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A B S T R A C T

Radiologists use time-series of medical images to monitor the progression of a patient's conditions. They
compare information gleaned from sequences of images to gain insight on progression or remission of the
lesions, thus evaluating the progress of a patient's condition or response to therapy. Visual methods of
determining differences between one series of images to another can be subjective or fail to detect very small
differences. We propose the use of quantization errors obtained from self-organizing maps (SOM) for image
content analysis. We tested this technique with MRI images to which we progressively added synthetic lesions.
We have used a global approach that considers changes on the entire image as opposed to changes in segmented
lesion regions only. We claim that this approach does not suffer from the limitations imposed by segmentation,
which may compromise the results. Results show quantization errors increased with the increase in lesions on
the images. The results are also consistent with previous studies using alternative approaches. We then
compared the detectability ability of our method to that of human novice observers having to detect very small
local differences in random-dot images. The quantization errors of the SOM outputs compared with correct
positive rates, after subtraction of false positive rates (“guess rates”), increased noticeably and consistently with
small increases in local dot size that were not detectable by humans. We conclude that our method detects very
small changes in complex images and suggest that it could be implemented to assist human operators in image-
based decision making.

1. Introduction

Radiologists have to detect the progression of patients’ conditions
on the basis of, often hardly detectable, local changes in medical
images. The images are captured through various imaging techniques,
such as magnetic resonance imaging (MRI), computerized tomography
(CT) and positron emission tomography (PET). These images provide
the radiologist with visual information about the state or progression of
a given condition, and help determine the course of treatment.
Traditional methods for handling such images involve direct visual
inspection, which is by its nature subjective. Image science has
proposed methods for the automated processing of medical images,
which involves various different image processing techniques to
identify specific diagnostic regions of interest and features, such as
lesions. [1,2] proposed a computational framework to enable compar-
ison of MRI volumes based on gray-scale normalization to determine
quantitative tumor growth between successive time intervals. They
proposed three tumor growth indices, namely, volume, maximum
radius and spherical radius. The approach, however, requires an initial

manual segmentation of images, which can be a time-consuming task.
[3], first, semi-automatically segmented a tumor in an initial patient
scan and then aligned the successive scans using a hierarchical
registration scheme to measure growth or shrinkage from the images.
This method relies on accurate segmentation and requires manual
supervision, in order to detect changes of up to a few voxels in the
pathology. [4] describe a procedure aimed for difficult-to-detect brain
tumor changes. The approach combines input from a medical expert
with a computational technique. In this paper, we propose a new
technique based on self-organized mapping that considers the whole
medical image, as opposed to an image segment, as region of interest.
This excludes manual benchmarking tasks designed to eliminate
inclusion of structures with similarity to tumor pathology. The basic
principle behind direct image analysis is that there exists an intrinsic
relationship between medical images and their clinical measurements,
which can be exploited to eliminate intermediate procedures in image
analysis. Compared to traditional methods, direct methods have more
clinical significance by targeting the final outcome. Thus, direct
methods not only reduce high computational costs, but also avoid
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errors induced by any intermediate operations. Direct methods also
serve as a bridge between emerging machine learning algorithms and
clinical image measurements. Finally, to show how the output variable
called “quantization error” of image analysis by SOM may be exploited
as an indicator for the presence of potentially critical local changes in
image contents, we compared the quantization errors of SOM outputs
from analyses of random-dot images with very small progressive
increases in the local size of a single dot to the capacity of human
observers to detect these changes.

2. Materials and methods

2.1. Self-organizing maps

A self-organizing map (SOM) is an unsupervised neural network
learning technique that does not need target outputs required in error
correction supervised learning. SOM, [5] are used to produce a lower-
dimension representation of the input space. Thus, for each input
vector, so called, competitive learning is carried out to produce a lower-
dimension visualization of the input data. SOM are typically applied as
feature classifiers of input data. From an initial randomization of a
map, input data is iteratively applied to optimize the map into stable
regions. Where the node weights match the input vector, that area of
the lattice is selectively optimized to more closely resemble the data for
the class the input vector is a member of. From an initial distribution of
random weights and over multiple iterations the SOM eventually
settles into a map of stable zones. Each region of the map becomes a
feature class of the input space. Each zone is effectively a feature
classifier, and the graphical output is a type of feature map of the input
space.

The central idea behind the principles and mathematics of SOM is
that every input data item shall be matched to the closest fitting region
of the map, called the winner (as denoted by Mc in Fig. 1), and such
subsets of regions shall be modified for optimal matching of the entire
data set, [6]. On the other hand, since the spatial neighborhood around
the winner in the map is modified at a time, a degree of local and
differential ordering of the map occurs to provide a smoothing action.
The local ordering actions will gradually be propagated over the entire
SOM. The parameters of the SOM models are variable and are adjusted
by learning algorithms such that the maps finally approximate or
represent the similarity of the input data. While studies have mainly
concentrated on the performance of various SOM on a given dataset,
we set to unveil the behavior of various datasets on a single SOM. Given
related sets of medical image series and a constant SOM, can we detect
a significant trend in the images? Is the trend of any clinical
significance?

2.2. The quantization error in SOM outputs

The task of finding a suitable subset that describes and represents a
larger set of data vectors is called vector quantization (VQ), [7]. VQ

aims at reducing the number of sample vectors or at substituting them
with representative centroids. The resulting centroids do not necessa-
rily have to be from the set of samples but can also be an approximation
of the vectors assigned to them, for example their average. VQ is closely
related to clustering, and SOM performs VQ since the sample vectors
are mapped to a (smaller) number of prototype vectors, [8]. The
prototype vectors are called the best matching units (BMU) in SOM. As
a property of SOM, the quantization error (QE) is used to evaluate the
quality of SOM. The QE belongs to a type of measures that have been
used to benchmark a series of SOMs trained from the same dataset. In
our work, we have used QE to do a somewhat opposite measure: to
benchmark a series of datasets using SOM trained with the same
parameters. In other words, we use the same SOM, same map size,
feature size, learning rate and neighborhood radius to analyze series of
image datasets with clinical significance, or random-dot images, as
shown later herein. The QE is derived after subjecting an image to a
self-organizing map algorithm analysis and by calculating the squared
distance (usually, the standard Euclidean distance) between an input
data, x, and its corresponding centroid, the so-called “best matching
unit”, or BMU. This gives the average distance between each data
vector (X) and its BMU and thus measures map resolution:

∑QE N X= 1/ − (BMU )
i

N

i i
=1

( )
(1)

where N is the number of sample vectors x in the image.
This measure completely disregards map topology and alignment,

as noted by [8], making it applicable for different kinds and shapes of
SOM maps. Besides, the calculation does not rely on any user
parameters as seen in (1) above. A 16 by 16 SOM with an initial
neighborhood radius of 5 and learning rate of 0.2 was set up for the
extraction of data from images. These initial values were arrived at
after testing several sizes of the SOM to check that the cluster
structures were shown with sufficient resolution and statistical accu-
racy, [6]. The learning process was started with vectors picked
randomly from the image array as the initial values of the model
vectors. For each of the following three experiments, the SOM
parameters were kept constant.

In this study, we started by applying SOM to time series of original
imaging data from a patient's knee before and after blunt force
traumatic injury. Then, we added artificial lesion growth to these
images and ran SOM analyses on the modified images. [4] modified
original images by adding synthetically evolving pathological content of
1%, 5% and 22% volume growth prior to further analyses. They did not
use SOM analysis but conducted visual and computational recognition
experiments with these images to test the detection of the artificial
"pathologies".

3. Results from SOM analyses

3.1. Original medical images

We used two sets of images from a patient with a sprained knee,
courtesy of Hopital de Hautepierre, Strasbourg, France. The same
acquisition parameters (machine, sequence, coil, etc) were used to
acquire each set which consisted of 20 MRI images. Table 1 shows the
QE values obtained from each set of images, taken on two consecutive
clinical visits, almost two months apart. Fig. 2 is a graphical display of
the data.

The QEs shown in Table 1 were submitted to one-way analysis of
variance (ANOVA). The difference between image series is statistically
significant (t (1, 38)=3336; p < .01).

3.2. Medical images with artificially added "lesion" contents

On the first set of images, we added a synthetic lesion to each image

Fig. 1. Schematic illustration of a self-organizing map. An input data item X is broadcast
to a set of models Mi, of which Mc matches best with X. All models that lie in the
neighborhood (larger circle) of Mc in the grid match better with X than with the rest,
from [6].
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to form a second set of images. Since our aim was to discover changes
within images between corresponding set of images, the new set of
images maintained all the characteristics of the first set, except for the
introduced ‘lesion’ which was uniformly positioned for the 20 images.
Thus, the use of synthetic ‘lesion’ ensures that the differences between
sets of images will not be influenced by any external factors like
location of camera, lighting, patient position on MRI machine etc. and
that the introduced ‘growth’ is known. The ‘lesion’ added was a 44 by
26 pixels eclipse-shaped with 72 by 72 dpi resolution, gray-scale and
filled with a pattern. A third set of images was similarly created by
adding another uniform ‘lesion’ to the second set. Thus, we create a
dataset of images portraying a patient with increasing lesions in his
knee. In practice, the three sets of data will have been acquired from
the patient on progressive clinical visits. The SOM algorithm was run
on each of the three sets of images and the QE was obtained per image
as shown in Table 2 and Fig. 3.

The results of these simulations show that adding artificial lesion
content to the patient's original image data produces a systematic

increase in the QE consistent with the increase in lesion contents. The
difference in QEs of SOM outputs is statistically significant when SOM
analysis of the original image data is compared with SOM analysis of
the "double lesion added" image data (t (1, 38)=2.055, p < .05). The
"single lesion added" treatment, by comparison, did not produce
differences in QE that were large enough to reach statistical signifi-
cance (t (1,38)=1.264, NS). The QEs shown in Table 3 were submitted
to one-way analysis of variance (ANOVA). The difference between raw
and modified images in a series is statistically significant for both series
(t (1, 38)=3337; p < .01 for series 1 and t (1, 38)=3336; p < .01 for
series 2). For a graphical representation, see Fig. 4.

3.3. Medical images with Poisson noise added

We used the Poisson frequency distribution process to add noise on
each of the two sets of knee images. Poisson noise was preferred over
the other types of impurities generation because it is correlated with
the intensity of each pixel in the image. The process produces a sample
image from a Poisson distribution for each pixel of the original image.
The QE values obtained from each of the original sets and the
corresponding noised set are shown in Table 3. The same Poisson
distribution parameters were applied to add the impurities in both
series. By its nature, Poisson method populates the image with
impurities in proportion to existing pixels hence the difference in what

Table 1
QE values from images taken from two consecutive clinical visits by a patient with an
injured left-leg knee. There is an increase in QE values between each image in the two
series.

Image QE 1st QE 2nd

dcm 0001 5544.68 8078.32
dcm 0002 5724.76 7410.38
dcm 0003 7096.77 10,381.9
dcm 0004 6101.77 6478.89
dcm 0005 6174.82 8193.23
dcm 0006 6507.84 9757.81
dcm 0007 7484.48 10,326.94
dcm 0008 6661.52 6985.06
dcm 0009 5992.41 5992.17
dcm 0010 6417.38 6972.39
dcm 0011 6001.4 5982.37
dcm 0012 7240.49 6198.58
dcm 0013 6201.82 9034.32
dcm 0014 5966.33 5842.39
dcm 0015 6024.03 7830.31
dcm 0016 5714.79 6135.71
dcm 0017 5557.94 5924.59
dcm 0018 7182.26 9330.04
dcm 0019 5450.78 7041.98
dcm 0020 6023.86 5957.58

Fig. 2. Results from a series of SOM analyses on time series of knee images, taken at two
different moments in time. It is shown that the QE in the SOM output increases
significantly (t (1, 38)=3336; p < .01) between image series taken before (series 1) and
after (series 2).

Table 2
QE distributions for original patient images and images with synthetic lesions added. QE
values increase with increase of ‘lesions’ added to an image.

Image Original 1 “lesion” 2 “lesions”

dcm 0001 1138.9128 1200.9820 1234.8677
dcm 0002 1213.9390 1273.5073 1305.3644
dcm 0003 912.0454 985.4192 1032.4355
dcm 0004 965.0731 1024.0330 1062.7660
dcm 0005 848.7616 908.4071 948.0895
dcm 0006 858.5535 919.0936 960.0879
dcm 0007 857.2325 927.1354 969.5507
dcm 0008 734.0570 808.2034 855.7769
dcm 0009 676.9681 751.9430 802.0007
dcm 0010 765.6439 837.8734 881.9957
dcm 0011 782.6192 851.3009 895.5168
dcm 0012 876.5664 935.8310 974.4636
dcm 0013 1000.3647 1059.5208 1095.0401
dcm 0014 1003.1925 1068.2832 1104.3974
dcm 0015 1026.7828 1095.1051 1131.4206
dcm 0016 1067.1361 1137.2907 1172.9960
dcm 0017 1194.5449 1257.6472 1290.4847
dcm 0018 1176.3578 1232.5629 1267.2867
dcm 0019 1098.3993 1156.7749 1191.4239
dcm 0020 1109.3291 1157.2493 1181.3063

Fig. 3. Graphical comparison of QE values of images with increasing lesions.
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was ‘added’ to each set of images.

4. Human detection with random-dot images

4.1. Objective

To test whether a systematic increase in the quantization error of
the SOM output is, indeed, directly linked to the detectability of
potentially critical local image contents, we designed a visual image
discrimination experiment using a classic "same-different" paradigm.
Images with different percentages of artificially induced and strictly
local "lesion" contents (5%, 10% and 30%) were paired with original

images where no such local "lesion" was added. On each of these
images, we ran SOM to determine the quantization error output and to
compare its variation with variations in visual change detectability by
inexperienced observers. In this experiment, human observers had to
judge whether a given image pair was the "same" or "different". Any
detection of a difference, called correct positive or "hit", could only be
due to detection of the artificially induced local difference ("lesion"
content) in one of the images, as all other image parameters (contrast
intensity, contrast sign, spatial distribution of contrasts, relative size)
were identical in two images of a pair. To determine the subjects'
tendency to over-diagnose, we also presented pairs of strictly identical
images and recorded the number of false positive detections, or
"guesses". The exposure duration of the image pairs was varied to test
whether the processing time affects detectability.

4.2. Subjects

32 healthy, young male subjects, 26 male and 6 female, all
volunteers aged between 19 and 34 years of age participated in this
study, which was conducted in conformity with the Helsinki
Declaration relative to experiments with human subjects and fully
approved by the ethics board of the supervising author's (BDL) host
institution (CNRS). All subjects had normal visual acuity and gave
written informed consent to participate.

4.3. Experimental stimuli and procedure

Computer generated random-dot images of identical size, local
contrast (.7 Michelson contrast) and spatial contrast distribution were
created (see Fig. 5 for an illustration) using Adobe RGB in Photoshop.
In three of these images, one local contrast dot was increased in
diameter yielding one image with a 5% local dot size increase, another

Table 3
The QE values of the set of images taken from the patient on the first clinical visit, 29th
April 2016, in the 1st column and in the 2nd column are the QE values of the same
images with added dots. The QE values in the 3rd column are from images taken from the
patient on the second clinical visit, 17th June 2016. The 4th column shows the QE values
of the resulting images after adding dots. The dots were added to each image based on
Poisson distribution frequency.

1st clinical Dots added 2nd clinical Dots added

5544.4807 11,086.7877 8078.2439 16,157.1898
7181.9884 14,364.0413 9330.1503 18,660.5707
5558.1511 11,117.9896 5924.6644 11,850.9655
5714.7921 11,429.2792 6135.6891 12,273.3048
6023.7532 12,048.4203 7830.3322 15,663.1586
5966.3444 11,932.9385 5842.4854 11,684.4111
6201.7292 12,405.2023 9034.2843 18,067.9178
7240.853 14,482.1577 6198.6079 12,401.7001
6001.4699 12,002.7776 5982.453 11,965.1671
6417.1673 12,836.4429 6972.2216 13,943.6979
5992.5 11,984.7077 5992.1492 11,984.4634
6661.4586 13,324.6943 6985.1401 13,973.7904
7484.6984 14,968.1884 10,327.1069 20,659.262
6507.8144 13,017.8913 9757.7571 19,514.2742
6174.883 12,349.7042 8193.1116 16,388.2526
6101.946 12,203.2147 6478.8401 12,960.4942
7096.3922 14,191.5997 10,381.9172 20,764.6702
5724.8007 11,450.6902 741.2646 14,823.074
5450.6741 10,901.116 7041.9858 14,083.6771
6023.8499 12,049.4355 5957.4332 11,916.3526

Fig. 4. Results from a series of SOM analyses on time series of images, taken at two
different moments in time. It is shown that the QE in the SOM output increases
significantly (t (1, 38)=3336; p < .01) between the image series. In the raw images series
1, small synthetic lesion was added, while in series 2, a larger synthetic lesion was added.
For each manipulation, the difference in the QE from the SOM outputs is statistically
significant (t (1, 38)=3337; p < .01 for series 1 and t (1, 38)=3336; p < .01 for series 2).

Fig. 5. Three random dot-images with different percentages of artificially induced and
strictly local "lesion" contents (5%, 10% and 30% increase in size of a single small dot,
shown here highlighted by the red square) were paired with original image where no such
local "lesion" was added (images on left in a given pair here above). Right and left images
in a pair varied between presentations, in random order. Pairs of identical images (not
shown here) were also presented in a task sequence to measure false alert rates ("guess
rates").
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one with a 10% local dot size increase, and a third one with a 30% local
dot size increase, always at exactly the same dot location.

Each of these three images was paired with the original "no lesion"
image, presented to the left and the right in a pair, in a random order.
Images were also paired with their identical images. During the
experiment, the subject was seated at a distance of about 75 centi-
metres from the computer screen in a semi-dark room. The image pairs
(see again Fig. 2 for an illustration) were presented in a random
sequence and each pair was followed by a blank screen presentation of
five seconds to avoid visual afterimages, which could have interfered
with the task. In one session, the exposure duration for each image pair
was five seconds, in another session, the exposure duration was
observer controlled. This means that the subject could look at a pair
for as long as he deemed necessary to reach a decision, then pressed a
key to get the five-second blank screen before the next pair was
displayed. The task instruction was to "decide as swiftly and accurately
as possible whether two images in a pair appear to be the same or
different. The number of "same" and "different" judgements in
response to a given image pair was recorded and written into an
individual excel table, for each subject and session. 16 of the 32
subjects started with the five second exposure duration session
followed by the session with the observer controlled exposure duration,
the other 16 performed the task sessions in the reversed order to
counterbalance possible sequential timing effects.

5. Results from human detection with random-dot images

5.1. Conditional detection rates

The total number of "same" and "different" responses for each type
of image pair was divided by the total number of presentations of that
pair for a given subject and experimental session. These response
frequencies were then multiplied by 100 to produce percentages of
correct negatives CN reflecting the percentage of "same" responses to
pairs of the same image, false negatives FN reflecting the percentage of
"same" responses to pairs of different images, false positives FP
("guesses") reflecting the percentage of "different" responses to pairs
of the same image, and correct positives CP ("hits") reflecting the
percentage of "different" responses to pairs of different images. The
distributions are shown in Tables 4–6 as a function of the "lesion"
contents, with 5%, 10% and 30% local increase in single dot size (1, 2,
3), and as a function of the exposure duration of the image pairs (a and
b). We checked to confirm that the position of an image in a pair (left or
right) had no effect on the responses (no positional bias), and average
response frequencies for images positioned on left and on right are
shown here.

When comparing between results shown in a) and b) of Tables 4–6,
we clearly see that the percentage of false positives FP, the so-called
"guess rate", does not vary much with the exposure duration of the

image pairs, whereas the percentage of correct positives CP, the so-
called "hit rate", increases markedly when the exposure duration is ad
libitum and observer controlled. This reveals that the subjects used a
constant decision criterion, otherwise the FP or "guess rate" would also
have varied with the image exposure duration, in the two successive
experimental sessions, and that limiting image exposure times nega-
tively affects the CP or "hit rate". When comparing between Tables 4–6,
we also quite clearly see that the CP or "hit rate" increases as the
"lesion" content in one of the images of a pair increases. In pairs where
one of the images has a 5% local dot size ("lesion") increase (Table 4),
the "hit rate" CP is smaller than the "guess rate" FP, which indicates
that the subjects are basically guessing and are unable to detect the
local difference in image contents. In pairs where one of the images has
a 10% or a 30% local dot size ("lesion") increase, the "hit rate" CP is
twice (Table 5) to three times (Table 6) the "guess rate" FP, which
shows that the local difference in the image contents is beginning to be
detected. In pairs with observer controlled exposure duration where
one image has a 30% local increase in "lesion" content, the "hit rate" CP
is the highest here at 40%.

5.2. Analysis of variance

In a next step, the average "hit rates" CP were submitted to Two-
Way ANOVA for the three levels of the "lesion" factor L3 and the two
levels of the exposure duration factor E2 to assess the statistical
significance of the effects. We observe a statistically significant result
for the effect of "lesion" on the average "hit rate", with F(2, 23)=38.04;
p < .001, and a significant effect of exposure duration, with F(1, 23)
=8.13; p < .05.

5.3. Comparison with QE values from SOM

The effect sizes in terms of means and standard errors (SEM) are
graphically represented in Fig. 6. For comparison of the human

Table 4
Conditional response rates R in percent (%) for "no-lesion" images paired with "5%
lesion" images under conditions of five seconds exposure duration (a), and observer
controlled exposure duration (b) for each image pair. Correct positive (CP), often also
called "hits", correct negative (CN), false positive (FP), and false negative (FN) response
rates are shown.

a)
Image pairs with five seconds exposure
SAME DIFFERENT

R "same" 88.7 (CN) 91.4 (FN)
"different" 11.3 (FP) 8.6 (CP)

b)
Image pairs with observer controlled exposure
SAME DIFFERENT

R "same" 86.5 (CN) 91.4 (FN)
"different" 13.5 (FP) 8.6 (CP)

Table 5
Conditional response rates (%) for "no-lesion" images paired with "10% lesion" images
under conditions of five seconds exposure duration (a), and observer controlled exposure
duration (b) for each image pair. Correct positive (CP), often also called "hits", correct
negative (CN), false positive (FP), and false negative (FN) response rates are shown.

a)
Image pairs with five seconds exposure
SAME DIFFERENT

R "same" 87.5 (CN) 82.0 (FN)
"different" 12.5 (FP) 18.0 (CP)

b)
Image pairs with observer controlled exposure
SAME DIFFERENT

R "same" 87.0 (CN) 77.4 (FN)
"different" 13.0 (FP) 22.6 (CP)

Table 6
Conditional response rates (%) for "no-lesion" images paired with "30% lesion" images
under conditions of five seconds exposure duration (a), and observer controlled exposure
duration (b) for each image pair. Correct positive (CP), often also called "hits", correct
negative (CN), false positive (FP), and false negative (FN) response rates are shown.

a)
Image pairs with five seconds exposure
SAME DIFFERENT

R "same" 85.5 (CN) 66.4 (FN)
"different" 14.5 (FP) 33.6 (CP)

b)
Image pairs with observer controlled exposure
SAME DIFFERENT

R "same" 86.5 (CN) 60.9 (FN)
"different" 13.5 (FP) 39.1 (CP)
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detection rates with the QE values from the SOM analyses run on the
random-dot images with 5%, 10% and 30% increase in local dot size,
we show these QE values as a function of each image type and the
correct positive (CP) rates subtracted by the false positive (FP) rates
here in Table 7.

6. Discussion

[4] reported that an expert wrongly classified all cases with 1%
artificial lesion growth, and only achieved an accuracy of 20% for cases
with 5% growth. The same expert, however, correctly classified all cases
with a 22% growth. In this study, we introduced a new SOM-based
technique for sensing the progression or remission of lesions in
medical images. We show that the QE of the SOM output of consecutive
analyses of sets of images taken over a time series increases when
impurities/lesions on the organ have increased and vice versa. The
experiments with human observers confirm that small growths in
lesions are hard to detect for humans, while they are reliably captured
by the technique introduced in this work. This work is important as it
introduces a new technique for the pre-analysis of large bodies of
medical images from patients. The technique allows the automatic
detection of subtle but significant changes in time series of images
likely to reflect growing or receding lesions. In clinical practice, finding
evidence for subtle growth through visual inspection of serial imaging
can be very difficult. This is especially true for scans taken at relatively
short intervals (less than a year). Visual inspection often misses the
slow evolution because the change may be obscured by variations in
body position, slice position, or intensity profile between scans, as
noted by [4]. In some cases, the change can be too small to be noticed,
leaving a patient to fate. Surgeons and oncologists frequently compute

the change in tumor volume by comparing the measurements of
consecutive scans. When the change in tumor volume is too small
and hence difficulty to detect between two sequential scans, neuror-
adiologists tend to compare the most recent scan with the earliest
available image to find any visible evidence for the evolution of the
tumor. The resulting analysis does not reflect the current development
of the tumor but rather a retrospective perspective of the tumor
evolution, [4]. Our work takes care of this situation and hence it can
aid clinicians in treatment decisions. QE is a quality measure for SOM.
It is therefore expected to produce same values when the initial SOM
settings and parameters remain the same and there are no changes in
the input vector (image). When, the image data is altered and the SOM
parameters are not altered, changes in the QE can reasonably be
attributed to the developments taking place in the organ whose image
is under study. This is why we have proposed QE as a clinical
determinant of the progression or remission of lesions in medical
images. We hope to carry on with further experiments in this area
especially with real images, comparing between results from real
patient data. We also expect to confirm our simulation results in the
light of analysis by human experts and metrics proposed by the World
Health Organization [9].

7. Conclusions

When the QE of a patient's images taken at different consecutive
times rises, it is a potential indication that lesions or impurities on the
organ under study are increasing, while a decrease may indicate the
lesions are receding. A common approach to measuring many cellular
processes by image analysis is to start with segmenting the image into
components of interest. We have suggested a method to follow-up a
patient treatment after diagnosis that does not rely on data from the
segments only, but performs a global analysis of the entire image.
Monitoring cancer progression/remission is often estimated via man-
ual segmentation of several images in an MRI sequence, which is
prohibitively time consuming, or via automatic segmentation, which is
a challenging and computationally expensive task that may result in
high estimation errors [10]. In this study, we have estimated the
disease progression in real-time directly from image statistics using a
self-organizing machine learning technique. We demonstrate that the
QE value of the output of these analyses “detects” the smallest increase
in potentially relevant local image contents that are impossible for
humans to see.
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