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Abstract

We introduce a new, and elementary, approximation method for
bilevel optimization problems motivated by Stackelberg leader-follower
games. Our technique is based on the notion of two-scale Gibbs mea-
sures. The first scale corresponds to the cost function of the follower
and the second scale to that of the leader. We explain how to choose
the weights corresponding to these two scales under very general as-
sumptions and establish rigorous Γ-convergence results. An advantage
of our method is that it is applicable both to optimistic and to pes-
simistic bilevel problems.

Keywords: bilevel optimization, Stackelberg games, Gibbs measures,
Γ-convergence, Laplace method.

MS Classification: 49K35, 90C26, 60B05.

1 Introduction

Bilevel optimization is defined as mathematical programming where an opti-
mization problem contains another one as a constraint. It consists of decision
making problems with hierarchical leader-follower structure and has a natu-
ral interpretation in game theory. Bilevel problems have a long history that
dates back to von Stackelberg [12] and have been intensively studied from
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a theoretical point of view as well as in applications to various domains in-
cluding traffic planning, security, supply chain management, principal-agent
models, production planning, market deregulation, optimal taxation, param-
eter estimation, see the recent surveys [6, 8] and the references therein. In
the context of Cournot duopolies, von Stackelberg investigated the leader-
follower model where the leader firm maximizes profit under the constraint
that the follower firm reacts with an optimal choice of the quantity that is
supposed to be unique. Later on, Leitmann [10] discussed the case where the
optimal solutions for the follower’s problem form a set that the leader has to
take into account in order to solve her own optimization problem.

In case the follower’s program has several solutions, we see that there
is some ambiguity even in the definition of the leader’s program. In the
literature, several concepts have been considered. The optimistic (or strong)
Stackelberg solution assumes a cooperative like behavior between the agents:
the leader expects the follower to choose solutions leading to the best outcome
for her. On the contrary, the pessimistic (or weak) Stackelberg solution
assumes that the follower always breaks ties by choosing the worst actions for
the leader which corresponds to a security strategy for her, see [2, 5]. Some
intermediate cases can also be considered. In [1], a cooperation degree is
assumed leading to the optimization of a convex combination of the best and
the worst payoff value for the leader, while, in [11], a probabilistic information
about the follower’s behavior is assumed resulting in the optimization of an
average payoff.

Both optimistic and pessimistic bilevel programs are challenging and often
difficult to solve in practice. In the present paper, we present a new and
quite simple (unconstrained) approximation scheme for such problems based
on the notion of two-scale Gibbs measures. Our method is directly inspired
by the classical Laplace method: Gibbs probability measures which have a
density proportional to e−λu with respect to a reference measure with full
support concentrate on the set where u is minimal as λ → ∞. We refer to
Hwang [9] for a fine study of the method and precise statements in smooth
finite-dimensional situations. In the context of bilevel optimization, we have
to take into account the objective of both the leader and the follower and a
single parameter λ is not enough capture the nested structure of the leader-
follower problem. This is why we introduce two-scale Gibbs measures where
the first scale (with weight λ) takes into account the follower’s objective
and the secondary one (with a smaller weight to be chosen properly) takes
into account the leader’s objective. We investigate in details convergence
issues (both in the pointwise and Γ-convergence sense) and the choice of
the secondary scale only in terms of the reference measure and the modulus
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of continuity of the leader and follower objective functions. Our method is
flexible enough to cope with both the optimistic and the pessimistic case.

The paper is organized as follows: the setting of our analysis is introduced
in section 2. In section 3, we recall some basic facts on Gibbs measures and
analyze the convergence of two-scale Gibbs measures in a simple case. In
section 4, we give a construction for the weights which guarantees convergence
of the corresponding two-scale Gibbs measures under general assumptions.
We then establish Γ-convergence results, first for the optimistic case in section
5 and then in the pessimistic case in section 6. Finally, section 7 concludes
with some remarks and examples.

2 Setting

Throughout this paper, X (strategy set for the leader) and Y (strategy set
for the follower) will be two compact metric spaces. We will also assume
that the cost functions of both the leader and the follower are continuous,
ϕ ∈ C(X × Y ), ψ ∈ C(X × Y ) will denote the cost function of the leader
(who chooses x ∈ X) and the follower (choosing y ∈ Y ) respectively. The
Stackelberg problem is the program of the leader which reads

inf
(x,y)∈X×Y

{
ϕ(x, y) : y ∈ argminψ(x, .)

}
. (2.1)

Under our assumptions, it is obvious that (2.1) admits at least one solution
but finding such solutions in practice is a challenging task due to the con-
straint y ∈ argminψ(x, .). Of course, one can rewrite (2.1) as a minimization
problem with respect to x only:

inf
x∈X

ϕ∗(x) (2.2)

where
ϕ∗(x) := min

{
ϕ(x, y) : y ∈ argminψ(x, .)

}
. (2.3)

Problem (2.1) is usually refered to as the optimistic problem since it assumes
that in case the follower has several optimal strategies she will break ties
by chosing one which is optimal for the leader. The pessimistic problem
consists, on the contrary, in assuming that the follower actually breaks ties
by chosing strategies which are the worst for the leader. The corresponding
bilevel pessimistic program therefore consists in

inf
x∈X

ϕ∗(x) (2.4)
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where
ϕ∗(x) := max

{
ϕ(x, y) : y ∈ argminψ(x, .)

}
. (2.5)

In general, the pessimistic value ϕ∗ is not lower-semicontinuous (lsc) so (2.4)
does not necessarily admit solutions which makes the pessimistic problem
more involved than the optimistic one and requires some suitable relaxation
of ϕ∗.

Our goal is to approximate the bilevel problem (2.1) by a family of un-
constrained ones (we will also address the approximation of the pessimistic
bilevel problems (2.4) in section 6). We shall indeed prove that the somehow
rough function ϕ∗ can be approximated by a family of more regular ones
defined by an integral depending on a parameter. By approximated we mean
both in the pointwise sense and in the sense of Γ-convergence we recall below
(see [4] or [7] for an overview of Γ-convergence and its applications):

Definition 2.1. Let F : X → R and let for every λ > 0, Fλ : X → R, then
Fλ is said to Γ-converge to F as λ→ +∞ if the following two conditions are
satisfied:

• for every x ∈ X and every family (xλ)λ>0 converging to x as λ→ +∞,
one has the Γ-liminf inequality:

F (x) ≤ lim inf
λ→+∞

Fλ(xλ),

• for every x ∈ X, there exists a (so-called recovery) family (xλ)λ>0 con-
verging to x as λ → +∞ such that the following Γ-limsup inequality
holds

F (x) ≥ lim sup
λ→+∞

Fλ(xλ).

Our approximation is a variant of the celebrated Laplace method, which
as far as we know, has not been investigated in the bilevel framework. First
of all, we give ourselves a Borel probability measure ν on Y (which we will
denote ν ∈ P(Y )) and assume that it has full support

spt(ν) = Y. (2.6)

For r > 0 and y ∈ Y , we denote by Br(y) the closed ball of radius r centered
at y and set for every r ≥ 0,

αν(r) := inf
y∈Y

ν(Br(y)). (2.7)
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Note that the full support assumption (2.6) and the compactness of Y ensure
that αν(r) > 0 for every r > 0.

Given x ∈ X, λ > 0 and δ > 0, we consider the probability measure on
Y

µλ,δ(dy|x) := Zλ,δ(x)e−λ(ψ(x,y)+δϕ(x,y))ν(dy) (2.8)

where Zλ,δ(x) is the normalizing constant which makes µλ,δ(.|x) a probability
measure i.e.

Zλ,δ(x) :=
1∫

Y
e−λ(ψ(x,y)+δϕ(x,y))ν(dy)

.

Our main result is that one can choose the secondary scale δ = δλ with

lim
λ→+∞

δλ = 0, lim
λ→+∞

λδλ = +∞ (2.9)

in such a way that the family

x 7→ ϕλ(x) :=

∫
Y

ϕ(x, y)µλ,δλ(dy|x)

Γ-converges and converges pointwise to ϕ∗ as λ→∞. Our construction of δλ
only depends on the function αν defined in (2.8) and a modulus of continuity
of ϕ and ψ, it will be detailed in section 4.

3 On Gibbs measures

3.1 On standard Gibbs measures

In this section, we temporarily leave the approximation of Stackelberg prob-
lems and focus on the asymptotic behavior of Gibbs measures. Given ν ∈
P(Y ) with full support as in (2.6), λ > 0 and w ∈ C(Y ), we define the Gibbs
measure

νλ,w := Zλ,we
−λwν, Zλ,w :=

1∫
Y
e−λw(y)ν(dy)

. (3.1)

Of course, νλ,w is unchanged if one adds a constant to w so there is no loss
of generality in normalizing w in some way, and the most natural way is to
assume that its minimum is 0. The following elementary result will be used
intensively in the sequel:

Lemma 3.1. Let w ∈ C(Y ) be such that minY w = 0 and let νλ,w be defined
by (3.1) then for every ε > 0 there holds

νλ,w({w ≥ ε}) ≤ e−
λε
2

ν({w ≤ ε
2
})
. (3.2)
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Proof. Let us write

νλ,w({w ≥ ε}) =

∫
{w≥ε} e

−λw(y)ν(dy)∫
{w≥ε} e

−λw(y)ν(dy) +
∫
{w<ε} e

−λw(y)ν(dy)

so that
1

νλ,w({w ≥ ε})
= 1 +

∫
{w<ε} e

−λw(y)ν(dy)∫
{w≥ε} e

−λw(y)ν(dy)

then observe that ∫
{w≥ε}

e−λw(y)ν(dy) ≤ e−λε

and ∫
{w<ε}

e−λw(y)ν(dy) ≥
∫
{w≤ ε

2
}
e−λw(y)ν(dy) ≥ e−

λε
2 ν({w ≤ ε

2
})

so putting eveything together yields (3.2).

Since, for every λ, νλ,w is a probabilty measure and Y is compact, there
is a sequence λn →∞ and ν ∈ P(Y ) such that, νλn,w weakly1 star converges
to ν as n→∞. Since the set {w > ε} is open, it follows from Portmanteau’s
theorem (see [3]) that

ν({w > ε}) ≤ lim inf
n

νλn,w({w > ε}).

Hence, for every ε > 0 thanks to (3.2) and the fact that ν({w ≤ ε
2
}) > 0

(because ν has full support and the minimum of w is 0), we get

ν({w > ε}) = 0

letting ε → 0+ and using the fact that w is continuous, we conclude that ν
concentrates on the set where w = 0. We thus recover the well-known fact
that Gibbs measures concentrate on the set where the potential is minimal:

Corollary 3.2. Let w ∈ C(Y ) and νλ,w be defined by (3.1), then any weak
star cluster point of νλ,w as λ→∞ has its support in argminY w.

1Recall that (νn)n ∈ P(Y )N weakly star converges to ν if
∫
Y
u(y)νn(dy)→

∫
Y
u(y)ν(dy)

for every u ∈ C(Y ).

6



3.2 Convergence of two-scale Gibbs measures in a sim-
ple case

To understand how to approximate bilevel problems with Gibbs measures, we
first have to understand the following question. Given two functions u and v
in C(Y ), we want to find a weight δλ such that δλ → 0, λδλ → +∞ as λ →
+∞ in such a way that the two-scale Gibbs measure νλ,u+δλv concentrates
when λ→∞ on the double argmin set:

argminargminu v := {y ∈ argminu : v(y) = min{v(z) : z ∈ argminu}}.
(3.3)

We will give a general constructive answer in paragraph 4 (depending on
the modulus of continuity of u and v and the function αν in (2.7)). Yet,
for now, we prefer to focus on a rather simple case where the explicit choice
δλ := 1√

λ
works (as well as many other simple ones, see Remark 3.4 below).

This simple case corresponds to the extra assumptions that both u and v are
Hölder continuous and the function αν is bounded from below by a power
function. Denoting by dist the distance on Y and diam(Y ) its diameter,
these assumptions mean that there exist C > 0, α ∈ (0, 1] and β ∈ R∗+ such
that

max(|u(y)− u(z)|, |v(y)− v(z)|) ≤ C dist(y, z)α, ∀(y, z) ∈ Y 2, (3.4)

and

αν(r) ≥
rβ

C
, ∀r ∈ [0, diam(Y )]. (3.5)

To shorten notations, let us set

ν̃λ := Z̃λe
−λu−

√
λvν, Z̃λ :=

1∫
Y
e−λu−

√
λvν

(3.6)

which corresponds to the the two-scale Gibbs measure νλ,u+ 1√
λ
v.

Proposition 3.3. Assume that u and v satisfy (3.4), that ν satisfies (3.5)
and define ν̃λ by (3.6) then any weak star cluster point of ν̃λ as λ→∞ has
its support in the double argmin set argminargminu v.

Proof. To ease notations, let us normalize u and v in such a way that

min
Y
u = 0, min{v(y) : y ∈ Y, u(y) = 0} = 0. (3.7)

Also define wλ := u + v√
λ

and observe that (3.7) implies that minY wλ ≤ 0.

Let then λn → ∞, ν ∈ P(Y ) such that ν̃λn weakly star converges to ν. Let
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ε > 0, for λ large enough {u > ε} ⊂ {wλ > ε
2
} ⊂ {wλ > minY wλ + ε

2
} and

{u ≤ ε
8
} ⊂ {wλ ≤ minY wλ + ε

4
). It then follows from the inequality (3.2) of

Lemma 3.1 that

ν̃λ({u > ε}) ≤ ν̃λ({wλ > min
Y
wλ +

ε

2
})

≤ e−
λε
4

ν({wλ ≤ minY wλ + ε
4
})
≤ e−

λε
4

ν({u ≤ ε
8
})

so that, again thanks to Portmanteau’s Theorem, ν({u > ε}) = 0 and ν is
supported by argminu = {u = 0}. In particular, with (3.7), v ≥ 0 on spt(ν).
To conclude, we thus have to show that for every ε > 0, ν({v > ε}) = 0.
Since u ≥ 0 and minY wλ ≤ 0, we have {v > ε} ⊂ {wλ > minY wλ + ε√

λ
} so

using Lemma 3.1 again we get

ν̃λ({v > ε}) ≤ e−
√
λε
2

ν({wλ ≤ minY wλ + ε
2
√
λ
})
. (3.8)

Let yλ be a point where wλ achieves its minimum, then it follows from (3.4)
that for λ ≥ 1, wλ ≤ minY wλ + ε

2
√
λ

in the ball of center yλ and radius

( ε
4C
√
λ
)

1
α , hence

ν({wλ ≤ min
Y
wλ +

ε

2
√
λ
}) ≥ αν

(( ε

4C
√
λ

) 1
α
)
≥ 1

C

( ε

4C
√
λ

) β
α

where the last inequality follows from (3.5). With (3.8), this yields

ν̃λ({v > ε}) ≤ ε−
β
α4

β
αC1+ β

α

√
λ
β
α e−

√
λε
2

since for every ε > 0 the right hand side tends to 0 as λ→∞, Portmanteau’s
Theorem again allows us to conclude that ν({v > ε}) = 0.

Remark 3.4. Our choice δλ = 1√
λ

above is just for illustrative purpose and by
no means the only possible one or optimal in any sense. It is indeed straight-
forward to check, with the same proof as above, that under the assumptions
of Proposition 3.3, any choice of δλ such that

lim
λ→+∞

δλ = 0, lim
λ→+∞

λδλ = +∞, lim
λ→+∞

log(δλ)

λδλ
= 0 (3.9)

guarantees that the corresponding two-scale measures νλ,u+δλv tend to con-
centrate on the double argmin set (3.3) as λ→ +∞. In particular any power
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choice for δλ i.e. δλ = λ−γ with γ ∈ (0, 1) (or much larger weights such as
δλ = 1

log(λ)
, δλ = 1

log log(λ)
) ensures convergence to the double argmin set. Note

that smaller weights such as δλ = log(λ)
λ

violate condition (3.9). Assumptions
(3.4) and (3.5) are essential if one wishes to use power like weights. In section
7, we will consider examples where αν is much smaller than a power function.
In such cases, the choice δλ = 1√

λ
may rule out the desired convergence prop-

erty (see Example 7.1). Even worse, it may be the case that no power-like
weight converges to the double argmin set (see Example 7.2).

An immediate consequence of Proposition 3.3 is

Corollary 3.5. Under the same assumptions as in Proposition 3.3, we have

lim
λ→∞

∫
Y

v(y)ν̃λ(dy) = min{v(y) : y ∈ argminu}.

4 Chosing the weights under general assump-

tions

Now we consider the general case where u and v are continuous and ν has
full support. We wish to find secondary weights δλ satisfying (2.9) in such a
way that defining the two-scale Gibbs measures,

ν̃λ := Z̃λe
−λ(u+δλv)ν, Z̃λ :=

1∫
Y
e−λ(u+δλv)ν

(4.1)

every weak star cluster point of ν̃λ as λ → ∞ is supported by the double
argmin set (3.3).

First of all, we fix a common modulus of continuity ω for both u and v
in the sense that:

|u(y)− u(z)|+ |v(y)− v(z)| ≤ ω(dist(y, z)), ∀(y, z) ∈ Y 2 (4.2)

without loss of generality, we may assume that ω is strictly increasing and
concave (hence continuous) on the whole of R+ and of course ω(t) → 0+

as t → 0. We the denote by Γ, R∗+ → R∗+ the inverse of ω, Γ := ω−1, by
construction we thus have

z ∈ BΓ(ε)(y)⇒ |u(y)− u(z)|+ |v(y)− v(z)| ≤ ε. (4.3)

Recalling that αν is defined by (2.7), we define for every t > 0

θ(t) := lim
δ→0+

log(αν(Γ(t− δ))). (4.4)
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Note then that θ is nondecreasing, lsc (this is why we define it as a left limit)
and θ(t)→ −∞ as t→ 0+.

Lemma 4.1. Let θ be given by (4.4), for every λ > 0 define

tλ := inf{t > 0 : θ(t) +
λt

2
≥ 0} (4.5)

and
δλ := 2

√
tλ (4.6)

then λ 7→ δλ is decreasing, satisfies (2.9) and

lim
λ→∞

θ
(δ2

λ

2

)
+
λδ2

λ

2
= +∞. (4.7)

Proof. First of all, it is clear that tλ is well defined since t 7→ θ(t) + λt
2

is
an increasing function which tends to −∞ as t → 0+ and +∞ as t → +∞.
Moreover since we chose θ lsc we have

θ(tλ) +
λtλ
2
≤ 0 (4.8)

and since 2tλ > tλ we also have

θ(2tλ) + λtλ ≥ 0. (4.9)

It is obvious by monotonicity that λ 7→ tλ is nonincreasing and dividing (4.8)
by λ and letting λ→ +∞ one easily sees that tλ converges to 0 as λ→ +∞,
this gives θ(2tλ)→ −∞ as λ→ +∞. Hence, thanks to (4.9), we have

lim
λ→+∞

λtλ = +∞. (4.10)

The fact that δλ decreases to 0 and λδλ tends to +∞ immediately follow.
Finally, by definition of δλ and using (4.9), we have

θ
(δ2

λ

2

)
+
λδ2

λ

2
= θ(2tλ) + 2λtλ ≥ λtλ

so (4.7) directly follows from (4.10).

Proposition 4.2. Let δλ be defined as in Lemma 4.1 and ν̃λ be defined by
(4.1). Then any weak star cluster point of ν̃λ as λ → ∞ has its support
included in the double argmin set (3.3).
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Proof. Again we can normalize u and v so that (3.7) holds and set wλ :=
u + δλv, since δλ → 0, one can proceed as in the proof of Proposition 3.3
to show that for every ε > 0, ν̃λ({u > ε}) tends to 0 as λ → +∞ and thus
deduce that any weak star cluster point of ν̃λ as λ → ∞ has its support
included in {u = 0} = argminu. To conclude that such weak star cluster
points are in fact supported by the double argmin set (3.3), it is enough
to show that for every ε > 0, ν̃λ({v > ε}) tends to 0 as λ → +∞. To
prove this, we observe that since u ≥ 0, {v > ε} ⊂ {wλ ≥ δλε} and since
minY wλ ≤ 0 (because of (3.7)), we have {v > ε} ⊂ {wλ ≥ minY wλ + δλε}.
Since ν̃λ = νλ,wλ , our basic inequality (3.2) in Lemma 3.1 gives:

ν̃λ({v > ε}) ≤ ν̃λ({wλ ≥ min
Y
wλ + δλε}) ≤

e−
λδλε

2

ν({wλ ≤ minY wλ + δλε
2
})
.

(4.11)
Choose now λ large enough so that δλ ≤ 1, doing so ω is a modulus of
continuity of wλ. Hence if yλ is a minimum point of wλ, the ball B

Γ(
δλε

2
)
(yλ)

is contained in {wλ ≤ minY wλ + δλε
2
} hence by definition of Γ, αν and θ we

get

ν({wλ ≥ min
Y
wλ +

δλε

2
}) ≥ αν

(
Γ(
δλε

2
)
)
≥ eθ(

δλε

2
)

replacing in (4.11) gives

ν̃λ({v > ε}) ≤ e−
λδλε

2
−θ( δλε

2
) (4.12)

for λ large enough, δλ ≤ ε so that, using the monotonicity of θ:

λδλε

2
+ θ(

δλε

2
) ≥ λδ2

λ

2
+ θ
(δ2

λ

2

)
and since the right hand side tends to +∞ as λ → +∞ thanks to (4.7), we
obtain that for every ε > 0

lim
λ→+∞

ν̃λ({v > ε}) = lim
λ→+∞

e−
λδλε

2
−θ( δλε

2
) = 0,

which gives the desired conclusion.

Remark 4.3. In fact the proof of Proposition 4.2 gives a more precise infor-
mation than the fact that weak cluster points of ν̃λ concentrate on the double
argmin set (3.3). Thanks to (4.12), we in fact have

ν̃λ({v > min
argminu

v + ε}) ≤ e−
λδλε

2
−θ( δλε

2
) (4.13)
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and by construction for every ε > 0:

λδλε

2
+ θ(

δλε

2
)→ +∞ as λ→∞. (4.14)

Now observe that the quantity in (4.14) only depends on u and v through
the function θ i.e. through the modulus ω. So the speed at which ν̃λ({v >
minargminu v+ε}) converges to 0 is uniform with respect to v and u admitting
ω as modulus of continuity. This uniform behavior will be useful in section
6 devoted to the pessimistic case.

Remark 4.4. Let us also emphasize that what really matters for convergence
is the fact that the left-hand side of (4.13) tends to 0 as λ→ +∞ for every
ε > 0 and not really the precise construction of δλ. Our construction based
on Lemma 4.1 is just a cooking recipe which guarantees this property, and
we are not claiming that it is optimal in any sense. In fact, the choice
δλ = 2

√
tλ in Lemma 4.1 is a bit arbitrary, taking δλ = tγλ with γ ∈ (0, 1) or

δλ = −tλ log(tλ) would have worked just as well.

5 Γ-convergence to the bilevel problem

We are now ready to go back to the bilevel problem (2.2) of paragraph 2.
Since both ϕ and ψ are continuous on X × Y which is compact, we can find
ω, a (strictly increasing and concave) modulus of continuity of ϕ(x, .), ψ(x, .)
which is uniform with respect to x ∈ X i.e.:

|ϕ(x, y)− ϕ(x, z)|+ |ψ(x, y)− ψ(x, z)| ≤ ω(dist(y, z)), ∀(x, y, z) ∈ X × Y 2

(5.1)
we then define Γ := ω−1 as in the previous paragraph, θ as in (4.4) and then
the weights δλ by (4.5)-(4.6) as in Lemma 4.1. Recalling (2.8), let us set for
every x ∈ X,

µ̃λ(dy|x) := µλ,δλ(dy|x)

i.e.
µ̃λ(dy|x) := Z̃λ(x)e−λ(ψ(x,y)+δλϕ(x,y))ν(dy)

with

Z̃λ(x) := Zλ,δλ(x) =
1∫

Y
e−λ(ψ(x,y)+δλϕ(x,y))ν(dy)

.

Finally, let us define

ϕλ(x) :=

∫
Y

ϕ(x, y)µ̃λ(dy|x), ∀x ∈ X. (5.2)

Our main result is then the following
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Theorem 5.1. Let ϕ∗ be defined by (2.3) and ϕλ be as above. Then ϕλ
Γ-converges and converges pointwise to ϕ∗ as λ→ +∞.

Proof. The pointwise convergence follows directly from Proposition 4.2. The
Γ-limsup inequality straighforwardly follows (taking the constant xλ = x as
recovery sequence). It remains to show the Γ-liminf inequality. Let then
x ∈ X, xλ → x as λ→ +∞, since ϕ(xλ, .) converges uniformly to ϕ(x, .), we
first have

lim inf
λ→∞

ϕλ(xλ) = lim inf
λ→∞

∫
Y

ϕ(x, y)µ̃λ(dy|xλ) (5.3)

we may then find a sequence λn → +∞ in such a way that µn := µ̃λn(.|xλn)
weakly star converges to some µ ∈ P(Y ) and

lim inf
λ→∞

∫
Y

ϕ(x, y)µ̃λ(dy|xλ) = lim
n

∫
Y

ϕ(x, y)µ̃λn(dy|xλn) =

∫
Y

ϕ(x, y)µ(dy)

so if we show that
ψ(x, .) = min

Y
ψ(x, .) µ-a.e. (5.4)

this will show that
∫
Y
ϕ(x, y)µ(dy) ≥ ϕ∗(x) by definition of ϕ∗ yielding the

desired Γ-liminf inequality. To prove (5.4), we take ε > 0 and observe that
for large enough n, the set {y ∈ Y : ψ(x, y) > minY ψ(x, .) + ε} is included
in

{y ∈ Y : ψ(xλn , y) + δλnϕ(xλn , y) > min
Y
{ψ(xλn , .) + δλnϕ(xλn , .)}+

ε

2
}.

Let us set fn := ψ(xλn , .)+δλnϕ(xλn , .) to shorten notations. Thanks to (3.2)
again, we have

µn

(
{ ψ(x, .) > min

Y
ψ(x, .) + ε}

)
≤ e−

λnε
4

ν({fn ≤ minY fn + ε
4
})

and since fn converges uniformly to ψ(x, .), for large enough n, {fn ≤
minY fn + ε

4
} contains a neighbourhood of a minimizer of ψ(x, .), we obtain

lim
n
µn

(
{ ψ(x, .) > min

Y
ψ(x, .) + ε}

)
= 0.

Portmanteau’s theorem thus implies that µ
(
{ ψ(x, .) > minY ψ(x, .) + ε}

)
=

0 which ends the proof.

As a consequence of the previous Γ-convergence, we immediately have:
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Corollary 5.2. Let ϕ∗ be defined by (2.3) and ϕλ be as above, then

lim
λ→+∞

min
X

ϕλ = min
x∈X

ϕ∗ = min{ϕ(x, y), (x, y) ∈ X × Y, y ∈ argminψ(x, .)}

and if xλ is a minimizer of ϕλ and x is a cluster point of xλ as λ → +∞
then x is a minimizer of ϕ∗.

6 The pessimistic case

Let us now address the pessimistic case and the approximation via Gibbs-
measures of the pessimistic value function ϕ∗ defined in (2.5). Since ϕ∗ is
not necessarily lsc, we have to relax it and consider its lsc envelope (that is
the largest lsc function lying below ϕ∗ on X) which we denote by ϕ∗ and is
given by

ϕ∗(x) := lim inf
x′→x

ϕ∗(x′) = lim
r→0+

inf
Br(x)

ϕ∗. (6.1)

We construct δλ exactly as in paragraph 5, and for every x ∈ X, we consider
the Gibbs measure:

µ̃+
λ (dy|x) := Z̃+

λ (x)e−λ(ψ(x,y)−δλϕ(x,y))ν(dy)

with

Z̃+
λ (x) :=

1∫
Y
e−λ(ψ(x,y)−δλϕ(x,y))ν(dy)

.

We consider then the approximations

ϕ+
λ (x) :=

∫
Y

ϕ(x, y)µ̃+
λ (dy|x), ∀x ∈ X. (6.2)

Our convergence result concerning the pessimistic value is the following:

Theorem 6.1. Let ϕ∗ be defined by (2.5) and ϕ+
λ be as above. Then, as

λ→ +∞, ϕ+
λ converges pointwise to ϕ∗ and Γ-converges to its lsc envelope,

ϕ∗, defined in (6.1).

Proof. The pointwise convergence of ϕ+
λ to ϕ∗ follows directly from Proposi-

tion 4.2.
Let us then introduce the Γ-liminf and Γ-limsup:

Γ− lim inf
λ

ϕ+
λ (x) := inf

{
lim inf

λ
ϕ+
λ (xλ) : xλ → x

}
14



and
Γ− lim sup

λ
ϕ+
λ (x) := inf

{
lim sup

λ
ϕ+
λ (xλ) : xλ → x

}
.

Since ϕ+
λ converges pointwise to ϕ∗ we obviously have

Γ− lim sup
λ

ϕ+
λ ≤ ϕ∗

but since Γ− lim supλ ϕ
+
λ is lsc (see Proposition 1.28 in [4]) this also implies

Γ− lim sup
λ

ϕ+
λ ≤ ϕ∗. (6.3)

We now aim to show that

Γ− lim inf
λ

ϕ+
λ ≥ ϕ∗. (6.4)

Let us argue by contradiction assuming that (6.4) is false, then there exists
x ∈ X, r > 0, ε > 0, xλ converging to x as λ→ +∞ such that

lim inf
λ

ϕ+
λ (xλ) ≤ inf

Br(x)
ϕ∗ − 4ε,

To ease notations, choose a sequence xn = xλn with λn → +∞ in such a way
that

lim inf
λ

ϕ+
λ (xλ) = lim

n

∫
Y

ϕ(xn, y)µ̃+
λn

(dy|xn).

and set ϕn := ϕ(xn, .), ψn := ψ(xn, .) and µ+
n := µ̃+

λn
(.|xn). Since for n large

enough xn ∈ Br(x), we have for large enough n∫
Y

ϕn(y)µ+
n (dy) ≤ ϕ∗(xn)− 3ε = max

argminψn
ϕn − 3ε. (6.5)

But it follows from (4.13)-(4.14) in remark 4.3 (actually applied to u = ψn
and v = −ϕn) that

lim
n
µ+
n ({ϕn < ϕ∗(xn)− ε}) = 0

and since ∫
Y

ϕn(y)µ+
n (dy) ≥ −‖ϕ‖∞µ+

n ({ϕn < ϕ∗(xn)− ε})

+(ϕ∗(xn)− ε)µ+
n ({ϕn ≥ ϕ∗(xn)− ε})

for large enough n, we have∫
Y

ϕn(y)µ+
n (dy) ≥ ϕ∗(xn)− 2ε
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which contradicts (6.5) and therefore establishes (6.4). Finally, it is well-
known (see Theorem 1.17 in [4]) that (6.3)-(6.4) imply that ϕλ Γ-converges
to ϕ∗ as λ→ +∞.

7 Examples and remarks

If one wishes to implement our approximation on concrete problems (which,
at the moment, we leave for future works), a certain number of issues have
to be seriously addressed. Among them one can think of the choice of the
reference measure ν as well as of the numerical method to efficiently compute
the integrals which appear in ϕλ. But the first question that naturally comes
to mind is the choice of the weight δλ for the secondary scale. Since δλ
captures the tradeoff between the upper and lower level, a small δλ will
result in a good accuracy for the follower’s optimizing behavior but might
too slowly take into account the leader’s objective. We already saw that δλ
cannot be chosen too small for the convergence to be guaranteed but choosing
it too large may affect the speed of convergence to the value function of the
leader. A universallly good choice for δλ is certainly impossible and the aim
of this final section is precisely to illustrate on some particular examples the
behavior of our approximations.

7.1 A case where δλ cannot be too small

We first consider an example where the assumption (3.5) of a power-like lower
bound on αν is relaxed. This example shows that one cannot hope for a
universal choice of δλ, in particular δλ = λ−

1
2 does not guarantee convergence

to the double argmin set if αν happens to be too small near 0.

Example 7.1. Consider the case where Y = [−1, 1], and let u and v Lipschitz,
nonnegative with

• u = 0 exactly on K := [−3/4,−1/2] and at 0, u(y) = |y| in a neigh-
bourhood of 0 (for instance u(y) = min(|y|, dK(y)) where dK is the
distance to K),

• v vanishes at 0 only.

We thus have argminu = K∪{0} and the double argmin set argminargminu v
is reduced to {0}. Now choose ν absolutely continuous with respect to the
1-dimensional Lebesgue measure dν = fdy with f bounded, f > 0 Lebesgue
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almost everywhere so that ν has full support but f extremely small in a
neighbourhood of 0, more precisely:

f(y) =
3

y4
e
− 1
|y|3 , for |y| > 0 small and , f(0) = 0.

so that for small δ > 0
ν([−δ, δ]) = 2e−

1
δ3 .

Consider now the two-scale measure with a square root weight for the sec-
ondary function v:

ν̃λ := Z̃λe
−λu−

√
λvν with Z̃λ :=

1∫
Y
e−λu−

√
λvν

.

First observe that∫
Y

e−λu−
√
λvν ≥

∫
K

fe−
√
λv ≥

(∫
K

f
)
e−maxK v

√
λ =: Ce−M

√
λ

then for δ > 0 small we have

ν̃λ([−δ, δ]) ≤
2eM

√
λ

C

∫ δ

0

e−λyf

since ∫ δ

0

e−λyf =

∫ δ

λ1/4

0

e−λyf +

∫ δ

δ

λ1/4

e−λyf

≤ e−
λ3/4

δ3 + e−λ
3/4δ‖f‖∞

we finally get

ν̃λ([−δ, δ]) ≤ 2C−1e
√
λM(e−

λ3/4

δ3 + e−λ
3/4δ‖f‖∞)

since the right hand-side goes to 0 as λ→ +∞, we deduce that there exists
a neighbourhood of 0 which has zero measure for any weak cluster point of
ν̃λ, in particular none of these cluster points can concentrate on {0}. In an
example like this one, one typically has θ(t) ∼ −1

t3
, so applying the cooking

recipe of Lemma 4.1 one finds tλ ∼ λ−
1
4 and weights δλ which guarantee

convergence are δλ = λ−γ with γ ∈ (0, 1
4
) or δλ = λ−

1
4 log(λ).
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7.2 A case where δλ cannot be power-like

We now consider a variant of the previous example where any power choice
for δλ fails to guarantee convergence of the two-scale measure to the double
argmin set.

Example 7.2. Consider exactly the same u and v as in example 7.1, but with
an even worse reference measure whose density f is of the form

f(y) =
1

y2
exp

( 1

|y|
− exp(

1

|y|
)
)

in a neighbourhood of 0 (and bounded and bounded away from zero else-
where, say) so that for small δ > 0, ν([−δ, δ]) = 2 exp(− exp(δ−1)) and
αν(r) ∼ exp(− exp(1

r
)) for small r. Let us try to take a power function λγ

(i.e. δλ = λγ−1) for some γ ∈ (0, 1) as a weight on the function v i.e. consider

ν̃λ := Z̃λe
−λu−λγvν with Z̃λ :=

1∫
Y
e−λu−λγvν

.

As in example 7.1, we have∫
Y

e−λu−λ
γvν ≥ Ce−Mλγ

hence

ν̃λ([−δ, δ]) ≤
2

C
eMλγ

∫ δ

0

e−λyf(y)dy. (7.1)

For any σ > 1 we have∫ δ

0

e−λyf =

∫ δ
σ

0

e−λyf +

∫ δ

δ
σ

e−λyf

≤ exp(− exp(
σ

δ
)) + ‖f‖∞e−

λδ
σ

choosing σ = λ
1−γ
2 and replacing in (7.1), we arrive at

ν̃λ([−δ, δ]) ≤
2

C
eMλγ

(
exp(− exp(δ−1λ

1−γ
2 )) + ‖f‖∞ exp(−δλ

1+γ
2 )
)

and since γ < 1+γ
2

, we reach the conclusion that ν̃λ([−δ, δ]) tends to 0 as
λ→∞, ruling out the convergence of ν̃λ to the Dirac mass at 0 (recall that
{0} is the double argmin set in this example). In other words, no power like
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secondary weight gives convergence. But using Lemma 4.1 and Remark 4.4
the (very slowly decaying!) weight

δλ =
log(log(log(λ)))

log(log(λ))

ensures the desired convergence. Of course, one may think that it is crazy to
use such a pathological reference measure, but a rough behavior of u, v or the
boundary of the set Y in higher dimensions may generate similar pathologies
as well.

7.3 A case where the pessimistic value is not lsc

The following explicit example illustrates the convergence of the approxima-
tions in a case where the pessimistic value is not lsc.

Example 7.3. Let us consider the case X = Y = [0, 1], take ν to be the
Lebesgue measure on Y and

ϕ(x, y) = x+ y, ψ(x, y) = xy,

then

R(x) = argminy∈Y xy =

{
0 if x ∈ (0, 1]

[0, 1] if x = 0.

Since ϕ and ψ are Lipschitz and ν is the Lebesgue measure any choice of δλ
of the form δλ = λ−γ with γ ∈ (0, 1) ensures the validity of our convergence
result.
In the optimistic case, the leader minimizes the optimistic value

ϕ∗(x) = min
y∈R(x)

x+ y = x

and the solution is 0.
Now, the approximation scheme proposed in the paper can be explicitly

computed. For a given λ > 0, consider δλ = 1√
λ
,

µ̃λ = Z̃λ(x)e−λxy−
√
λ(x+y)dy,

where

Z̃λ(x) =
1∫ 1

0
e−λxy−

√
λ(x+y)dy

= e
√
λx λx+

√
λ

[1− e−(λx+
√
λ)]
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then

ϕλ(x) = Z̃λ(x)

∫ 1

0

(x+ y)e−λxy−
√
λ(x+y)dy = x+

e−λx−
√
λ

e−λx−
√
λ − 1

+
1

λx+
√
λ

converges to ϕ∗(x) = x as λ→ +∞.
In the pessimistic case, the leader minimizes the pessimistic value

ϕ∗(x) = max
y∈R(x)

x+ y =

{
1 if x = 0

x if x > 0

which is not lsc at 0 and the infimum of ϕ∗ which is 0 is not achieved. Note
that the lsc envelope of ϕ∗ coincides with the optimistic value ϕ∗.

In this case, for a given λ > 0, consider δλ = 1√
λ
,

µ̃+
λ = Z̃+

λ (x)e−λxy+
√
λ(x+y)dy

where

Z̃+
λ (x)=

1∫ 1

0
e−λxy+

√
λ(x+y)dy

=

{
e
√
λx [e(−λx+

√
λ)−1]

−λx+
√
λ

if x 6= 1√
λ

1
e

if x = 1√
λ

then

ϕ+
λ (x)= Z̃λ(x)

∫ 1

0

(x+y)e−λxy+
√
λ(x+y)dy=

{
x+ e−λx+

√
λ

e−λx+
√
λ−1
− 1
−λx+

√
λ

if x 6= 1√
λ

1√
λ

+ 1
2

if x = 1√
λ
.

We know that ϕ+
λ pointwise converges to ϕ∗ and Γ-converges to ϕ∗ as λ →

+∞. The pointwise convergence is of course slower near 0 and we have tested
various exponents for δλ (the square root as above but also γ = 1

4
, for which

the convergence is even slower and γ = 3
4

which seems to give more accurate
approximations).

7.4 The choice of δλ is critical in practice

Even in the case where argminψ(x, .) is a singleton for any x ∈ X, so that op-
timistic and pessimistic solutions coincide, the optimistic and pessimistic λ-
approximations converge, with a different convergence speeed, to the common
value ϕ∗ = ϕ∗, as shown in the next example in which X is two-dimensional
and for which the choice of δλ seems to be crucial for practical convergence.
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Figure 1: Graph of ϕλ for λ = 36, λ = 144 (circle), λ = 225 (square) with
δλ = 1√

λ
(Example 7.3).

Figure 2: Graph of ϕ+
λ for λ = 36, λ = 144 (circle), λ = 225 (square) with

δλ = 1√
λ

(Example 7.3).

Figure 3: Graph of ϕ+
λ for λ = 36, λ = 144 (circle), λ = 225 (square) with

δλ = 1
4√
λ3

(Example 7.3).
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Figure 4: Graph of ϕ+
λ for λ = 36, λ = 144 (circle), λ = 225 (square) with

δλ = 1
4√
λ

(Example 7.3).

Example 7.4. Consider the case where

X = [0, 1]2, Y = [0, 1],

and equip Y with the Lebesgue measure as reference measure. Consider the
objectives and ϕ, ψ : X × Y → R defined by

ϕ(x, y) = x2
1 + 4x2y − x1x2

ψ(x, y) =
y2

2
− yx1 + x2

4
+ x1 − x2.

For a given x = (x1, x2), the follower solves the problem

min
y∈[0,1]

y2

2
− yx1 + x2

4
+ x1 − x2

whose unique solution is

R(x) =
x1 + x2

4

and the leader solves the problem minx∈[0,1]2 ϕ(x,R(x)) where

ϕ∗(x) = ϕ∗(x) = ϕ(x,R(x)) = x2
1 + x2

2.

The Stackelberg solution is x = (0, 0) and y = 0. Since ϕ and ψ are Lipschitz
we can chose any power function for δλ, δλ = λ−γ. Our approximation is
given by:

ϕλ(x) =

∫
Y
ϕ(x, y)e−λψ(x,y)−λ1−γϕ(x,y)dy∫
Y
e−λψ(x,y)−λ1−γϕ(x,y)dy
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ϕ225 |ϕ∗ − ϕ36|

|ϕ∗ − ϕ144| |ϕ∗ − ϕ225|

Figure 5: Optimistic case for δλ = 1√
λ

(Example 7.4).

(and the pessimistic approximation ϕ+
λ is given by a smilar formula, just by

changing the sign of the term involving ϕ) which converges as λ → +∞ to
ϕ∗ which achieves its minimum at (0, 0). We illustrate the convergence with
various exponents and values of λ. The convergence turns out to be very bad
for γ = 1

2
but very good for γ close to 1 as in the case γ = 9

10
.

ϕ+
225 |ϕ∗ − ϕ+

36|
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|ϕ∗ − ϕ+
144| |ϕ∗ − ϕ+

225|

Figure 6: Pessimistic case for δλ = 1√
λ

(Example 7.4).

ϕ225 |ϕ∗ − ϕ36|
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Figure 7: Optimistic case for δλ = 1
10√
λ9

(Example 7.4).

ϕ+
225 |ϕ∗ − ϕ+

36|

|ϕ∗ − ϕ+
144| |ϕ∗ − ϕ+

225|

Figure 8: Pessimistic case for δλ = 1
10√
λ9

(Example 7.4).

ϕ225 |ϕ∗ − ϕ36|
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Figure 9: Optimistic case for δλ = 1
4√
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(Example 7.4).
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Figure 10: Pessimistic case for δλ = 1
4√
λ3

(Example 7.4).
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