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ABSTRACT 
Aim/Purpose In this paper, we highlight the need to monitor and diagnose adaptive e-learning 

systems requirements at runtime to develop a better understanding of their 
behavior during learning activities and improve their design. Our focus is to 
reveal which learning requirements the adaptive system is satisfying while still 
evolving and provide specific recommendations regarding what actions should be 
taken and which relevant features are needed to help meet the specified learning 
requirements. 

Background Adaptive e-learning systems research has long focused on user modeling and 
social learning to personalize each learner experience, while fewer instruments are 
reported to assess the quality of the solutions provided by such adaptive systems 
and to investigate their design problems. The design problems may emerge due to 
ever-evolving requirements being statically specified at design stages and to the 
changing environments that can be difficult to control and observe. The 
combination of some or all of these factors can lead to a definition of 
inconsistent or insufficient adaptation rules, which in turn may prevent these 
systems from providing appropriate resources to learners even if the needed ones 
have been accounted for within the knowledge space. 

Methodology An empirical study has been performed to check and validate the behavior of a 
real-world adaptive e-learning system under four stated requirements. The study 
used a novel monitoring and diagnosing tool that reads the collected data from 
the system and checks its behavior against constraints that are derived 
automatically from the requirements specification. 

Contribution The results provide statistical insights and highlight some issues related to 
requirements compliance at runtime; which helped us detect unforeseen 
instructional design issues. 

Recommendations  
for Practitioners 

The study suggests that diagnosing requirements compliance at runtime can be an 
essential means to increase the confidence about their adaptive e-learning systems 
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capabilities at runtime. 

Recommendation  
for Researchers  

The study suggests that further research for developing specific indicators related 
to requirements compliance, is needed in the field of adaptive e-learning systems. 

Future Research Future work includes the study of possible improvement of our diagnostic tool 
using probabilistic reasoning. 

Keywords Runtime requirements; requirements compliance; adaptive e-learning system; 
learning analytics; goal modeling; adaptive e-learning system; evaluation. 

 

INTRODUCTION  
Research in adaptive e-learning systems (AESs) can be traced back to the early 1970s. At that time, the 
field of computer-based learning has investigated combining research in Artificial intelligent (AI) and 
education. As a result, intelligent tutoring systems (ITSs) were born. Their goals were mimicking human 
tutoring capabilities to guide learners during the problem-solving process by personalized feedback and 
suggestions. Later, and by capitalizing on the technological advancements, especially in the field of 
computers, many researchers with different backgrounds (pedagogy, psychology, sociology, etc.), have 
contributed to the development of a new generation of adaptive online educational systems like ELM-ART 
(Brusilovsky et al., 1996), InterBook(Brusilovsky et al., 1997), AHA(De Bra et al., 2002), SQL-
Tutor(Mitrovic, 1998), iWeaver(Wolf, 2003), Knewton1, and INSPIREus(Papanikolaou, 2015) that are not 
necessarily tied to one specific curriculum like ITS. At their core, these systems are intended to allow 
interaction and adapt course resources and other learning activities to offer a unique experience to each 
learner. To achieve this objective, an AES relies on an adaptation model that implements rules describing 
the adaptation strategies for each learner’s situation. These rules are basically of two types: (i) content 
selection rules that select appropriate resources from the knowledge space, and (ii) navigation rules that 
sequence the selected resources based on each learner’s characteristics. The adaptation strategies are 
generally implemented as rule-based systems like ELM-ART and SQL-Tutor, or recommendations based 
systems like in (Tsiriga & Virvou, 2002; Jurado et al., 2008; Wang & Yang & Wen, 2009; Baker et al., 
2010), which take advantages of AI and machine learning techniques including tree learning methods, 
Bayesian network, probabilistic learning methods, and case-based learning approaches to analyze learners 
data, identify gaps in the knowledge and redirect each learner to new topics when appropriate.  

Although extensive research on adaptive learning has significantly improved different aspects of access, 
most studies have focused on enhancing the adaptation based on user modeling and social learning at the 
expense of design issues that remain underexplored (Karampiperis & Sampson, 2005), (Graf et al., 2012) 
and (Sampson & Karampiperis, 2012). The design issues are emerging due to evolving requirements being 
statically specified at design time, and to the inherent uncertainty of AESs. This uncertainty may arise 
from different sources, such varying learners’ backgrounds and needs, dynamic changing environments 
that are hard to control and observe, incomplete information at design time, limited sensors capabilities 
and unexpected system behavior. The combination of some or all of these factors can lead to a definition 
of inconsistent or insufficient adaptation rules, which in turn may prevent these systems from providing 
appropriate resources to learners even if the needed ones have been accounted for within the knowledge 
space. 

In this paper, we highlight the need to monitor AESs requirements at runtime to improve their design and 
to develop a better understanding of their behavior during learning activities. For this purpose, we have 
conducted an empirical study on 6165 historical traces from INSPIREus (Papanikolaou, 2015), a real-
world AES.  The analysis was based mainly on a monitoring and diagnosing tool that we have previously 
proposed in (Dounas et al., 2015) that we call here “RMAS” (Runtime Monitoring for Adaptive Systems). 
RMAS reads the collected data and checks the system behavior against constraints that are derived 
automatically from the requirements specification. The results indicate how and whether learners’ 
requirements are effectively met under uncertainty. We have focused principally on the uncertainty related 

                                                        
1 https://www.knewton.com 



 

 

 3 

to (i) changes in the requirements, which are due for example to an evolution of the monitored system, (ii) 
unforeseen configurations at the specification time, and (iii) changes in the operating environment.  

The paper addresses the following research questions:  

1.    Based on all the configurations provided by the system during learning activities, what is the overall 
accuracy of an AES?  

2.    How well does an AES fulfill its requirements?  

3.    Why are some requirements not fully (or at least partially) satisfied by the AES?  

4.    What are the typical features used during a successful learning process?  

The ultimate goal of our research is to be able to generate recommendations that have the potential to 
guide AESs concerning what actions can be taken and which relevant features are needed to meet the 
specified requirements. 

The remainder of this paper is structured as follows. Section 2 presents the basic concepts that are 
necessary to understand our research problem. Section 3 describes our case study. Section 4 presents the 
study methods. Section 5 presents and discusses the empirical results. Section 6 gives a brief discussion of 
related work. Section 7 discusses some of the limitations associated with the decisions of the experimental 
design. Section 8 concludes by briefly presenting some of the study’s implications for  research and the 
practice.  

BACKGROUND 
In this section, we briefly outline the basic notions related to requirements monitoring mechanisms, which 
we believe are necessary to explain this study later in the paper.  

GOAL-ORIENTED REQUIREMENTS ENGINEERING (GORE) 
There are many approaches in the literature that support the requirements specification, among which the 
most commonly used is GORE. GORE attempts to specify requirements to be monitored using goal-
oriented models. Dardenne et al., (1993) define a goal as a high–level objective to be achieved by a 
software system. Goals can be categorized into functional (hard) goals and non-functional (soft) goals. A 
hard goal depends on exact criteria to determine whether it has been satisfied or not, while a soft goal is 
related to quality objectives that guide the search of an acceptable level of soft goal satisfaction when the 
optimal level cannot be reached. This process often involves a trade-off with other soft goals. In this view, 
the requirements can be seen as a special kind of goal that restraint system behavior. “AES shall 
personalize the course presentation” is an example of hard AES goals, while “AES shall provide each 
learner with course materials that match his/her learning style” is an example of a requirement related to 
that goal. 
The use of GORE to specify the requirements offers many benefits such as: (1) it describes the 
relationships between a system and its environment and not just what the system should do. (2) It 
provides traceability links from high-level goals to low-level operational requirements (Dardenne et al., 
1993). And (3) it offers means to drive a runtime adaptation, by reasoning between alternative solutions 
and managing the trade-offs of non-functional requirements (NFRs) or soft-goals such as performance 
and availability for each context.  
Various proposals have also been made in GORE. In KAOS (Van Lamsweerde et al., 1998), a Goal 
refinement methodology and a formal refinement have been defined to help the analyst produce a 
complete and consistent goal specification. Goals are specified using AND/OR refinements of goals into 
sub-goals. These goals are to be achieved through the cooperation of various agents that may include 
software components, external devices or humans. Each agent is assigned with a responsibility that 
restricts its behavior to ensure its end-goal. The responsibility assignment is a stopping criterion for the 
refinement process. To formally specify the goals, linear real-time temporal logic operators are proposed, 
and which correspond to four temporal goals patterns: Achieve, Maintain, Avoid and Cease. These 
patterns allow the analyst to specify properties involving real-time deadlines. Alternatively, NFR 
framework (Mylopoulos et al., 1992), TROPOS (Fuxman et al., 2004), i* (Yu, 1997), and REFAS (Munoz-
Fernández et al., 2014) approaches have been proposed with the aim to concentrate the software 
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development process on non-functional requirements. The methodologies followed in these approaches 
consist of identifying non-functional requirements in term of soft goals using AND/OR refinement 
process; similar to what was proposed in KAOS. The soft-goals are then used as selection criteria for 
choosing the alternative process configuration that best meets the non-functional requirements of the 
system.  

REQUIREMENTS MONITORING 
Monitoring consists of gathering and analyzing information about a software system while it is running. 
Recently, there has been a growing interest in monitoring requirements at runtime (Robinson, 2010), 
which seeks to continuously check if a running system meets its requirements specifications. The 
monitoring process operates by interpreting low-level system events as contributors to eventual 
requirements satisfaction or violations. In order to achieve this, the requirements can be either hard coded 
within the given approach or formally specified and checked against the monitored data. The former is 
suitable for monitoring isolated and small numbers of requirements, which can be written directly by the 
developer. However, the latter becomes more suitable to avoid significant errors when the number of the 
requirements increases, especially, when it comes to managing conflicting requirements.  
In the context of our on-going research activities on runtime adaptive systems requirements monitoring, 
we have proposed RMAS (Dounas et al., 2015), a runtime requirements monitoring tool for adaptive 
systems that continuously assess the extent to which a monitored system satisfies its requirements 
specification during operation. 
RMAS supports requirements being specified as a goal-oriented model using REFAS language. In this 
notation, functional requirements are represented as variability goals model (see Appendix A), by 
AND/OR refinement of goals into high-level hard goals to capture their hierarchical relationship and 
constraints. The refinement stops when ‘features’ can operationalize leaf-goals. Features represent rules 
and services used by the system’s adaptation strategies. In addition, REFAS represents assumptions about 
the contexts and their implications over the soft goals satisficement (i.e. sufficient degree of satisfaction) 
through soft dependencies and claims. A ‘Claim’ is a predicate that indicates assumptions made at design 
time about the expected soft-goals satisficement levels from each feature, while a ‘Soft-dependency’ is a 
predicate that indicates the required soft-goals satisficement levels for particular context values. The trade-
off between claims and soft-dependencies leads to reason about alternative adaptation strategies, and the 
impact of each of them on soft goals satisficement. 
RMAS defines transformation rules to translate the specification into a constraints logic program over 
finite domain CLP (FD) that carried out the runtime reasoning. The runtime reasoning interprets each 
selected adaptation strategy as a configuration of features C={F1, F2...Fn}. The extracted configuration is 
evaluated as valid when all the mandatory goals are satisfied, while it is assessed as optimal if it satisfies as 
many soft goals as possible.  
The reasoning about requirements at runtime can then be assimilated into a constraint satisfaction 
problem solving, where a violation means that the configuration at hand does not satisfy the constraints in 
the CLP.  While, an improvement of the configuration consists of generating solutions that optimize as 
many constraints as possible.  
RMAS is a generic tool and can be applied to any kind of adaptive system including adaptive e-learning 
systems. Therefore, we used this tool to analyze AESs requirements in this study. 

CASE STUDY DESCRIPTION 
First of all, a review of the literature of adaptive e-learning systems was undertaken to select an AES for 
the experiment from scientific articles. Among the AESs found, INSPIREus system (Papanikolaou et al., 
2003; Papanikolaou, 2015) has been prioritized as it offers an adaptation based on various criteria along 
with the fact that it is maintained online.  

INSPIREus is an adaptive educational hypermedia environment that provides personalized content and 
adaptive navigation support for each learner. Besides, INSPIREus offers collaborative functionalities and 
a flexible authoring process that allows users to freely explore the course content and reflect their 
pedagogical perspective on content development. 

The knowledge modules in INSPIREus are organized in three performance levels: (1) the ‘Remember’ 
level is related to the ability of learners to recall their knowledge, (2) the ‘Use’ level is related to the ability 
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of learners to apply theory through case study, and (3) the ‘Find’ level is related to the ability of learners to 
propose and solve original problems. 

The adaptation criteria in INSPIREus include three knowledge levels ‘KL’ (low, average and high) and 
four learning styles ‘LS’ from Honey and Mumford (1992) model (reflector, activist, theorist, and 
pragmatist).  All learners are provided with the same knowledge modules contents including theory, 
examples, exercises, and activities using computer simulation; however, the method and order of their 
presentation on each page is personalized for each learner (see Table1).  

Table 1: the adaptive presentation strategies of the knowledge modules (method and order of 
appearance) in INSPIREus : Q stands for “Question”, T for “Theory”, Ex for “Example”, E for 

“Exercise”, and  A for “Activity”. 

Performance levels / 
learning style 

Remember level Use level 

Activist (Q, E, T) (A, Ex, T, E) 

Reflector (T, Ex, Q) (Ex, T, E, A) 

Theorist (Q, T, Ex) (T, Ex, E, A) 

Pragmatist (Ex, T, Q) (E, Ex, T, A) 

The main objective is to enhance learning by matching the dominant learning preferences of the learners 
with the appropriate sequencing of educational material. As depicted in Table 1, there are two main 
presentation strategies of the modules on an educational material page at remember level of performance: 
(i) Inquisitory presentation starts with a question aiming to attract learner’s attention, then example or 
theory modules (for activist and theorist respectively) are provided to answer that question. (ii) Expository 
presentation starts with example or theory modules (for pragmatist and reflector respectively), then the 
same question appears as a self-assessment question to attract their reflection. On the other hand, four 
adaptation strategies of the modules are applied on an educational material page at the Use level of 
performance: (1) Activity-based presentation (A, Ex, T, E), introduces the module “activity” at the top of 
page, which is followed by the other modules, for an activist learner (who prefers to assimilate new 
information through activities). (2) Example-based presentation (Ex, T, E, A), introduces the module 
“example” at the top of page, which is followed by the other modules, for a reflector learner (who learns 
best by watching people and thinking about what is happening). Similarly, (3) Exercise-based presentation 
(E, Ex, T, A), starts with “exercises” module, for a pragmatist learner (who prefers to learn through 
practice). And (4) theory-based presentation (T, Ex, E, A), starts with “theory” module, for a theorist 
learner (he who learns through theory). 

METHODOLOGY 
Our research approach focuses on analyzing AES compliance with its requirements when applying its 
adaptation strategies. Specifically, we explore the data generated by RMAS tool through diagnosing 
the execution traces from INSPIREus to answer the research questions. 

In the rest of this section, we first describe the monitored requirements and the collected data. Then, we 
detail methods of our experimental research.  

SAMPLE OF REQUIREMENTS  
The requirements sample used for our experiment consists of four requirements, which are stemming 
from several reported issues in AESs and amenable to requirements monitoring:  

Req1: The AES shall provide learners with educational materials (EMs) that match their learning styles. 
As INSPIREus allows learners to have instructional control over the system (including modifying their 
learning style), there is a need to control the EMs delivery. Thus, the system should be more flexible to 
support the change and generate educational materials that fit their effective learning styles. This fact can 
be detected using system’s log files. For instance, if a learner changes his/her learning style to “reflector” 
and the history of learner‘s selections of educational materials indicates that this learner spends most of 
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his/her study time on activities, then the system should generate activity-based educational materials for 
him/her because their effective learning style is “activist” instead of “reflector”.  

Req2: The AES shall balance between navigation freedom and guidance to improve the curriculum sequencing. 
INSPIREus should track changes made by each learner in the knowledge level (KL) and 
activation/deactivation of system’s adaptive behavior. We suppose that if KL ∈ {low, avg} then the AES 
shall enrich the domain presented to him/her or encourage him/her to activate “system adaptive 
behavior” if s/he is lost during the learning. We identify a lost learner when s/he spends more than twice 
the allocated time for a given concept. 

Req3: The AES shall enhance the communication between learners. 
As INSPIREus supports collaborative learning, it should help learners develop participation skills 
including creating topics and interacting in other topics within the forum, and guide them to more 
compatible learning groups whenever a perturbation among the desired state of interaction or in case of 
failure. 

Req4: the AES shall manage the sharing of control between the system and learners. 
Usually, learner models are hidden from learners in AESs. Several studies (Devoper & Quintin, 1992; 
Specht, 1998) have investigated the impact of allowing learners to modify their learner models like 
changing their knowledge levels, their learning styles or activating/deactivating system’s adaptive behavior. 
These studies reveal that because most learners are usually unsure of their needs, the decision to open the 
learner model leads to failure and wrong decisions by learners. However, restricting them would push 
learners to lose trust in such a system and consequently give up using it. Accordingly, the amount of 
freedom should be dependent on the knowledge state of learners and the time spent on educational 
materials. For instance, if a learner who spent a great amount of time in learning without any progress 
deactivates system’s adaptive behavior, the system should regain the control to guide him/her by 
encouraging them to activate the adaptive option or intervene directly by restricting/recommending 
additional educational materials for them. 

DATA SAMPLE 
Data for this study were gathered from INSPIREus. 21 learners have enrolled into a course, running for 
three months starting March 2016, given at Department of Informatics and Telecommunications of the 
University of Athens. As described in Table 2, the data sample includes three data sets.  

Table 2: Datasets description 
Name  Description  
Log file Describes all sessions log details of learners’ interaction with 

INSPIREus. Specifically, the log file takes the form of an 
excel file with nine columns including ‘StudentID’, 
‘sessionID’, ‘Visited module’, ‘Operations’ (represent 
changes made by the learners or by the system). 

Assessment 
data 

Stores information about the final score of each studied 
concept. It takes the form of an excel file with 5 columns, 
StudentID, scenario title, concept title, and score which 
denotes the final score for each concept. 

Materials 
description 
file 

Describes the available resource materials for each concept 
of a scenario, their allocated study time and their type 
(activity, example, exercise, question or theory) and level 
(remember, use or find). 

The detailed log files recorded by INSPIREus constitute valuable data about the behavior of the learners 
and the system as well as the interactions between the two. As for the assessment data set, it used to 
determine whether learners have understood the covered materials. Finally, the third data set describes all 
the resources available for the learners.  

DATA ANALYSIS 
 The data processing for this study includes three phases (see Figure 1):  
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Figure 1: data processing phases 

Phase 1 

This phase aims to prepare the data before going into details. First, we enriched the data with additional 
information about the adaptation strategies of INSPIREus. These strategies are available in a detailed 
description of INSPIREus given in Papanikolaou et al. (2003). Then, Talend Open studio tool was used 
for cleaning, integrating, and merging the three datasets into a single dataset in excel format. StudentID, 
SessionID, and TraceID were used to identify each trace entry, which makes a total of 6165 entries in the 
data set. 

After data pre-processing, 1 out of 21 learners were eliminated because s/he had not engaged in the 
learning (study time < 30min  && no scores recorded). A preliminary analysis of the data identified 8 
activists, 2 pragmatists, 4 reflectors and 6 theorists. Only 4 learners preferred to manually specify their 
learning styles in the learner model, while 16 learners took the questionnaire of Honey and Mumford 
when they logged in for the first time. The course proposes 3 concepts to study. The average study time 
was 440,53 min (SD=422,07) against allocated time (time proposed by a teacher) = 394 min. Generally, all 
learners have passed the final exam with an average of 11.67 out of 12 (SD=1,05). 

Phase 2 

In the second step, our goal was to assess how well INSPIREus is meeting the requirements at runtime, 
through monitoring and diagnosing the requirements at different levels of granularity, from high-level 
requirements (goals and soft goals) to low-level ones (components or features). To this end, we have 
developed a prototype of RMAS to analyze the trace entries in the pre-processed dataset against the 
requirements sample. The monitoring tool was fully developed in Java with the Eclipse IDE.  It takes as 
inputs: (a) The execution traces from INSPIREus, and (b) The requirements specification of INSPIREus. 

 
                          Figure 2: RMAS conceptual architecture for AESs 

Phase 1: Data Pre-
processing  

• Input: Data Sets 
• Procedures:  

! Data merging  
! Data integration 

• Output: single dataset 
(pre-DB)     

Phase 3: deep analysis 

• Input:  F_DB 
• Procedures:  
! Apply deep analysis of F-

DB using statistical tools. 
• Output: statistical graphics. 

 

Phase 2: diagnosing for 
compliance violation using RMAS 
tool 
• Input:  pre-DB 
• Procedures:  

For each trace entry E: 
! Extract a configuration C from E. 
! Analyse C using RMAS. 
! Generate a report for C. 

• Output: Data set (F-DB) including 
extracted configurations + reports 
summaries files. 		T1					T2					T3				T5									

T9				T600					T1000 
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Figure 2 depicts the conceptual architecture of RMAS and the core components interactions between the 
managed AES and the RMAS during the learning process:  

• Data sinks registers callbacks whenever measurements of certain nodes sensors/probes have been 
received and notifies the change to the monitor module. 

• The monitor listens to data sinks; first, it preprocesses the collected data (e.g. normalization of 
data, extraction of configuration) and then notifies the change to the next component. 

• The analyzer calls the solver to check the configuration under consideration, and notifies 
violation (satisfaction problem), if any to the diagnoser.  

• Diagnoser identifies unsatisfied requirements and denial features and sends the result to next 
component. 

• Executor could either act upon the monitored AES and execute remediation strategies through 
actuators (this option is not implemented yet) or notify warning to the managed systems in the 
form of a report describing the monitored requirements in term of functional requirements 
(features in the leaf goals) and non-functional requirements (soft-goals).  

Figure 3 shows a prototype of the generated report by the executor component. Roughly speaking, for 
each monitored requirement (for this experiment, four requirements was monitored), the report describes 
whether each feature in the configuration under consideration is relevant or not (denial) and how it is 
satisficing the related soft goals to the requirement at hand. Thus, a soft goal is qualified as 
‘unsatisficeable’ if the obtained satisfaction level is less than the required satisfaction level, while it is 
‘satisficed’ in the opposite case. A feature is qualified as ‘relevant’ if it is not conflicting with other features 
in the same configuration and if it contributes to the soft goals satisficement; otherwise, it is qualified as 
‘irrelevant’ (denial). 

 
Figure 3: report summary prototype for each configuration of the case study 

 
In this study, RMAS was run in an offline mode. However, an online monitoring mode is possible using a 
distance communication between the monitored system and RMAS. The latter will continuously observe 
the collected data received from the system, assess the requirements satisfaction whenever a given 
environmental condition occurs (defined by a soft-dependency), diagnose the source of violations, if any, 
and propose remediation actions to the system. These actions could be used on the fly to evolve the 
adaptive system via actuators. Furthermore, developers or analysts could exploit the diagnosis result to 
improve the adaptations strategies in a maintenance phase. 

Phase 3 
A more in-depth analysis is performed to explore RMAS output using IBM SPSS Statistics and Ms. Excel 
tools. This includes aggregating the data and doing some computations to answer the research questions. 

Requirement 1 
Soft goal 1: [satisficed or not] satisfaction level 
Feature i: [relevant or not] 
[…] 
Soft goal 2: [satisficed or not] satisfaction level 
Feature j: [relevant or not] 
[…] 
Requirement 2 
Soft goal 3: [satisficed or not] satisfaction level 
Feature k: [relevant or not] 
[…] 
Requirement 3 
Soft goal 4: [satisficed or not] satisfaction level 
Feature m: [relevant or not] 
[…] 
Requirement 4 
Soft goal 5: [satisficed or not] satisfaction level 
Feature n: [relevant or not] 
[…] 
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RESULTS 
The main results are summarized (question by question) as follows:  

1. What is the overall accuracy of INSPIREus? 
The precision and recall measures are generally applied in order to evaluate the effectiveness of system 
configurations, in terms of accuracy and completeness respectively.  

The Precision in this study is the ratio of satisfactory configurations (evaluated as valid configurations by 
RMAS tool) to the total collected configurations:   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

The recall is the number of satisfactory configurations divided by the total satisfactory configurations 
(including those that are not proposed to learners). 

Recall =
retrieved satisfactory configurations
total satisfactory configurations

 

As details of all satisfactory configurations were not available in the gathered data, the recall wasn’t 
calculated for this study. Only the precision was calculated for each learner. Table 3 shows precision 
measurements for each learner. In many cases the precision was good (up to 68%) except for three 
learners where the precision was below 35%.  
 

Table 3: INSPIREus precision for each learner. 
StudentID Total 

Configurations 
Total Relevant 
Configurations 

Precision 
(%) 

0 181 109 60,22 
1 643 603 91,29 
2 956 589 61,61 
3 266 250 93,98 
4 350 216 61,71 
5 191 63 34,55 
6 435 132 33,1 
7 165 98 59,39 
8 286 89 30,77 
9 161 110 68,32 
10 351 164 88,03 
11 286 233 81,47 
12 105 58 55,24 
13 451 443 98,23 
14 393 353 76,34 
15 221 135 61,09 
16 90 79 87,78 
17 193 137 70,47 
18 208 208 100 
19 233 110 47,21 

By grouping the calculated system precision based on the learning style (see Table 4), the results show 
some variations regarding the system precision within the same learning group. For instance, a 
considerable variation in the system precision can be seen between activist learners (sample 
variance=301,83) 
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Table 4: descriptive statistics of INSPIREus precision within learning groups. 

Groups Sample 
size Min Max Average Variance 

Activist 
learners 8 47,21 93,98 71,34 301,83 

Pragmatist 
learners 2 55,24 70,47 62,85 115,97 

Reflector 
learners  4 30,77 60,22 39,66 190,29 

Theorist 
learners 6 61,61 100 84,28 208,13 

Total 20 30,77 100 68,04 462,40 

The ANOVA showed a significant difference in the mean precision between at least two of the learning 
groups (µreflector #µtheorist # µpragmatist #µactivist): F (3.238887)=6. 8679, p-value=003 < 0.05.  

Figure 4: INSPIREus precision for each learner grouped by learning style 

Specifically, as illustrated in the scatter points (Figure 4), the system was more effective for theorist 
learners and less effective for reflector ones. 

2. How well does INSPIREus fulfill the learning requirements? 
To have an answer to the above question, we have calculated the requirement fulfillment level 
(Reqfulfillment_level) for each configuration by analyzing its related soft-goals satisficement levels as well as 
applying a prioritization strategy (see Table 5), which consists of giving weight (w!") to each soft goal 
according to its importance for the requirement at hand. Mathematically, this can be stated as:   

Req!"#!$##%&'(_!"#"$ = w!"# ∗
obtained satisfactionLevel!"#
required satisfactionLevel!"#

!

!!!

 

Where k is the number of SGi related to the requirement under consideration, and w!"# = 1.  

The Req!"#!$##%&'(!"#"$ ranges from 0 to 4, where 0 corresponds to fully denial and 4 corresponds to fully 
fulfilled.  
To help understand the results, the min-max normalization is used to scale the Req!"#!$##%&'(!"#"$  values 
between 0 and 1, and the following four fulfillment classes were defined: 

- Class A represents good level ∈ [0.7, 1] 
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- Class B represents suspected level ∈] 0.5, 0.7[ 
- Class C represents warning level ∈ [0.4, 0.5] 
- Class D represents insufficient level ∈ [0, 0.4[ 

Table 5: Soft goal weights according to the prioritization strategy 

 

As shown in Figure 5, Req1 was fulfilled with fairly good levels (see color code) for all learners’ 
configurations, except for learners ‘4’ and ‘7’ that were activists.  Req2 was partially fulfilled, however as 
learners advanced in their learning, the system ended up achieving satisfactory levels for all learners, 
except for ‘5’, ‘7’ and ’11’.  Similarly, in Figure 6, Req3 and Req4 were partially fulfilled with a unique value 
(0.5), which indicates that the system did not adapt its strategies to support the ‘communication’ and the 
‘sharing control between learners and the system’ respectively. Hence, there is a need for further 
improvement to support them. 

 
 
Figure 5: Frequency of Req1, Req2 fulfillment levels for each learner identified by learner ID and 
grouped by learning style. Color code: ‘shade of green’: Class A; ‘yellow’: Class B; ‘orange’: Class 
C; and  ‘red’: Class D. 
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Figure 6:  Frequency of Req3, and Req4 fulfillment levels for each learner identified by learner ID 
and grouped by learning style. Color code: ‘shade of green’: Class A; ‘yellow’: Class B; ‘orange’: 
Class C; and  ‘red’: Class D. 

Also, we have investigated the system behavior toward learning groups (based on learning style). As 
depicted in Figure 7, INSPIREus satisfied Req1 with very good levels for both pragmatist and theorist 
learners (Req1 was fulfilled at least with 0.7 in all the configurations), as well as activist learners. However, 
it partially satisfied Req1 for reflector learners. Moreover, it satisfied Req2 in a similar way for almost all 
learning groups, but less sufficiently for pragmatist learners. Req3 and Req4 were partially fulfilled with 
exactly ‘0.5’ for all learners regardless of each learning group. 

(Req1) 

 A B C D 
Activists 80.75 11.33 0.08 7.85 
Pragmatists 100 0 0 0 
Reflectors 44.12 55.88 0 0 
Theorists 100 0 0 0 
Total 79.48 15.75 0.39 4.38 

(Req2) 

 A B C D 
Activists 5.42 7.36 87.22 0 
Pragmatists 1.34 2.68 95.97 0 
Reflectors 4.82 4.3 90.89 0 
Theorists 3.63 3.75 92.62 0 
Total 4.35 4.97 90.67 0 

 

(Req3) 

 A B C D 
Activists 0 0 100 0 
Pragmatists 0 0 100 0 
Reflectors 0 0 100 0 
Theorists 0 0 100 0 
Total 0 0 100 0 

(Req4) 

 A B C D 
Activists 0 0 100 0 
Pragmatists 0 0 100 0 
Reflectors 0 0 100 0 
Theorists 0 0 100 0 
Total 0 0 100 0 

Figure 7:  Frequency  (%) of Req1, Req2, Req3 and Req4 compliance classes grouped by learning 
style 
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Furthermore, On the basis of the calculated requirements fulfillment levels, we have measured the quality 
of each configuration quality (Q!"#$%&) so as to have an overall idea about the system quality and how well 
it fulfills its requirements during operation. In so doing, we have applied the same prioritization reasoning 
for the requirements according to their importance for the system. Thus, we have given a weight (w!"#) 
to each requirement (see Table 6 bellow) based on the following assumptions: 

- The requirements Req1 and Req2 are hard ones that must be fulfilled (i.e. must be fully fulfilled and 
without which the system cannot be adaptive).  

- Req3 should be fulfilled (i.e. it is important for the system but can be partially fulfilled). 
- Req4 could be fulfilled (i.e. it is not required but preferable to enhance system functionalities).  

Mathematically, this can be stated as:   

Q!"#$%& = w!"#$ ∗ Reqi!"#!$##%&%'(_!"#"!!
!!!                     (*) 

 
 Where w!"#$ = 1!

!!!  and Reqi!"#!$##%&%'(_!"#"! ∈ [0, 1]. 

The Q!"#$%& ranges from 0 to 1, where values close to 0 correspond to low quality. 

Table 6: Requirements weight according to the prioritization strategy 

 Req1 Req2 Req3 Req4 

Weight 0.4 0.3 0.2 0.1 

Finally, the requirements fulfillment measurements have helped us evaluate each of the configurations 
proposed to the learners. The quality configuration served as a first diagnostic marker that aids the 
discovery of satisfaction problems.  

Figure 8 shows the frequency of each quality value retrieved by the equation (*) for each learner. 

 
Figure 8: Frequency distribution of quality configurations for each learner. Color code: ‘shade of 
green’: Class A; ‘yellow’: Class B; ‘orange’: Class C; and  ‘red’: Class D. 

 

0%	 20%	 40%	 60%	 80%	 100%	

1	
3	
4	
7	
9	
15	
16	
19	
12	
17	
0	
5	
6	
8	
2	
10	
11	
13	
14	
18	

frequency	distribution	of	quality		configurations	

Ac
ti
vi
st
s	
				
	P
ra
gm

at
is
ts
				
	R
ef
le
ct
or
s	
				
		T
he
or
is
ts
		

0.5	

0.6	

0.7	



 

 

 14 

For instance, all the configurations proposed to the learners 16, 17, 18 and 19 were of good quality. While 
for the learner 6, the majority of the configurations (90,63%) were of low quality. 

Table 7 depicts the frequency of each quality value grouped by the learning style. In general the system 
proposed satisfactory configurations (62.28% were fulfilled with at least 0.7 out of 1), but the results were 
less satisfactory for almost all reflector learners and some activist ones (especially learners ‘7’ and ‘9’ as 
shown in Figure 7 below). 

Table 7: Frequency distribution of quality configurations values grouped by learning style. 

 
Configuration quality 

0.5 0.6 0.7 
Activists 19.26 14.16 66.59 
Pragmatists 6.04 63.76 30.2 
Reflectors 58.98 3.13 37.89 
Theorists 5.39 21.68 72.93 
Total 20.52 17.2 62.28 

3. Why are some requirements not fully (or at least partially) satisfied by 
INSPIREus? 

A requirement is more or less not satisfied in a given configuration if some features in the configuration 
contribute to poor satisficement of the soft goals related to this requirement. Therefore, in order to 
answer the ‘why’ question, we have identified these irrelevant features.  

For the sake of clarity and brevity, we depict only the hard requirement Req1. Figure 9 shows the features 
that were proposed to each learner, while Figure 10 depicts the identified irrelevant features among those 
offered to each learner.  

  

 
Figure 9: excerpt of the features proposed to each learner (frequency) while learning 
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Figure 10: excerpt of frequency distribution of the features evaluated as irrelevant for each 
learner. 

For instance, three features OPER13, OPER11 and OPER18 were evaluated as irrelevant (90% of the 
time) for learner 6, which refer to ‘example-based presentation in the use level’, ‘expository presentation in 
remember level’ and ‘Turn to reflector’ strategies respectively. We came back to the log files to verify and 
interpret the result. Indeed, the system considered learner 6 as reflector one, that is why it applied these 
strategies related to the learning style “reflector”. While, in the history of her/his learning, we have 
noticed that this learner is theorist rather than reflector; s/he prefers to study using theory rather than 
examples. And as the system does not update the learning style, it maintains these strategies for learners 
even when they are not effective.  

Similarly, for learner 2, ‘OPER12’ is the only feature evaluated as irrelevant (56% of the time) which refers 
to ‘theory-based presentation in the use level’ strategy. Based on the history of her/his learning, the 
system considered this learner as a theorist and applied ‘theory-based’ adaptation strategy for her/him. 
However, we have noticed that this learner preferred to study by examples rather than theory in the first 
half of the learning. This is why the theory-based was evaluated as irrelevant for her/him.  

Following this reasoning, analysts/developers can improve the system’s adaptation strategies by taking 
into account some unforeseen parameters at design time (here, the need to update the learning style and 
not rely on the learning style affected at the first time the learners log out the system).  

4. What are the typical features used during a successful learning process? 
 Learning is qualified as successful when the learning requirements are better supported by the AES 
(precision >= 75%) and the learner performance is high (final score> = (¾ * 12) = 9). 

We propose to identify learners that verify these criteria and group them by their learning styles. Then, 
analyze the resource materials for each group and extract the common resources evaluated as relevant 
more than 75% of the time during the learning process. The main goal is to optimize the adaptation 
strategies in a way that the system will recommend these extracted recourses for the learners group.  

We were unable to answer this question because all learners in our sample passed the final exam with 
good grades (17 learners out of 20 had 12 out of 12 scores),  

DISCUSSION  
This paper has examined the learning associated with one type of adaptive e-learning systems, which is 
based on learning style dimension to personalize the learning process. The results reveal the following:  

• High quality configurations were proposed to the learners (Qconfig was at least equal to 0.7). 
However, we found discrepancies in the effectiveness of AES strategies between learning style 
groups. That is, the adaptive system was more accurate for theorist learners and less accurate for 
reflector ones. Considerable differences within learning style groups were also detected.  
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• The monitored requirements have not been entirely fulfilled as expected. That is, the adaptive 
systems fulfilled Req1 and Req2 with fairly good levels for almost all learners, while it did not well 
support Req3 and Req4. On the one hand, the first two requirements focus is to offer more 
tailored learning for every learner, to enable them to evolve at their own pace and according to 
their needs. On the other hand, the latter two requirements aim to support learners when they are 
fully responsible for their learning, which induces a more effective pedagogy of mediation to be 
set up, with a view to help learners when they are confused or in case of bad decisions, and to 
improve communication between learners. 

• The diagnosis of the requirements based on the studied configurations identifies discrepancies 
between the proposed configurations features and learner’s interest. For example, we found that 
some learners prefer to study with a media format different than the one proposed by the system. 
A possible explanation is that learners are not merely reflector, theorist, activist or pragmatist but 
they are actually a combination of all. The adaptive system should be flexible enough to respond 
to the need of each learner and not treating them as a ‘class’ of learning style.  

In the light of these results, we argue that to adopt better adaptation strategies an AES should 
continuously monitor its requirements (statically specified at design time as well as emergent ones) while 
evolving and link them to its strategies. The top-down diagnosis of requirements through a trade-off 
between the requirements and the adaptation strategies will lead to a good understanding of its adaptive 
behavior during learning activities and improve its design by taking into account some unforeseen 
parameters at design time. 

RELATED WORK 
This study is related to runtime monitoring, which seeks to automatically prove that system behavior 
complies with relevant constraints such as requirements, guidelines, and laws. There are several 
approaches in the literature of runtime monitoring, which differ regarding their capabilities and their 
related domains. These include mainly student profiling in distance education, debugging and 
requirements-based monitoring in software engineering. 

Student profiling seeks to develop and maintain a record of what learners are doing and which strategies 
they are using to achieve their respective goals, after a learning episode.  It has been a subject of significant 
research in self-regulated learning (SRL), which seeks “to understand how a particular learner learns and 
achieves the learning, despite apparent limitations in mental ability, social environment background or in 
quality schooling” (Zimmerman, 1989 p.4). The monitoring functionalities have been designed for both 
teachers and learners so they can understand and have information about learners’ metacognitive skills, as 
well as for visualization concern through data mining (Graphvis, 2004; Mazza & Dimitrova, 2007; 
Romero-Zaldivar et al., 2012). However, in the interest of maintaining stability for AESs, analysts and 
designers need also to develop a good understanding of how these systems behave while operating and 
how the requirements are effectively fulfilled. 

Monitoring provides a promising basis for debugging approaches, which seek to understand the internal 
activities of a software system. However, these approaches are related to low-level implementation such 
code and data structure, and the lack of depth in the information they provide such as how the 
communication of different components is achieved. Alternatively, requirements-based monitoring 
extends the idea of performance and events monitoring to present an abstracted view of the system‘s 
execution (Fickas & Feather, 1995; Robinson, 2003; Welsh & Sawyer, 2009; van Hoornet al., 2009; 
Bencomo, et al., 2012; Wang et al., 2009). It seeks to increase requirements awareness at runtime and 
improve self-adaptive systems (SASs). However, as pointed out by Vierhauser et al. (2016), this research 
field is quite fragmented. Thus important research has tended to focus on performance monitoring (Van 
Hoorn et al., 2012) while others are limited to particular domains such web service. As far as we know, 
there is no research that has applied requirements monitoring to adaptive e-learning systems. Accordingly, 
with the present study, we claim that requirements analysis at runtime is a key potential for evaluating 
AESs and improving their design. 
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THREATS TO VALIDITY  
As for any experimental evaluation, there exist some threats that could affect the validity of our results. In 
fact, there are three minor limitations worth noting regarding our methods:  

INTERNAL VALIDITY 
The first limitation is related to the use of log files. Although they contain rich information about learners 
and system behavior, they often contain noisy information. Accordingly, we have performed an extensive 
pre-processing of the data sets. In this pre-processing step, we have eliminated missing values, translated 
the data sets from Greek to English, which was verified later by the administrator of INSPIREus, and 
unified information between the data sets to consolidate data. Also, to prevent extreme outliers, learners 
that did not fully engage in the learning were eliminated from this study (one learner was eliminated out of 
21).  

The second limitation is related to the requirements specification. In this study, the requirements were 
identified based on general issues in AESs and not extracted directly from the case study specification. 
This separation helps to evaluate the overall AESs against general requirements, indispensable to ensure 
an effective learning. Inevitably, some assumptions, which could be subjective, must be made to associate 
systems features to the monitored soft goals. Consequently, to ensure an accurate model, we validated the 
model by research teachers before its use.  

EXTERNAL VALIDITY 
Finally, the third limitation is related to the size of the data source. Even though the data was composed 
of 6165 configurations, the later is collected from small groups of learners (20) that had a good final score. 
These high grades may be due to the course content that was short and there was more time to pick up 
concepts. These could be a reason why no significant relationships were found between learners 
performance and the calculated system precisions, and which prevents us from being able to generalize 
the results to a larger population without further research.  

CONCLUSION  
Learning environments are constantly changing and so their requirements. AES verification and 
evaluation processes as part of software construction are no longer sufficient to guarantee that the 
adaptive system is built correctly and it meets its requirements. 

The present research highlights the potential of monitoring the requirements of AESs at runtime to 
improve their design and enable their evolution. On the basis of an experimental study, we have identified 
some insights and issues related to requirements compliance at runtime that helped us to detect 
unforeseen instructional design issues. Thus, the monitored requirements were not totally fulfilled as 
expected, and discrepancies in the effectiveness of adaptation strategies were identified between learning 
style groups and also within each learning style group. Analysts and developers can exploit the issues in 
question to improve the adaptation strategies on the fly or further in a maintenance phase. This will help 
ensure dynamic adaptation strategies that evolve to meet learners’ needs, with fewer failures and higher 
requirements satisfaction. 

There are several implications of the findings for the research and the practice:  
-For researchers, the study suggests that (1) further studies are needed to investigate AESs design issues 
that emerge at runtime, (2) further research on developing specific indicators related to requirements 
compliance are needed in the field of adaptive e-learning systems. 
 -For practitioners, the study suggests that diagnosing requirements compliance at runtime can be an 
essential means of receiving feedbacks at the requirements level, which can optimize their performance   
(because it opens up the possibility to act whenever a perturbation among the desired state of interaction 
is detected), and increase confidence about their capabilities at runtime by keeping up a dashboard that 
visualizes the received feedbacks. 
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