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Abstract

We introduce the well structured problem as the question of whether a model (here a counter
machine) is well structured (here for the usual ordering on integers). We show that it is undecidable
for most of the (Presburger-defined) counter machines except for Affine VASS of dimension one.
However, the strong well structured problem is decidable for all Presburger counter machines. While
Affine VASS of dimension one are not, in general, well structured, we give an algorithm that
computes the set of predecessors of a configuration; as a consequence this allows to decide the well
structured problem for 1-Affine VASS.
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1 Introduction

Context: Well Structured Transition Systems (WSTS) [9, 8] are a well-known model to

solve termination, boundedness, control-state reachability and coverability problems. It is

well known that Petri nets and Vector Addition Systems with States (VASS) are WSTS and

that Minsky machines are not WSTS. But the characterization of counter machines which

are well structured (resp. with strong monotony) is surprisingly unknown. Moreover, given a

counter machine, can we decide whether it is well structured (resp. with strong monotony)?

These questions are relevant since a positive answer could allow to verify particular instances

of undecidable models like Minsky machines and counter machines. In this paper, we con-

sider Presburger counter machines (PCM) where each transition between two control-states

is labelled by a Presburger formula which describes how each counter is modified by the fir-

ing of the transition. The PCM model includes Petri nets, Minsky machines and most of the

counter machine models studied in the literature, for example counter machines where trans-

itions between control-states are given by affine functions having Presburger domains [3, 11].

Affine VASS: In an Affine VASS (AVASS), transitions between control-states are labelled

by affine functions whose matrices have elements in Z (and not in N as usual). AVASS

extends VASS (where transitions are translations) and positive affine VASS (introduced as

self-modified nets in [22] and studied as affine well structured nets in [13]. [4] extends the

Rackoff technique to AVASS where all matrices are larger than the identity matrix: for this
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2 The Well Structured Problem for Presburger Counter Machines

subclass, coverability and boundedness are shown in EXPSPACE. The variation of VASS

which may go below 0, called Z-VASS, is studied in [15] and for their extension, Z-Affine

VASS, reachability is shown NP-complete for VASS with resets, PSPACE-complete for VASS

with transfers and undecidable in general [2, 1]; let us remark that all Z-Affine VASS have

positive matrices.

Moreover AVASS allow the simulation of the zero-test so they are at least as expressive as

Minsky machines. But for dimension one, AVASS are more expressive than Minsky machines:

in fact, Post∗ is computable as a Presburger formula for 1-counter Minsky machines but

this is not the case for 1-AVASS which can generate the set of all the powers of 2 (this set

is not the solution of any Presburger formula).

The computation of the set Pre∗ of all predecessors of a configuration is effective for

2-VASS (extended with one zero-test and resets) [12] as a Presburger formula and for push-

down automata [5] as a regular language. But the computation of Pre∗ fails for 3-VASS

and for Pushdown VAS since Pre∗ is neither semilinear nor regular [19].

Our contributions:

We introduce two new problems related to well structured systems and Presburger

counter machines. The so-called well structured problem: (1) given a PCM, is it a WSTS?

and the strong well structured problem: (2) given a PCM, is it a WSTS with strong mono-

tony?

We prove that the well structured problem is undecidable for PCM even if restricted

to dimension one (1-PCM) with just Presburger functions (i.e. piecewise affine functions);

undecidability is also verified for Affine VASS in dimension two (2-Affine VASS). The un-

decidability proofs use the fact that Minsky machines can be simulated by both 1-PCM

and 2-Affine VASS. However, we prove the decidability of the well structured problem for

1-Affine VASS (which subsumes 1-Minsky machines). Since the strong monotony can be

expressed as a Presburger formula, the strong well structured problem is decidable for all

PCMs. These results are summarised below:

Well Structured Problem Strong Well Structured Problem

PCM U D

Functional 1-PCM U [Theorem 14] D

2-AVASS U D

2-Minsky machines U [Theorem 15] D

1-AVASS D [Theorem 26] D

We give an algorithm that computes Pre∗ of a 1-AVASS and this extends a similar

known result for 1-Minsky machines and 1-VASS (and for pushdown automata [5]). The

computation of Pre∗ allows us to give a simple proof that reachability and coverability are

decidable for 1-AVASS (in fact reachability is known to be PSPACE-complete for polynomial

one-register machines [10] which contains 1-AVASS). Moreover, the computation of Pre∗ al-

lows to decide the well structured problem for 1-AVASS. These results are summarised below:

Reachability Coverability

1-PCM (functional ) U U [Corollary 19]

1-AVASS D [Corollary 24] D

d-totally positive AVASS D [Theorem 29] D

d-positive AVASS (d ≥ 2) U [Theorem 28] D [WSTS]

2-AVASS U U [Corollary 18]
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Outline: We introduce in Section 2 two models, well structured transition systems (WSTS)

and Presburger counter machines (PCM); we show that the property for an ordering to be

well is undecidable. Section 3 analyses the decidability of the well structured problems for

many classes of PCM and Affine VASS. Section 4 studies the decidability of reachability and

coverability for the classes studied in Section 3.

2 Counter machines and WSTS

A relation ≤ on a set E is a quasi ordering if it is reflexive and transitive; it is an ordering

if moreover ≤ is antisymetric. A quasi ordering ≤ on E is a well quasi ordering (wqo) if

for all infinite sequences of elements of E, (ei)i∈N, there exists two indices i < j such that

ei ≤ ej. For an ordered set (E,≤) and a subset X ⊆ E, the upward closure of X denoted

by ↑X is defined as follows: ↑X = {x | ∃y ∈ X such that y ≤ x}. X is said to be upward

closed if X = ↑X .

2.1 Arithmetic counter machines

A d-dim arithmetic counter machine (short, d-arithmetic counter machine or an arithmetic

counter machine) is a tuple M = (Q,Φ,→) where Q is a finite set of control-states, Φ

is a set of logical formulae with 2d free variables x1, ..., xd, x
′
1, ..., x

′
d and →⊆ Q × Φ × Q

is the transition relation between control-states. We can also without loss of generality

assume that → covers Φ, i.e. Φ does not have unnecessary formulae. A configuration of

M refers to an element of Q × Nd. The operational semantics of a d-arithmetic counter

machine M is a transition system SM = (Q × Nd,→) where →⊆ (Q × Nd) × (Q × Nd) is

the transition relation between configurations. For a transition (q, φ, q′) in M , we have a

transition (q;x1, ..., xd) → (q′;x′
1, ..., x

′
d) in SM iff φ(x1, ..., xd, x

′
1, ..., x

′
d) holds. Note that

we are slightly abusing notation by using the same → for both M and SM . We may omit Φ

from the definition of a counter machine if it is clear from context.

A d-dim arithmetic counter machine M with initial configuration c0 is defined by the

tuple M = (Q,Φ,→, c0) where (Q,Φ,→) is a d-arithmetic counter machine and c0 ∈ Q×Nd

is the initial configuration. An arithmetic counter machine is effective if the transition

relation is decidable (there is a decidable procedure to determine if there is a transition

x → y between any two configurations x, y) and this is the case when it is given by an

algorithm, a recursive relation, or decidable first order formulae (for instance Presburger

formulae). An arithmetic counter machine is said to be functional if each formula in Φ that

labels a transition in M defines a partial function.

Most usual counter machines can be expressed with Presburger formulae. It is well known

that Presburger arithmetic with congruence relations without quantifiers is equivalent in

expressive power to standard Presburger arithmetic [14].

◮ Definition 1. A Presburger counter machine (PCM) is an arithmetic counter machine

M = (Q,Φ,→) such that Φ is a set of Presburger formulae with congruence relations without

quantifiers.

◮ Proposition 2. [6] (proof in Appendix) The property for a d-dim PCM to be functional is

decidable in NP.

Minsky machines with d counters are d-PCM M = (Q,Φ,→) where Φ consists of either

translations with upwards closed guards, or formulae of the form ∧d
i=1(xi = x′

i) ∧ xk = 0 for

varying k (zero-tests). Vector Addition Systems with States (VASS) are Minsky machines
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q1 q2

x′ = x− 13

x′ = 19 − x

x′ = x− 3

x′ = x

Figure 1 The counter machine M1

without zero-tests. An Affine VASS with d counters (d-AVASS) is a d-PCM where each

transition is labelled by a formula equivalent to an affine function of the form f(x) = Ax+ b

where A ∈ Md(Z) is a d × d matrix over Z and b ∈ Zd. The domain of such a function

would be the (Presburger) set of all x ∈ Nd such that Ax+ b ∈ Nd. For convenience, we will

denote d-AVASS transitions by a pair (A, b) ∈ Md(Z)×Zd. Note that AVASS is an extension

of VASS where transitions are not labelled by vectors but by affine functions (Ai, bi). Let

us define positive and totally-positive AVASS. A positive AVASS S is an AVASS such that

every matrix Ai of S is positive. This model has been studied for instance in [13]. A totally-

positive AVASS S is a positive AVASS such that every vector bi of S is positive. For totally

positive AVASS, an instance of the boundedness problem has been shown decidable in [13].

Note that we say something is positive if it is greater than or equal to 0, not strictly greater

than 0.

◮ Example 3. The machine M1 in Figure 1 is a 1-AVASS but it is not a 1-VASS because

there is a negative transition from q1 to q1.

◮ Proposition 4. [6] Checking whether a given PCM is a VASS, AVASS, positive AVASS

or a totally positive AVASS is decidable.

2.2 Well structured transition systems

A transition system is a tuple S = (X,→) where X is a (potentially infinite) set of config-

urations and →⊆ X × X is the transition relation between configurations. We denote

by
∗
−→ the reflexive and transitive closure of −→. For a subset S ⊆ X , we denote by

Pre(S) := {t | t → s for some s ∈ S}, and Pre∗(S) := {t | t
∗
−→ s for some s ∈ S}.

Similarly for Post(S) and Post∗(S).

An ordered transition system S = (X,→,≤) is a transition system (X,→) with a quasi-

ordering ≤ on X . Given two configurations x, y ∈ X , x is said to cover y if there exists

a configuration y′ ≥ y such that x
∗
−→ y′. An ordered transition system S = (X,→,≤) is

monotone, if for all configurations s, t, s′ ∈ X such that s → t, s′ ≥ s implies that s′ covers

t. S is strongly monotone if for all configurations s, t, s′ ∈ X such that s → t, s′ ≥ s implies

that there exists t′ ≥ t such that s′ → t′.

◮ Definition 5. [8] A well structured transition system (WSTS) is an ordered transition

system S = (X,→,≤) such that (X,≤) is a wqo and S is monotone.

The coverability problem is to determine, given two configurations s and t, whether there

exists a configuration t′ such that s
∗
−→ t′ ≥ t (s covers t). This problem is one often studied

alongside well-structuredness.

Let us consider the usual wqo ≤ on Q × Nd associated with a d-counter machine M =

(Q,→): (q1;x1, x2, ..., xd) ≤ (q2; y1, ..., yd) ⇐⇒ (q1 = q2) ∧ (∧d
i=1xi ≤ yi).
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We say that an arithmetic counter machine M = (Q,Φ,→) is well structured (or is a

WSTS) iff its associated transition system SM is a WSTS under the usual ordering. Since the

usual ordering on (Q×Nd,≤) is a wqo, let us remark that the associated ordered transition

system SM = (Q× Nd,→,≤) is a WSTS iff SM is monotone.

Given a counter machine M = (Q,→), the control-state reachability problem is that given

a configuration (q;n1, ..., nd), and a control-state q′ whether there exist values of counters

(m1, ...,md) such that (q;n1, ..., nd)
∗
−→ (q′;m1, ...,md). In this case, we often say that q′ is

reachable from (q;n1, ..., nd).

We introduce two new problems related to WSTS and Presburger counter machines.

The well structured problem: given a PCM, is it a WSTS?

The strong well structured problem: given a PCM, is it a WSTS with strong monotony?

◮ Example 6. The machineM1 (Figure 1) is not strongly monotone since we have: (q1, 0)
x′

=19−x
−−−−−−→

(q1, 19). However, we see that Post∗(q1, 10) = {(q1, 9), (q1, 10)}. Therefore we can deduce

that (q1, 10) cannot cover (q1, 19). Hence M1 is not well structured. We give, in Section 4,

an algorithm for deciding whether a 1-AVASS is well structured.

It is shown in [8] that almost every transition system can be turned into a WSTS for

the termination ordering which is not, in general, decidable. So the problem is not only to

decide whether a system is a WSTS in general; we have to choose a decidable ordering. We

show that deciding whether arbitrary (non-effective) transition systems are well-structured

for the usual (decidable) ordering on natural numbers is undecidable.

◮ Proposition 7. (proof in Appendix) The well structured problem for 1-arithmetic counter

machines is undecidable.

We now show that restricting to effective transition systems does not allow us to decide

the property of being a WSTS.

◮ Corollary 8. The well structured problem (for the usual ordering on N) for effective trans-

ition systems whose set of configurations is included in N is undecidable.

Proof. There exists a reduction from the Halting Problem as follows:

Given a Turing machine M , we define a transition system SM = (N,→M ) as follows:

If (m = 0) ∨ (M does not halt in m steps), then, for all n, there is a transition m →M n.

Hence this transition relation →M is decidable. Now, if M does not halt, then there is a

transition m →M n for all m,n ∈ N. This satisfies monotony, hence in this case, SM is a

WSTS. However, if M halts in exactly m steps, then there is no transition from m+ 1 but

there is, in any case, a transition from 0 to n for all n. Hence in this case, SM is not a

WSTS. Therefore, SM is a WSTS iff T does not halt. ◭

2.3 Testing whether an ordering is well

In the previous results, the usual well ordering on natural numbers is not necessarily the

unique decidable ordering when considering the well structured problem for counter machines.

Let ≤ be a decidable quasi ordering relation on Nd. If we are interested in whether a counter

machine with this ordering is WSTS, it raises the natural question of whether we can decide if

≤ is a wqo. Unfortunately, but unsurprisingly, we first show that this property is undecidable

in dimension one (d = 1).

◮ Proposition 9. (proof in Appendix) The property for a decidable ordering on N to be a

well ordering is undecidable.



6 The Well Structured Problem for Presburger Counter Machines

Let us study the case of Presburger-definable orderings in N. Among many equivalent

characterizations of wqo, we know that a quasi ordering is well iff it satisfies well-foundedness

and the finite anti-chain property. Both of these properties can be expressed using monadic

second order variables. But, it is shown in [17] that Presburger Arithmetic with a single

monadic variable becomes undecidable. Hence, this cannot directly be used to check if a

Presburger-definable ordering is a wqo. However, we still have the following result:

◮ Proposition 10. (proof in Appendix) The property for a Presburger relation on N to be a

well quasi ordering is decidable.

3 The well structured problem for PCM

In the sequel, whenever we talk about PCM being WSTS, we will consider the usual ordering

onQ×Nd defined in subsection 2.2. We introduce a general technique to prove undecidability

of checking whether a counter machine of some class is a WSTS. Let S0 be the class of

machines we are interested in. We will show reduction from reachability in Minsky machines.

◮ Lemma 11. Suppose we have a procedure which takes a 2 counter Minsky machine with

initial state M = (Q,→, q0) and a control-state q1 as input and generates a machine N of

class S0 which satisfies the following two requirements:

All control-states in M are reachable implies N is a WSTS. (1)

N is a WSTS implies q1 is reachable in M from (q0; 0, 0). (2)

Then, the well structured problem for S0 is undecidable.

Proof. Suppose that the well structured problem for S0 is decidable. We will use the

above procedure to get an algorithm for Minsky machine reachability. Fix (M, q1), where

M = (Q,→M , q0). We want to check if q1 is reachable from (q0; 0, 0).

Let |Q| = n. Consider all 2n−2 subsets Q′ ⊆ Q satisfying that {q0, q1} ⊆ Q′. For each

such Q′, let →Q′ denote the restriction of →M to the set Q′ × Q′. Hence, we can associate

a Minsky machine M ′ = (Q′,→Q′ , q0) to each such subset Q′. We call M ′ a sub-machine of

M corresponding to Q′.

Now, for each sub-machine M ′, we consider the machine N ′ of class S0, generated by

the given procedure from (M ′, q1). If there exists M ′ such that N ′ is a WSTS, then we have

that q1 is reachable in M ′ (by condition (2)), hence in M .

On the other hand, if q1 was reachable in M , then let Qreach ⊆ Q be the set of all

control-states of M which are reachable from (q0; 0, 0). Let its corresponding sub-machine

be M ′. Since all control-states of M ′ are reachable (by choice of Qreach), therefore the

corresponding N ′ will be a WSTS (by condition (1)).

Hence, q1 is reachable in M from (q0; 0, 0) iff there exists a subset Q′ ⊆ Q satisfying that

{q0, q1} ⊆ Q′ such that the corresponding sub-machine M ′ is a WSTS. Since there are only

2n−2 such subsets, we can check all of them to decide whether q1 is reachable in M .

Hence, we have given an algorithm to check reachability in Minsky machine. Therefore,

the well structured problem for S0 is undecidable. ◭

We will use Lemma 11 to prove that the well structured problem for functional 1-dim

PCMs is undecidable. To apply Lemma 11, we need to give an algorithm which takes a

Minsky machine M = (Q,→M , q0) and a control-state q1, and generates a functional 1-dim

PCM N1 satisfying conditions (1) and (2).
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Construction of a functional 1-dim PCM N1:

Let (M, q0) be given. The procedure to generate a 1-dim PCM N1 is as follows:

Let vp(n) denote the largest power of p dividing n. For M = (Q,→M , q0), we define

the 1-PCM N1 = (Q,→N , (q0, 1)) with the same set Q of control-states. We will represent

the values of the two counters (m,n) by the one-counter values 2m3nc for any c such that

v2(c) = v3(c) = 0. Conversely, a configuration (q, n) of N1 will correspond to (q; v2(n), v3(n))

of M . Note that, we are allowing multiplication by constants c in N1 as long as v2(n) and

v3(n) remain unchanged.

Increment/decrement of counters corresponds to multiplication/division by 2 and 3 which

is Presburger expressible. Similarly, zero-test corresponds to checking divisibility by 2 and

3 which is again Presburger-expressible. So first, for each transition in →M , we add the

corresponding transition to →N .

Now, to get the suitable properties of conditions (1) and (2), we will add two more types

of transitions to →N . For each control-state q, we add a transition (q, x′
1 = 6x1 + 1, q0)

to →N . We shall call it a "reset-transition" because v2(6x1 + 1) = v3(6x1 + 1) = 0, so

this transition corresponds to a counter-reset in M from anywhere regardless of our present

configuration. Note that such a transition would not change the reachability set in M . This

"reset-transition" is crucial in forcing well-structuredness in N . Also, we add a transition

(q0, (x1 = 0 ∧ x′
1 = 0), q1) to →N to ensure condition (2). Since the configuration (q0, 0)

cannot be reached from the initial configuration (q0, 1) during any run of N1, this will also

not affect the reachability set of N1. Note that, all of our transitions are functional, hence

N1 is a functional 1-dim PCM.

Now, we show that the construction of N1 satisfies conditions (1) and (2).

◮ Lemma 12. The functional 1-dim PCM N1 satisfies condition (1).

Proof. Suppose that all control-states of M are reachable from (q0; 0, 0). Then we claim

that N1 will be a WSTS. Suppose there is a transition (q, n) →N (q′,m) and (q, n′) is a

configuration with (q, n′) ≥ (q, n). Hence we want to show existence of some path (q, n′)
∗
−→N

(q′,m′) ≥ (q′,m).

Case 1: The transition (q, n) →N (q′,m) is a "reset-transition". Hence q′ = q0 and m =

6n+ 1. In this case, note that since n′ ≥ n, the transition (q, n′) →N (q0, 6n
′ + 1) ≥ (q0,m)

satisfies the requirement.

Case 2: The transition (q, n) →N (q′,m) is not a "reset-transition". In this case, m ≤ 3n

because the above transition corresponds, in M to an increment/decrement in c1 or c2 or

a zero-test. In each case, we can check that m ≤ 3n. Let there be a path (q0; 0, 0)
∗
−→M

(q′;n1, n2) in M for some n1, n2. Such a path exists because all control-states in M are

reachable. Hence, we take the "reset-transition" (q, n′) →N (q0, 6n
′ + 1) and follow the

corresponding path (q0, 6n
′ + 1)

∗
−→N (q′, 2n13n2(6n′ + 1)) ≥ (q′, 3n) ≥ (q′,m). Hence we

have again shown monotony to prove that N1 is a WSTS.

Hence we have shown that if all control-states of M are reachable, then N1 is monotone.

◭

◮ Lemma 13. The functional 1-dim PCM N1 satisfies condition (2).

Proof. Since there is a transition (q0, 0) →N (q1, 0), we deduce that if N1 is a WSTS, then

(q0, 1)
∗
−→N (q1, n) for some n by monotony because (q0, 0) ≤ (q0, 1). Also note that since

N1 simulates M , hence reachability of q1 in N1 implies that q1 is reachable from (q0; 0, 0) in

M . ◭
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Since we have provided a construction of functional 1-dim PCM N1 satisfying conditions

(1) and (2), from Lemma 11 we have that:

◮ Theorem 14. The well structured problem for functional 1-dim PCMs is undecidable.

Similarly, we can use Lemma 11 to show this result for 2 counter Minsky machines. This

construction is done in the Appendix due to lack of space.

◮ Theorem 15. (proof in Appendix) The well structured problem for 2-dim Minsky machines

is undecidable.

Now, we make the observation that we can perform zero-tests using affine functions.

The basic idea is that a transition x′ = −x is only satisfied by a counter whose value

is 0. Increments/decrements can already be implemented in 2-AVASS since translations

are affine functions. A zero test on the first counter can be done by having a transition

labelled by

([

−1 0

0 1

]

,

[

0

0

])

, and similarly for second counter. Since we can implement

both increment/decrements and zero-tests with 2-AVASS, we can simulate 2-counter Minsky

machines with 2-AVASS. Note that we can extend this result to d-AVASS simulating d-

counter Minsky machines.

As a direct consequence of this and Theorem 15, we have that:

◮ Corollary 16. The well structured problem for 2-AVASS is undecidable.

However, if we consider strong monotony instead of monotony, the above undecidability

results can be turned into a decidability result. Strong monotony can be expressed in

Presburger arithmetic as follows:

∧

φ∈Φ

(∀x1...∀xd∀x′
1...∀x

′
d∀y1...∀yd((

d
∧

i=1

xi ≤ yi) ∧ φ(x1, ..., xd, x
′
1, ..., x

′
d)

=⇒ (∃y′
1...∃y

′
d(

d
∧

i=1

x′
i ≤ y′

i) ∧ φ(y1, ..., yd, y
′
1, ..., y

′
d))))

Since Presburger arithmetic is decidable, the strong well structured problem for d-PCM

is decidable.

◮ Remark 17. The validity of the formula of strong monotony can also be decided for

extended PCM defined in decidable extensions of Presburger Arithmetic.

4 Decidability results for 1-AVASS

Now, let us look at some reachability and coverability results for the various models of

AVASS. First, we can simulate 2-counter Minsky machines with 2-AVASS. Since coverabil-

ity and reachability are undecidable for 2-counter Minsky machines, we directly have the

following result:

◮ Corollary 18. Control-state reachability, hence coverability is undecidable for 2-AVASS.

Similarly, we showed in Construction of functional 1-PCM N1 that we can also simulate

2-counter Minsky machines with functional 1-PCM. Hence, we also have the following:

◮ Corollary 19. Control-state reachability, hence coverability is undecidable for functional

1-PCM.
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Now, let us examine the case of 1-AVASS. For 1-AVASS, reachability and consequently

coverability is decidable from work done in [10]. We show that checking whether it is a

WSTS is also decidable. Moreover, we give a simpler proof of decidability of reachability

and coverability.

Given M = (Q,→) a 1-AVASS and a final configuration (qf , nf) that we want to check

reachability for, we present Algorithm 1 which computes Pre∗(qf , nf ) as a Presburger for-

mula. A transition (q, x′ = ax + b, q′) is positive if a ≥ 0. Let a cycle/path in M be called

positive if all transitions are positive. A cycle (q1, ..., qk, q1) is called a simple cycle if q1, ..., qk

are all pairwise distinct.

Let us denote by Preq the set Pre∗(qf , nf ) ∩ ({q} × N). For a transition t = (q, x′ =

ax + b, q′) and a given subset of X ⊆ N, let Pret(X) denote {n : an + b ∈ X}. For a

simple cycle c rooted at q with an effective guard and transition, extend the above notation

Preci

(X) for i repetitions of the cycle. Then, let Prec∗

(X) := ∪i∈NPre
ci

(X). We will

conveniently replace X by a formula which denotes a subset of N.

Algorithm 1 Algorithm for computing Pre∗(qf , nf ) in 1-AVASS

1: procedure computePre*

2: for all q ∈ Q do

3: φq ≡ ⊥

4: φqf
≡ (n = nf)

5: for all q ∈ Q do

6: for all simple cycles c rooted at q do

7: c.transition = simplifyTransition(c)

8: c.guard = computeGuard(c)

9: notFinished = True

10: while notFinished do

11: notFinished = False

12: for all q ∈ Q do

13: φ′ = φq

14: for all transitions t = (q, x′ = ax+ b, q′) ∈→ do

15: ExploreTransition(t)

16: for all simple cycles c containing q do

17: ExploreCycle(c)

18: if φ′ 6= φq then ⊲ Check equality as Presburger formulae

19: notFinished = True

The algorithm will keep a variable φq for each control-state q ∈ Q which will store a

Presburger formula (with one free variable n) denoting the currently discovered subset of

Preq. Let this be denoted by JφqK, i.e. JφqK := {n : φq(n)}. For uniformity, we can assume

that φq is a disjunction of formulae of form range ∧ mod where range ≡ (r ≤ n ≤ s) (s

possibly ∞) and mod ≡ (n =dq
d).

We initially simplify each simple cycle into a meta-transition which is the composition of

all individual transitions in the cycle. We will also compute the guard of a cycle. Since each

positive transition has an upward closed guard and each negative transition has a downward

closed guard, the guard of a cycle will be of the form r ≤ n ≤ s for some r, s ∈ N (s possibly

∞). Hence, we will only consider a cycle in terms of its guard and its meta-transition.

We use two main procedures in computePre*:
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1. ExploreTransition: Given a transition t = (q, x′ = ax+ b, q′), it computes Pret(φq′ )

and appends it to φq.

2. ExploreCycle: Given a simple cycle c rooted at q, it computes Prec∗

(φq) and appends

it to φq.

◮ Lemma 20. (proof in Appendix) For any transition t, and any simple cycle c, given φq,

Pret(φq) and Prec∗

(φq) are both Presburger expressible and effectively computable.

With this lemma the algorithm is well-defined. Now let us prove the termination and

the correctness of the algorithm.

◮ Proposition 21. Algorithm computePre* terminates.

Proof. For each q, we will show that Preq can be obtained in finitely many iterations of the

algorithm. Let q ∈ Q be arbitrary.

Case 1: Preq is finite:

Each value will be discovered in finitely many iterations, hence Preq will be obtained in

finitely many iterations.

Case 2: Preq is infinite:

Since we are talking about reaching (qf , nf), we note that the only transitions which can

decrease arbitrarily large values are transitions of the form x′ = b or x′ = x − a, a > 0.

Hence, since Preq has arbitrarily large values, and each run has to reach nf (i.e. has to be

decreased), we can see that there must either be a transition x′ = b, or a positive cycle with

meta-transition x′ = x− a, reachable from q through a positive path.

Case 2.i: There is a transition x′ = b:

In this case, there exists N such that for all n ≥ N , the same path suffices. In this case,

once the aforementioned path is discovered, {n : n ≥ N} becomes a subset of JφqK ⊆ Preq,

which leaves finitely many values in Preq \ JφqK, which can again be discovered by finitely

many additional runs.

Case 2.ii: There are positive cycles with meta-transition x′ = x− a:

The idea is that we will cover Preq when we compute Prec∗

for such a cycle c. This is

because for such a cycle, all that matters is the value of the counter modulo a. Since there

are only finitely many distinct values modulo a, these will again be discovered in finitely

many runs. Hence, each cycle will be discovered in finitely many runs. Therefore since there

are finitely many simple cycles, the corresponding values of Preq will also be discovered in

finitely many runs.

Hence, for all q, in finitely many runs we will get Preq = JφqK. At such a point, the

algorithm has to stop, hence termination is guaranteed. ◭

◮ Theorem 22. (Correctness) Given a 1-AVASS M = (Q,→) and a configuration (q, n),

the algorithm computePre* computes Pre∗(q, n) as a Presburger formula.

Proof. We will show that Algorithm 1 upon termination will always have JφqK = Preq.

That JφqK ⊆ Preq should be clear. Suppose the algorithm terminates with JφqK ( Preq

for some q ∈ Q. For some value n ∈ Preq \ JφqK, consider a path which covers (q2, n2),

say the path is (q, n) → (p1, n1) → ... → (pm, nm) → (q2, n
′). In such a path, consider

the largest i, such that ni /∈ Jφpi
K. Now, in the last iteration of the algorithm, since

ni+1 ∈ Jφpi+1
K (by choice of i), hence, we will explore the edge to include ni ∈ Jφpi

K.

Hence, the algorithm would not have terminated. Contradiction. Hence, when the algorithm

terminates, JφqK = Preq. ◭
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◮ Example 23. Let us consider machine M1 in Figure 1. Suppose we want to compute

Pre∗(q1, 19). We begin with φq1
≡ (n = 19), φq2

≡ ⊥. If we apply ExploreTransition to

the transition (q2, (x
′ = x), q1), we will get φq2

≡ (n = 19). If we now apply ExploreCycle

to the cycle (q2, x
′ = x− 3, q2), we will get φq2

≡ (n ≥ 19 ∧n =3 1). Continuing like this, we

end up with φq1
≡ (n ∈ {0, 3, 6, 19}∨(n ≥ 13∧n =3 1)∨(n ≥ 32∧n =3 2)∨(n ≥ 45∧n =3 0))

and φq2
≡ (n ≥ 0 ∧ n =3 0) ∨ (n ≥ 19 ∧ n =3 1) ∨ (n ≥ 32 ∧ n =3 2). This is Pre∗(q1, 19).

◮ Corollary 24. (proof in Appendix) [10] Reachability (hence coverability and control-state

reachability) for 1-AVASS is decidable.

◮ Remark 25. Algorithm 1 also works if we extend the model of 1-AVASS with Presburger

guards at each transition. Hence, reachability, coverability and the well-structured problem

are all decidable for this model as well.

It could be useful to determine whether an 1-AVASS is a WSTS (with strict monotony)

because if it is the case, it will allow to decide other problems like the boundedness problem

that is not immediately a consequence of the computability of Pre∗(↑(q, n)). Since we

can compute Pre∗(q, n), we can also compute Pre∗(↑(q, n)) by the same technique as in

Corollary 24 (check Appendix). This can be used to determine whether a given 1-AVASS is

a WSTS as follows.

◮ Theorem 26. The well structured problem is decidable for 1-AVASS.

Proof. First we show that M is a WSTS, iff for all negative transitions (q1, (x
′ = ax+b), q2),

the set {q1}×N is a subset of Pre∗(↑(q2, b)). For any negative transition (q1, (x
′ = ax+b), q2),

we have (q1, 0) → (q2, b). If M is a WSTS, by monotony, for any n ≥ 0, there exists a path

(q1, n)
∗
−→ (q2, b

′) ≥ (q2, b) because (q1, n) ≥ (q1, 0). This implies that {q1} ×N is a subset of

Pre∗(↑(q2, b)).

In the other direction, let there be a transition (q1, n) → (q2, an+b) and (q1, n
′) ≥ (q1, n).

If the transition is positive, i.e. a ≥ 0, then we directly have the transition (q1, n
′) →

(q2, an
′+b) ≥ (q2, an+b). If the transition is negative, then we have that (q2, an+b) ≤ (q2, b).

Since (q1, n
′) ∈ Pre∗(↑(q2, b)) (by hypothesis, since it is a negative transition), hence we have

that (q1, n
′)

∗
−→ (q2, b

′) ≥ (q2, b) ≥ (q2, an + b). Hence, M is monotone. Therefore, M is a

WSTS iff for all negative transitions (q1, (x
′ = ax + b), q2), the set {q1} × N is a subset of

Pre∗(↑(q2, b)).

Now, since Pre∗(↑(q, n)) is computable, we can check that for each negative transition

(q1, (x
′ = ax + b), q2), the set {q1} × N is a subset of Pre∗(↑(q2, n)) to determine whether

M is a WSTS or not. ◭

◮ Example 27. Let us consider machine M1 in Figure 1 and its negative transition (q1, x
′ =

19 − x, q1). We observe that the set Pre∗(↑(q1, 19)) = {q1, q2} × {n : n ≥ 19} does not

contain {q1} × N, hence machine M1 is not a WSTS. However, in this example (Figure 1),

if we replace the transition (q1, (x
′ = x− 13), q2) by (q1, (x

′ = x+ 1), q2), we will get a new

machine M2 which is still not a 1-VASS, but it is a WSTS.

Let us focus our attention to positive AVASS now. We know that for positive 1-AVASS

reachability is decidable from Corollary 24. We show that reachability is undecidable for

positive 2-AVASS by reduction from Post’s Correspondence Problem (PCP) [16]. Our result

completes the view about decidability of reachability for VASS extensions in small dimen-

sions. As a matter of fact, reachability is undecidable for VASS with two resets in dimension

3 (to adapt the proof in [7]), hence for positive 3-AVASS but it is decidable for VASS with
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q0 q1 q2

(

~I,

[

−1

−1

])

(~I,~0)

(

~0,

[

1

1

])

([

2|a1| 0

0 2|b1|

]

,

[

(a1)2

(b1)2

])([

2|a2| 0

0 2|b2|

]

,

[

(a2)2

(b2)2

])

([

2|a3| 0

0 2|b3|

]

,

[

(a3)2

(b3)2

]) ([

2|ak| 0

0 2|bk|

]

,

[

(ak)2

(bk)2

])

...

Figure 2 Construction for undecidability of reachability for positive 2-AVASS by reduction from
PCP.

two resets in dimension 2 [12]. If we replace resets by affine functions, reachability becomes

undecidable in dimension two.

Reichert gives in [21] a reduction from the Post correspondence problem to reachability

in a subclass of 2-AVASS and we may remark that his proof is still valid for positive 2-

AVASS. Blondin, Haase and Mazowiecki made some similar observations [1] for subclasses

of 3 − Z-AVASS, with positive matrices. Our proof is essentially the same as [21].

◮ Theorem 28. Reachability is undecidable for positive 2-AVASS.

Proof. Suppose we are given an instance of PCP, i.e. we are given a1, ..., ak, b1, ..., bk ∈

{0, 1}∗ for some k ∈ N. We want to check if there exists some sequence of numbers n1, ..., nℓ ∈

{1, ..., k} such that an1
...anℓ

= bn1
...bnℓ

(concatenated as strings).

We will construct the positive 2-AVASS as demonstrated in Figure 2, where |ai| refers

to the length of the string, and (ai)2 refers to the number encoded by the string ai if read

in binary (most significant digit to the left). The idea is that we use the two counters to

store the value of (an1
...anℓ

)2 and (bn1
...bnℓ

)2 for any n1, ..., nℓ. But we first increment each

counter to keep track of leading zeroes. Now, the configuration (q2; 0, 0) is reachable from

(q0; 0, 0) in the positive 2-AVASS described in Figure 2 iff the given PCP has an affirmative

answer. Hence, checking reachability in positive d-AVASS is undecidable for d ≥ 2. ◭

Also, we note that positive-AVASS are well-structured with strong monotony. Hence cov-

erability is decidable [13]. If we look at totally-positive AVASS, we can see that coverability

is already decidable by the same argument. However, reachability is also decidable.

◮ Theorem 29. Reachability is decidable in totally-positive AVASS for any dimension.

Proof. Let M = (Q,→) be a totally-positive d-AVASS. Given (q0;n1, ..., nd), suppose we

want to check reachability of (qf ;m1, ...,md). Let N = max{m1, ...,md}. Let fN : N →

{1, ..., N, ω} be the function which is identity on {1, ..., N} and maps {N+1, ...} to ω. Extend

this function to the set Nd component-wise. Since M is totally-positive, we can restrict our

search space from Q × Nd to Q × {0, ..., N, ω}d by applying fN to each configuration and

using the following arithmetic rules: 0.ω = 0, and for all k ≥ 1, k.ω = ω and ω + k = ω.

We claim that if (qf ;m1, ...,md) is reachable, then it is reachable in this restricted search-

space. This follows from the fact that given any element (n1, ..., nd) of Nd, and a totally

positive transition t = (A, b), we will have that t(fN (n1, ..., nd)) = fN(t(n1, ..., nd)) (t acts

on fN(n1, ..., nd) to give an element in {0, ..., N, ω}d). This is because a totally positive

transition cannot decrease a value other than by multiplying it by 0, hence any value greater

than N will continue to be greater than N . Also note that, by choice of N , fN (m1, ...,md) =

(m1, ...,md).
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Coverability undecidable

Coverability decidable

Reachability decidable

Pre* computable

WSTS

Totally positive d-AVASS 1-AVASS

1-Minsky machines

VASS

Positive d-AVASS

2-Minsky machines

d-AVASS (d ≥ 2)

Figure 3 Showing reachability and coverability results for various AVASS models.

Once we have this, we can make an induction on the length of the path to see that if

(qf ;m1, ...,md) is reachable, it is reachable in the restricted search-space Q× {0, ..., N}d.

Since Q× {0, ..., N, ω}d is finite, this shows decidability of reachability. ◭

5 Conclusion and perspective

We introduced two variants of the well structured problem for PCM and we solve it for

many classes of PCMs. Moreover, we answer the decidability questions for reachability and

coverability for classes of PCMs and AVASSs (we summarise the results of Section 4 in

Figure 3).

Many open problems can be attacked like the complexity of reachability for 1-AVASS

(reachability is NP for 1-VASS and PSPACE for polynomial VASS), the size of Pre∗ of a

1-AVASS (and its relation with the theory of flattable VASS [18]), and the decidability of

the property for a Presburger relation on Nd to be a well-quasi ordering for d ≥ 2.

We also open the way to study the decidability of the well structured problems (for

various orderings) for many other models like pushdown counter machines, FIFO automata,

Petri nets extensions. For instance, we wish to solve the well structured problems for FIFO

automata. We know that lossy FIFO automata are well structured (for the subword ordering)

but what is the class of perfect FIFO automata which is well structured (for the prefix

ordering)?
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6 Appendix

6.1 Section 2

◮ Proposition 2. [6] The property for a d-dim PCM to be functional, is decidable in NP.

Proof. Let M = (Q,Φ,→) be a given d-dim PCM. Functionality can be expressed in Pres-

burger arithmetic as follows:

∧

φ∈Φ

(∀x1...∀xd∀x′
1...∀x

′
d∀x′′

1 ...∀x
′′
d

(φ(x1, ..., xd, x
′
1, ..., x

′
d) ∧ φ(x1, ..., xd, x

′′
1 , ..., x

′′
d) =⇒

d
∧

i=1

x′
i = x′′

i )

Hence, the validity of this formula can be decided, and so, functionality is decidable. ◭

◮ Proposition 7. The well structured problem for 1-arithmetic counter machines is unde-

cidable.

Proof. Since first order (FO) logic is undecidable, we can have a reduction from decidability

of FO to checking whether a given arithmetic counter machine is well-structured. Let φ

be a given FO formula with no free variables. Define the 1-arithmetic counter machine

M = ({q0}, {φ0},→), where φ0 = ((x1 = 0 ∧ y1 = 2) ∨ φ) and →= {(q0, φ0, q0)} and let

SM be its associated transition system. Hence, if φ is a tautology, then for all m,n ≥ 0,

the transition (q0,m) → (q0, n) exists in SM . Hence SM is a well-structured transition

system. However, if φ is false, then SM is not well-structured since there is a transition

(q0, 0) → (q0, 2), but there is no transition from (q0, 1) ≥ (q0, 0) which violates monotony.

Hence SM is a WSTS iff φ is a tautology. ◭

◮ Proposition 9. The property for a decidable ordering on N to be a well ordering is unde-

cidable.

Proof. We will have a reduction from Halting Problem to show undecidability of checking

whether a relation on N is a wqo.

Let M be a Turing machine and ≤M its associated decidable relation defined as follows.

For all i, j: we have i ≤M i and i ≤M i+ j iff M does not halt in i+ j steps and i+ j ≤M i

if M halts in at most i + j steps; hence N is totally ordered by the decidable ordering

≤M . If M does not halt, we have 1 ≤M 2 ≤M ... ≤M i ≤M i + 1 ≤M ... so (N,≤M ) is

a well ordering. If M halts in exactly n steps, then there is an infinite strictly decreasing

sequence n >M n + 1 >M n + 2 >M ..., hence (N,≤M ) is not a well ordering because it

is not well-founded. Therefore, checking whether an ordering ≤ encodes a well ordering is

undecidable. ◭

◮ Proposition 10. The property for a Presburger relation on N to be a well-quasi ordering

is decidable.

Proof. We can check if a Presburger formula encodes a quasi ordering since reflexivity

and transitivity are Presburger-expressible. Consider a Presburger formula φ with two free

variables x and y, encoding a relation on N. We can assume φ is a quasi ordering. We want

to determine if it is a wqo. We can do quantifier elimination to arrive at φ0, a quantifier-free

formula over the predicates {+,≤, <,=, >,≥,=n} where a =n b iff a = b mod n.
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We write φ0 in disjunctive normal form. Hence, φ0 will be written as a disjunction of

formulae ψi where each ψi can be written in the form (φ1 ∧φ2 ∧φ3 ∧φ4 ∧φ5 ∧φ6 ∧φ7 ∧φ8 ∧φ9)

where:

φ1 is a conjunction of formulae of form ax+ by ≤ n with a ≥ 1, b ≥ 1

φ2 is a conjunction of formulae of form ax+ by ≤ n with a ≥ 1, b ≤ 1

φ3 is a conjunction of formulae of form ax+ by ≥ n with a ≥ 1, b ≥ 1

φ4 is a conjunction of formulae of form ax+ by ≥ n with a ≥ 1, b ≤ 1

φ5 is a conjunction of formulae of form ax ≥ n with a ≥ 1

φ6 is a conjunction of formulae of form ax ≤ n with a ≥ 1

φ7 is a conjunction of formulae of form by ≥ n with b ≥ 1

φ8 is a conjunction of formulae of form by ≤ n with b ≥ 1

φ9 is a conjunction of formulae of the form ax+ by =n p with a, b ≥ 0.

Let ψ0 be one conjunctive clause in the DNF for φ0. Hence ψ0 = ψ1 ∧ψ2 ∧ψ3 ∧ψ4 ∧ψ5 ∧

ψ6 ∧ ψ7 ∧ ψ8 ∧ ψ9 where each ψi conforms to above specifications. We show that we only

need to be concerned with ψ9. This is because, suppose N = (n1, n2, n3, ...) is a sequence for

which we need to produce an ascending pair to check wqo of φ. For each ni, there are only

finitely many nj , j > i such that ψ1(ni, nj) is satisfied. In this case, we can remove those

finitely many nj. We do this for all ni to get a sequence N ′ = (n′
1, n

′
2, n

′
3, ...) thus rendering

ψ1, hence ψ0 unsatisfiable by x, y ∈ N ′. Clearly, if N ′ has an ascending pair, so does N .

Hence it is sufficient to check existence of ascending pair in N ′. Hence, if ψ1 is non-empty,

then we can simply disregard ψ0 since it will never be satisfied in N ′.

We can make a similar argument for ψ4. For ψ2 and ψ3, we make the dual argument,

that for all ni, there are only finitely many nj , j > i such that ψ3(ni, nj) ∧ ψ4(ni, nj) is not

satisfied. Once we remove all such offending pairs to get N ′, we will get that every pair in

N ′ satisfies φ3 ∧ φ4, hence we can also remove them from consideration.

For ψ5 and ψ7 there are only finitely many ni such that ψ5(ni, n) or ψ7(n, ni) is satisfiable

for any n ∈ N. We can remove these ni to render ψ5 and ψ7 redundant. For ψ6 and ψ9 we

again make the dual argument, removing the finitely many ni which can satisfy ψ5 and ψ7.

Hence, we can disregard each ψi.

So, now, for the given formula φ and a sequence N , we will get a sequence N ′ subsequence

of original sequence, and a new formula φ′ comprising of disjunctions of formulae of form φ5,

where each formula ψi consists of conjunctions which look like (ai,jx+ bi,jy =ni,j
ci,j). We

now let N = lcm∀i∀j{ni,j}. We can transform φ′ to comprise entirely of formulae of form

ai,jx+bi,jy =N ci,j by multiplying each individual formula and breaking it into disjunctions.

Now, let ψi consist of conjunctions of (ai,jx + bi,jy =ni,j
ci,j). By checking for all

x ∈ {1, ..., N}, y ∈ {1, ..., N}, we can reduce this to disjunctions of ψi of the form (x =N

ai ∧ y =N bi).

Now, we look for n0 ∈ {1, ..., N} such that ¬φ′(n0, n0). In other words, ∄ disjunction

ψi ≡ (x =N n0 ∧ y =N n0). This can again be done finitely.

Now, the claim is that φ is a wqo iff no n0 exists. Clearly, if such an element exists, then

φ is not a wqo, because we can take an M such that N |M and M is large enough such that

we can ignore all subformulae of the form φ1, ..., φ4, and then (M + n0,M + N + n0, (M +

2N) + n0, ..., (M + aN) + n0, ...) has no ascending pair.

Similarly, if no such element exists, then given any sequence (n1, n2, ...), we can remove

small enough terms, and then look at each term mod N . Since no such element exists, we

will have some repetition in the infinite sequence mod N and that will give us an ascending

pair.
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M :
q q′

q′′

c1=0?

c
1 6=0?

=
⇒

N :
q q′

q′′

c4−−

c4=0?

c1−−, c3−−, c4++

c3=0? c1=0?

c
1 6=0?

c1++, c3++, c4−−

c1++, c3++, c4−−

c4=0?

c4=0?

c4=0?

c4=0?

(a) Showing equivalent circuits for zero-tests in M

q0

c1++, c2++, c3++
c1−−c2−−

c3−− c4−−

c1=c2=c3=c4=0?

c1++, c2++, c3++

(b) "Reset-circuit" for N2

Figure 4 Construction of a 4 counter Minsky machine N2

Thus we have demonstrated a decision procedure for whether a Presburger formula φ

encodes a wqo. ◭

6.2 Section 3

Well structured problem for 2-Minsky machines

We shall first show a construction for 4 counter Minsky machines satisfying conditions (1)

and (2).

Construction of a 4 counter Minsky machine N2:

Let (M, q1) be given. We will use 4 counters to simulate M in such a way that we can get

all the desirable properties. We will use a configuration (q; c1, c2, c3, c4) of N2 to correspond

to the configuration (q; c1 − c3, c2 − c3) of M .

The procedure to generate a 4-counter Minsky machine N2 is as follows:

Let M = (Q,→M , q0). We define N2 = (Q0,→N , (q0; 1, 1, 1, 0)) where Q0 is a superset

of Q as will be made clear. To get N2, we will make the following modifications to M :

Replace zero-tests in M with a circuit which checks if the respective counter equals c3.

We will use c4 and add required additional control-states to implement such a test as

illustrated in figure 4a.

Now, from each control-state q, including the new ones added in previous step, add

another circuit as illustrated in figure 4b which allows one to reach (q0;n, n, n, 0) for any

n ≥ 1. Note that q0 is the initial state of M . We shall again call it a "reset-circuit"

since (q0;n, n, n, 0) in N2 corresponds to (q0, 0, 0) in M . Hence this transition acts as a
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counter-reset. Note that adding such a transition to M will not affect its reachability

set. The "reset-circuit" will be used to ensure condition (1).

Finally, add a transition (q0; 0, 0, 0, 0) →N (q1; 0, 0, 0, 0). This is to ensure property (2).

Note that we can never reach (q0; 0, 0, 0, 0) from the initial configuration (q0; 1, 1, 1, 0) in

any run of N2 since the "reset-circuit" resets to (q0;n, n, n, 0) for n ≥ 1. Hence adding

this transition does not affect the reachability set of N2.

Now, we will show that the above construction indeed satisfies conditions (1) and (2).

◮ Lemma 30. The 4 counter Minsky machine N2 satisfies condition (1).

Proof. Suppose all control-states are reachable inM . Let there be a transition (q;n1, n2, n3, n4) →N

(q′;m1,m2,m3,m4) and a configuration (q;n′
1, n

′
2, n

′
3, n

′
4) ≥ (q;n1, n2, n3, n4). Since all

control-states in M are reachable, there exists a path (q0; 0, 0)
∗
−→M (q′;n1, n2). Choose N ≥

max{m1,m2,m3,m4}, and take the "reset-circuit" (q;n′
1, n

′
2, n

′
3, n

′
4)

∗
−→N (q0;N,N,N, 0).

Then follow the corresponding path to (q′;N + n1, N + n2, N, 0) ≥ (q′;m1,m2,m3,m4) to

satisfy monotony. Hence, if all control-states in M are reachable it implies that N2 is a

WSTS. ◭

◮ Lemma 31. The 4 counter Minsky machine N2 satisfies condition (2).

Proof. SinceN2 is a WSTS, (q0; 0, 0, 0, 0) →N (q1; 0, 0, 0, 0) =⇒ (q0; 1, 1, 1, 0)
∗
−→ (q1;n1, n2, n3, n4)

which implies q1 is reachable in M since N2 simulates M . ◭

◮ Theorem 15. The well structured problem for 2-dim Minsky machines is undecidable.

Proof. Since we have given the appropriate construction, by Lemma 11, we have that check-

ing whether 4-counter Minsky machines are WSTS is undecidable.

We will use the fact that a d-dim Minsky machine can be simulated by a 2-counter

Minsky machine [20]. Let N2 be the corresponding 4-counter Minsky machine for (M, q1)

which satisfies conditions (1) and (2). Let N ′
2 be the 2-counter Minsky machine which

simulates N2. Let N ′′
2 be the 2-counter machine obtained by adding another "reset" circuit

to N ′
2 which allows reachability to (q0; 0, 0) from any configuration. Then, N ′′

2 will satisfy

conditions (1) and (2) because N ′′
2 is simulating N2 which satisfies conditions (1), (2) and

we are allowing reset to initial configuration in N ′′
2 . Hence, by Lemma 11 again we have

that the well structured problem for 2-dim Minsky machines is undecidable. ◭

6.3 Section 4

◮ Lemma 20. For any transition t, and any simple cycle c, given φq, Pret(φq) and Prec∗

(φq)

are both Presburger expressible and effectively computable.

Proof. Let φ ≡ ∨k
i=1(rangei ∧ modi). First we note that Prec∗

(φq) = ∪k
i=1Pre

c∗

(rangei ∧

modi), so we will focus on a single range ∧mod clause in φ.

For a transition t, we can compute Pret by looking at each range ∧ mod clause in φq,

and computing its inverse.

Similarly, we can compute Preci

for any i ∈ N. We will show that Prec∗

(range ∧ mod)

is also computable.

Given a cycle c rooted at q, with guard r ≤ n ≤ s (s possibly ∞) and the meta-transition

y = ax + b, let range ≡ (r1 ≤ n ≤ s1) and mod ≡ (n =d d1). By Postc
i

(n) we denote i

successive applications of a cycle to n. To show that Prec∗

(φq) is effectively computable,

we will look at multiple cases:
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Case 1: s < ∞.

In this case, since the cycle can only be fired by a finite number of inputs, we can simply

take each input n and compute Postc
i

(n) for all i till c can no longer be activated, or it

repeats. Then, we can decide whether or not n ∈ Prec∗

(range ∧ mod) based on if any of

the reachable values satisfy range ∧mod.

Case 2: s = ∞, a ≤ 1.

Note that since the guard is upward closed, it implies that the cycle is positive. Hence the

net transition is x′ = ax + b for a ≥ 0. If a = 0, we are done. If a = 1, then the cycle is a

translation. In this case, Prec∗

(range ∧mod) is again computable using modulo relations.

Case 3: s = ∞, a ≥ 2.

Let N =
⌈

−b
a−1

⌉

. The first thing to observe is that for all n > N , Postc(n) > n. Hence,

upon repeated application, n keeps increasing. If s1 < ∞, then n ≥ max{s1, N} =⇒ n /∈

Prec∗

(range∧mod). With only finitely many values left to consider, we can again compute

Postc
i

(n) for all r ≤ n ≤ max{s1, N} to determine whether n ∈ Prec∗

(range ∧ mod). If

s1 = ∞, then for values n ≥ N , we only need to be concerned with their value mod d.

Hence, we can first compute the set of values ℓ1, ..., ℓk mod d such that for some j, we have

Postc
j

(ℓi) =d d1. Then we know that (n ≥ N ∧ n =d ℓi) =⇒ n ∈ Prec∗

(range ∧ mod).

For n ≤ N , we can again compute Postc
i

(n) to determine whether n ∈ Prec∗

(range∧mod).

Since it does not go off to infinity, it will again terminate or repeat.

Thus, we have shown that for any cycle c, we can compute Prec∗

(φq). ◭

◮ Corollary 24. Reachability (hence coverability and control-state reachability) for 1-AVASS

is decidable.

Proof. Suppose we want to check reachability of (q2, n2) from (q1, n1). Once we have com-

puted Pre∗(q2, n2), we can check easily whether (q1, n1) ∈ Pre∗(q2, n2) to solve reachability.

Once we have reachability, we can show a reduction from coverability to reachability to

show that coverability is also decidable for 1-AVASS, as follows. Suppose we want to check

coverability of (q2, n2). We can add two new control-states q3 and q4 and add the transitions

(q2, (x
′ = x−n2), q3) and (q3, (x

′ = 0), q4). Now, (q4, 0) is reachable iff (q2, n2) coverable. ◭
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