation

Model order reduction is a family of numerical strategies which has shown efficiency
for many large size mechanical problems such as parametric studies or real-time
computations [22]. The solution is approximated by solving the Galerkin problem
within a reduced-order basis, whose dimension is much smaller than the size of the
original high-dimensional model. Proper Orthogonal Decomposition (POD) as pro-
posed e.g. in [23] is based on a training stage. From the solution of the full-order
problem at some particular time instants and/or parameter values arbitrarily chosen,
a reduced-order basis is built as the truncation of a singular value decomposition
[24]. In Reduced-Basis approach a greedy algorithm is employed to define the most
relevant calculations within the parametric space to optimise the enrichment of the
reduced-order basis [25]. Using Proper GeneralisedDecomposition (PGD), the prob-
lem is also solved in a relevant reduced-order basis, but the basis is defined on-the-fly
by a greedy algorithm [26–28].

As computations for continuum damage problems may face strain localisation,
numerical response is highly sensible to any modification of the model. Therefore
damage computational strategies using model order reduction are challenging and
may be hazardous. Controlling the accuracy of POD computations with circum-
spection is recommended and adaptive schemes such as A Priori Hyper Reduction
Method [29] or POD coupled with Newton-Krylov algorithms [30] are preferred.
Delamination has been modelled by cohesive zone and PGD by Metoui et al. [31],
PGD-based multi-scale computations for rate-dependent damage model have been
recently proposed by El Halabi et al. [32].

The LATINmethod [26] in its classical sense is employed such that an approxima-
tion of the solution on the whole time-space domain is defined at every iteration, and
the gobal equilibrium is tackled as a linearised problem and the non-linear material
behaviours are considered separately. Therefore, this approach offers a convenient
framework to include model-order reduction techniques even for non-linear compu-
tations. It has been developed for solving plasticity and visco-plasticity problems and
shown a drastic decrease of the computational cost compared to a classical approach
[33–35]. Here an extended version is used for (visco-)plastic problems with damage
that incorporates micro-defects closure effects [36].

For fatigue computation applied to a large number of cycles, advanced numerical
strategies may be required to work around the computational cost due to the large
time domain.

1.3 Efficient Time Schemes for Fatigue Computations

For high or very high cycle fatigue or for combined cycle fatigue in which the load is
a combination of large amplitude low frequency and small amplitude high frequency
loads [1], the computational cost of the time integration scheme may be extremely
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high. The computational cost may be decreased by benefiting from the cyclic loading
to not compute explicitly the full number of cycles.

The jump cycle procedure is a very robust technique [5] which works around full
blocks of cycles. After computing in details a set of cycles, they are used to establish
a trend line and extrapolate the quantities of interest for further evolution. Then,
the extrapolated state is used as initial condition for a further computation such that
the whole time domain is spanned. A control function has been proposed such that
the lengths of cycle jumps are monitored to ensure an accurate approximation [37].
This method is most suitable for quasi-linear systems. However the control function
allows to also consider non-linear behaviour and cycles jumps are automatically
shortened or even cancelled [38, 39].

For combined cycle fatigue, time homogenisation techniques are based on a hy-
pothesis of time scale separation between a large time scale associated with the
low-frequency load and a small time scale associated with the high-frequency load.
The ratio between both of them is assumed to be small enough such that the two
scales can be considered as independent, and the behaviour due to the high fre-
quency is homogenised for a time discretisation scheme consistently defined for the
low-frequency load. Developed initially for plasticity and quasi-static computations
[40], this method has been extended to damage and dynamic effects [41].

In the framework of LATIN method, as the whole time domain is available at
each iteration, a two-time scale in a “finite element like” discretisation of the time
intervals has been proposed for visco-plasticity problems [26, 42]. Some cycles of
interest, called “time nodes” or “nodal cycles”, are computed in the classical time
scheme. The evolution of the quantities of interest in the time slot between two time
nodes is interpolated using shape functions as for space finite-element method.

As empirical methods are based on expensive and cumbersome experiment, the
goal of this project is to provide virtual experiments based on continuum mechanics
approach. To overcome the computational cost due to these models, a sophisticated
model order reduction scheme is proposed which reduces drastically the cost and
allows to compute virtual test even for a very large number of cycles. The proposed
numerical framework is flexible concerning the damagemodel, the global framework
and equations considered are summarised in Sect. 2. Then, the model order reduction
based on the separation of variables is introduced in Sect. 3. Finally, the numerical
treatment of the time problem, which allows to reduce the numerical cost, is detailed
in Sect. 4.

2 Continuum Damage Mechanics Approach

The focus herein is on the methods that deal in quantifying the change in material
properties due to fatigue loading using internal damage variable in a continuum
mechanics framework.

A continuous reference structure for any quasi-static analysis can be considered
in a spatial domain �. For simplistic case, the evolution of the state of the structure
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can be considered to be isothermal within time domain [0, T ]. Such a reference
structure in general is subjected to prescribed body forces f

d
, to traction forces Fd

over a part ∂2� of the boundary ∂�, and to prescribed displacements ud over the
complementary part ∂1�. Thereby the compatibility of the applied forces with the
internal stress is given by the equilibrium equation which in a weak form becomes
the static admissibility condition, which is defined such that ∀u∗ ∈ U∗

∫

[0,T ]×�

σ : ε
(
u∗) d� dt =

∫

[0,T ]×�

f
d

· u∗ d� dt +
∫

[0,T ]× ∂2�

Fd · u∗ dS dt

(1)
with the stress tensor σ being statically admissible, and U∗ being the homogeneous
vector space associated to the space U of kinematically admissible field u. Also,
the compatibility of the prescribed displacement with the generated strain within
the structure is given by the strain-displacement relationship which in weak form
becomes the kinematic admissibility condition, which is defined such that ∀σ ∗ ∈ F∗

∫

[0,T ]×�

σ ∗ : ε d� dt =
∫

[0,T ]× ∂1�

σ ∗n · ud dS dt (2)

with ε being the total strain tensor which is kinematically admissible and can be split
into an elastic part εe and a plastic part ε p additively.F∗ is the homogeneous vector
space associated to the space F of statically admissible field σ .

The mechanical properties of the materials are described by a set of constitu-
tive relations. The equations of state for elasto-(visco)plastic materials subjected to
unilateral damage are obtained from a free energy function, and are given as [5]

εei j = 1 + ν

E

[ 〈σ 〉+i j
1 − D

+ 〈σ 〉−i j
1 − hD

]
− ν

E

[ 〈σkk〉
1 − D

+ 〈−σkk〉
1 − hD

]
δi j , (3a)

βi j = Cαi j , (3b)

R = g′ (r) , (3c)

Y = 1 + ν

2E

[ 〈σ 〉+i j 〈σ 〉+i j
(1 − D)2

+ h
〈σ 〉−i j 〈σ 〉−i j
(1 − hD)2

]
− ν

2E

[ 〈σkk〉2
(1 − D)2

+ h
〈−σkk〉2

(1 − hD)2

]
.

(3d)

Here, Eq. (3a) represents the elastic state law, which because of damage is non-
linear in nature, as it is not described by a linear operator, with E and ν being
the modulus of elasticity and Poisson ratio respectively. D is the isotropic damage
variable and h is the closure parameter representing micro-defects closure effect,
which indicates that the effect of damage is more predominant in tension than in
compression. During compression, some of the micro-defects are closed, thereby
the effective area is increased, the material regains some of the stiffness. This can be
represented by the effective modulus of elasticity during tension Ẽ+, which is given
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by Ẽ+ = E (1 − D), and by the effective elastic modulus during compression Ẽ−
given by Ẽ− = E (1 − hD). The closure parameter h has values between 0 (com-
plete stiffness recovery) and 1 (no stiffness recovery). Equations (3b) and (3c) give
the relationships between the internal variables αi j and r describing kinematic and
isotropic hardening of the material and their corresponding thermodynamic forces
βi j and R, by means of material parameter C for kinematic hardening and through
a function g′ for isotropic hardening. Equation (3d) defines the strain energy release
rate Y , which is the thermodynamic force corresponding to damage and is non-linear
with respect to the stress tensor and the damage variable.

The evolution equations obtained from potential functions are written as

ε̇
p
i j = λ̇p

∂F

∂σi j
, (4a)

α̇i j = λ̇p
∂F

∂βi j
, (4b)

ṙ = λ̇p
∂F

∂R
, (4c)

Ḋ = λ̇D
∂FD

∂Y
. (4d)

This is the normality rule for standard materials. Equation (4a) gives the evolution of
the plastic strain with respect to time, with λ̇p being the plastic multiplier which is
measured from the consistency condition, and F is a potential which can be obtained
from experimental findings. This function has to be convex, non-negative and should
pass through the origin. ∂F

∂σi j
is the flow vector indicating plastic flow is normal to

the potential function F . This potential F , for associative plasticity is considered to
be the yield function. Equations (4b) and (4c) similarly, give the evolution of the
internal variables for kinematic and isotropic hardening respectively. Equation (4d)
describes the evolution of damage with respect to time, where λ̇D is the damage
multiplier and FD is a potential which is also identified from experimental findings.
All the conditions required to formulate F must also be taken into account for FD .
These evolution equations, essentially, take into account the history dependency of
the material.

The initiation of the macro-crack is indicated by the critical damage Dc and the
material is assumed to fail when Dc is reached.

3 LATIN-Based Model Order Reduction Approach
for Damage Computation

The LATIN approach tackles the set of equations on the whole time-space domain
at every iteration. The equations are considered iteratively, namely the global equi-
librium of the structure on one hand, the non-linear elastic law and the non-linear
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evolution equations on another hand. Model reduction is used in the sense of separa-
tion of time and space variables. LATIN-PGD approach allows for visco-plasticity
case to define both quantities of interest which are stress and plastic strain us-
ing a unique time basis. Including damage, a new quantity of interest is added,
which is the elastic strain, the total set of the solution field can be represented
as s = {

ε̇ p, εe, Ẋ, Ḋ, σ , Z, Y
}
, where X represents the set of hardening variables

(kinematic and isotropic) and Z is the conjugate variable of X . The non-linear state
law could be included in the global stage and then the separation of variables tack-
led by using different time functions for stress and strain. Otherwise, as presented
here, the non-linearity due to the state law can be tackled in the local stage, and
the stress can be decoupled in two parts, one defined from the local stage and the
other one which can be written as a time-space decomposition form using the same
time functions as the plastic strain one. The algorithm is only briefly overviewed in
this contribution. Detailed explanation of every step and details about the numerical
implementation may be found in [36].

The algorithm is initialised by solving the problem considering the boundary
conditions of the exact problem but assuming that the material behaviour is perfectly
elastic for the whole loading conditions. Then, plastic and damage corrections are
added to the elastic solution at each subsequent iteration. The set of equations is
divided in two sub-groups, one comprising the global and linear equations whereas
the other one comprises the local and non-linear ones. One LATIN iteration consists
of two parts:

• the global and linear problem is solved in the space Ad which belongs to the
manifold of the admissibility conditions Eqs. (1) and (2), the linear state laws
Eqs. (3b) and (3c), and the non-linear state law for damage Eq. (3d);

• the local and non-linear problem is solved in the space Γ which belongs to the
manifold of the evolution equations Eq. (4) and the elastic state law Eq. (3a) which
was not linearisable due to damage.

It can be noted that Eq. (3d) although being non-linear is tackled with the group of
linear equations as a post-processing step from the knowledge of the stress tensor
and the damage variable at the end of each iteration. The exact solution sex of the
problem is defined as the intersection of the two manifolds by

sex ∈ Ad ∩ Γ . (5)

The approximation of the solution is looked alternatively in the two manifolds until
reaching convergence. From the knowledge of one step, the approximation in the
following manifold is looked for by using certain linear operators called search
direction operators.

8



3.1 Local Stage

In the local stage, evolution equations for internal variables, which are local in space
and non-linear, are solved. The elastic state law, being non-linear, is also tackled in
this stage. From the solution set si ∈ Ad at LATIN iteration i , the approximation
ŝi+1/2 ∈ Γ is estimated such that the local search directions are satisfied

⎡
⎢⎢⎢⎢⎣

ˆ̇ε p
i+1/2 − ε̇

p
i

−
( ˆ̇X i+1/2 − Ẋ i

)
ε̂
e
i+1/2 − εe

iˆ̇Di+1/2 − Ḋi

⎤
⎥⎥⎥⎥⎦ + B+

⎡
⎢⎢⎣

σ̂ i+1/2 − σ i

Ẑi+1/2 − Zi

σ̂ i+1/2 − σ i

Ŷi+1/2 − Yi

⎤
⎥⎥⎦ = 0. (6)

Here,B+ is the direction of ascent. Following [26], the search direction is considered
to be vertical such that (

B+)−1 = 0. (7)

The solution of the search direction equation (Eq. 6) along with the evolution
equations (Eq.4) and the non-linear elastic law (Eq.3a) constitute ŝi+1/2. From the
approximation at the local stage ŝi+1/2, the solution set si+1 is estimated in the global
stage.

3.2 Global Stage Including Model Order Reduction

In the global stage, the solution set si+1 ∈ Ad satisfies the state laws, the admissibility
conditions and the descent search directions

⎡
⎢⎣

ε̇
p
i+1 − ˆ̇ε p

i+1/2

−
(
Ẋ i+1 − ˆ̇X i+1/2

)
εe
i+1 − ε̂

e
i+1/2

⎤
⎥⎦ − B−

⎡
⎣ σ i+1 − σ̂ i+1/2

Zi+1 − Ẑi+1/2

σ i+1 − σ̂ i+1/2

⎤
⎦ = 0, (8a)

[
Ḋi+1 − ˆ̇Di+1/2

]
− b− [

Yi − Ŷi+1/2

] = 0, (8b)

where B− =
[
H− 0
0 C−1

]
. The operator H− belongs to the tangent space associated

with the solution set ŝi+1/2 in the manifold Γ , and C is the undamaged Hooke
tensor. Considering the damage variable is not updated in the linear stage, the search
direction operator b− is defined as zero.

The first step being the calculation of the hardening variables, the state equations
are combined in the form

Zi+1 = �X i+1, (9)
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where� is a linear operator containing the sate law parameters. The search direction
equation for hardening variables Eq. (8a) combined with the state equation (Eq. 9)
can be written as

− (Ẋ i+1 − ˆ̇X i+1/2) = HZ (�X i+1 − Ẑi+1/2), (10)

with HZ being the decoupled part of H− that relates the internal variables with the
corresponding associated variables. The hardening variables are then obtained by
solving Eq. (8a) in time at each Gauss point.

The difficulty to calculate the stresses and strains, compared to former works
with the LATIN method, is that the elastic state law Eq. (3a) is non-linear due to
the presence of damage, leading to solve a non-linear problem at the global stage.
This point is particularly tricky as it prevents the introduction of a model reduction
strategy at this stage. The idea proposed herein is to transform this non-linear problem
into separate linear equations by decomposing stress and total strain into two parts
depending on plastic deformation and damage respectively.

The quantities of interest at this point σ i+1, εe
i+1 and ε̇

p
i+1 are represented in a

corrective form at iteration i + 1 as

�σ i+1 = σ i+1 − σ i , �εe
i+1 = εe

i+1 − εe
i and �ε̇

p
i+1 = ε̇

p
i+1 − ε̇

p
i . (11)

The stress and total strain corrections in the global stage at iteration i + 1 are sep-
arated into parts depending on plastic deformation (�σ ′

i+1, �ε′
i+1) and on damage

(�σ̃ i+1, �ε̃i+1),

�σ i+1 = �σ ′
i+1 + �σ̃ i+1, (12a)

�εi+1 = �ε′
i+1 + �ε̃i+1. (12b)

From these separations and the search direction equation along with the additive
strain decomposition relation, it can be established that

�σ ′
i+1 + �σ̃ i+1 = C

(
�ε′

i+1 − �ε
p
i+1

) + C
(
�ε̃i+1 − �εR

i+1

)
, (13)

where �εR
i+1 can be interpreted as a residual strain obtained from non-linear state

law at iteration i + 1. �σ̃ i+1 and �ε̃i+1 are thereby obtained from the equilibrium
equation, directly.

On the other hand, if only the plastic part is considered, the search direction can
be re-written as

�ε̇
p
i+1 − Hσ�σ ′

i+1 + �̄i+1 = 0. (14)

with �̄i+1 is a plastic corrective term from the local stage and Hσ represents the
decoupled part of H− that relates stress to plastic strain rate.

The correction terms linked with the plastic behaviour �σ ′
i+1 and �ε′

i+1 are then
written in a separable form using Proper Generalised Decomposition.
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3.2.1 Separation of Variables

The Proper Generalised Decomposition (PGD) is a flexible model order reduction
technique, which is not based on a training stage. As at every LATIN iteration, the
quantities of interest are approximated on the whole space-time domain by a lin-
ear form of the mechanical equilibrium, the usage of PGD coupled with LATIN is
convenient. As any function dependent on several independent variables can be ap-
proximated as an infinite sum of products of one-variable functions [26, 43], PGD
looks for an approximation of any quantity of interest as a finite sum of products of
low-dimensional functions defined by a greedy algorithm. Therefore, this approxi-
mation includes an error due to the truncation of the series of separable forms. Here
the plastic strain and stress part due to plastic deformation dependent on space and
time variables are approximated as

ε̇ p
(
x, t

) =
μ∑
j=1

λ̇ j (t) ε̄
p
j

(
x
)
,

σ ′ (x, t) =
μ∑
j=1

λ j (t)Cε̄
p
j

(
x
)
,

(15)

where μ is the number of pairs involved in the decomposition, and C is a linear
operator which relates the space functions of stress and plastic strain.

3.2.2 Updating Stage

The greedy algorithm is such that after defining on-the-fly a first pair of space and
time functions, at every iteration a first decomposition is looked using the previously
defined space functions and updating the time functions. This step is equivalent to a
Proper Orthogonal Decomposition on the current space basis. Considering μ space-
time modes have been generated to approximate the stress and plastic strain rate at
iteration i , the corrections of stress and the plastic strain rate at iteration i + 1 are
given as

�ε̇
p
i+1

(
x, t

) =
μ∑
j=1

�λ̇ j (t) ε̄
p
j

(
x
)
,

�σ ′
i+1

(
x, t

) =
μ∑
j=1

�λ j (t)Cε̄
p
j

(
x
)
.

(16)

The updates of the time functions are calculated byminimising amechanical residual
which is defined as the norm of the search direction operator, i.e.
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{
�λ j

}μ

j=1 = argmin
{�λi }μj=1

∥∥∥∥∥∥
μ∑
j=1

�λ̇ j ε̄
p
j − Hσ

μ∑
j=1

�λ jCε̄
p
j + �̄

∥∥∥∥∥∥
H−1

σ

. (17)

Then, if the improvement of the approximation is not efficient enough, a new pair
is added to the decomposition.

3.2.3 Enrichment of Space-Time Bases

The objective of the enrichment phase is to add a new space-time pair. The corrections
of stress and plastic strain for this case are written as

�ε̇
p
i+1

(
x, t

) = λ̇μ+1 (t) ε̄
p
μ+1

(
x
)
,

�σ ′
i+1

(
x, t

) = λμ+1 (t)Cε̄
p
μ+1

(
x
)
,

(18)

with the intention of calculating the separable quantities λ̇μ+1 and ε̄
p
μ+1.

A hybrid strategy is used, the space function ε̄
p
μ+1 is calculated from a Galerkin

formulation, by using the kinematic admissibility condition (Eq. 2) such that ∀σ ∗
which is statically admissible to zero

∫

[0,T ]× �

�ε̇′ : σ ∗ d� dt = 0 (19)

and the static admissibility condition (Eq. 1) such that ∀u∗ which is kinematically
admissible to zero ∫

[0,T ]× �

�σ ′
i+1 : ε

(
u∗) d� dt = 0 (20)

with
�σ ′

i+1 = C
(
�ε′

i+1 − �ε
p
i+1

)
. (21)

Subsequently the time function λμ+1 is solved similarly as in the update stage by
minimising a mechanical residual

λμ+1 = argmin
λμ+1

∥∥λ̇μ+1ε̄
p
μ+1 − Hσ λμ+1Cε̄

p
μ+1 + �̄

∥∥
H−1

σ

. (22)

This fixed point iteration between space and time problems converges quickly.
Once the stress tensor is known at iteration i + 1, the strain energy release rate

for damage is calculated from Eq. (3d).
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3.3 Numerical Example of a Plate Under Cyclic Loading

The proposed usage of LATIN-PGD for damage problem is exemplified for a two-
dimensional problem as depicted in Fig. 1. Material considered is a Cr-Mo steel at
580 ◦C [5]. The variation in material property is represented by the yield stress, with
σy = 80 MPa at x = 0, ∀y ∈ [0,W ] and σy = 85 MPa at x = L , ∀y ∈ [0,W ] and
with a linear variation along the length of the structure.

The distribution of the damage variable D at t = T is depicted in Fig. 2. It
shows localisation,withmaximumnear (x, y) = (L ,W ) andminimumnear (x, y) =
(L , 0).

For fatigue computation, calculation of the time dependent quantities is expensive.
Therefore a peculiar effort is done to reduce the cost of the time-computation.

Fig. 1 Aplate under tractionwith linearly distributed cyclic loading and variablematerial properties

Fig. 2 Damage evolution for the weakest part of the plate and damage distribution at t = T in the
plate under linearly distributed cyclic loading
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4 A Two-Time Scale Approach

In the case of a large number of cycles, the previous strategy can be enhanced by
adding a multi-time scale feature. To describe the time dependent quantities defined
on the whole time domain [0, T ], two time scales are introduced,

• a long time discretisation θ defined on the interval [0, T ] that represents the slow
evolution along the cycles,

• a short time discretisation τ describing the rapid evolution within a cycle.

The idea is to introduce a finite element like description of the temporal quantities
which are calculated only at certain chosen cycles called the “nodal cycles” (Fig. 3).
For any time element

[
θm, θm+1

]
once the nodal cycles m and m + 1 are known a

linear one-dimensional interpolation formula can be used [42]. If χ represents any
temporal quantity over time element

[
θm, θm+1

]
, then

χ (t) = θm+1 − θ

θm+1 − θm
χm (τ ) + θ − θm

θm+1 − θm
χm+1 (τ ) , t ∈ [

θm, θm+1 + �T
]
, (23)

whereχm (τ ) andχm+1 (τ ) are defined∀τ ∈ [θm, θm + �T ] and ∀τ ∈ [
θm+1, θm+1 + �T

]
respectively.

The first few cycles are computed classically. After that the nodal cycles are calcu-
lated progressively. The last classically computed cycle defined over [θ0, θ0 + �T ]
becomes the nodal cycle 0 and thereby the idea is to calculate nodal cycle 1, defined
over [θ1, θ1 + �T ]. Thereafter knowing nodal cycle 1, nodal cycle 2 is calculated.
This computation is continued till the last nodal cycle is calculated.

Fig. 3 Schematic of the two-time scale indicating the nodal cycles
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…4.1 Initialisation

The initialisation of the quantities of interest at nodal cyclem, knowing them at nodal
cycle m − 1 depends on the quantities that are being initialised. The quantities that
are cyclic, namely the stress, elastic strain as well as the kinematic variables, are
duplicated from the nodal cycle m − 1 and a transformation is considered such that
they are periodic, preserving the continuity from cycle m − 1. The time functions
representing the plastic strain

{
λ j

}μ

j=1 are also duplicated in a similar manner. The
quantities that are non-cyclic and non-decreasing, namely damage and isotropic
variables, are initialised as constant over nodal cycle m, with the magnitude being
that obtained at θm−1 + �T . The strain energy release rate for damage is calculated
from the damage and the stress tensor. Thereafter the solution field over the nodal
cycle m is calculated iteratively using the two-step algorithm till a convergence is
obtained.

4.2 Local Stage

In the local stage, all the quantities of interest except damage do not need any time
integration and can be calculated directly. The only problem in this stage is while
integrating Ḋ to obtain the damage variable. To integrate Eq. (4d) over the nodal
cycle m the initial condition at θm needs to be known. Considering a general first
order ODE [26]

dχ

dt
+ κχ = υ, (24)

defined over the complete time domain, with κ and υ being time-dependent known
quantities. The idea is to calculateχ (θm) fromχ (θm−1). The time element

[
θm−1, θm

]
is discretised into certain instances �k such that �k = θm−1 + k�T , with k =
0, 1, 2, · · · , p − 1, where p is the number of cycles in the time element

[
θm−1, θm

]
.

This provides �0 = θm−1 and �p−1 = θm . Knowing χ
(
θ k

)
, Eq. (24) can be solved

to obtain χ
(
θ k+1

)
as

χ
(
�k+1

) = χ̌
(
�k+1,�k

) + 
 (
�k+1,�k

)
χ

(
�k

)
, (25)

where χ̌ represents the solution of the ODE with zero initial condition, and 
 repre-
sents the “resolvent” operator [26].

The challenge henceforth is to calculate χ̌ and 
 with minimum numerical cost.
The easiest way is to calculate the quantities only at the nodal cycles m − 1 and m
and then use linear interpolations to obtain χ̌

(
�k+1,�k

)
and 
 (

�k+1,�k
)
, i.e.

χ̌
(
�k+1,�k

) = νm−1χ̌ (θm−1 + �T, θm−1) + νm χ̌ (θm + �T, θm) , (26a)


 (
�k+1,�k

) = νm−1
 (θm−1 + �T, θm) + νm
 (θm + �T, θm) , (26b)
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with ν being the linear shape functions defined as

νm−1 = θm − �k

θm − θm−1
, νm = �k − �m−1

θm − θm−1
. (27)

These interpolated values can be used to rewrite Eq. (25) as

χ
(
�k+1

) = νm−1
[
χ̌ (θm−1 + �T, θm−1) + 
 (θm−1 + �T, θm−1) χ

(
�k

)]
+ νm

[
χ̌ (θm + �T, θm) + 
 (θm + �T, θm) χ

(
�k

)]
.

(28)

Starting from χ
(
�0 = θm−1

)
, χ (�p = θm) is calculated progressively, thereby

Eq. (24) over the nodal cycle m.
The evolution equation of damage Eq. (4d) is solved over cycle m using the

aforementioned technique.

4.3 Global Stage

The spatial modes, calculated for the initial cycles, are reused to compute the time
functions of the PGD modes over the nodal cycle m. The initialisation of the time
functions {λ j }μj=1 is such that continuity is maintained with respect to the nodal
cyclem − 1. Thereafter corrections of the time functions {�λ j }μj=1 are computed by
solving Eq. (17) using zero initial conditions.

The next concern are the kinematic variables, which also being cyclic can be
treated in a similar way. Equation (10) has to be solved for the kinematic variables
over the nodal cycle m. However, an exact measurement of the initial conditions
using the “resolvent” technique, being numerically expensive, is not necessary. The
initialisation of the kinematic variables has been done to maintain continuity with
respect to the nodal cycle m − 1. Thereby the quantities are calculated in terms of
corrections by solving the ODE with zero initial condition.

The isotropic variable, however, being non-cyclic needs an accurate measurement
of the initial condition for time integration of Eq. (10) over the nodal cycle m. This
first order ODE is solved using the “resolvent” technique previously described.

This approach provides a drastic reduction in cost compared to classical LATIN
technique.

4.4 A Numerical Example of a Bar Under Fatigue Loading to
Build Virtual εa-N Curves

The one-dimensional numerical example considered here is a bar under traction
to build virtual εa-N curves. The material considered is Cr-Mo steel at 25 ◦C with
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Fig. 4 εa-N curves for different yield stresses and moduli of elasticity
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Fig. 5 εa-N curves for different initial damage conditions and total mean strains

kinematic hardening.The structure is clamped at one end and subjected to a sinusoidal
displacement of the formUd (t) = U0sin

(
2π t
T

)
at the other end. The most important

material properties in this model are the yield stress σy = 189MPa and the modulus
of elasticity E = 199.74GPa.

Experimental εa-N are generally obtained when a particular specimen is loaded
under a given εa and the number of cycles needed for the specimen to rupture is
measured. This experiment is repeated for several values of εa to obtain different
values of N . For the numerical tests described here, a critical damage value of 0.2 is
considered as a failure point. Similar to the physical experiments, several numerical
tests are conducted by varying εa to obtain different values of N needed by the
structure to reach the critical damage level. Some virtual εa-N curves are depicted in
Figs. 4 and 5. The time domain for each numerical test is discretised uniformly, with
a lesser number of cycles per time element for larger εa . The range of the number of
cycles per element is between 10 and 200. The computation of each curve requires
approximately 1 hr.

The influence of yield stress σy is depicted in Fig. 4. It is observed that, with the
increase in σy , the structure becomes less susceptible to damage for a given strain
amplitude. As the damage threshold considered in the model is directly proportional
to the yield stress, more number of cycles are needed to reach the critical damage.
The influence of elastic modulus E is also shown in Fig. 4. It is witnessed that, with
the increase in E , the stress in the structure increases for a given strain amplitude,
resulting in increased susceptibility to damage. Also, the damage threshold, consid-
ered in the model is inversely proportional to the modulus of elasticity, resulting in
a higher damage for a higher value of E at a given εa . The aforementioned reasons
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culminate in the decrease in the number of cycles to failure with increase in E for a
given strain amplitude. It is also noticed that this decrease is profound at lower strain
amplitudes.

The next sets of tests investigate the influence of initial damage andmean strain on
the εa-N curves, as shown in Fig. 5. The first set of tests investigates the influence of
the presence of initial damage. It can be observed that, with the increase inmagnitude
of the initial damage, less number of cycles are needed to reach the critical damage
for a given strain rate. The subsequent set of tests consists of different total mean
strains εm . For a positive mean strain, the stress is more in the tensile part than in the
compressive part, thereby a higher damage is obtained resulting into a lower N , for a
given εa , than compared to the zero mean strain case. For a negative mean strain, the
stress is more in the compressive region, thereby damage evolution is less compared
to the zero mean stress case, resulting into a higher N for a given εa .

To evaluate the accuracy and the efficiency of the two-time scale approach a
case withU0 = 1.40mm for 2000 cycles is investigated. A mono-scale LATIN-PGD
computation obtained in a CPU time of 19 hrs is considered as a reference. The
performance of the two-time scale approach is analysed using various uniform time
discretisations.

The evolution of damage for different sizes of time elements is plotted in Fig. 6. For
decreasing size of time elements the evaluation converges to the reference solution.
The relative error of the two-time scale approachwith respect to the reference solution
is defined as

Error =
⎡
⎢⎣

∫
[0,T ]×�

(Dms − Dts) · (Dms − Dts) d� dt

∫
[0,T ]×�

(Dms + Dts) · (Dms + Dts) d� dt

⎤
⎥⎦

1/2

, (29)

where Dms and Dts are the damage variables computed using the mono-scale com-
putation and the two-scale methods respectively. The evolution of this error and the
computational time with respect to the size of time elements is depicted in Fig. 6 too.
The multi-scale computational times are represented as percentages of the mono-
scale computational time in Fig. 6. Using only one time element containing 2000

Fig. 6 Accuracy and numerical cost for different time discretisations
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cycles, the computational cost has been decreased to 0.06% of the reference cost,
but the error is 16% of the reference. By increasing the number of time elements, the
computational cost increases but the error decreases. For 40 elements of 50 cycles,
the error is only 0.36% for a computational cost 0.3% of the reference solution. The
calculation time is drastically less compared to a mono-scale LATIN-PGD approach
for acceptable accuracy.

5 Conclusion

An innovative numerical approach has been here presented for the computation of
fatigue damage. A non-incremental technique has been used as numerical framework
and the computational cost has been reduced by the usage of PGD that converts
the actual high dimensional problem into much lower dimension. A multi-scale
approach in time domain has been suggested to extend the LATIN-PGD method for
the simulation of fatigue damage behaviour involving large number of cycles. By
that, the increased numerical efficiency has been demonstrated which paves a way
for physically based high cycle fatigue simulations.
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