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bUniversité de Lyon, Université Jean Monnet, Laboratoire DISP (EA4570), France;

cSchool of Software Engineering, Chengdu University Information Technology, China;
dSchool of Computer Science and Technology, Nanjing University of Aeronautics and

Astronautics, China.

Abstract

Operational support is a key issue for aircraft maintenance, which aims to im-

prove operational efficiency and reduce operating costs under the premise of

ensuring flight safety. Although many works have emerged to achieve this aim,

they mostly address the concept of maintenance systems, the relationship be-

tween stakeholders and the loop of maintenance information separately. Hence,

the cooperation between stakeholders could be impeded especially when urgent

decisions should be made, relying on historical data and real-time data. In this

paper, we propose an innovative design of an autonomous system supporting

the automatic decision-making for maintenance scheduling. The design starts

from the proposition of the analysis framework, to concept formulation of the

system, to information transitional level interface, and ends with an instance of

system module interactions. The underlying architecture illustrates the high-

level fusion of technical and business drives; optimizes strategies and plans with

regard to maintenance cost, service level and reliability. An agent-based simu-

lation system is developed as a proof to illustrate the feasibility of the system

principle and algorithms. Furthermore, the simulation experiment analyzing
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the impact of maintenance sequence strategies on maintenance cost and service

level has demonstrated the algorithm functionality and the feasibility of the

proposed approach.

Keywords: Maintenance system; Systems Engineering; Architecture design;

Agent-based simulation.

1. Introduction

Maintenance businesses for aircraft involves flight scheduling, maintenance

strategies and planning, repair, part supply and a number of stakeholders in-

cluding: OEM (Original Equipment Manufacturing), suppliers, airline, MRO

(Maintenance, Repair and Overhaul), and airworthiness authority, etc. Stake-

holders cooperate with each other in a distributed, synchronized and ephemeral

way. For example, suppliers independently purchase parts when they are out

of stock. When necessary parts and auxiliary equipment for repairing some

faulty components are ready, MRO operations will be scheduled. Maintenance

managers will define strategies as soon as a maintenance is requested. The ma-

jor difference between general plant and machinery maintenance, and aircraft

maintenance is that the latter is mandated and monitored by regulatory au-

thorities like FAA (Federal Aviation Administration), CAA (Civil Aeronautics

Authority), etc. (Sahay 2012). Thus, they are the individuality of stakehold-

ers, the complex maintenance regulations, and distributed, synchronized and

ephemeral cooperation between stakeholders that clearly make the system on

the operational support for aircraft maintenance rather complex.

Recently, aircraft maintenance still largely depends on the economical time-

based PM (Preventive Maintenance) practice and the manual analysis (Sahay

2012). The deterioration of components and unplanned maintenance activities

make the maintenance further complex. PM is programmed to prevent failures

on aircraft from taking place, in order to minimize air transport service dis-

ruption. Less effective CM (Corrective Maintenance) is easier to cause “chain

reaction” in the network of air transport service. Additionally, delayed flights,
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incidents, broken components, cost, requested parts and safety recommenda-

tions, etc., are generated every day. Clearly, the operational support for aircraft

maintenance is becoming a data-rich issue with a considerable number of data

streams and operating databases. So, the real challenge is about how to

provide efficient operational support for aircraft maintenance under

this complex environment.

Many works have emerged to tackle this issue. They mostly address the

concept of maintenance systems (Duffuaa et al. 2001; Durazo-Cardenas et al.

2018), the relationship between stakeholders (Ward et al. 2010) and the loop of

maintenance information (Zhang et al. 2015; MacKenzie, Miller, and Hill 2012).

However, to the best of our knowledge, no one combines these three aspects to-

gether, in order to build a new autonomous maintenance system. This may give

rise to some deficiencies to the system. Developing a system without its architec-

ture design makes it difficult to truly understand its essence and key properties,

which in turn affects concerns such as the feasibility, utility, completeness, and

maintainability of the system (ISO 2011). Designing an architecture model of

systems without an executable system (or simulation system) makes it hard to

demonstrate the feasibility of the architecture design. Therefore, an innova-

tive methodology is highly demanded to build such a system starting from the

requirement analysis, to the architecture design, to the analysis of system mod-

ules involving stakeholders, and ending with a concrete simulation system. As

a result, this system is capable of more efficiently transforming the historic and

real-time data into global decisions for maintenance scheduling, which eventu-

ally effectively decreases maintenance cost and improves maintenance efficiency.

SE (Systems Engineering) is an interdisciplinary field of engineering and

engineering management that focuses on how to design and manage complex

systems over their life cycles (Blanchard 2004). The waterfall approach is a

common approach to developing complex systems, which uses a sequence of

design, implementation, testing, and evaluation (Royce 1987). It enables us to

build large systems by decomposing them into small, manageable, and testable

units (Waltz and Hall 2001). Therefore, SE is a good choice for building the
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system, in order to have a holistic point of view on the system at the design

phase.

Implementing a real autonomous system for aircraft maintenance is definitely

difficult because a number of information systems are hardly accessible and the

evidence for convincing the operators to follow system instructions is rather

limited. However, simulation systems enable us to gain important insights into

future systems in an inexpensive way, especially when the costs, risks or logistics

of manipulating the real system-of-interest are prohibitive.

ABMS (Agent-Based Modelling and Simulation) is a relatively new approach

to modelling the dynamics of complex systems and complex adaptive systems

(Macal and North 2005). It is generally employed when the complexity of the

system being modelled is beyond what static models or other techniques can

fully present (Helbing 2012). The complexity of the autonomous system for air-

craft maintenance mainly lies in system uncertainty and dynamics. The uncer-

tainty is reflected not only by random mechanisms but by unknown behaviours

resulting from agents’ interactions. For example, the occurrence of faults on

components of aircraft is conformed to a certain probability. The bounds on

these uncertainty issues and the implications of potential outcomes should be

understood and evaluated. Agent-based simulations provide a flexible and useful

mechanism to capture these uncertainties (Heppenstall et al. 2011; Monostori,

Váncza, and Kumara 2006). In terms of system dynamics, maintenance tasks

change over time, including maintenance sequences for aircraft and maintenance

resources scheduling. Different environments will lead to different system be-

haviours. Agent-based decentralization takes this into account by letting each

agent continuously coordinate its actions with other agents, instead of making

this agent apply a behaviour prescribed at design-time (Moyaux, Chaib-Draa,

and D’Amours 2006). Additionally, ABMS allows us to model real-world sys-

tems of interest in ways that beyond the capabilities of traditional modelling

techniques, such as discrete event system or system dynamics (Siebers et al.

2010; Ali et al. 2018). Hence, ABMS is a better fit for realizing the autonomous

system design.
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Furthermore, a framework for building an autonomous system is firstly pro-

vided, in order to explain how to combine SE and ABMS. Based on this frame-

work, a requirement analysis, an autonomous system design, and a simulation

system will then be accomplished successively. In the end, simulation experi-

ments will be performed to validate the feasibility of the proposed approach.

The main contributions of this paper are illustrated as follows:

• Proposing a new framework that fully supports the building of an au-

tonomous system on the operational support for aircraft maintenance;

• Proposing an architecture model for the autonomous system based on

which the detailed development of components is achieved and a UML

(Unified Model Language) use case diagram involving stakeholders is pro-

vided;

• Developing a concrete agent-based simulation system to enable us to have

a more detailed description of maintenance strategy and scheduling, a

more in-depth analysis of service level and cost, and a loop of more com-

plete maintenance information.

Based on the simulation system, maintenance engineers can run different

maintenance scenarios to investigate the impact of key factors on maintenance

cost and service level. For example, the impact of the number and the distri-

bution of maintenance technicians on maintenance efficiency can be analyzed.

Predicting maintenance issues is also possible based on part of real data and the

data generated from simulation experiments. Finally, the virtualization of the

maintenance process allows us to have an insight into any maintenance details.

The remainder of this paper is structured as follows. Section 2 reviews

the main related works. Section 3 represents the whole design process for the

autonomous system of aircraft maintenance. Section 4 builds an agent-based

simulation system based on the system design. Section 5 conducts a simulation

experiment on the impact of the maintenance sequence strategy on maintenance

cost and service level. Section 6 concludes the paper with future perspectives.
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2. Related researches and limitations

This section provides a comprehensive literature review on modelling main-

tenance systems. Since this paper focuses on the design of the autonomous

maintenance system to improve the operational support for aircraft mainte-

nance, it excludes the papers without a system’s perspective. For example, the

topics like utilizing mathematical approaches (Keysan, Nemhauser, and Savels-

bergh 2010; De Bruecker et al. 2018) or only introducing algorithms (Diaz,

Huertas, and Trigos 2014; Ahmed, Abdelghany, and Azadian 2017) to improve

maintenance scheduling and planning are out of our scope. The synthesis anal-

ysis of reviewed papers is concluded in table 1. The papers are analyzed from

six aspects: proposes conceptual models, proposes simulation models, involved

stakeholders, maintenance-related information, model purposes and the rele-

vance to our research. Furthermore, the relevance is evaluated with different

levels: low, medium and high.

According to this table, researchers rarely propose both conceptual mod-

els and simulation models at the same time. Fortunately, Chang et al. (2007)

gather these two models together. Nevertheless, they only concentrate on the

issue of maintenance labours. The maintenance process is rather simple. As

for involved stakeholders, researchers have almost neglected this aspect. Al-

though Durazo-Cardenas et al. (2018) have involved stakeholders, they do not

provide a simulation model. The majority of maintenance information has been

involved by researchers. Most of the reviewed papers consider parts states, re-

source availability, planning and scheduling information and labours, etc., but

the planning and scheduling information is just associated with maintenance

activities. The scheduling information for the system-of-interest is still missing.

In this paper, it is the information about the scheduling of aircraft. The lack of

this information will bring about the consequence that the impact of the delay

for one aircraft on other aircraft can not be investigated. Besides, the papers

with low relevance mainly suffer from limited maintenance processes or overly

simple model details to support our research. Half of the papers own a medium
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level of relevance. However, their contributions to our research are limited. Only

one paper (Durazo-Cardenas et al. 2018) proposes a detailed conceptual model

and discusses stakeholders but it does not involve simulation models. Sahnoun

et al. (2015) provide a simulation model, whereas they just deliver a simple

maintenance strategy and the design of turbine agents is less of reasonableness.

Gary et al. (2018) present a model where only an analysis of an aggregated level

can be performed. However, this model hardly describes the cooperation be-

tween stakeholders, which is less of reality. Yang, Djurdjanovic, and Ni (2008)

accomplish a discrete-event model and employ Genetic Algorithm to optimize

maintenance schedules. Unfortunately, the details of simulation models can not

be observed and only cost factor is considered for optimizing the maintenance

schedule.

MacKenzie, Miller, and Hill (2012) and Duffuaa et al. (2001) have the high

level of relevance. However, they treat conceptual models and simulation mod-

els separately. MacKenzie, Miller, and Hill (2012) provides us with a proper

“prototype” of our model. Since no conceptual models and cooperation be-

tween stakeholders are analyzed, the simulation model is hardly involved with

important insights into the maintenance process for aircraft. On the other hand,

Duffuaa et al. (2001) gives us a detailed analysis of maintenance concepts and

maintenance flows, however, it can only serve as the theoretic support for the

autonomous system design because of no simulation models.

To conclude, the existing simulation models are prone to tackling mainte-

nance issues without a comprehensive understanding of maintenance concepts.

They are not able to offer an insight into the maintenance process, which results

in simple maintenance strategies (MacKenzie, Miller, and Hill 2012), overly sim-

ple algorithms (Sahnoun et al. 2015), only an aggregated level analysis (Gary

et al. 2018), etc. While the papers of conceptual models tend to lack a con-

crete simulation demonstrator to illustrate the feasibility of the system design.

Thus, we are motivated to build an autonomous system starting from require-

ment analysis and ending with a simulation system. Our simulation system

can fully support the analysis of the complete maintenance process, enable a

9



more in-depth analysis of maintenance issues and automatically optimize the

maintenance scheduling and the part repairing.

3. Design of an automatic system for aircraft maintenance

The characteristics of maintenance systems for aircraft require that the sys-

tems are capable of being broken down into manageable fragments. In line

with these principles, the autonomous system analysis framework is initially

proposed to introduce an approach to build the system. The analysis of sys-

tem requirements is then carried out. In the following, an architecture model

for instructing the system design is proposed. Finally, the interactions between

components are illustrated by UML diagrams.

3.1. Autonomous system analysis framework

The framework for building the autonomous system is divided into three

parts: requirement analysis, autonomous system design and simulation system

demonstration (Fig. 1).

Architecture Schema

Component Model

System Interactive Model

Agent-based Simulation Model

Simulation Experimentation

Requirement analysis

Autonomous system design

Simulation system demonstrator

Requirements

System engineering

Model mapping

Simulation verification

Model refinement

Figure 1: Autonomous system framework for aircraft maintenance

The first step is to analyze requirements from the operational support for

aircraft maintenance. Based on these requirements, an architecture schema is

designed, which derives component models and a system interactive model. This
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system has been equipped with the very basic elements allowing operators of

aircraft maintenance to globally automatically support maintenance decisions.

The last step is to validate the system design by building a simulation system and

by conducting simulation experiments. The results from simulation experiments

will be applied to check requirements and to iteratively refine the system design.

This framework tries to provide a methodology to build an autonomous system

starting from requirement analysis, to system design, ending with simulation

system demonstrator.

Our framework for developing the autonomous system on aircraft mainte-

nance clarifies the practical value of the work. To begin with, it provides an

alternative way to implement the “real system” based on the system design by

building simulation systems, which enables us to gain important insights into

future systems in an inexpensive way. Secondly, it offers a general approach to

build an autonomous system that supports reuse and sharing. System designers

in other fields are likely to provide a rigorous architecture design of the system

and deliver a powerful demonstrator of the future system, which illustrates the

feasibility of the design. At last, this framework proposes a methodology for

building digital twins. It not only proposes a prototype system-of-interest but

allows us to manipulate the prototype system with part of real data, in order

to examine the reaction of the system.

3.2. Requirement analysis

The architecture of systems is a structure of components, their relationships

and the principles and guidelines governing their design and evolution over time

(ISO 2011). This definition principally addresses components and relationships.

Understanding the system overall aims is the first step to identify components

and relationships. For example, what decisions will be made? What are the

characteristics of the system?

Effective engagement with the stakeholders is vitally crucial to capture the

new system requirements. The interview was conducted with a few experienced

aircraft maintenance engineers in Chengdu, China. Because of confidential is-
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Table 2: The answers on questions 1 - 4
No. Answer
Q1 AMOs (Aircraft Maintenance Organizations) have multiple IT systems which are

not located in the neighbourhood of engineers and aircraft;
The real-time progress of aircraft maintenance is highly demanded;
AMOs are often not meeting the planned release dates of aircraft maintenance
checks.

Q2 The high level of autonomy required spans several areas: maintenance strategy
planning and updating, workers scheduling, resource response, cost and service ef-
ficiency.

Q3 The general maintenance information refers to parts, equipment, preventive schedul-
ing, worker scheduling, inventory, task card, etc.

Q4 Information systems, telephones, emails are the major ways of communication.

sues, several general questions were discussed, which are illustrated as follows:

• Q1: what are the major issues about aircraft maintenance?

• Q2: what is the level of autonomy required?

• Q3: what are the general information needed for maintenance?

• Q4: what are the ways of accessing information?

The answers about questions 1 - 4 are concluded in table 2, which is based on

a 3-hour interview. According to the answers, we can identify several problems,

including “the data interaction of different IT systems is not sufficient”, “an

automatic maintenance system for aircraft maintenance is missing” and “A lack

of an effective approach to make maintenance strategies and scheduling plans”.

As for autonomy, the strategy for maintenance enables the maintenance system

to adapt to real-time condition decision-making. The decision-making should

be optimized with the consideration of service level and maintenance cost.

3.3. Architecture development

3.3.1. Architecture model

Based on the requirements (table 2), an architecture model that covers the

most of aspects for aircraft maintenance is highly demanded. Fig. 2 illus-

trates the architecture model for the autonomous system, which consists of

6 components: Maintenance requirement, Maintenance strategy, Planning and

scheduling, Safety & Reliability estimation, Cost & Service level estimation and

12



Integration. The inputs and outputs of components are synthesized in table 3.

In the following, the design of each component is discussed in detail.

Integration
Maintenance 

strategy
Planning and 

scheduling

Cost & Service level 
estimation

Safety & Reliability 
analyzing

R1

R2 R3

R4

feedback

output

data input

information transfer

R: data resource

Maintenance 
requirement

R5

Figure 2: The architecture model for the automatic system

Maintenance requirement. This component triggers the whole of mainte-

nance activities. Maintenance requirements can be derived from PM, CM or

third-party requests. Thus, the raw data involve the PM data, the sensor data,

the alarm, and the third-party maintenance requirement reports. This compo-

nent fuses the raw data to determine the basic maintenance request and severity

level. Monitoring data can be from sensors, alarms, or the observation by crews.

The PM for components is programmed by OEM at the design phase. It con-

sists of not only the timing of maintenance, but maintenance activities, such

as procedural instructions for maintenance tasks, procedures for recording the

results of inspections, checks, tests, and other maintenance, etc. (Allen 2012).

Severity level depicts the degree of impacts of maintenance requirements (such

as component faults, PM, etc.) on safety and reliability. The outputs of this

component will trigger Maintenance strategy component.

Maintenance strategy. This component aims to analyze real-time conditions

of parts to determine their corresponding maintenance strategies. The fusion

process involves the synthesis analysis of the data from real-time inspection re-
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Table 3: The table of components
Component Inputs Outputs
Maintenance re-
quirement

Monitoring sensor: fault info., location,
etc.

Maintenance request:
type, location.

PM: time. Severity level
Third-party request: maintenance re-
quirement report.

Maintenance
strategy

Maintenance request: type, location. Maintenance goals and
repair schema

Maintenance regulation: operator ap-
proved maintenance planning.

Maintenance strategies
for relevant parts

Maintenance timing: remaining useful
lifetime, interval, resource.

Maintenance
scheduling and
planning

Information: remaining useful lifetime, in-
tervals, strategies, labours, parts, equip-
ment.

Information: job comple-
tion, repair time, delay,
interval.

Maintenance historic data: trouble-
shooting data.

Tasks scheduling: parts,
labors.

Maintenance cost
Safety & Relia-
bility estimation

Airworthiness directives and service bul-
letins.

Safety indicator

Information: the number of failed parts
and corresponding time.

Reliability indicator

Cost & Service
level estimation

Information: labour working time, parts,
equipment, downtime, interval, etc.

Service level indicator

Flight information: flight no., aircraft no. Cost indicator

ports, sensors and troubleshooting databases. It is dedicated to dynamically

determining maintenance strategies for parts and delivering maintenance goals

and repair schema. The data of maintenance requests implies the whole descrip-

tion of maintenance including maintenance types, locations and priorities. The

maintenance regulation refers to maintenance activities which are mandated to

be executed. For example, the operator approved maintenance planning includes

lots of documents like AD (Airworthiness Directive). AD provides maintenance

management processes with the intention to ensure the airworthiness level for an

aircraft. The data of the maintenance timing is used to optimize maintenance

strategies via analyzing which maintenance can be delayed and dynamically

updating maintenance types for parts.

Planning and scheduling. This component tries to automatically generate

maintenance plans and schedules, including the optimization of the maintenance

task sequence with the consideration of fundamental operating maintenance pa-

rameters such as repair time, cost, delay time and the availability of equipment

and technicians, etc. Once maintenance strategies for parts are determined, the
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maintenance planning and scheduling will be defined accordingly. The input is

used to define the task sequence by analyzing the availability of labours, parts

and equipment. The remaining useful lifetime and interval are the basis for

delivering repairing strategies. The maintenance historic data is utilized when

some uncertain events happen during the process of repairing, in order to find a

solution. The cost analysis affects ways of repairing as well. The final scheduling

result of maintenance activities is presented by a Gantt chart.

Safety & Reliability estimation. The objective of this component is to col-

lect the component failure data, current use time, changeover time, in order

to accomplish the safety and reliability estimation. The result of the estima-

tion will be the data for integration. Checking safety issues principally depends

on AD and SB (Service Bulletin). These two documents describe the mainte-

nance management process and the repair management process. If one of the

steps is not compliant with standard processes, it will cause a safety risk. The

system reliability analysis is conducted by analyzing the performance of parts.

This component should ensure the safety of aircraft and provide information for

product design.

Cost & Service level estimation. This component is employed to perform

the estimation of maintenance cost and service level. The analysis of cost is the

fusion process for the repair cost, part cost, logistic cost, staff’s salary, the caused

downtime cost, etc. The analysis of service level involves the assessment of

delayed flights. The input is to determine the cost of labours, parts, equipment,

downtime, etc. The delayed time for flights refers to the total repair time and

interval. The efficiency of maintenance is evaluated by the synthesis analysis of

cost and service level.

Integration. This component aims to converge the estimation of safety &

airworthiness and cost & service level, aviation authority regulation, resource

availability into a global fused system output.

From Fig. 2, the integration model output delivers a global estimation for

impacts of maintenance strategy, maintenance scheduling, resource, cost, service

level and safety & airworthiness on the maintenance efficiency. The feedback
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provides recommendations to support better decisions and iteratively refine the

maintenance process.

Planning and 
scheduling 
manager

Strategy manager

Quality controller

Identifies requirement types

Identifies component 
maintenance

Identifies scheduled 
maintenance

Identifies customer 
services 

<<includes>>
<<includes>> <<includes>>

Analyzes maintenance strategies 

Defines maintenance goals

<<includes>>

Updates strategies

<<extends>>

Delivers repair schema

<<includes>>

Generates planning & 
scheduling request

Plans maintenance & 
schedules tasks

Delivers parts and 
equipment

Estimates costs

<<includes>>

Integrator 

Generates strategy 
requests

<<uses>>

<<uses>>

Assigns workers

<<includes>>

Inspection

Estimates 
reliability<<extends>>

<<extends>>

Displays maintenance 
efficiency

<<uses>>

<<uses>>

Displays resources

<<uses>>

Estimates 
resources

<<uses>> <<uses>>

Generates strategies

<<uses>>

Requirement 
manager

<<includes>>

Automatic system for aircraft maintenance

<<uses>>

<<uses>><<uses>>

<<uses>>

Cost estimator

Figure 3: Illustrative UML use case diagram for automatic system for aircraft maintenance

3.3.2. System module interaction

The system module interaction of the autonomous system of aircraft mainte-

nance is presented by UML UCD (Use Case Diagram), which is shown in Fig. 3.

UML UCDs have been widely used in the system module interaction (Skersys,

Danenas, and Butleris 2018). The complex maintenance process is illustrated

by the interaction between actors in the way of use cases. It should be noted

that:

• The integrator determines aircraft candidates by the synthesis analysis of

resources and severity with the help of “Generate strategy requests”;
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• The “Updates strategies” implies the management of different mainte-

nance strategies on components. Thus, strategy managers extend mainte-

nance strategies when the interactions amongst strategies are considered;

• The planning and scheduling managers estimate the availability of re-

sources, in order to provide a sequence of aircraft candidates. The plans

and scheduling tasks will then be carried out.

4. Simulation system demonstrator

4.1. The architecture of the agent-based simulation system

In order to derive agents from component models, the relationship between

components and agents are presented in table 4. Combining component models

and maintenance-related issues (flight, plane, equipment, etc.), eight agents

have been created, which can be divided into two groups: basic agents and

maintenance agents. The basic agents refer to the Flight, Plane and Equipment.

The maintenance agents consist of the Main, CRA (Customer Requirement

Agent), SSA (Service Strategy Agent), STA (Service Task Agent) and QCA

(Quality Control Agent). Fig. 4 provides an architecture model of the agent-

based simulation system. In this figure, different maintenance information is

delivered to different agents. The details of agents are explained in the following.

Table 4: The relationship between components and agents
Agent Component
Main Integration
CRA Maintenance requirement component
SSA Maintenance strategy component
STA Maintenance scheduling planning component

Cost and service level estimation component
QCA Safety and reliability estimation

4.2. The development of agents

The development of agents has been implemented as the following steps:

the inputs of agents, the processes of agents and the outputs of agents. All the

relevant data about agents are summarized in table 5.
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Table 5: The data of agents - DT (Data Type), I (Input data), and O (Output data)

Agent DT Functionality Data
Flight I scheduling flightNumber:String aircraftNumber:int

flightTime:double arrivalTime:Date
destination:String departureTime:Date
airport:String interval:double

O scheduling scheduling table cancelledFlights:int
delayedFlights:int ontimeFlights:int

states CRA:int;SSA:int;STA:int QC:int;type:String
Plane I planes aircraftNumber:int airport:String

aircraftType:AirPlaneType
flights flightNumber:String flightTime:double

destination:String
O maintenance maintenanceType:String severity:int

parts:ArrayList<Equipment>
Equipment I equipment type:EquipmentType changeoverTime:double

serialNumber:int repairTime:double
repairingTime:double PMFrequency:int
maintenanceStrategy:String
equipmentState:EquipmentState

O maintenance repairType:String countRepair:int
timeForFirstRepair:double currentUseTime:double
repairingTime:double

CustomerRequ. I/O parts parts:ArrayList<Equipment>
fault info. faultDescription:String faultLocation: String

ServiceStrategy I planes aircraftNumber:int airport:String
aircraftType:AirPlaneType interval:double
parts:ArrayList<Equipment>

O parts parts:ArrayList<Equipment>
time faultAnalysisTime:double

exceptionalEventSSATime:double
strategy maintenanceStrategy:String

ServiceTask I planes aircraftNumber:int airport:String
aircraftType:AirplaneType interval:double
partCheckingList:ArrayList<Equipment>

technicians aircraftTechnicians:ArrayList<Person>
O cost laborCost:double partCost:double

equipmentCost:double downtimeCost:double
time planningTime:double executionTime:double

downtime:double partPreparingTime:double
faultIdentificationTime:double
exceptionalEventSTATime:double

QualityControl I repairing timeForFirstRepair:double countRepair:int
repairingTime:double currentUseTime:double
partCheckingList:ArrayList<Equipment>

O reliability MTTR:double MTTF:double
MTBF:double Recommendation:String
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Figure 4: The architecture model of the agent-based simulation system

4.2.1. Main and Customer requirement agent

Main is designed as the integrator. It not only links with all the other

agents but displays the key information of maintenance. This agent provides

a graphical display of flight routes based on a GIS (Geographic Information

System) map, where cities are really located and the flying time can be easily

managed. The information on real-time flights scheduling table is stored in the

database. In addition, maintenance states of each plane can be observed from

this agent, which enables managers to control maintenance actions from the

global point of view. Since this agent is the basis for the other agents, there is

no input and output for it.

The maintenance sequence optimization is another key issue for Main. In our

simulation environment, it is possible for more than two planes to be maintained

at the same airport. The FIFO (First In First Out) rule is often applied in flight

control (Atdelzater, Atkins, and Shin 2000). However, only using the FIFO

rule to deal with waiting planes cannot be always a good strategy, especially

when the high efficiency of maintenance is exceptionally requested. In fact, this

agent allows maintenance designers to investigate the performance of different

strategies. For example, some other strategies like FIFO-Optimized strategy

for waiting planes can be proposed. On the one hand, the least important

PM for planes may be delayed to the next destination; on the other hand,

the rest of maintenance will be scheduled with the FIFO-Optimized strategy.
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The FIFO rule is utilized to avoid the starvation of processes. Optimization

operations are based on the FIFO rule. Each time when the temp message

list is empty, it will copy all the messages from the message list. At the same

time, the elements in the message list should be freed. It should be noted

that the temp message list is used for optimizing the maintenance sequence for

waiting planes and the message list is just employed to collect the messages.

The FIFO-Optimized strategy has been implemented in Algo. 1. The time

complexity of this algorithm is O(n3). In this algorithm, the estimation of

severity and resource and the delay of the least important maintenance are

conducted with respect to airports. Because different airports are equipped with

different capacities of the resource. This may result in changing maintenance

sequences significantly. It should be noted that Algo. 1 is different from Algo.

3. The former focuses on scheduling faulty aircraft to repair (i.e. the sequence of

“faulty” aircraft needed to be repaired); the latter concentrates on programming

maintenance resources for maintenance tasks (i.e. the sequence of maintenance

tasks needed to be performed).

CRA sends maintenance requests to relevant agents after receiving signals

from Main. If it is a PM, checking information will be sent to SSA. If it is a CM,

fault information will be delivered to STA. As this agent principally manages

requests and triggers maintenance activities, the input and output are the same.

4.2.2. Flight

Flight is a controller for scheduling planes. It schedules both on-time flights

and delayed flights. The information on flights is stored in the database.

The scheduling strategy is implemented by two events: scheduling and schedul-

ingDynamical. The scheduling event is a cyclic event where the first occurrence

time is departureTime and the recurrence time is one day. The schedulingDy-

namical is a dynamic event. The occurrence of this event is totally determined

by users via indicating the occurrence time. The scheduling strategy is described

as the flowchart shown in Fig. 5. Consequently, the final state of one flight will

be scheduled, delayed or cancelled. Since the scheduled information is deter-
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Algorithm 1: Maintenance sequence optimization
input : airportsList, messagesList, tempMessagesList
output: index.
// The index represents the number of the scheduled aircraft to be

maintained.

// Firstly, the FIFO rule is used to deal with messages.

1 int threshold, count,index1; double max, value, min, severity, resource, interval;
2 max = min = severity = resource = value= count = index1 = interval = 0;
3 String maintenanceType = null;

// The threshold indicates the maximum number of aircraft to be maintained

each time.

4 threshold=5;
5 if Main.receiveMessagesFromPlanes == true then
6 messagesList.add(msg);
7 end
8 if tempMessagesList.IsEmpty() and !messagesList.IsEmpty() then
9 for i = 0 to messagesList.size() do

10 tempMessagesList.add(messagesList.get(i));
11 end
12 messagesList.clear();

13 end
// Then, based on the FIFO rule, prioritize maintenance sequences.

14 for j = 0 to airports.size() do
15 max =0;
16 for k = 0 to tempMessagesList.size() do
17 if tempMessagesList.get(k).equals(airports.get(j)) then
18 severity =tempMessagesList.get(k).severity;
19 interval =tempMessagesList.get(k).interval;
20 maintenanceType = tempMessagesList.get(k).maintenanceType;
21 resource = resourceEstimate(airports.get(j));
22 value = synthesize(severity, resource, interval, maintenanceType);
23 if max < value then
24 max = value; index = k;
25 end
26 count++;

27 end
// The least important PM may be delayed to the next destination.

// min(messagesList,airport) means getting the minimum value of

aircraft number from messages list at airport j

28 while (count−−) > threshold do
29 for l = 0; tempMessagesList.get(l)==airports.get(j) to

tempMessagesList.size() do
30 if tempMessagesList.get(l).maintenanceType==”Corrective” or

tempMessagesList.get(l).severity==2 then
31 break;
32 end
33 index1=min(tempMessagesList,airport.get(j));
34 tempMessagesList.get(index1).severity++;
35 tempMessagesList.remove(tempMessagesList.get(index1));

36 end

37 end
38 count=0;
39 send(“Scheduling”,tempMessagesList.get(index));
40 tempMessagesList.remove(tempMessagesList.get(index));

41 end

42 end
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Figure 5: The flowchart of flight scheduling strategy

mined, the “chain reaction” can happen due to some delays of flights. This phe-

nomenon can significantly increase the complexity of maintenance and clearly

show the high-level relevance of real-world maintenance issues of the simulation

system. This agent will deliver the scheduling information and maintenance

states information to Plane and Main respectively.

4.2.3. Plane and Equipment

Plane is the major carrier for maintenance. It is a composite agent, which

contains a number of Equipment. When all the aircraft are loaded from the

database, they will be ready at their corresponding airports. As soon as they

receive the messages from Flight, they will fly to their destinations. When they

reach their corresponding destinations, the maintenance will take place with a

certain probability. According to the report of air transportation organization of

Canada from 2007 to 2016 (TSBC 2019), landing can be considered as the period

when most of the incidents happen. Therefore, in this paper, maintenance is
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Figure 6: The state transition of equipment

assumed to be started from the landing period. After the reparation, they are

programmed to fly to next destinations. This cycle repeats every day.

Fig. 6 shows equipment states regarding the location of equipment. Failure

events transfer the equipment state from Use to Failure. The state transition

from Use to Inspecting is triggered by PM. If maintenance actions can be done

on the plane, the state will pass from Repairing to Use. On the other hand, the

equipment will be repaired in the workshop. Moreover, the stock will deliver

any available equipment needed. It should be noted that Repairing and Repair

states depict that maintenance activities take place on the spot and at workshops

respectively.

During the life-cycle of equipment, recording the current use time of equip-

ment is very important. This time will be the key factor to make a repairing

decision. In this simulation environment, as soon as the equipment is loaded

from the database, the current use time of this equipment starts. Only when

it is placed in the stock, the current use time stops. The definition of the

currentUseTime is illustrated as follows:

CUTa = CT − ST ; (1)

CUTb = CT − STi + LUTi−1; (2)

LUTi−1 = ETi−1 − STi−1 + LUTi−2 (3)

where, i >= 1; LUT0 = 0; CUTb and CUTa mean parts have been stayed at
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Algorithm 2: Repairing strategy analysis
input : lastUseTime, changeoverTime
output: repairType

1 if this.endTime == 0 then // this condition means this equipment has never been
in stock. The time function gets the real time of simulation environment.

2 currentUseTime = time(MINUTE);
3 end
4 else
5 currentUseTime = lastUseTime + time(MINUTE) - StartTime;
6 end
7 if currentUseTime > changeoverTime then
8 repairType = “replace”;
9 end

10 else
11 if equipmentState is Broken and repairingTime > interval then
12 if Inventory is enough then
13 repairType = “replace& repair”;
14 end
15 else
16 repairType = “repair”;
17 end

18 end
19 else if equipmentState is Broken and repairingTime <= interval then
20 if changeoverTime - currentUseTime <= 1200 then // the useful

remaining life is less than 20h
21 repairType = “replace”;
22 end
23 else
24 repairType = “repair”;
25 end

26 end
27 else // The maintenance type is PM
28 repairType = “inspect”;
29 end

30 end

the stock or not respectively; the indices of equations are shown as follows:

CT (Current Time) the current simulation running time;

CUT (Current Use Time) the current use time of equipment;

ST (Start Time) the time when equipment is leaving from stocks;

ET (End Time) the time when equipment is put into stocks;

LUT (Last Use Time) the last use time of equipment.

The analysis of repairing strategies is realized in Algo. 2. This algorithm

deals with PM and CM. The repairing strategies include “replace”, “replace&
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repair”, “repair” and “inspect”. The first three strategies are associated with

CM. The “inspect” is used for PM. This algorithm is designed for comparing

the currentUseTime and changeoverTime of equipment with respect to equip-

mentState, in order to find the optimal repairing strategy. Additionally, the

time complexity of this algorithm is O(1) because no loop is involved.

4.2.4. Service strategy agent

SSA is intended for dynamically determining maintenance strategies for

equipment and delivering maintenance goals and repair schema.

PM and CM are analyzed in this agent. If the maintenance type is PM,

maintenance actions will be carried out on PM due parts. If the maintenance

type is CM, this agent will automatically generate faulty part lists. The selection

of parts takes place in a random way. On the other hand, we consider the

influence of maintenance strategies on the same equipment. If PM occurs at

equipment i, the probability of the fault occurrence at this equipment will be

decreased. If CM happens at equipment i, the PM of this equipment should be

rescheduled.

4.2.5. Service task agent

This agent is dedicated to programming maintenance tasks. The mainte-

nance planning and task scheduling are based on the estimation of resource

availability and real-time condition.

Algo. 3 employs the same strategy as Algo. 1. The time complexity of

Algo. 3 is O(n). The major differences between them are the maintenance

location and key indicators. In Algo. 1, maintenance objects (planes) are from

airports all around the world and key indicators are relatively simple. While in

Algo. 3, maintenance objects are at the same airport. As the most of details

of maintenance tasks have been determined, the maintenance priority can be

estimated by multiple indicators.

4.2.6. Quality control agent

QCA analyzes the reliability of equipment and checks safety issues depend-

ing on AD and SB. Kullstam (1981) proposed a few reliability indicators like
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Algorithm 3: Maintenance tasks sequence optimization

input : messagesList, tempMessagesList, aircraftTechniciansList, constraint[],
interval.

// The index represents the number of scheduled aircraft to be maintained.

output: index.

// The FIFO rule in Algo.1 is reused to deal with messages from SSA. The

details can be seen at lines 4 - 13, part 1 of Algo.1.

// Under the FIFO rule, prioritize the maintenance task sequence.

// XXEstimate(partsList) means synthesis estimation of parts, according to

the service level, risk, delay, etc., based on historic data and

real-time data.

1 double max, value, risk, delay, resource, serviceLevel;
2 max = value = serviceLevel = risk = delay = resource =0;

// The city means the airport of current aircraft.

3 String city;
4 for i = 0 to tempMessagesList.size() do
5 partsList=tempMessagesList.get(i).partsCheckingList;
6 risk = riskEstimate(partsList);
7 serviceLevel = serviceLevelEstimate(partsList);
8 delay = delayEstimate(partsList);
9 availability = resourceEstimate(partsList);

10 value = synthesize(serviceLevel, risk, delay, availability);
11 if max < value then
12 max=value;
13 index = i;

14 end

15 end
// Assign resource to the selected plane’s parts list

16 ArrayList<Person> workingTechnicians =new ArrayList<Person>();
17 city = tempMessagesList.get(index).city;
18 for j = 0 to aircraftTechnicians.size() do
19 Person p= aircraftTechnicians.get(j);
20 if p.airport.equals(city) and p.schedule == 1 and p.free == true then
21 p.free = false;
22 workingTechnicians.add(p);

23 end

24 end
25 tempMessagesList.remove(tempMessagesList.get(index));

MTTF (Mean Time To Failure), MTBF (Mean Time Between Failure) and

MTTR (Mean Time To Repair). MTTF is a general reliability index for esti-

mating mean time to failure. MTTR is a basic measure of the maintainability

of repairable items. It represents the average time required to repair a failed

component or device. MTBF is the predicted elapsed time between inherent

failures of a mechanical or electronic system, during the normal process of the

system operation. During the process of simulation, all the relevant information

will be collected to perform the reliability analysis. The results are compared
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with target repair time, target MTBF, and target MTTR respectively, in order

to get the corresponding performance.

Safety analysis is achieved by utilizing AD and SB. The maintenance man-

agement process and the repair management process are supervised. Once these

processes are violated, warnings will be sent out.

4.3. Cost and service level analysis

In terms of Maintenance Cost (MC), Downtime Cost (DC), Labor Cost (LC),

Stock Cost (SC) and Parts Purchase Cost (PPC) are taken into consideration.

The definitions of each cost (equations 4 - 8) are provided, where totalRepair-

Time (shown in table 6) and interval are counted by seconds, and unitPriceDC

means the unit price for downtime; salary(i) and time(i) represent the ith air-

craft technician’s salary counted by hours and the corresponding working time;

number(i) implies the number of the ith kind of parts, unitPriceSC means the

unit price for stock and days means the number of storing days; and cost(j)

means the cost of the j th kind of parts. In addition, all the costs are counted

by dollars.

MC = DC + LC + SC + PPC; (4)

DC = (totalRepairT ime− interval) ∗ unitPriceDC ; (5)

LC =

n∑
(i=1)

salary(i) ∗ time(i); (6)

SC =

n∑
(i=1)

number(i) ∗ unitPriceSC ∗ days; (7)

PPC =

n∑
(j=1)

cost(j); (8)

The complexity of MC depends on maintenance scenarios. As shown in table 6,

fault events and uncertain events are considered in maintenance scenarios. The

analysis of fault events aims to deliver the causes of faults on components. The

uncertain event analysis tries to simulate the process of the trouble-shooting

during the process of repairing when exceptional issues happen. Fault and
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uncertain events take place with a user-defined probability. The elements of

totalRepairTime will be discussed in detail at the last paragraph of section 5.2.

Additionally, scheduledTime in table 6 means the total repair time of PM.

Table 6: The compositions of total repair time on maintenance scenarios
Maintenance Scenario total repair time
Scheduled informationDelivery, maintenancePlanning, invento-

ryPrepare, repairing,
Scheduled + Uncertain events exceptionalEventSTA(eSTA), scheduledTime ex-

ceptionalEventSSA(eSSA).
Unscheduled faultIdentification, faultAnalysis, scheduledTime.
Unscheduled+Uncertain events faultIdentification, faultAnalysis, eSTA, eSSA,

scheduledTime.

The definition of service level is shown as follow:

ServiceLevel = totalRepairT ime− interval. (9)

Service level reflects the degree of the delay time of passengers. It is another

way to evaluate the maintenance efficiency. Obviously, decreasing the mainte-

nance cost all the time is not definitively a good idea. Because it may produce

numerous delays or even unnecessary cancels of flights. In this paper, when the

difference between totalRepairTime and interval is more than 4 hours for one

flight, it is supposed that this flight will be cancelled.

5. Simulation experiment

Simulation experiments are carried out to evaluate the impacts of mainte-

nance strategies of FIFO, Optimized, and FIFO+Optimized (supported by Algo.

1) on maintenance cost and service level.

5.1. Scenario

The simulation starts from the flight schedule. The aircraft stay at airports

waiting for scheduling signals. Flight legs (A flight leg is a trip of an aircraft,

from take-off to landing) are from the website of AirFrance1. Twelve airports

are concerned, including Paris, Lyon, London, Berlin, Madrid, Amsterdam,

1www.airfrance.fr (accessed in January 2019)
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Figure 7: The simulation experiment scenario

Boston, Marseille, Barcelona, Prague, Manchester and Munich. There are 50

aircraft distributed at different airports. Fig. 7 shows the general process of air-

craft maintenance for the simulation. At each airport, maintenance sequences

and maintenance tasks sequence will be analyzed. In this figure, an example is

given for Paris, where the maintenance sequence optimization and maintenance

tasks sequence optimization are illustrated. Message containers for the mainte-

nance sequence and maintenance tasks sequence are used to collect signals from

aircraft for requesting maintenance and for requesting resources respectively.

Optimization processes are explained in sections 4.2.1 and 4.2.5.

Each aircraft performs routes given by flight plans. Different types of air-

craft own different equipment. The deterioration of each equipment conforms

to its degradation curve. Each airport is capable of undertaking all kinds of

maintenance tasks. Not all resources at airports are the same. The data for the
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flight plan, the available person-power for airports, and the maintenance-related

time are provided in the appendix.

5.2. Hypothesis

The major experiment hypotheses consist of:

• fault events can happen only when aircraft reach “Landing” state;

• each faulty part only occupies one technician who is randomly distributed

and has matched skills;

• maintenance business processes are included in the combination of PM/CM

and with/without uncertain events;

• for departure event, if the downtime for departure is over 4 hours, this

flight will be cancelled;

• no degradation for components happens when components are stored in

the warehouse;

• the items of total repair time (shown in table 6) are assigned with random

values or are determined by the database.

As for the last hypothesis, the industrial relevance of values should be dis-

cussed. Assigning these data with values helps the simulation system under-

stand the relevant degree of time-consuming for parameters. We try our best

to provide the values with high industrial relevance. For example, the values

for the data inventoryPrepare (1-3h) (when the relevant part is out of stock),

repairingTime (20-120 mins) (the faulty parts that can be repaired on the spot)

and repairTime (5-30h) (the faulty parts that have to be repaired at the work-

shop) are of a certain level of industrial relevance. However, in terms of the

data informationDelivery and maintenancePlanning, the values for them are

assumed as 2 to 5 seconds, which are of less of industrial relevance. The data

of faultIdentification, exceptionalEventSSA and exceptionalEventSTA are deter-

mined, based on the knowledge stored in the database. If the solution has been
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stored in the database, they will take 0 minutes. If not, they will take either 30

minutes or one hour. Also, the unit prices (equations 8 and 10) are preassigned

as well. The unit price of downtime cost per second is set to be 2.8 dollars (Pohl

2019). The unit price of stock cost is generally supposed to be 10 dollars per

day, which is less of relevance.

5.3. Experiment results

This simulation experiment is implemented by Anylogic PLE 8.2.32. The

configuration of the running laptop is 8G memory and 4 processors (i7-6500U

CPU). The run length is set to be three months, which takes around three

hours. PM and CM, involving changing parts, purchasing parts, inspecting

parts, shifting workers, delayed flights, cancelled flights, etc., will happen within

this run length.

The warm-up period is set to be five days to avoid initialization bias since

the simulation system starts with new planes.

Moving average analysis is carried out to set the required number of replica-

tions. According to the result (shown in Fig. 8), after the 8th replication, the

moving average lines tend to be more stable. Since the moving average lines

fluctuate with a minimum amplitude around the 10th replication, the number of

replications will be set to be ten to ensure we obtain a better estimate of aver-

age. The box plots are used to show the distribution of the results. The impact

of different strategies on maintenance cost is illustrated in Fig. 9. This figure

depicts that three strategies share similar ranges of change on maintenance cost

except for the minimum of the strategy of FIFO+Optimized. The strategy of

Optimized does not seem to have any advantages on maintenance cost, regard-

ing all the indicators. Comparing with the strategy of FIFO, FIFO+Optimized

strategy saves maintenance cost more in general. However, it is possible for

FIFO strategy to outperform FIFO+Optimized strategy in maintenance cost.

In terms of service level, the results about on-time, delayed and canceled

2www.anylogic.com (accessed in January 2019)
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Figure 9: The impact of maintenance sequence strategies on maintenance costs

flights can be observed in Fig. 10 in detail. Overall, the strategy of FIFO

outperforms the others. While, the strategy of FIFO+Optimized has the lowest

average of the number of canceled flights. Comparing with these three strategies,

FIFO is the most stable strategy in every aspect, which is followed by Optimized

strategy. The least stable strategy is FIFO+ Optimized.

From our results, we can conclude that the best maintenance sequence strat-

egy will vary in the priority of minimizing maintenance cost or maximizing the

number of on-time flights. If minimizing maintenance cost is the priority then

FIFO+Optimized strategy would be the best. This strategy aims to always

handle the most urgent maintenance issues to some extent. No “starvation
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Figure 10: The impacts of maintenance sequence strategies on service level

phenomenon” will happen. It always keeps the priority and sequence of main-

tenance requests balanced, so this strategy will save maintenance cost most. If

maximizing the number of on-time flights is the priority then FIFO strategy

would be the best. This strategy handles the requests from aircraft depending

on the order of the request arriving time. Therefore, the phenomenon of “the

least urgent request cannot obtain resources” can be avoided. The number of
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on-time flights will be increased. So, this strategy results in the largest number

of on-time flights. As a result, the efficiency of maintenance strategies should

be investigated from different aspects. Different strategies should be adapted

to different aims.

5.4. Discussion

An autonomous maintenance system has been designed and demonstrated

by utilizing SE and ABMS respectively, which aims to improve the operational

support for aircraft maintenance.

The architecture model for the system provides a global view about compo-

nents and their relationships in the system. It guides us to implement the lower

development of components, which involves the inputs, outputs and functions

of components. Hence, the maintenance-related data can be installed at the

corresponding components properly, which makes it possible to accomplish the

transformation from real-time data to global maintenance decisions.

The simulation system is the demonstrator to simulate the whole process for

aircraft maintenance. Many factors, including strategies, scheduling plans, the

cost analysis and the service level analysis, have been addressed in this system.

The analysis of strategies consists of the maintenance sequence optimization

strategy (Algo. 1), the repairing strategy (Algo. 2), and the maintenance task

sequence optimization strategy (Algo. 3). These strategies improve the effi-

ciency of aircraft maintenance. The maintenance sequence optimization strat-

egy states that the requests from aircraft should be answered in an optimized

way. From the experiment results, we can see that the judge of the best strategy

relies on the chosen priority and the synthesis of real-time conditions.

The planning and scheduling task scheduler uses Algo. 3 to enable the allo-

cation of maintenance jobs to groups of MRO workers, providing cost-effective

plans for dealing with maintenance issues in a simple and timely way.

The cost analysis uses a simple cost-breakdown structure (equations 4 to 8)

to estimate the maintenance cost; but because of the complexity of the effect of

repair time (shown in table 6), multiple values are possible for any given task.
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The analysis of service level is another way to evaluate maintenance effi-

ciency. Even though the definition of service level is quite simple, it could make

the analysis of maintenance much more complicated. The concept of service

level allows aircraft to be delayed or cancelled. Since flying routes of aircraft

have already planned, it may cause the “chain reaction”. For instance, as the

resource of one airport is not well evaluated, it may lead to the resource com-

petition between CM and loose PM. In other words, the loose PM could be

delayed to some other airports (details see Algo. 1). Consequently, more air-

craft will have to wait for resources. It will then cause the delay of flights.

Hence, the “chain reaction” will happen between Flight and Plane. So, a de-

lay of an aircraft may cause multiple delays of other aircraft. The real-time

condition varies from time to time. The planned scheduling could be useless.

As a result, quick response to real-time condition becomes vitally important to

improve maintenance efficiency.

As above, our simulation system is a successful proof of demonstrating the

design of the autonomous system for aircraft maintenance.

6. Conclusion and research perspectives

Aiming at improving the operational support for aircraft maintenance, an

integrated approach that fuses aircraft’s condition, strategy, planning and cost

has been proposed. First of all, an autonomous system analysis framework is

provided to illustrate the approach from the global point of view. Then, a

high-level architecture for the autonomous system is developed to put forward

the fundamental components and the relationship between them. The black

box approach is employed to derive the underlying inputs and outputs of each

component with respect to the component functionality. The UML use case

diagram is used to illustrate the system module interaction. This helps deal with

the complexity of the system design and enables smoother code development.

In order to illustrate the feasibility of the design of the autonomous system,

a solid simulation system demonstrator has been accomplished by using Any-

logic. The autonomous system is implemented in the way of the agent-based
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simulation system where components are instantiated as agents. The strategies,

the planning and scheduling, the cost analysis and service level analysis have

all been achieved in the simulation system. The impacts of strategies on main-

tenance cost and service level have been investigated from experiment results.

Even though experiments have been performed to validate the functionality

of the proposed algorithms the rationality of design for the autonomous system,

the feasibility of interactions between agents and behaviours of the simulation

system can hardly be assured in the long run. Therefore, the study of the formal

verification on the logics of the simulation system will be our future work.

Appendix A. Maintenance-related data

Table A.7: The distribution of labors, where P1 = (00:00 - 05:00), P2 = (05:00 - 07:00), P3
= (07:00 - 14:00), P4 = (14:00 - 17:00), P5 = (17:00 - 20:00) and P6 = (20:00 - 00:00)

airport P1 P2 P3 P4 P5 P6
Paris 8 1 8 8 10 5
Lyon 2 1 3 3 3 2
London 2 1 3 3 3 2
Berlin 2 1 3 3 3 2
Madrid 2 1 3 3 3 2
Amsterdam 2 1 4 4 3 1
Boston 2 1 5 5 5 2
Marseille 1 1 3 3 3 2
Barcelona 1 1 3 3 3 1
Prague 1 1 3 3 3 1
Manchester 1 1 3 3 3 2
Munich 2 1 3 3 3 1
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equipment type changeover

time
(hour)

repair
time
(hour)

repairing
time
(minute)

PM fre-
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(week)

price (dol-
lar)
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nose cone 69000 70 80 10 90000

37



Blanchard, Benjamin S. 2004. System engineering management. John Wiley &
Sons.

Chang, Qing, Jun Ni, Pulak Bandyopadhyay, Stephan Biller, and Guoxian Xiao.
2007. “Maintenance staffing management.” Journal of Intelligent Manufactur-
ing 18 (3): 351–360.
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Monostori, László, József Váncza, and Soundar RT Kumara. 2006. “Agent-based
systems for manufacturing.” CIRP Annals-Manufacturing Technology 55 (2):
697–720.

Moyaux, Thierry, Brahim Chaib-Draa, and Sophie D’Amours. 2006. “Supply
chain management and multiagent systems: an overview.” In Multiagent based
supply chain management, 1–27. Springer.

Pohl, Thomas. 2019. “Cost per hour of downtime per aircraft is 10,000
USD more.” Accessed 2019-01-10. https://blogs.sap.com/2013/05/02/
cost-per-hour-of-downtime-per-aircraft-is-10000-usd-more.

Royce, Winston W. 1987. “Managing the development of large software systems:
concepts and techniques.” In Proceedings of the 9th international conference
on Software Engineering, 328–338. IEEE Computer Society Press.

Sahay, Anant. 2012. Leveraging information technology for optimal aircraft
maintenance, repair and overhaul (MRO). Elsevier.

Sahnoun, M’hammed, David Baudry, Navonil Mustafee, Anne Louis,
Philip Andi Smart, Phil Godsiff, and Belahcene Mazari. 2015. “Modelling
and simulation of operation and maintenance strategy for offshore wind farms
based on multi-agent system.” Journal of Intelligent Manufacturing 1–17.

Sama., Premaratne, and Senevi Kiridena. 2012. “Aircraft maintenance planning
and scheduling: an integrated framework.” Journal of Quality in Maintenance
Engineering 18 (4): 432–453.

Siebers, Peer-Olaf, Charles M Macal, Jeremy Garnett, David Buxton, and
Michael Pidd. 2010. “Discrete-event simulation is dead, long live agent-based
simulation!” Journal of Simulation 4 (3): 204–210.

Skersys, Tomas, Paulius Danenas, and Rimantas Butleris. 2018. “Extracting
SBVR business vocabularies and business rules from UML use case diagrams.”
Journal of Systems and Software 141: 111–130.

TSBC. 2019. “Statistical Summary – Aviation Occurrences 2016.” Accessed
2019-01-10. http://www.tsb.gc.ca/eng/stats/aviation/2016/ssea-ssao-
2016.asp.

Waltz, E, and DL Hall. 2001. “Requirements derivation for data fusion systems.”
Handbook of Multisensor Data Fusion 15.

39



Ward, Marie, Nick McDonald, Rabea Morrison, Des Gaynor, and Tony Nugent.
2010. “A performance improvement case study in aircraft maintenance and
its implications for hazard identification.” Ergonomics 53 (2): 247–267.

Yang, Zimin Max, Dragan Djurdjanovic, and Jun Ni. 2008. “Maintenance
scheduling in manufacturing systems based on predicted machine degrada-
tion.” Journal of intelligent manufacturing 19 (1): 87–98.

Zhang, Zhinan, Gang Liu, Zhichao Jiang, and Yong Chen. 2015. “A cloud-based
framework for lean maintenance, repair, and overhaul of complex equipment.”
Journal of Manufacturing Science and Engineering 137 (4): 040908.

40


