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Abstract

This study focuses on vibration energy harvesting with piezoelectric bistable inertial generators in order to provide an alternative or
a support to chemical batteries in the power supply of isolated wireless sensors (leading to a better autonomy of these devices). The
objective of the present work is to provide guidelines to optimize this kind of generator through the investigation of the influence of
different parameters (load resistance, mass, stiffness, buckling level) on its frequency response. These guidelines will be obtained
exploiting a new analytical model for piezoelectric bistable harvesters which will be constructed based on a recent model introduced
for electromagnetic bistable harvesters. This model includes the study of subharmonic behaviors which can be used to enhance
the global bandwidth of the harvester as well as a stability robustness criterion which allows a better prediction of experimental
observations. The new model will be validated by experimental data and finally exploited to provide guidelines for piezoelectric
bistable harvester optimization.

I. Introduction

This study is part of the current research concerning vi-
bration energy harvesting with the aim of designing gen-
erators able to power wireless electronic devices thanks
to the mechanical energy present in their environment
[1]. These wireless devices usually work with chemical
batteries which present a major limitation: the amount
of energy embedded with the wireless device is limited
which leads to several operations during its lifetime to
change the empty batteries. This point is moreover inten-
sified with the phenomenon of self-discharge of primary
batteries especially in high temperature environment
for instance. The use of vibration energy harvesters as
an alternative to conventional batteries (or as a support
to overcome their self-discharge) would therefore allow
to increase the autonomy of wireless electronic devices
converting continuously the ambient vibration to power
them during their entire lifetime.

Several kinds of harvesters have been studied in the
last twenty years [2]. Among them, inertial harvesters
have the convenience of being fixable on a single point of
the vibration source. Linear inertial harvesters (spring-
mass) show interesting performance which nevertheless
drastically collapse if the vibration frequency slightly
moves from its resonance frequency. In order to increase
the bandwidth proposed by vibration energy harvesters,
part of the scientific community focused on nonlinear

inertial harvesters [3] and more particularly on a promis-
ing architecture: the bistable harvester [4]. The study of
bistable designs is still a topical issue in the community
of energy harvesting [5, 6].

In order to optimize the performances of bistable har-
vesters, it is important to understand the influence of
its different parameters on its frequency response as it
was already proposed for linear harvesters [7]. The goal
of this study is to develop and exploit a new analytical
model for piezoelectric bistable harvesters in order to
propose guidelines for their optimization. This model
includes two new features: the study of subharmonic
behaviors for which the mass oscillates periodically at
a frequency n times lower than the excitation and the
stability robustness criterion which characterizes the ca-
pability of the different high orbits (inter-well motions)
to handle big disturbances without falling on a low orbit
(disturbances that can be found in real conditions). Those
features appear to be relevant for optimization issues as
the first one (subharmonic behaviors) can be used to en-
hance the global bandwidth of bistable harvesters [8] and
the second one (stability robustness) allows better pre-
dictions of experimental measurements and observations
[9]. The contribution of these two elements are illustrated
in Figure 1 for an electromagnetic bistable harvester.

A few studies have already focused on optimization
analysis for bistable harvesters but did not take into ac-
count neither the subharmonic behaviors nor the stability
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Figure 1: Contribution of subharmonic behaviors and stability robustness
criterion on the frequency response of electromagnetic bistable harvester [9].

robustness criterion. Therefore, such results, although in-
teresting, can be improved with the new model. Among
these studies, Sneller et al. [10] highlighted the influ-
ence of the mass on the behavior of bistable harvesters:
increasing the applied mass was found to broaden the
response of the system and to lower the threshold for
the onset of snap-through behaviour. Then Stanton et al.
[11] focused on the mechanical and electrical damping:
"there also exists an optimal impedance load and cou-
pling for extracting maximum power for both interwell
and intrawell oscillations". Finally, Panyam et al. [12]
studied the influence of the load (time constant ratio), of
the electromechanical coupling factor and of the buckling
level (potential function): "while the time constant ratio
has very little influence on the effective bandwidth of
the harvester, increasing the electromechanical coupling
and/or designing the potential function with deeper po-
tential wells serve to shrink the effective bandwidth for
a given level of excitation".

The present study is decomposed as follows. The first
section proposes to establish the new analytical model
for piezoelectric bistable harvesters based on a model
recently proposed for electromagnetic bistable harvesters
[9]. Then the second section introduces experimental
data to validate this model. The third section exploits
it to evaluate the influence of different parameters (load
resistance, mass, stiffness, buckling level) on the fre-
quency response of bistable harvesters. The conclusion
section will finally summarize this study in the form of
guidelines usable to optimize future piezoelectric bistable
harvesters.

II. Model construction

The purpose of this section is to construct the analytical
model for piezoelectric bistable harvester able to predict
all its possible steady-state behaviors as a function of the
excitation frequency (i.e., its frequency response). This
model will be exploited later in this study to investigate
the influence of the different parameters of the bistable
harvester (mass, stiffness, buckling level, etc.) on its
frequency response.

The bistable harvesters considered in this study is ob-

tained with a buckled beam and a piezoelectric converter.
The architecture is shown in Figure 2. It corresponds
to a simplified schematic of the experimental prototype.
This architecture includes a bistable oscillator with one
degree of freedom and only one piezoelectric converter
(in order to facilitate the assembly process). Contrary to
the buckled beam bistable harvester introduced by Liu et
al. [13], the piezoelectric converter is here located on the
side of the oscillator rather than along the moving beams.
This choice has been preferred to reduce its displace-
ment that can damage the electrical connections while
its deformations remain the same. The beams on either
side of the mass are doubled to remove one unwanted
degree of freedom: the rotation of the mass around the
axis perpendicular to the plane of the diagram. The
global stiffness k shown in Figure 2 represents all the
components of the bistable harvester that can store some
elastic energy. Their respective stiffness are expressed
in the same point to give the global stiffness k. The
use of this global equivalent stiffness will lead to the
generic Duffing type equations of piezoelectric bistable
harvesters introduced later in Equation (5). Hence, the
analysis which follows is valid for all the piezoelectric
bistable harvesters governed by a Duffing type equation
(a majority in the literature [4]) and does not depend on
the particular architecture shown in Figure 2 which is
given here as an example. It is noteworthy that the global
stiffness k can be easily identified experimentally know-
ing that bistable harvesters behave like linear harvesters
for small perturbations. The global stiffness can then be
determined through the identification of the resonance
frequency of the bistable device for small perturbations
as proposed in the experimental section. The mass M
represents the proof mass of the bistable harvester. The
dynamic mass of the moving beams is neglected.

Figure 2: Architecture of the bistable harvester with piezoelectric coupling
considered in this study. The different beams are supposed to be infinitely rigid.
They are doubled on each side of the mass to prevent it from rotating (harvester
with only one degree of freedom). The bistable harvester is illustrated in two
different equilibrium positions: one of its two stable positions x = ±x0 and
its unstable position x = 0.
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The analytical model will focus on periodic steady-
state behaviors of bistable harvester that are interesting
for energy harvesting for a sinusoidal excitation: the com-
mon harmonic 1 high orbit for which the mass oscillates
from one stable position to the other at the same fre-
quency as the excitation and the subharmonic high orbits
for which the mass oscillates from one stable position to
the other at a frequency n times lower than the excitation
for subharmonic n. The harmonic 1 high orbit indeed
presents the working point with the maximum harvested
power and the subharmonic high orbits allow to increase
the global bandwidth of the bistable harvester as they
exist on frequency ranges on which the harmonic 1 high
orbit is not reachable [8, 9].

The mathematical model will also characterize these
steady-state behaviors with two criteria: their stability
to small disturbances and their stability robustness. The
first criterion, common in the study of dynamic systems,
will split the behaviors in two categories by analyzing
their response when a small disturbance is added: stable
if maintained, unstable if not. The second criterion is
calculated for stable high orbits and defines their ability
to handle bigger disturbances without falling on a low
orbit (disturbances that can be found in real conditions)
[9]. The more robust the high orbit, the more capable
to handle external disturbances without falling on a low
orbit and therefore the easier to maintain over time in
real conditions. A threshold will be experimentally de-
fined for this criterion above which the high orbits will
be considered as robust enough to be used for energy
harvesting in real conditions.

The following construction is based on a model
that have been recently introduced for electromagnetic
bistable harvester [9]. It is here adapted to piezoelec-
tric bistable harvester adding a new degree of freedom
brought by the capacitance of the piezoelectric converter.
The construction is here shorten only focusing on the
differences with the previous model. For more details
the reader may refer to the construction of this previous
model [9].

II.1. Formulation

The mechanical equation of the bistable harvester (shown
in Figure 2) is obtained analyzing the different forces
applied on the mass: the absolute inertial force, the
damping force (linear dependence on x), the stiffness
force and the force generated by the electromechanical
conversion. The last two forces are projected on the
vertical direction multiplying by x/l and multiplied by a
factor two to take into account the two forces generated
by the beams on both sides of the mass.

M(ẍ + A cos(ωt)) =

− µẋ− 2k
(

2L− 2
√

l2 − x2
)

piezo length variation

x
l
− 2αv

x
l

(1)

where x represents the position of the mass over time,
A and ω are the amplitude and the frequency of the
excitation, µ the mechanical damping coefficient and l the
length of each of the four beams linked to the mass. The
constant α represents the force factor of the piezoelectric
converter and v its voltage. The other variables are shown
in Figure 2. In this study, the buckling coefficient x0/L
is small compared to one. Considering this assumption
and l2 = x2

0 + L2, the mechanical equation becomes a
Duffing-type equation:

M(ẍ + A cos(ωt)) ≈ 2k
L2

(
x2

0 − x2
)

x− µẋ− 2αv
x
L

(2)

Part of the mechanical power of the bistable harvester is
then converted in electrical power by the piezoelectric
converter. In this study, this electrical power is entirely
dissipated in a resistance R directly connected to the
piezoelectric element terminals. The power harvested
by the device thus corresponds to the electrical power
dissipated in this resistance. The electrical equation of
the bistable harvester is obtained describing the electrical
equilibrium between the piezoelectric converter (equiv-
alent to a current generator proportional to the speed
variation of the piezo length in parallel with a capaci-
tance C0) and the load resistance R:

C0v̇ = α
d
dt

(
2L− 2

√
l2 − x2

)
piezo length variation

− v
R

(3)

Considering that the buckling coefficient x0/L is small
compared to one and that l2 = x2

0 + L2, the electrical
equation becomes:

C0v̇ ≈ 2
α

L
xẋ− v

R
(4)

The general equation set governing the behavior of the
piezoelectric bistable harvester with low buckling level
is therefore composed by Equation (2) and (4):

ẍ +
ω2

0
2

(
x2

x2
0
− 1

)
x +

ω0

Q
ẋ +

2α

ML
xv = −A cos(ωt)

C0v̇ = 2
α

L
xẋ− v

R
(5)

with 
ω0 =

x0

L

√
4k
M

Q =
x0

L

√
4kM
µ

(6)

The constant ω0 and Q are the natural angular frequency
and the mechanical quality factor respectively of the
equivalent linear harvester which is obtained for small
oscillations of the mass of the bistable harvester around
one of its stable position (x = x0 + ∆x with ∆x << x0)
[13]. The power harvested by the bistable harvester is
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equivalent to the power dissipated in the load resistance:

Pharvested(t) =
v(t)2

R
(7)

Pmean harvested =
1
T

∫ T

0

v(t)2

R
dt (8)

In order to obtain the frequency response of the bistable
harvester, it is now necessary to find all the steady-state
behaviors which are solutions of Equation (5).

II.2. Harmonic balance

The focus is on behaviors useful for energy harvesting:
the common harmonic 1 high orbit which presents the
working point with the maximum harvested power and
the subharmonic high orbits which allow to increase the
global bandwidth of the bistable harvester as they exist
on frequency ranges on which the harmonic 1 high or-
bit is not reachable [8, 9]. As a reminder, subharmonic
n orbit is defined as a behavior for which the mass os-
cillates at frequency n times lower than the excitation
frequency. Examples of these behaviors are shown in
Figure 3 (time signals), Figure 4 (phase portraits) and
Figure 5 (Fourier series decomposition). These exam-
ples have been obtained with a numerical integration
of Equation (5) for different initial conditions which are
detailed in appendix. The values of the bistable harvester
parameters correspond to the prototype introduced in
the experimental section and are summarized in Table 2.

It is interesting to note on those figures that it exists
a factor two between the fundamental frequency of the
mass displacement and the preponderant frequency of
the voltage. This phenomenon is caused by the symmetry
of the bistable harvester with respect to the axes x = 0:
the piezoelectric converter deforms in the same way for

positive x and for negative x. Thus, the voltage maxima
(corresponding to the elongation maxima of the piezo-
electric converter) are reached for all the displacement
extrema of the mass (maxima and minima). The voltage
minima (corresponding to the compression maxima of
the piezoelectric converter) are reached each time the
mass passes through x = 0.

It is also worth noting on Figure 5 that the mass dis-
placement of the subharmonic high orbits with an odd
order (1, 3 and 5) is only composed of odd harmonics
of the fundamental frequency (h3, h5, h7...). For these
behaviors, the voltage is composed of a fundamental
frequency twice higher than the mass displacement and
all its harmonics. The mass displacement of the sub-
harmonic high orbits with an even order (2 and 4) is
composed of all the harmonics of the fundamental fre-
quency and a significant continuous component. This
time, the voltage of these behaviors is composed of the
same harmonics as the mass displacement (with a pre-
ponderant frequency twice higher than the fundamental
frequency of the mass displacement).

This difference between odd and even subharmonic
orbits is directly linked to the bistability of the harvester
and especially to the force applied by the spring to the
mass which can be expressed as a polynomial equation
involving only odd terms Ax3 + Bx with (A, B) constants
(Equation (5)). If f is the fundamental frequency of the
mass position, the spring force only creates odd harmon-
ics of f when the continuous component of the mass
position is zero and creates all the harmonics of f oth-
erwise. However, a behavior can only be maintained in
a steady-state if the excitation can bring energy to the
harvester by interacting with one of the harmonics of the
mass position. For odd subharmonic behaviors, the exci-
tation must interact with an odd harmonic of the mass

Figure 3: Examples of time signal of steady-state behaviors sought (numerical study).
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Figure 4: Example of displacement-velocity phase portrait of the steady-state behaviors sought (numerical study) with their respective Poincaré map (black dots).

position (see Figure 5). For even subharmonic behaviors,
it must interact with an even harmonic of the mass po-
sition (see Figure 5). Thus, only the even subharmonic
behaviors have a continuous component on the mass
position which implies that their whole displacement
oscillations are shifted up or down and are no longer
symmetric with respect to the axes x = 0 contrary to
odd subharmonic behaviors. The piezoelectric voltage
is linked to a term Aẋx with A constant (Equation (5)).
Therefore, its fundamental component is 2 f and it is
only composed of even harmonics of f for odd subhar-
monic behaviors and of all the harmonics of f for even

subharmonic behaviors.

The general form of the solution (corresponding to
subharmonic n behavior) is thus approached by two
Fourier series truncated to order N in order to be able
to apply the classical method of harmonic balance [4].
Each of them is therefore composed of a fundamental
component with an angular frequency ω/n followed by
all its harmonics hω/n with h ∈ [[1, N]] and constant

Figure 5: Example of Fourier series decomposition of the steady-state behaviors sought (numerical study). On the X-axis, "f" refers to the fundamental
component of the mass displacement and "h" refers to its different harmonics. The monochromatic excitation is represented by a vertical black line (displacement
of the frame).
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terms a0 and p0:
x(t) = a0 +

N

∑
h=1

{
ah cos

(
h

ω

n
t
)
+ bh sin

(
h

ω

n
t
)}

v(t) = p0 +
N

∑
h=1

{
ph cos

(
h

ω

n
t
)
+ qh sin

(
h

ω

n
t
)} (9)

where the constant terms a0 and p0 corresponds respec-
tively to the time averages of mass displacement and volt-
age at the resistance terminals. If a0 is zero, the solution
is a high orbit. If a0 is close to x0 or −x0, the solution is
a low orbit. Since the desired response is in steady-state,
the 4N + 2 unknown (a0, ah, bh, p0, ph, qh) , h ∈ [[1, N]] are
independent of time.

Equation (9) is injected in Equation (5) governing the
behavior of bistable harvester. An approximated solution
of the system can then be found thanks to the harmonic
balance method [9]. Each approximated solution (xs, vs)
found with the harmonic balance method is defined by
a unique set (as0, ash, bsh, ps0, psh, qsh) with h ∈ [[1, N]].
These unique sets all correspond to possible steady-state
subharmonic n behaviors of the bistable harvester for an
excitation A cos(ωt).

The frequency response of the bistable harvester can
therefore be obtained solving Equation (5) with this
method for different values of n (giving the different sub-
harmonic n behaviors including harmonic 1 for n = 1)
and for different angular frequencies of the excitation ω.

This method has often been applied in the literature to
study the harmonic 1 behavior with only one term in the
truncated Fourier series (N = 1). In our case, N has been
chosen bigger than one to reduce the error on the solution
sought and to reveal the subharmonic behaviors. It is
determined with the following method: N is increased
until the difference between the solution found and the
solution for N − 1 becomes negligible. This method
converged to N = 6.

II.3. Stability to small disturbances

Stability to small disturbances is then evaluated for all
steady-state behaviors (xs, vs), corresponding to approx-
imated solutions of Equation (5). A small disturbance
(z, w) is therefore added to the studied behavior as a
pulse at the instant t = t0:{

x(t) = xs(t) + z(t)

v(t) = vs(t) + w(t)
(10)

with {
||z(t)|| << ||xs(t)||
||w(t)|| << ||vs(t)||

(11)

and

pulse =

 z(t0)
ż(t0)
w(t0)

 (12)

The solution (xs, vs) is stable to small disturbances if and
only if (z, w) tend towards 0. Equation (10) is injected
in Equation (5) governing the behavior of the bistable
harvester and linearized with respect to (z, w) to give the
following differential equation governing the behavior of
the disturbance: ż(t)

z̈(t)
ẇ(t)

 = M(t)

 z(t)
ż(t)
w(t)

 (13)

with

M(t) = (14)
0 1 0

ω2
0

2
−

3ω2
0

2x2
0

xs(t)2 − 2α

ML
vs(t) −ω0

Q
− 2α

ML
xs(t)

2α

C0L
ẋs(t)

2α

C0L
xs(t) − 1

C0R


The stability to small disturbances can now be evaluated
with the Floquet theory and the Lyapunov exponents.
The stability of the solutions (xs, vs) is given by the eigen-
values (β1, β2, β3) of the resolvent matrix R(2T, 0), ob-
tained after two numerical integrations of Equation (13)
[9]:

R(2T, 0) =

 z1(2T)
ż1(2T)
w1(2T)

 z2(2T)
ż2(2T)
w2(2T)

 z3(2T)
ż3(2T)
w3(2T)

 (15)

with

 z1(0)
ż1(0)
w1(0)

 =

1
0
0

 numerical integration of−−−−−−−−−−−−−−→
Equation (13) from 0 to 2T

 z1(2T)
ż1(2T)
w1(2T)


 z2(0)

ż2(0)
w2(0)

 =

0
1
0

 numerical intégration−−−−−−−−−−−−−−→
Equation (13) from 0 to 2T

 z2(2T)
ż2(2T)
w2(2T)


 z3(0)

ż3(0)
w3(0)

 =

0
0
1

 numerical intégration−−−−−−−−−−−−−−→
Equation (13) from 0 to 2T

 z3(2T)
ż3(2T)
w3(2T)


(16)

and

(xs, vs) stable ⇔


|β1| < 1

|β2| < 1

|β3| < 1

(17)

II.4. Stability robustness

The stability robustness will now be evaluated for all
the high orbits defined as stable to small disturbances.
This criterion will define the ability of these high orbits
to handle bigger disturbances without falling on a low
orbit (disturbances that can be found in real conditions).
The more robust the high orbit, the more capable to
handle external disturbances without falling on a low
orbit and therefore the easier to maintain over time in
real conditions. A threshold will be defined for this
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criterion above which the high orbits will be considered
as robust enough to be used for energy harvesting in real
conditions.

Hence, a disturbance (z, w) is added to the stable (to
small disturbances) high orbit (xs, vs) as a speed pulse
Λ at the instant t = t0. This pulse is not considered as
negligible anymore:{

x(t) = xs(t) + z(t)

v(t) = vs(t) + w(t)
(18)

and

pulse =

 z(t0)
ż(t0)
w(t0)

 =

 0
Λ
0

 (19)

The stability robustness is evaluated calculating the min-
imum value of the pulse Λ which leads to a destabi-
lization of the high orbit. Thus, the high orbit remains
stable (z and w tend towards 0) if Λ < Λmin and the high
orbit becomes unstable (z and w tend towards infinity) if
Λ > Λmin. More precisely, the stability robustness is de-
fined by the ratio between the minimum energy needed
to destabilize the high orbit and the average amount
of energy provided by the excitation during one period
(normative value):

Robustness =

1
2

MΛ2
min

Eexcitation
(20)

with

Eexcitation = − 1
n

∫ T

0
MA cos(ωt)ẋsdt (21)

The next step is to determine the expression of Λmin.
Equation (18) is injected in Equation (5) governing the
behavior of the bistable harvester to give the following
differential equation governing the behavior of the dis-
turbance: ż(t)

z̈(t)
ẇ(t)

 = M(t)

 z(t)
ż(t)
w(t)


︸ ︷︷ ︸

linear term

(22)

+


0

−
3ω2

0
2x2

0
xs(t)z(t)2 −

ω2
0

2x2
0

z(t)3 − 2α

ML
z(t)w(t)

2α

C0L
z(t)ż(t)


︸ ︷︷ ︸

non linear term

The matrix M(t) is identical to the one introduced in
the small disturbance analyses in Equation (14). The
minimal speed pulse Λmin which leads to the divergence
of the disturbance (z, w) can be calculated thanks to a
reductio ad absurdum applied on this differential equation.
The expression of the minimal pulse Λmin which leads
to destabilize the high orbit ends up to be [9]:

Λmin =
δ0 − Bδ2

0 − Dδ3
0[

C
]
(1,2)

+
2α

C0Lλ
δ0

[
C
]
(1,3)

(23)

with

δ0 =
−B +

√
B2 + 3D

3D

B =

(
3ω2

0
2x2

0
max

t0∈[0,T]
|Ψ|+ 2α

MLλ

) [
C
]
(1,2)

+
2α

C0Lλ

[
C
]
(1,3)

D =
ω2

0
4λx2

0

[
C
]
(1,2)[

C
]
(i,j)

= max
t0∈[0,T]

t∈[t0,t0+2T]

∣∣∣eλ(t−t0)
[
R(t, t0)

]
(i,j)

∣∣∣
(24)

and

λ = −max((ln(β1), ln(β2), ln(β3))

2T

Ψ =
N

∑
k=1

{
ask

λ2 + ω2
k
(λ cos(ωkt0)−ωk sin(ωkt0))

+
N

∑
k=1

bsk

λ2 + ω2
k
(λ sin(ωkt0) + ωk cos(ωkt0))

}
T = 2πn/ω

ωk = kω/n

(25)

The stability robustness can now be calculated for all
the high orbits defined as stable to small disturbances
knowing the minimal pulse Λmin which leads to their
fall on a low orbit.

The mathematical model able to predict the frequency
response of piezoelectric bistable harvesters is now com-
plete. The next section provides experimental data to
validate it. All the results (theoretical and experimental)
are presented at the end of the next section in Figure 9.

III. Model validation with experimental
data

III.1. Prototype and identification

The experimental analysis conducted to validate the
model built in the previous section has been done with
the prototype shown in Figure 6. The actuator visible on
the right of the top picture is not used in this study. Its
stiffness is high compared to the stiffness of the piezoelec-
tric converter. As long as this actuator is not powered, it
thus does not affect the behavior of the bistable harvester.
The prototype is buckled thanks to a nut which (when it
is screwed on) causes a translation of the screw linked
to the actuator. The beams on both sides of the mass are
doubled in order to prevent the mass from rotating.

Technically speaking, the prototype was obtained by
cutting a block of APX4 steel by electrical discharge ma-
chining to make the mass, the beams and the frame
appear. The piezoelectric converter (and the actuator) is
then assembled. The piezoelectric converter is manufac-
tured by Cedrat Technologies under the reference APA

7



Figure 6: Piezoelectric bistable harvester made with four beams buckled
thanks to the nut.

120S (Amplified Piezoelectric Actuator). It consists of two
elements: an elliptical stainless steel shell and a stack
of inter-digitated piezoelectric ceramics placed on the
long axis of this shell. The elliptical shape of the shell
acts as a mechanical transformer. It amplifies the stresses
applied to its small axis along its long axis. On the other
hand, it reduces the deformations applied to its small
axis along its long axis. This APA 120S thus optimizes
the use of piezoelectric ceramics, which can support high
forces but small deformations. The main dimensions of
the prototype are detailed in Table 1.

This prototype corresponds to the simplified schematic
introduced in Figure 2. The pivoting links are ensured
by the flexibility of the thin steel beams (flexible con-
nections). The global stiffness k shown in Figure 2 thus
includes, in this particular case, (i) the stiffness of the
piezoelectric converter and (ii) the stiffness of the flexi-
ble beams. The latter is here negligible as the potential
energy stored in the flexible bonds is small compared
to the potential energy stored in the piezoelectric con-
verter. The stiffness of the piezoelectric converter is itself
composed by the stiffness of the piezoelectric stack, the
stiffness of the elliptical shell and it also includes the
effect of the mechanical transformation caused by the
shell which amplifies the stresses applied to its small axis
along its long axis and reduces the deformations applied
to its small axis along its long axis. This transformation

Table 1: Prototype main dimensions.

Element Value Unit

Inertial mass 17.3 g
APX4 steel block thickness 8.0 mm
Steel mass 16× 16× 8.0 mm3

Beams thickness 0.070 mm
Horizontal beams length 25 mm
Vertical beams length 17 mm
Piezoelectric stack 20× 5.0× 9.0 mm
Piezoelectric converter stiffness k 0.30 N.µm−1

therefore affects the global stiffness of the piezoelectric
converter.

These flexible bonds have a negligible effect on the
stiffness and damping of the bistable harvester and can
therefore be modeled as pure pivoting links. Indeed,
(i) the potential energy stored in these flexible bonds
is small compared to the potential energy stored in the
Piezo harvester (for low buckling configuration) and (ii)
the mechanical losses in these bonds are negligible thanks
to the material used (APX4 steel).

The model parameters (ω0, Q, C0, α) have been identi-
fied measuring the complex admittance Y of the piezo-
electric converter (mounted on the prototype) around the
angular frequency ω0 of the bistable harvester without
any excitation [14]. The different parameters are then
identified adjusting the experimental admittance to the
theoretical one obtained for a small voltage excitation of
the piezoelectric converter inducing small oscillations of
the mass around one of its stable positions: x = x0 + ∆x
with ∆x << x0. This identification is shown in Figure 7.
The expression of the theoretical admittance being for
the bistable harvester:

Y =
I
V

= jC0ω

1 +
k2

em

1− (ω/ω0)2 + j
ω/ω0

Q


k2

em = 4
( x0

L

)2 α2

MC0ω2
0

(26)

The other model parameters (M, L, x0) are directly mea-
sured on the prototype. All the parameters and their
identified values for the prototype are summarized in
Table 2.

Figure 7: Admittance adjustment for the parameters (ω0, Q, C0, α) identifi-
cation.
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Table 2: Parameters of the bistable harvester prototype.

Parameter Symbol Value Unit

Stable positions ±x0 ±0.50 mm
Mass-frame distance L 25 mm
Inertial mass M 17.3 g
Natural angular frequency ω0 121 rad.s−1

Mechanical quality factor Q 87 –
Excitation magnitude A 2.5 m.s−2

Excitation frequency ω 15− 85 Hz
Piezo converter force factor α 0.068 N.V−1

Piezo converter blocked capacity C0 1.05 µF
Load resistance R 7.83 kΩ
Electromechanical coupling factor k2

em 2.74 %

III.2. Experimental results

The frequency response obtained with the mathematical
model is here compared with the frequency response
obtained experimentally in order to control its relevance.

This experimental frequency response is determined
as follows. The prototype is placed on a shaker ensuring
a sinusoidal acceleration of constant amplitude 2.5 m.s−2.
The position of the mass and the position of the frame are
measured using two laser vibrometers. The frequency
ranges of harmonic 1 and subharmonic behaviors of the
bistable harvester are determined with the following
method: (i) The frequency of the excitation is set to a
value where the behavior under study exists (based on
theoretical predictions); (ii) Square voltage pulses are ap-
plied to the piezoelectric converter (30 V for 20 ms)thus
generating force pulses on the mass. Each force pulse
disturbs the current steady-state behavior and are likely
to lead to another steady-state behavior (orbit jump),
including possible subharmonics. These pulses are ap-
plied until the studied behavior is reached; (iii) Once the
desired behavior is reached, the excitation frequency is
slowly and smoothly increased or decreased in order to
explore its entire frequency range without destabilizing
it. The experimental setup is shown in Figure 8.

Figure 9 shows the theoretical and experimental fre-

Figure 8: Setup used to determine the experimental frequency response of the
prototype. The latter is mounted on a shaker ensuring a sinusoidal acceleration
of constant amplitude 2.5 m.s−2.

quency response of the piezoelectric bistable harvester.
Only the theoretical behaviors defined as stable to small
disturbances are drawn on this figure (the unstable be-
haviors are not interesting for energy harvesting as they
cannot be reached experimentally). The stable behaviors
are split in two different categories depending on the sta-
bility robustness criterion: robust enough or not robust
enough to be maintained over time in real conditions.
Each theoretical and experimental behavior are character-
ized by four items: the amplitude of the mass oscillation
(greater than x0 for high orbits and lower than x0 for low
orbits), the phase of the excitation displacement when
the position of the mass reaches a maximum (for high
orbits), the stability robustness (for high orbits) and fi-
nally the mean harvested power (Pmean = v2

rms/R). The
stability robustness threshold has been chosen in such
a way that the cutting frequencies of the different high
orbits match with the experimental observations.

The phase of the excitation displacement when the
position of the mass reaches a maximum (equivalent to
the phase shift for harmonic 1 behavior) is calculated
considering that the mass displacement signal can be ap-
proached by its fundamental frequency. In other words,
it is supposed that the instant on which the mass reaches
a maximum does not change if we only take the funda-
mental frequency. This assumption is illustrated with
few examples shown in Figure 10 (numerical study). For
subharmonic n high orbit, the fundamental component
of the displacement is:

xfundamental(t) = a1 cos
(ω

n
t
)
+ b1 sin

(ω

n
t
)

=
√

a2
1 + b2

1 cos
(ω

n
t + ψ

)
(27)

with

ψ = tan−1
(
−b1

a1

)
+ π (if a1 < 0) (28)

The instant on which the mass position reaches a maxi-
mum is called t1. Hence, the phase of the mass position
at t1 is equal to zero:

ω

n
t1 + ψ = 0 mod[2π] (29)

⇒ t1 = −ψ
n
ω

mod
[
2π

n
ω

]
(30)

The excitation displacement can be written as
A/ω2 cos(ωt + π). The phase of the excitation displace-
ment when the position of the mass reaches a maximum
(at t1) thus becomes:

Phase = ωt1 + π mod[2π]

= −nψ + π mod[2π] (31)

If this phase is zero, the displacement of the excita-
tion reaches a maximum when the position of the mass
reaches a maximum. If this phase is π, the displacement
of the excitation reaches a minimum when the position
of the mass reaches a maximum. As the calculated phase
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Figure 9: Theoretical and experimental spectra of the bistable harvester for a sinusoidal excitation of amplitude 2.5 m.s−2: (a) amplitude of the different behaviors
(b) phase of the excitation displacement when the position of the mass reaches a maximum (high orbits) (c) stability robustness (high orbits) (d) mean harvested
power.

is the phase of the excitation displacement, the result is
generally positive: the frame displacement is ahead of
the mass displacement.

In the model, the Fourier series of the different behav-
iors (x and v) were truncated to order N = 6 (to justify
this choice, the reader can refer to the examples shown
in Figure 5). For high orbits, subharmonics of order
greater than five are not represented because they are
not interesting for energy harvesting (their energy level
and stability robustness are low compared to those of
the behaviors plotted in Figure 9). Low orbits are not
interesting for energy harvesting either. However, some
of them are plotted in Figure 9 in order to know all the
frequency ranges on which high orbits coexist with a
low orbit. In these frequency ranges, high orbits may
therefore fall on a low orbit, thus reducing the amount
of energy converted by the bistable harvester.

Figure 9 shows a good agreement between the theo-
retical model and the experimental data. The frequency
ranges of the different behaviors, their amplitude and
their phases are well predicted by the theory when the
stability robustness criterion is taken into account. The
experimental data therefore confirm the relevance of this
mathematical model which will then be exploited in the
next section in order to give some guidelines for opti-
mization of future bistable harvester prototypes.

IV. Model exploitation for optimized
bistable harvesters

The previous sections have introduced a theoretical
model for piezoelectric bistable harvesters able to predict
their frequency response including harmonic 1 and sub-
harmonic behaviors. This model will now be exploited
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Figure 10: Mass position signal (polychromatic) compared to its fundamental frequency for harmonic 1 high and low orbit (obtained numerically for a 30 Hz
excitation) and for subharmonic 3 high orbit (obtained numerically for a 60 Hz excitation).

to investigate the influence of different parameters (mass,
stiffness, buckling level) on this frequency response to
offer some leads to optimize future prototypes. A com-
parison with linear harvesters is also proposed all along
this analysis.

The set of parameters chosen to fully describe the
bistable harvester is (M, k, x0, L, µ, R, α, C0). With this
set, the general equations governing the behavior of the
piezoelectric bistable harvester with low buckling level
(Equation (5)) become:

ẍ +
x2

0
L2

2k
M

(
x2

x2
0
− 1

)
x +

µ

M
ẋ +

2α

ML
xv = −A cos(ωt)

C0v̇ = 2
α

L
xẋ− v

R
(32)

In the following, not all these parameters will be consid-
ered as variable, but only the relevant ones, as explained
in the followings. First, x0 is bijectively coupled to the
length L: a value of x0 is only obtained for a single value
of L and vice-versa. Therefore, the length L will not be
considered here as its influence can be deduced from
the influence of x0. The coefficient µ mostly reflects the
friction of the air on the mass. This coefficient does not
need to be studied: it has to be reduced as much as
possible to reduce the mechanical losses in the harvester.
It will therefore not be considered in the following study.
Instead of α and C0, the piezoelectric converter will be
characterized by a more global parameter, namely the
electromechanical coupling factor k2

em, representing its
ability to convert the mechanical energy supplied by the
source into electrical energy. It is defined in open circuit
(I = 0) for a quasi-static regime (the kinetic energy of the
mass is low in front of its elastic energy) by the following
expression:

k2
em =

Electrostatic energy stored in the piezo
Mechanical energy supplied by the source

(33)

The electromechanical coupling factor is therefore linked
to two different aspects: (i) the ratio between the elastic
energy stored in the piezoelectric material used in the
harvester and the elastic energy stored in the other mate-
rials; (ii) the quality of this piezoelectric material (more
or less able to convert its elastic energy into electrical

energy). The electromechanical coupling factor is con-
sidered near-optimal for our prototype: the latter cannot
be increased significantly. Indeed, (i) the piezoelectric
material used is PZT (in 33 direction) which has the best
ratio quality/price of nowadays market; (ii) the materi-
als (other than piezoelectric) storing some unconverted
elastic energy during the deformations are the flexible
beams and the elliptical shell of the piezoelectric stacks.
The first one stores a negligible quantity of elastic energy
compared to the quantity stored in the piezoelectric ele-
ment. The second one stores a bigger quantity of elastic
energy but this quantity is cannot be decreased without
affecting the mechanical functions that this shell must
satisfy (hold the piezoelectric stacks, transfer the stresses,
etc.). Hence, the electromechanical coupling factor of the
prototype is supposed to be optimal for the studied archi-
tecture. For bistable harvesters, the analytical expression
of this electromechanical coupling factor as a function of
α and C0 is given by Equation (26).

The remaining parameters are (M, k, x0, R) which can
all be easily changed on the prototype: M with the size of
the mass, k with the ratio between the small axis and the
long axis of the piezoelectric shell, x0 with the buckling
level of the harvester and R with the load plugged to the
piezoelectric converter.

Table 3 summarizes the set of parameters chosen to
fully describe the bistable harvester, highlights those
considered as changeable in this study (stars) and details
the values which correspond to the prototype introduced
in the experimental section.

Figures 15, 11, 12 and 13 show the influence of these

Table 3: Parameters describing the bistable harvester.

Parameter Symbol Proto Unit

Mass-frame distance L 25 mm
Damping µ 0.023 N/m/s
Blocked capacity C0 1.05 µF
Electromechanical coupling factor k2

em 2.74 %
* Inertial mass M 17.3 g
* Stiffness k 159 kN/m
* Stable positions ±x0 ±0.50 mm
* Load resistance R 7s.83 kΩ

* parameters considered as easily changeable.
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changeable parameters on the frequency response of the
bistable harvester while the other parameters are kept
constant. Only two behaviors are studied on these figures.
These are the two most relevant behaviors for vibration
energy harvesting: harmonic 1 high orbit (on which the
working point maximizing the mean harvested power is
located) and subharmonic 3 high orbit (offering a useful
frequency range complementary to that of harmonic 1).
Each of them is characterized by three quantities: the am-
plitude of oscillations of the mass, the stability robustness
and the mean harvested power.

Despite its importance to define the behaviors of the
bistable harvester, the phase of the excitation displace-
ment when the position of the mass reaches a maximum
has not been represented on these figures. The readabil-
ity of the graph representing the latter is indeed not good
(the curves are mixed and confused). For odd subhar-
monic behaviors, this phase always begins at 0 and grows
monotonically until reaching π/2 for the theoretical cut-
ting frequency (see Figure 9). The following solution
was chosen in order to make this criterion appear with-
out reducing the readability of the figures: the working
points for which this phase is π/2 are represented by
solid circles. These solid circles therefore correspond
to the theoretical upper limit (cutting frequency) of the
different behaviors.

Lastly, the frequency response of the equivalent linear
harvester is also plotted in the following figures so that
the performance of these two kinds of harvesters can
be compared. This equivalent linear harvester has the
same mass M, the same damping coefficient µ, the same
excitation A cos(ωt), the same natural angular frequency
ω0 and the same electromechanical coupling factor k2

em
as the bistable harvester. Thus, the equivalent linear
harvester is governed by the following behavior law:

ẍ + ω2
0x +

µ

M
ẋ +

αlin
M

v = −A cos(ωt)

C0v̇ = αlin ẋ− v
R

(34)

with (as detailed in Equation (6))

ω0 =
x0

L

√
4k
M

(35)

Moreover, the electromechanical coupling factor of a
linear harvester is given by the following expression [14]:

k2
em =

α2
lin

Mω2
0C0

=⇒ αlin =
√

k2
emMω2

0C0 (36)

IV.1. Influence of M

Figure 11 shows the influence of the mass M on the
frequency response of the bistable harvester. The value
of the other parameters correspond to the prototype

introduced in the experimental section. They are detailed
in Table 3. For each mass, the load resistance is set to
ensure the impedance matching in order to maximize the
maximal mean harvested power: Rmatch = 1/(2C0ω0)
for the bistable harvester and Rmatch = 1/(C0ω0) for the
linear harvester (for the bistable harvester the voltage of
the piezoelectric converter oscillates at a frequency twice
higher than the excitation as illustrated in Figure 3 and
5).

When the mass M increases: (1) the amplitude of
the mass oscillations for a given excitation frequency in-
creases for both behaviors; (2) their theoretical cutting
frequency (defined by a phase of π/2) also increases re-
sulting in an increase in the theoretical bandwidth of the
harvester; (3) their real cutting frequency (defined by the
stability robustness limit) decreases slightly for harmonic
behavior 1 and increases slightly for subharmonic behav-
ior 3 resulting in a slight overall increase in the global
bandwidth of the harvester in real conditions; (4) this is
explained by the stability robustness which increases for
both behaviors with the mass; (5) the mean harvested
power for a given excitation frequency increases; (6) the
maximum harvested power (theoretical and real) also
increases.

It is then preferable to increase the mass M as much as
possible (within the limits of the volume constraints im-
posed) in order to increase the mean harvested power of
future bistable harvesters without significantly affecting
its global frequency bandwidth.

IV.2. Influence of k

Figure 12 shows the influence of the stiffness k on the
frequency response of the bistable harvester. The value
of the other parameters correspond to the prototype
introduced in the experimental section. They are detailed
in Table 3. For each stiffness, the load resistance is set to
ensure the impedance matching in order to maximize the
maximal mean harvested power: Rmatch = 1/(2C0ω0)
for the bistable harvester and Rmatch = 1/(C0ω0) for the
linear harvester.

When the stiffness k increases: (1) the amplitude of
the mass oscillations for a given excitation frequency de-
creases for both behaviors; (2) their theoretical cutting
frequency (defined by a phase of π/2) increases; (3) their
real cutting frequency (defined by the stability robust-
ness limit) increases; (4) the stability robustness reaches a
lower maximum value for both behaviors but reaches the
robustness limit for a higher frequency; (5) The mean har-
vested power for a given excitation frequency decreases;
(6) the maximum harvested power (theoretical and real)
remains constant for harmonic 1 high orbit and slightly
increases for subharmonic 3 high orbit.

Globally speaking, increasing the stiffness k leads to
a shift of the power curves towards higher frequencies.

12



The stiffness can therefore be used (adjusting the ratio
between the small axis and the long axis of the piezo-
electric shell) to optimize the frequency range offered by
the bistable harvester in such a way that it includes all
the potential frequencies of the targeted vibration source.
This adjustment must remain tight so that the robustness
of the behaviors is not reduced too much.

IV.3. Influence of x0

Figure 13 shows the influence of the stable position
value x0 on the frequency response of the bistable har-
vester. The value of the other parameters correspond
to the prototype introduced in the experimental sec-
tion. They are detailed in Table 3. For each value, the
load resistance is set to ensure the impedance match-
ing in order to maximize the maximal mean harvested

power: Rmatch = 1/(2C0ω0) for the bistable harvester
and Rmatch = 1/(C0ω0) for the linear harvester.

When the value of the stable positions x0 increases:
(1) the amplitude of the mass oscillations for a given
excitation frequency increases for both behaviors; (2) the
theoretical cutting frequency (defined by a phase of π/2)
of harmonic 1 high orbit decreases while it remains rel-
atively constant for subharmonic 3 high orbit; (3) their
real cutting frequency (defined by the stability robust-
ness limit) behave in the same way. Globally, the real
frequency range of both behaviors decreases when x0
increases. The frequency range of harmonic 1 high orbit
is however more affected than that of subharmonic 3
high orbit. (4) The stability robustness decreases for both
behaviors; (5) the mean harvested power for a given exci-
tation frequency increases; (6) the maximum harvested
power (theoretical and real) remains constant for har-

Figure 11: Influence of the mass M on the frequency response of the bistable harvester for an excitation of 2.5 m.s−2. Masses shown: 10 g (orange curves),
17.3 g (prototype value - blue curves) and 30 g (red curves). These values receptively correspond to the following natural angular frequencies: 159 rad.s−1

(25 Hz), 121 rad.s−1 (19 Hz) and 92 rad.s−1 (15 Hz). For each mass, the load resistance is set to ensure the impedance matching Rmatch = 1/(2C0ω0): 2.98 kΩ,
3.91 kΩ and 5.16 kΩ. For each behavior, the theoretical cutting frequency is reached when the phase of the phase of the excitation displacement is π/2 when the
position of the mass reaches a maximum. The response of the equivalent linear harvester is shown in dashed curves.
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monic 1 high orbit and increases for subharmonic 3 high
orbit.

From these observations, it can be interesting to in-
crease the value of the stable positions x0 (changing the
buckling level of the harvester) until the overlap area
between harmonic 1 and subharmonic 3 behaviors dis-
appears. The mean harvested power would therefore be
globally increased without losing too much bandwidth.
For our prototype, the best configuration with this ap-
proach corresponds to the blue curves in Figure 13.

IV.4. Influence of R

The optimization of the parameter R is more specific
than the other parameters studied above as it does not
concern the mechanical harvester itself but the electrical

circuit connected to its piezoelectric converter. Figure 14
shows the influence of R on harmonic 1 high orbit and
subharmonic 3 high orbit. The value of the other pa-
rameters correspond to the prototype introduced in the
experimental section. They are detailed in Table 3. The
maximum mean harvested power of both behaviors con-
sidering stable orbits (solid lines + circles) is optimal
when the load resistance is set to match the impedance
of the piezoelectric converter at the natural angular fre-
quency ω0 of the harvester (red curves). This resistance
is equal to Rmatch = 1/(2C0ω0) for bistable harvesters as
the voltage of the piezoelectric converter oscillates at a
frequency twice higher than the excitation (phenomenon
illustrated in Figure 3 and 5). When the load resistance
is increased or decreased, the maximum mean harvested
power of both behaviors decreases while their respective
frequency ranges increases.

Figure 12: Influence of the stiffness k on the frequency response of the bistable harvester for an excitation of 2.5 m.s−2. Stiffness shown: 79.5 kN.m−1 (orange
curves), 159 kN.m−1 (prototype value - blue curves) and 318 kN.m−1 (red curves). These values receptively correspond to the following natural angular
frequencies: 86 rad.s−1 (14 Hz), 121 rad.s−1 (19 Hz), 171 rad.s−1 (27 Hz). For each mass, the load resistance is set to ensure the impedance matching
Rmatch = 1/(2C0ω0): 5.54 kΩ, 3.91 kΩ and 2.77 kΩ. For each behavior, the theoretical cutting frequency is reached when the phase of the phase of the
excitation displacement is π/2 when the position of the mass reaches a maximum. The response of the equivalent linear harvester is shown in dashed curves.
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Figure 15 shows a comparison between the frequency
responses of the bistable harvester given by the orbits
defined as stable and robust obtained with Rmatch (red
curves) and obtained with the resistance tuned (grey
curves) to ensure the highest mean harvested power for
each frequency. The resistance tuning is profitable on
both harmonic 1 high orbit (maximal mean harvested
power increased by 20% and frequency range increased
by 14%) and on subharmonic 3 high orbit (frequency
range increased by 49%). The global frequency range
offered by the bistable harvester is increased by 32% with
the resistance tuning.

In conclusion, the optimal resistance to maximize the
mean harvested power over the entire frequency range
of the bistable harvester is obtained when it is set equal
to the impedance of the piezoelectric converter at the
natural angular frequency ω0 of the bistable harvester:

Rmatch = 1/(2C0ω0) (red curves in Figure 14). Then,
a resistance tuning when the excitation get beyond the
real cutting frequencies (defined by the stability robust-
ness limit) of the two behaviors will allow to increases
the global frequency range offered by the harvester by
roughly 30% and increase its maximal mean harvested
power by roughly 20%.

IV.5. Bistable vs linear

The first observation that can be made from the com-
parison between linear and bistable harvesters in Fig-
ures 11, 12 and 13 concerns the mean harvested power:
the maximum reached with the linear harvester (at its
resonance frequency) is systematically equal to the max-
imum reached with the bistable generator (at the theo-
retical cutting frequency of the harmonic 1 high orbit

Figure 13: Influence of the stable positions value x0 on the frequency response of the bistable harvester for an excitation of 2.5 m.s−2. Values shown: 0.50 mm
(prototype value - orange curves), 0.70 mm (blue curves) and 0.90 mm (red curves). These values receptively correspond to the following natural angular
frequencies: 121 rad.s−1 (19 Hz), 170 rad.s−1 (27 Hz), 218 rad.s−1 (35 Hz). For each mass, the load resistance is set to ensure the impedance matching
Rmatch = 1/(2C0ω0): 3.91 kΩ, 2.80 kΩ and 2.18 kΩ. For each behavior, the theoretical cutting frequency is reached when the phase of the phase of the
excitation displacement is π/2 when the position of the mass reaches a maximum. The response of the equivalent linear harvester is shown in dashed curves.
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Figure 14: Influence of the load resistance R on the behaviors of the bistable harvester for an excitation of 2.5 m.s−2. Red curves correspond to the resistance
ensuring the impedance matching with the piezoelectric converter for an excitation set at the natural angular frequency Rmatch = 1/(2C0ω0) (3913Ω). Blue
curves correspond to resistances lower than Rmatch and grey curves higher than Rmatch. For each behavior, the theoretical cutting frequency is reached when the
phase of the excitation displacement is π/2 when the position of the mass reaches a maximum.

Figure 15: Frequency responses of the bistable harvester (excitation of 2.5 m.s−2) obtained for (i) a resistance ensuring the impedance matching Rmatch =
1/(2C0ω0) (red curves) and (ii) for a resistance tuned to get the highest mean harvested power for each frequency (grey curves). The latter is plotted only when
it leads to better performances than the impedance matching. The frequency responses of the linear harvester is plotted as reference (tuned in dashed grey and for
the impedance matching R = 1/(C0ω0) in dashed red).
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defined by a phase of π/2). Hence, in theory, those two
harvesters have the same maximal performances.

However, the theoretical cutting frequency of the
bistable harvester is not robust enough to be maintained
over time in real conditions. The reachable maximum
mean harvested power of the bistable harvester (robust
orbits) is always lower than the maximum offered by
the linear harvester. In terms of the maximum mean
harvested power, the bistable harvester is therefore less
efficient than its equivalent linear harvester [15].

On the other hand, the two harvesters do not have
the same bandwidth. The frequency range on which
the bistable harvester recovers more than 100 µW1 on
average is systematically bigger than linear harvester’s
one.

The stability robustness criterion therefore balances the
interest of the bistable harvester for vibration energy har-
vesting. Its maximum mean harvested power is greatly
reduced with this criterion and becomes much lower
than that of the equivalent linear harvester. However,
this weakness is counterbalanced by its large bandwidth
compared to that of the linear harvester. The latter re-
mains relevant even after the inclusion of the stability
robustness criterion, partly due to the exploitation of
subharmonic 3 behavior. The use of one or the other of
these harvesters will therefore be linked to fluctuations
in the frequency of the ambient vibration source. For
a source with a fixed and stable frequency, the linear
harvester will be more interesting. For a source with
a fluctuating frequency, the bistable harvester will be
preferred. This conclusion is different from that obtained
by considering the classical theoretical study of bistable
harvester (without stability robustness criteria) which
would have favoured the bistable harvester in all cases
(source with stable or fluctuating frequency).

Figures 11, 12, 13 and 15 also show how this com-
parison evolves with (M, k, x0, R). This evolution is
summarized in Table 4 which introduces two different
ratio for comparing the two harvesters: the ratio between
their maximal mean harvested power and the ratio of
their frequency range on which they harvest more than
100µW1. For the bistable harvester, these data are mea-
sured on robust and stable orbits. When M increases, the
respective advantages of the two harvesters increase as
well: the maximal mean harvested power of linear har-
vester increases relatively to bistable’s one; the frequency
range of bistable harvester increases relatively to linear’s
one. Decreasing x0 is profitable for bistable harvester as
its frequency range increase relatively to linear’s ones
while its maximal mean harvested power remains rela-
tively constant. Increasing k or tuning the resistance R is
profitable for bistable harvester as its maximal mean har-
vested power and its frequency range increase relatively

1With this average, it is possible to power an isolated wireless sensor
consuming 450 mJ per transmitted packet - 22 mA at 3.3 V for 6.2 ms
[16] - with one packet sent every 1.25 h.

to linear’s ones.

Table 4: Bistable vs linear.

Parameter Value Power ratio * Freq. ratio ◦

Mass 30 0.13 10.8
M (g) 17.3 0.18 8.0

10 0.24 5.8

Stiffness 318 0.19 8.5
k (kN/m) 159 0.18 8.0

79.5 0.17 7.8

Stable position 0.90 0.18 5.7
x0 (mm) 0.70 0.20 8.3

0.50 0.18 8.0

Resistance Rmatch 0.18 8.0
R (Ω) tuned 0.21 12.8

* ratio of maximal mean harvested powers (robust bistable/linear).
◦ ratio of frequency ranges > 100µW1 (robust bistable/linear).

V. Conclusion

The first part of this study introduced an analytical model
for piezoelectric bistable harvester able to predict all its
possible steady-state behaviors (including subharmonic
behaviors) as a function of the excitation frequency. This
model characterizes the different behaviors with two
criteria: their stability to small disturbances and their
stability robustness. The second criterion is calculated
for stable high orbits and defines their ablity to handle
bigger disturbances (that can be found in real conditions)
without falling on a low orbit. This model has then be
validated thanks to experimental data.

The second part of this study has exploited this model
to investigate the influence of different parameters of
the bistable harvester (M, k, x0) which can all be easily
changed on future prototypes: M with the size of the
mass, k with the ratio between the small axis and the
long axis of the piezoelectric shell, x0 with the buckling
level of the harvester. The influence of the load resistance
R plugged to the piezoelectric converter has also been
analyzed. Table 5 presents a summary of the results that
have been obtained which can be used as a guide to de-
sign the future bistable harvesters with optimized perfor-
mances for different potential applications. Considering
the assumptions made in this article to get these results,
these guidelines are valid for all the bistable harvesters
which respect the two following constraints: (i) the be-
havioral equation must be a Duffing-type equation as
detailed in Equation (5), (ii) the global electromechanical
coupling must be relatively low. These two constraints
are nevertheless satisfied by the majority of the bistable
harveter prototypes presented so far in the literature [4].

Finally, this study focused on the comparison between
bistable and linear harvesters. The stability robustness
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Table 5: Guidelines for optimized bistable harvester.

Parameter Action

Inertial mass M Increase as much as possible within the lim-
its of volume constraints imposed.

Stiffness k Adjust it to fit the frequency range on the
potential frequencies of the targeted vibra-
tion source (in the design introduced in the
article, adjust the ratio between the small
axis and the long axis of the piezoelectric
shell). This adjustment must remain tight so
that the robustness of the behaviors is not
reduced too much.

Stable position x0 Increase until the overlap area between har-
monic 1 and subharmonic 3 behaviors disap-
pears to increased the mean harvested power
without losing too much bandwidth.

Load resistance R · Ensure the impedance matching with the
piezoelectric converter (1/(2C0ω0)) to max-
imise the harvested power.
· Tune it if the vibration source get beyond the

real cutting frequencies (defined by robust or-
bits) for both harmonic 1 and subharmonic 3
behaviors to increase the global frequency
range by roughly 30% and the maximal mean
harvested power by roughly 20%.

criterion has balanced the interest of the bistable har-
vester for vibration energy harvesting. The maximum
mean harvested power reachable by the bistable har-
vester is not as high as the common theory predicts and
becomes much lower than the one reachable with the
equivalent linear harvester. On the other hand, the band-
width offered by the bistable harvester is much larger
even after the inclusion of the stability robustness cri-
terion (especially thanks to the use of subharmonic 3
behavior). One or the other of these harvesters will there-
fore be preferred depending on the vibration source. For
a source presenting a high frequency fluctuation, the
bistable harvester will show better results. For a source
presenting a fixed and stable frequency, the linear har-
vester will be more relevant.

VI. Appendix

The equations governing the behavior of bitable har-
vester detailed in Equation (5) is composed by a sec-
ond order differential equation of the variable x and a
first order differential equation of the variable v. Hence,
the initial conditions needed to solve the problem are
(x(0), ẋ(0), v(0)). Table 6 details the initial conditions
that lead to the behaviors presented in Figures 3, 4 and 5
thanks to a numerical study.

Table 6: Initial conditions for the numerical study.

Behavior Freq.
(Hz)

x(0)
(mm)

ẋ(0)
(mm/s)

v(0)
(V)

Harmonic 1 low orbit 30 -0.370 0 -0.192
Harmonic 1 high orbit 30 -1.37 0 2.02
Subharmonic 2 high orbit 30 0.911 0 1.06
Subharmonic 3 high orbit 50 -0.909 0 1.03
Subharmonic 4 high orbit 44 0.634 -44.1 -0.128
Subharmonic 5 high orbit 50 -0.730 0 0.500

Acknowledgment

The authors acknowledge the support of Région
Auvergne-Rhône-Alpes through the ARC 4 Energies pro-
gram.

References

[1] K.A. Cook-Chennault, N. Thambi, and A.M. Sastry.
Powering MEMS portable devices: a review of non-
regenerative and regenerative power supply sys-
tems with special emphasis on piezoelectric energy
harvesting systems. Smart Materials and Structures,
17:043001, 2008.

[2] J. Siang, M.H. Lim, and M. Salman Leong. Review
of vibration-based energy harvesting technology :
Mechanism and architectural approach. International
Journal of Energy Research, pages 1–28, 2018.

[3] M.F. Daqaq, R. Masana, A. Erturk, and D.D. Quinn.
On the role of nonlinearities in vibratory energy
harvesting: A critical review and discussion. Applied
Mechanics Reviews, 66:40801, 2014.

[4] R.L. Harne and K.W. Wang. A review of the recent
research on vibration energy harvesting via bistable
systems. Smart Materials and Structures, 22:23001,
2013.

[5] G. Wang, W.H. Liao, B. Yang, X. Wang, W. Xu,
and X. Li. Dynamic and energetic characteristics of
a bistable piezoelectric vibration energy harvester
with an elastic magnifier. Mechanical Systems and
Signal Processing, 105:427 – 446, 2018.

[6] D. Liu, Y. Wu, X. Yong, and L. Jing. Stochastic
response of bistable vibration energy harvesting
system subject to filtered gaussian white noise. Me-
chanical Systems and Signal Processing, 130:201 – 212,
2019.

[7] C.B. Williams and R.B. Yates. Analysis Of A Micro-
electric Generator For Microsystems. Sensors and
Actuators A: Physical, 52:8–11, 1996.

[8] T. Huguet, A. Badel, and M. Lallart. Exploit-
ing bistable oscillator subharmonics for magnified
broadband vibration energy harvesting. Applied
Physics Letters, 111:173905, 2017.

18



[9] T. Huguet, A. Badel, O. Druet, and M. Lallart. Dras-
tic bandwidth enhancement of bistable energy har-
vesters: Study of subharmonic behaviors and their
stability robustness. Applied Energy, 226:607–617,
2018.

[10] A.J. Sneller, P. Cette, and B.P. Mann. Experimental
investigation of a post-buckled piezoelectric beam
with an attached central mass used to harvest en-
ergy. Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control Engineer-
ing, 225:497–509, 2011.

[11] S.C. Stanton, B.A.M. Owens, and B.P. Mann. Har-
monic balance analysis of the bistable piezoelectric
inertial generator. Journal of Sound and Vibration,
331:3617–3627, 2012.

[12] M. Panyam, R. Masana, and M.F. Daqaq. On ap-
proximating the effective bandwidth of bi-stable
energy harvesters. International Journal of Non-Linear
Mechanics, 67:153–163, 2014.

[13] W.Q. Liu, A. Badel, F. Formosa, Y.P. Wu, and A. Ag-
bossou. Novel piezoelectric bistable oscillator archi-
tecture for wideband vibration energy harvesting.
Smart Materials and Structures, 22:035013, 2013.

[14] A. Badel and E. Lefeuvre. Nonlinear Condition-
ing Circuits for Piezoelectric Energy Harvesters.
In E. Blokhina, A. El Aroudi, E. Alarcon, and
D. Galayko, editors, Nonlinearity in Energy Har-
vesting Systems Nonlinear, pages 321–359. Springer,
Cham, 2016.

[15] W.Q. Liu, A. Badel, F. Formosa, and Y.P. Wu. A
new figure of merit for wideband vibration energy
harvesters. Smart Materials and Structures, 24:125012,
2015.

[16] A. Gutiérrez, C. Gonzàlez, J. Jiménez-Leube, S. Zazo,
N. Dopico, and I. Raos. A Heterogeneous Wire-
less Identification Network for the Localization of
Animals Based on Stochastic Movements. Sensors,
9:3942–3957, 2009.

19


	Introduction
	Model construction
	Formulation
	Harmonic balance
	Stability to small disturbances
	Stability robustness

	Model validation with experimental data
	Prototype and identification
	Experimental results

	Model exploitation for optimized bistable harvesters
	Influence of  M 
	Influence of  k 
	Influence of  x0 
	Influence of  R 
	Bistable vs linear

	Conclusion
	Appendix
	References

