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Abstract
In an impressive series of papers, Krivine showed at the edge of the last decade how classical
realizability provides a surprising technique to build models for classical theories. In particular, he
proved that classical realizability subsumes Cohen’s forcing, and even more, gives rise to unexpected
models of set theories. Pursuing the algebraic analysis of these models that was first undertaken
by Streicher, Miquel recently proposed to lay the algebraic foundation of classical realizability
and forcing within new structures which he called implicative algebras. These structures are a
generalization of Boolean algebras based on an internal law representing the implication. Notably,
implicative algebras allow for the adequate interpretation of both programs (i.e. proofs) and their
types (i.e. formulas) in the same structure.

The very definition of implicative algebras takes position on a presentation of logic through
universal quantification and the implication and, computationally, relies on the call-by-name λ-
calculus. In this paper, we investigate the relevance of this choice, by introducing two similar
structures. On the one hand, we define disjunctive algebras, which rely on internal laws for the
negation and the disjunction and which we show to be particular cases of implicative algebras. On
the other hand, we introduce conjunctive algebras, which rather put the focus on conjunctions and
on the call-by-value evaluation strategy. We finally show how disjunctive and conjunctive algebras
algebraically reflect the well-known duality of computation between call-by-name and call-by-value.

2012 ACM Subject Classification Theory of computation→ Logic; Theory of computation→ Proof
theory; Theory of computation → Type theory

Keywords and phrases realizability, model theory, forcing, proofs-as-programs, λ-calculus, classical
logic, duality, call-by-value, call-by-name, lattices, tripos

Related Version This is an extended version of the following CSL paper: 10.4230/LIPIcs.CSL.2020.30.

1 Introduction

It is well-known since Griffin’s seminal work [13] that a classical Curry-Howard correspondence
can be obtained by adding control operators to the λ-calculus. Several calculi were born
from this idea, amongst which Krivine λc-calculus [20], defined as the λ-calculus extended
with Scheme’s call/cc operator (for call-with-current-continuation). Elaborating on this
calculus, Krivine’s developed in the late 90s the theory of classical realizability [20], which
is a complete reformulation of its intuitionistic twin. Originally introduced to analyze the
computational content of classical programs, it turned out that classical realizability also
provides interesting semantics for classical theories. While it was first tailored to Peano
second-order arithmetic (i.e. second-order type systems), classical realizability actually scales
to more complex classical theories like ZF [21], and gives rise to surprisingly new models. In
particular, its generalizes Cohen’s forcing [21, 30] and allows for the direct definition of a
model in which neither the continuum hypothesis nor the axiom of choice holds [23].

Algebraization of classical realizability During the last decade, the algebraic structure of
the models that classical realizability induces has been actively studied. This line of work
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was first initiated by Streicher, who proposed the concept of abstract Krivine structure [38],
followed among others by Ferrer, Frey, Guillermo, Malherbe and Miquel who introduced other
structures peculiar to classical realizability [8, 9, 6, 10, 11, 40]. In addition to the algebraic
study of classical realizability models, these works had the interest of building the bridge with
the algebraic structures arising from intuitionistic realizability. In particular, Streicher showed
in [38] how classical realizability could be analyzed in terms of triposes [37], the categorical
framework emerging from intuitionistic realizability models, while the later work of Ferrer et
al. [8, 9] connected it to Hofstra and Van Oosten’s notion of ordered combinatory algebras [16].
More recently, Alexandre Miquel introduced the concept of implicative algebra [31], which
appear to encompass the previous approaches and which we present in this paper.

Implicative algebras In addition to providing an algebraic framework conducive to the
analysis of classical realizability, an important feature of implicative structures is that they
allow us to identify realizers (i.e. λ-terms) and truth values (i.e. formulas). Concretely,
implicative structures are complete lattices equipped with a binary operation a→ b satisfying
properties coming from the logical implication. As we will see, they indeed allow us to
interpret both the formulas and the terms in the same structure. For instance, the ordering
relation a 4 b will encompass different intuitions depending on whether we regard a and b as
formulas or as terms. Namely, a 4 b will be given the following meanings:

the formula a is a subtype of the formula b;
the term a is a realizer of the formula b;
the realizer a is more defined than the realizer b.

In terms of the Curry-Howard correspondence, this means that we not only identify types
with formulas and proofs with programs, but we also identify types and programs.

Side effects Following Griffin’s discovery on control operators and classical logic, several
works have renewed the observation that within the proofs-as-programs correspondence, with
side effects come new reasoning principles [19, 18, 29, 14, 17]. More generally, it is now clear
that computational features of a calculus may have consequences on the models it induces.
For instance, computational proofs of the axiom of dependent choice can be obtained by
adding a quote instruction [19], using memoisation [15, 34] or with a bar recursor [25]. Yet,
such choices may also have an impact on the structures of the corresponding realizability
models: the non-deterministic operator t is known to make the model collapse on a forcing
situation [22], while the bar recursor requires some continuity properties [25].

If we start to have a deep understanding of the algebraic structure of classical realizability
models, the algebraic counterpart of side effects on these structures is still unclear. As a first
step towards this problem, it is natural to wonder: does the choice of an evaluation strategy
have algebraic consequences on realizability models? This paper aims at bringing new tools
for addressing this question.

Outline of the paper We start by recalling the definition of Miquel’s implicative algebras
and their main properties in Section 2. We then introduce the notion of disjunctive algebras
in Section 3, which naturally arises from the negative decomposition of the implication
A→ B = ¬A`B. We explain how this decomposition induces realizability models based on
a call-by-name fragment of Munch-Maccagnoni’s system L [35], and we show that disjunctive
algebras are in fact particular cases of implicative algebras. In Section 4, we explore the
positive dual decomposition A→ B = ¬(A⊗ ¬B), which naturally corresponds to a call-by-
value fragment of system L. We show the corresponding realizability models naturally induce
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a notion of conjunctive algebras. Finally, in Section 5 we revisit the well-known duality of
computation through this algebraic structures. In particular, we show how to pass from
conjunctive to disjunctive algebras and vice-versa, while inducing isomorphic triposes.

Proofs, as well as further details on the different constructions presented in this paper, are given
in appendices. Most of them have been formalized in the Coq proof assistant, in which case their
statements include hyperlinks to their formalizations1.

2 Implicative algebras

2.1 Krivine classical realizability in a glimpse
We give here an overview of the main characteristics of Krivine realizability and of the models
it induces2. Krivine realizability models are usually built above the λc-calculus, a language of
abstract machines including a set of terms Λ and a set of stacks Π (i.e. evaluation contexts).
Processes t ? π in the abstract machine are given as pairs of a term t and a stack π.

Krivine realizability interprets a formula A as a set of closed terms |A| ⊆ Λ, called the
truth value of A, and whose elements are called the realizers of A. Unlike in intuitionistic
realizability models, this set is actually defined by orthogonality to a falsity value ‖A‖ made of
stacks, which intuitively represents a set of opponents to the formula A. Realizability models
are parameterized by a pole ⊥⊥, a set of processes in the underlying abstract machine which
somehow plays the role of a referee betweens terms and stacks. The pole allows us to define
the orthogonal set X⊥⊥ of any falsity value X ⊆ Π by: X⊥⊥ , {t ∈ Λ : ∀π ∈ X, t ? π ∈ ⊥⊥}.
Valid formulas A are then defined as the ones admitting a proof-like realizer3 t ∈ |A|.

Before defining implicative algebras, we would like to draw the reader’s attention on an
important observation about realizability: there is an omnipresent lattice structure, which
is reminiscent of the concept of subtyping [3]. Given a realizability model it is indeed
always possible to define a semantic notion of subtyping: A 4 B , ‖B‖ ⊆ ‖A‖. This
informally reads as “A is more precise than B”, in that A admits more opponents than B.
In this case, the relation 4 being induced from (reversed) set inclusions comes with a richer
structure of complete lattice, where the meet ∧ is defined as a union and the join ∨ as an
intersection. In particular, the interpretation of a universal quantifier ‖∀x.A‖ is given by
an union

⋃
n∈N ‖A[n/x]‖ =

c
n∈N ‖A[n/x]‖, while the logical connective ∧ is interpreted as

the type of pairs × i.e. with a computation content. As such, realizability corresponds
to the following picture: ∀ =

c
∧ = × . This is to compare with forcing, that can

be expressed in terms of Boolean algebras where both the universal quantifier and the
conjunction are interpreted by meets without any computational content: ∀ = ∧ =

c
[1].

2.2 Implicative algebras
Implicative structures are tailored to represent both the formulas of second-order logic and
realizers arising from Krivine’s λc-calculus. For their logical facet, they are defined as
meet-complete lattices (for the universal quantification) with an internal binary operation
satisfying the properties of the implication:

1 Available at https://gitlab.com/emiquey/ImplicativeAlgebras/
2 For a detailed introduction on this topic, we refer the reader to [20] or [32].
3 One specificity of Krivine classical realizability is that the set of terms contains the control operator cc

and continuation constants kπ. Therefore, to preserve the consistency of the induced models, one has to
consider only proof-like terms, i.e. terms that do not contain any continuations constants see [20, 32].

https://gitlab.com/emiquey/ImplicativeAlgebras/
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I Definition 1. An implicative structure is a complete lattice (A,4) equipped with an
operation (a, b) 7→ (a→ b), such that for all a, a0, b, b0 ∈ A and any subset B ⊆ A:
1. If a0 4 a and b 4 b0 then (a→ b) 4 (a0 → b0).
2.

c
b∈B(a→ b) = a→

c
b∈B b

It is then immediate to embed any closed formula of second-order logic within any
implicative structure. Obviously, any complete Heyting algebra or any complete Boolean
algebra defines an implicative structure with the canonical arrow. More interestingly, any
ordered combinatory algebras, a structure arising naturally from realizability [16, 39, 38, 7],
also induces an implicative structure [33]. Last but not least, any classical realizability model
induces as expected an implicative structure on the lattice (P(Π),⊇) by considering the
arrow defined by4: a→ b , a⊥⊥ · b = {t · π : t ∈ a⊥⊥, π ∈ b} ([31, 33].

Interestingly, if any implicative structure A trivially provides us with an embedding of
second-order formulas, we can also encode λ-terms with the following definitions:

ab ,
k
{c : a 4 b→ c} λf ,

k

a∈A
(a→ f(a))

In both cases, one can understand the meet as a conjunction of all the possible approximations
of the desired term. From now on, we will denote by tA (resp. AA) the interpretation of the
closed λ-term t (resp. formula A). Notably, these embeddings are at the same time:
1. Sound with respect to the β-reduction, in the sense that (λf)a 4 f(a) (and more generally,

one can show that if t→β u implies tA 4 uA);
2. Adequate with respect to typing, in the sense that if t is of type A, then we have tA 4 AA

(which can reads as “t realizes A”).
In the case of certain combinators, including Hilbert’s combinator k and s, their interpreta-
tions as λ-term is even equal to the interpretation of their principal types, that is to say that
we have kA =

c
a,b∈A(a→ b→ a) and sA =

c
a,b,c∈A((a→ b→ c)→ (a→ b)→ a→ c). This

justifies the definition ccA ,
c
a,b(((a→ b)→ a)→ a).

Implicative structure are thus suited to interpret both terms and their types. To give an
account for realizability models, one then has to define a notion of validity:

I Definition 2 (Separator). Let (A,4,→) be an implicative structure. We call a separator
over A any set S ⊆ A such that for all a, b ∈ A, the following conditions hold:
1. If a ∈ S and a 4 b, then b ∈ S.
2. kA ∈ S, and sA ∈ S.

3. If (a→ b) ∈ S and a ∈ S, then b ∈ S.

A separator S is said to be classical if ccA ∈ S and consistent if ⊥ /∈ S. We call implicative
algebra any implicative structure (A,4,→,S) equipped with a separator S over A.

Intuitively, thinking of elements of an implicative structure as truth values, a separator
should be understood as the set which distinguishes the valid formulas (think of a filter in a
Boolean algebra). Considering the elements as terms, it should rather be viewed as the set
of valid realizers. Indeed, conditions (2) and (3) ensure that all closed λ-terms are in any
separator5. Reading a 4 b as “the formula a is a subtype of the formula b”, condition (2)
ensures the validity of semantic subtyping. Thinking of the ordering as “a is a realizer of the
formula b”, condition (2) states that if a formula is realized, then it is in the separator.

4 This is actually nothing more than the definition of the falsity value ‖A⇒ B‖.
5 The latter indeed implies the closure of separators under application.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#ImplicativeStructure
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#betarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#imp_betared
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#separator
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I Example 3. Any Krivine realizability model induces an implicative structure (A,4,→)
where A = P(Π), a 4 b⇔ a ⊇ b and a→ b = a⊥⊥ · b. The set of realized formulas, namely
S = {a ∈ A : ∃t ∈ a⊥⊥, t proof-like}, defines a valid separator [31].

2.3 Internal logic & implicative tripos
In order to study the internal logic of implicative algebras, we define an entailment relation:
we say that a entails b and we write a `S b if a→ b ∈ S. This relation induces a preorder
on A. Then, by defining products a× b and sums a+ b through their usual impredicative
encodings in System F6, we recover a structure of pre-Heyting algebra with respect to the
entailment relation: a `S b→ c if and only if a× b `S c.

In order to recover a Heyting algebra, it suffices to consider the quotient H = A/∼=S
by the equivalence relation ∼=S induced by `S , which is naturally equipped with an order
relation: [a] 4H [b] , a `S b (where we write [a] for the equivalence class of a ∈ A).
Likewise, we can extend the product, the sum and the arrow to equivalences classes to obtain
a Heyting algebra (H,4H,∧H,∨H,→H).

Given any implicative algebra, we can define construction of the implicative tripos is
quite similar. Recall that a (set-based) tripos is a first-order hyperdoctrine T : Setop → HA
which admits a generic predicate7. To define a tripos, we roughly consider the functor of
the form I ∈ Setop 7→ AI . Again, to recover a Heyting algebra we quotient the product AI
(which defines an implicative structure) by the uniform separator S[I] defined by:

S[I] , {a ∈ AI : ∃s ∈ S.∀i ∈ I.s 4 ai}

I Theorem 4 (Implicative tripos [31]). Let (A,4,→,S) be an implicative algebra. The
following functor (where f : J → I) defines a tripos:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J ]

[(ai)i∈I ] 7→ [(af(j))j∈J ]

Observe that we could also quotient the product AI by the separator product SI . Actually,
the quotientAI/SI is in bijection with (A/S)I , and in the case where S is a classical separator,
A/S is actually a Boolean algebra, so that the product (A/S)I is nothing more than a
Boolean-valued model (as in the case of forcing). Since S[I] ⊆ SI , the realizability models
that can not be obtained by forcing are exactly those for which S[I] 6= SI (see [31]).

3 Decomposing the arrow: disjunctive algebras

We shall now introduce the notion of disjunctive algebra, which is a structure primarily
based on disjunctions, negations (for the connectives) and meets (for the universal quantifier).
Our main purpose is to draw the comparison with implicative algebras, as an attempt to
justify eventually that the latter are more general than the former, and to lay the bases
for a dualizable definition. In the seminal paper introducing linear logic [12], Girard refines
the structure of the sequent calculus LK, introducing in particular negative and positive
connectives for disjunctions and conjunctions8. With this finer set of connectives, the usual

6 That is to say that we define a× b ,
c
c∈A((a→ b→ c)→ c) and a+ b ,

c
c∈A((a→ c)→ (b→ c)→ c).

7 See Appendix A for more details on the tripos construction.
8 We insist on the fact that even though we use linear notations afterwards, nothing will be linear here.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS_IA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#ha_adjunction
https://emiquey.gitlab.io/ImplicativeAlgebras/ImplicativeAlgebras.html
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implication can be retrieved using either the negative disjunction: A→ B , ¬A`B or the
positive conjunction: A→ B , ¬(A⊗ ¬B).

In 2009, Munch-Maccagnoni gave a computational account of Girard’s presentation for
classical logic [35]. In his calculus, named L, each connective corresponds to the type of a
particular constructor (or destructor). While L is in essence close to Curien and Herbelin’s
λµµ̃-calculus [4] (in particular it is presented with the same paradigm of duality between
proofs and contexts), the syntax of terms does not include λ-abstraction (and neither does
the syntax of formulas includes an implication). The two decompositions of the arrow
evoked above are precisely reflected in decompositions of λ-abstractions (and dually, of
stacks) in terms of L constructors. Notably, the choice of a decomposition corresponds to a
particular choice of an evaluation strategy9 for the encoded λ-calculus: picking the negative
` connective corresponds to call-by-name, while the decomposition using the ⊗ connective
reduces in a call-by-value fashion.

We shall begin by considering the call-by-name case, which is closer to the situation of im-
plicative algebras. The definition of disjunctive structures and algebras are guided by an anal-
ysis of the realizability model induced by L̀ , that is Munch-Maccagnoni’s system L restricted
to the fragment corresponding to negative formulas: A,B := X | A ` B | ¬A | ∀X.A [35].
To leave room for more details on disjunctive algebras, we elude here the introduction of L̀
and its relation to the call-by-name λ-calculus, we refer the interested reader to the extended
version.

3.1 Disjunctive structures
We are now going to define the notion of disjunctive structure. Since we choose negative
connectives and in particular a universal quantifier, we should define commutations with
respect to arbitrary meets. The realizability interpretation for L̀ provides us with a safeguard
in this regard, since in the corresponding models, if X /∈ FV (B) the following equalities10

hold:
1. ‖∀X.(A`B)‖V = ‖(∀X.A) `B‖.
2. ‖∀X.(B `A)‖V = ‖B ` (∀X.A)‖.

3. ‖¬(∀X.A)‖V =
⋂
S∈P(V0) ‖¬A{X := Ṡ}‖V

Algebraically, the previous proposition advocates for the following definition (remember that
the order is defined as the reversed inclusion of primitive falsity values (whence ∩ is

b
) and

that the ∀ quantifier is interpreted by
c
):

I Definition 5 (Disjunctive structure). A disjunctive structure is a complete lattice (A,4)
equipped with a binary operation (a, b) 7→ a ` b, together with a unary operation a 7→ ¬a,
such that for all a, a′, b, b′ ∈ A and for any B ⊆ A:
1. if a 4 a′ then ¬a′ 4 ¬a
2. if a 4 a′ and b 4 b′ then a` b 4 a′ ` b′

3.
c
b∈B(b` a) = (

c
b∈B b) ` a

4.
c
b∈B(a` b) = a` (

c
b∈B b)

5. ¬
c
a∈A a =

b
a∈A ¬a

Observe that the commutation laws imply the value of the internal laws when applied to the
maximal element>: 1. >`a = > 2. a`> = > 3. ¬> = ⊥

We give here some examples of disjunctive structures.

9 Phrased differently, this observation can be traced back to different works, for instance by Blain-Levy [28,
Fig. 5.10], Laurent [26] or Danos, Joinet and Schellinx [5].

10Technically, V0 is the set of closed values which, in this setting, are evaluation contexts (think of Π in
usual Krivine models), and ‖A‖V ∈ P(V0) is the (ground) falsity value of a formula A (see App. B.1).

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#ParStructure
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#par_top_l
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#par_top_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#neg_top
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I Example 6 (Dummy disjunctive structure). Given any complete lattice (L,4), defining
a` b , > and ¬a , ⊥ gives rise to a dummy structure that fulfills the required properties.

I Example 7 (Complete Boolean algebras). Let B be a complete Boolean algebra. It encom-
passes a disjunctive structure defined by:
A , B a 4 b , a 4 b a` b , a ∨ b ¬a , ¬a

I Example 8 (L̀ realizability models). Given a realizability interpretation of L̀ , we define:
A , P(V0)
a 4 b , a ⊇ b

a` b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}
¬a , [a⊥⊥] = {[t] : t ∈ a⊥⊥}

where ⊥⊥ is the pole, V0 is the set of closed values10, and (·, ·) and [·] are the maps corre-
sponding to ` and ¬. The resulting quadruple (A,4,`,¬) is a disjunctive structure (see
Proposition 51).

Following the interpretation of the λ-terms in implicative structures, we can embed
L̀ terms within disjunctive structures. We do not have the necessary space here to fully
introduce here (see Appendix B.3), but it is worth mentioning that the orthogonality relation
t⊥⊥e is interpreted via the ordering tA 4 eA (as suggested in [8, Theorem 5.13] by the
definition of an abstract Krivine structure and its pole from an ordered combinatory algebra).

3.2 The induced implicative structure
As expected, any disjunctive structure directly induces an implicative structure through the
definition a →̀ b , ¬a` b:

I Proposition 9. If (A,4,`,¬) is a disjunctive structure, then (A,4, →̀) is an implicative
structure.

Therefore, we can again define for all a, b of A the application ab as well as the abstraction
λf for any function f from A to A; and we get for free the properties of these encodings in
implicative structures.

Up to this point, we have two ways of interpreting a λ-term into a disjunctive structure:
either through the implicative structure which is induced by the disjunctive one, or by
embedding into the L̀ -calculus which is then interpreted within the disjunctive structure.
As a sanity check, we verify that both coincide:

I Proposition 10 (λ-calculus). Let A` = (A,4,`,¬) be a disjunctive structure, and A→ =
(A,4, →̀) the implicative structure it canonically defines, we write ι for the corresponding
inclusion. Let t be a closed λ-term (with parameter in A), and JtK his embedding in L̀ . Then
we have ι(tA→) = JtKA

` .

3.3 Disjunctive algebras
We shall now introduce the notion of disjunctive separator. To this purpose, we adapt
the definition of implicative separators, using standard axioms11 for the disjunction and

11These axioms can be found for instance in Whitehead and Russell’s presentation of logic [42]. In fact,
the fifth axiom is deducible from the first four as was later shown by Bernays [2]. For simplicity reasons,
we preferred to keep it as an axiom.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Dummies.html#dummy_par
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#cba_pa
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#PS_IS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html
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the negation instead of Hilbert’s combinators s and k. We thus consider the following
combinators:

s̀1 ,
c
a∈A [(a` a)→ a]

s̀2 ,
c
a,b∈A [a→ (a` b)]

s̀3 ,
c
a,b∈A [(a` b)→ b` a]

s̀4 ,
c
a,b,c∈A [(a→ b)→ (c` a)→ (c` b)]

s̀5 ,
c
a,b,c∈A [(a` (b` c))→ ((a` b) ` c)]

Separators for A are defined similarly to the separators for implicative structures, replacing
the combinators k, s and cc by the previous ones.

I Definition 11 (Separator). We call separator for the disjunctive structure A any subset
S ⊆ A that fulfills the following conditions for all a, b ∈ A:
1. If a ∈ S and a 4 b then b ∈ S.
2. s̀1, s̀2, s̀3, s̀4 and s̀5 are in S.

3. If a→ b ∈ S and a ∈ S then b ∈ S.

A separator S is said to be consistent if ⊥ /∈ S. We call disjunctive algebra the given of
a disjunctive structure together with a separator S ⊆ A.

I Remark 12. The reader may notice that in this section, we do not distinguish between
classical and intuitionistic separators. Indeed, L̀ and the corresponding fragment of the
sequent calculus are intrinsically classical. As we shall see thereafter, so are the disjunctive
algebras: the negation is always involutive modulo the equivalence ∼=S (Proposition 16).

I Remark 13 (Generalized modus ponens). The modus ponens, that is the unique deduc-
tion rule we have, is actually compatible with meets. Consider a set I and two families
(ai)i∈I , (bi)i∈I ∈ AI , we have:

a `I b `I a
`I b

where we write a `I b for (
c
i∈I ai → bi) ∈ S and `I a for (

c
i∈I ai) ∈ S. As our axioms are

themselves expressed as meets, the results that we will obtain internally (that is by deduction
from the separator’s axioms) can all be generalized to meets.

I Example 14 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra,
B induces a disjunctive structure in which it is easy to verify that the combinators s̀1, s̀3, s̀3, s̀4
and s̀5 are equal to the maximal element >. Therefore, the singleton {>} is a valid separator
for the induced disjunctive structure. In fact, the filters for B are exactly its separators.

I Example 15 (L̀ realizability model). Remember from Example 8 that any model of classical
realizability based on the L̀ -calculus induces a disjunctive structure. As in the implicative case,
the set of formulas realized by a closed term12 defines a valid separator (see Proposition 74
for further details).

3.4 Internal logic
As in the case of implicative algebras, we say that a entails b and write a `S b if a→ b ∈ S.
Through this relation, which is again a preorder relation, we can relate the primitive negation
and disjunction to the negation and sum type induced by the underlying implicative structure:

a+ b ,
k

c∈A
((a→ c)→ (b→ c)→ c) (∀a, b ∈ A)

12Proof-like terms in L̀ simply correspond to closed terms.
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In particular, we show that from the point of view of the separator the principle of double
negation elimination is valid and the disjunction and this sum type are equivalent:

I Proposition 16 (Implicative connectives). For all a, b ∈ A, the following holds:
1. ¬a `S a→ ⊥
2. a→ ⊥ `S ¬a

3. a `S ¬¬a
4. ¬¬a `S a

5. a` b `S a+ b

6. a+ b `S a` b

3.5 Induced implicative algebras
In order to show that any disjunctive algebra is a particular case of implicative algebra, we
first verify that Hilbert’s combinators belong to any disjunctive separator:

I Proposition 17 (Combinators). We have: 1. kA ∈ S 2. sA ∈ S 3. ccA ∈ S

As a consequence, we get the expected theorem:

I Theorem 18. Any disjunctive algebra is a classical implicative algebra.

Since any disjunctive algebra is actually a particular case of implicative algebra, the con-
struction leading to the implicative tripos can be rephrased entirely in this framework. In
particular, the same criteria allows us to determine whether the implicative tripos is iso-
morphic to a forcing tripos. Notably, a disjunctive algebra admitting an extra-commutation
rule the negation ¬ with arbitrary joins (¬

b
a∈A a =

c
a∈A ¬a) will induce an implicative

algebra where the arrow commutes with arbitrary joins. In that case, the induced tripos
would collapse to a forcing situation (see [31]).

4 A positive decomposition: conjunctive algebras

4.1 Call-by-value realizability models
While there exists now several models build of classical theories constructed via Krivine
realizability [22, 24, 25, 29], they all have in common that they rely on a presentation of
logic based on negative connectives/quantifiers. If this might not seem shocking from a
mathematical perspective, it has the computational counterpart that these models all build
on a call-by-name calculus, namely the λc-calculus13. In light of the logical consequences
that computational choices have on the induced theory, it is natural to wonder whether the
choice of a call-by-name evaluation strategy is anecdotal or fundamental.

As a first step in this direction, we analyze here the algebraic structure of realizability
models based on the L⊗ calculus, the positive fragment of Munch-Maccagnoni’s system L
corresponding to the formulas defined by: A,B ::= X | ¬A | A ⊗ B | ∃X.A. Through the
well-known duality between terms and evaluation contexts [4, 35], this fragment is dual to
the L̀ calculus and it naturally allows to embed the λ-terms evaluated in a call-by-value
fashion. We shall now reproduce the approach we had for L̀ : guided by the analysis of the
realizability models induced by the L⊗ calculus, we first define conjunctive structures. We
then show how these structures can be equipped with a separator and how the resulting
conjunctive algebras lead to the construction of a conjunctive tripos. We will finally show in
the next section how conjunctive and disjunctive algebras are related by an algebraic duality.

13Actually, there is two occurrences of realizability interpretations for call-by-value calculus, including
Munch-Maccagnoni’s system L, but both are focused on the analysis of the computational behavior of
programs rather than constructing models of a given logic [35, 27].
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4.2 Conjunctive structures
As in the previous section, we will not introduce here the L⊗ calculus and the corresponding
realizability models (see Appendix C for details). Their main characteristic is that, being
build on top of a call-by-value calculus, a formula A is primitively interpreted by its ground
truth value |A|v ∈ P(VO) which is a set of values. Its falsity and truth values are then defined
by orthogonality [35, 27]. Once again, we can observe the existing commutations in these
realizability models. Insofar as we are in a structure centered on positive connectives, we
especially pay attention to the commutations with joins. As a matter of fact, in any L⊗
realizability model, we have that if X /∈ FV (B):
1. |∃X.(A⊗B)|V = |(∃X.A)⊗B|V .
2. |∃X.(B ⊗A)|V = |B ⊗ (∃X.A)|V .

3. |¬(∃X.A)|V =
⋂
S∈P(V0) |¬A{X := Ṡ}|V

Since we are now interested in primitive truth values, which are logically ordered by inclusion
(in particular, the existential quantifier is interpreted by unions, thus joins), the previous
proposition advocates for the following definition:
I Definition 19 (Conjunctive structure). A conjunctive structure is a complete join-semilattice
(A,4) equipped with a binary operation (a, b) 7→ a⊗ b, and a unary operation a 7→ ¬a, such
that for all a, a′, b, b′ ∈ A and for all subset B ⊆ A we have:
1. if a 4 a′ then ¬a′ 4 ¬a
2. if a 4 a′ and b 4 b′ then a⊗ b 4 a′ ⊗ b′
3.

b
b∈B(a⊗ b) = a⊗ (

b
b∈B b)

4.
b
b∈B(b⊗ a) = (

b
b∈B b)⊗ a

5. ¬
b
a∈A a =

c
a∈A ¬a

As in the cases of implicative and disjunctive structures, the commutation rules imply
that: 1. ⊥⊗a = ⊥ 2. a⊗⊥ = ⊥ 3. ¬⊥ = >
I Example 20 (Dummy conjunctive structure). Given a complete lattice L, the following
definitions give rise to a dummy conjunctive structure: a⊗ b , ⊥ ¬a , >.
I Example 21 (Complete Boolean algebras). Let B be a complete Boolean algebra. It embodies
a conjunctive structure, that is defined by:
A , B a 4 b , a 4 b a⊗ b , a ∧ b ¬a , ¬a

I Example 22 (L⊗ realizability models). As for the disjunctive case, we can abstract the
structure of the realizability interpretation of L⊗ to define:
A , P(V0)
a⊗ b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}

a 4 b , a ⊆ b
¬a , [a⊥⊥] = {[e] : e ∈ a⊥⊥}

where ⊥⊥ is the pole, V0 is the set of closed values and (·, ·) and [·] are the maps corresponding to
⊗ and ¬. The resulting quadruple (A,4,⊗,¬) is a conjunctive structure (see Proposition 90).

It is worth noting that even though we can define an arrow by a ⊗→ b , ¬(a⊗¬b), it does
not induce an implicative structure: indeed, the distributivity law is not true in general14. In
turns, we have another distributivity law which is usually wrong in implicative structure:

(
j

a∈A
a) ⊗→ b =

k

a∈A
(a ⊗→ b)

k

b∈B

(a ⊗→ b) 64 a ⊗→ (
k

b∈B

b)

Actually, implicative structures where both are true corresponds precisely to a degenerated
forcing situation.

Here again, we can define an embedding of L⊗ into any conjunctive structure which is
sound with respect to typing and reductions15.

14For instance, it is false in L⊗ realizability models.
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4.3 Conjunctive algebras
The definition of conjunctive separators turns out to be more subtle than in the disjunctive
case. Among others things, conjunctive structures mainly axiomatize joins, while the
combinators or usual mathematical axioms that we could wish to have in a separator are
more naturally expressed via universal quantifications, hence meets. Yet, an analysis of
the sequent calculus underlying L⊗ type system15, shows that we could consider a tensorial
calculus where deduction systematically involves a conclusion of the shape ¬A. This justifies
to consider the following combinators16:

s⊗1 ,
c
a∈A ¬ [¬(a⊗ a)⊗ a]

s⊗2 ,
c
a,b∈A ¬ [¬a⊗ (a⊗ b)]

s⊗3 ,
c
a,b∈A ¬ [¬(a⊗ b)⊗ (b⊗ a)]

s⊗4 ,
c
a,b,c∈A ¬ [¬(¬a⊗ b)⊗ (¬(c⊗ a)⊗ (c⊗ b))]

s⊗5 ,
c
a,b,c∈A ¬ [¬(a⊗ (b⊗ c))⊗ ((a⊗ b)⊗ c)]

and to define conjunctive separators as follows:

I Definition 23 (Separator). We call separator for the disjunctive structure A any subset
S ⊆ A that fulfills the following conditions for all a, b ∈ A:
1. If a ∈ S and a 4 b then b ∈ S.
2. s⊗1 , s

⊗
2 , s

⊗
3 , s

⊗
4 and s⊗5 are in S.

3. If ¬(a⊗ b) ∈ S and a ∈ S then ¬b ∈ S.
4. If a ∈ S and b ∈ S then a⊗ b ∈ S.

A separator S is said to be classical if besides ¬¬a ∈ S implies a ∈ S.

I Remark 24 (Modus Ponens). If the separator is classical, it is easy to see that the modus
ponens is valid: if a ⊗→ b ∈ S and a ∈ S, then ¬¬b ∈ S by (3) and thus b ∈ S.

I Example 25 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra, B
induces a conjunctive structure in which it is easy to verify that the combinators s̀1, s̀3, s̀3, s̀4
and s̀5 are equal to the maximal element >. Therefore, the singleton {>} is a valid separator.

I Example 26 (L⊗realizability model). As expected, the set of realized formulas by a proof-like
term: defines a valid separator for the conjunctive structures induced by L⊗ realizability
models.

I Example 27 (Kleene realizability). We do not want to enter into too much details here, but
it is worth mentioning that realizability interpretations à la Kleene of intuitionistic calculi
equipped with primitive pairs (e.g. (partial) combinatory algebras, the λ-calculus) induce
conjunctive algebras. Insofar as many Kleene realizability models takes position against
classical reasoning (for ∀X.X ∨ ¬X is not realized and hence its negation is), these algebras
have the interesting properties of not being classical (and are even incompatible with a classical
completion).

I Remark 28 (Generalized axioms). Once again, the axioms (3) and (4) generalize to meet
of families (ai)i∈I , (bi)i∈I :
`I ¬(a⊗ b) `I a

`I ¬b
`I a `I b
`I a⊗ b

where we write `I a for (
c
i∈I ai) ∈ S and where the negation and conjunction of families

are taken pointwise. Once again, the axioms being themselves expressed as meets, this means
that any result obtained from the separator’s axioms (but the classical one) can be generalized
to meets.

15 See Appendix C.6 for more details.
16Observe that are directly dual to the combinators for disjunctive separators and that they can be

alternatively given the shape ¬
b

_∈A ....

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#TensorAlgebra
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#MP_t
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#CBA_KTA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#MP_inf


12 Revisiting the Duality of Computation

4.4 Internal logic
As before, we consider the entailment relation defined by a `S b , (a ⊗→ b) ∈ S. Observe
that if the separator is not classical, we do not have that a `S b and a ∈ S entails17 b ∈ S.
Nonetheless, this relation still defines a preorder in the sense that:

I Proposition 29 (Preorder). For any a, b, c ∈ A, we have:

1. a `S a 2. If a `S b and b `S c then a `S c

Intuitively, this reflects the fact that despite we may not be able to extract the value of a
computation, we can always chain it with another computation expecting a value.

Here again, we can relate the negation ¬a to the one induced by the arrow a ⊗→ ⊥:

I Proposition 30 (Implicative negation). For all a ∈ A, the following holds:

1. ¬a `S a ⊗→ ⊥ 2. a ⊗→ ⊥ `S ¬a 3. a `S ¬¬a 4. ¬¬a `S a

As in implicative structures, we can define the abstraction and application of the λ-
calculus:

λf ,
k

a∈A
(a ⊗→ f(a)) ab ,

k
{¬¬c : a 4 b ⊗→ c}

Observe that here we need to add a double negation, since intuitively ab is a computation of
type ¬¬c rather than a value of type c. In other words, values are not stable by applications,
and extracting a value from a computation requires a form of classical control. Nevertheless,
for any separator we have:

I Proposition 31. If a ∈ S and b ∈ S then ab ∈ S.

Similarly, the beta reduction rule now involves a double-negation on the reduced term:

I Proposition 32. (λf)a 4 ¬¬f(a)

We show that Hilbert’s combinators k and s belong to any conjunctive separator:

I Proposition 33 (k and s). We have:
1. (λxy.x)A ∈ S 2. (λxyz.x z (y z))A ∈ S

By combinatorial completeness, for any closed λ-term t we thus have the a combinatorial
term t0 (i.e. a composition of k and s) such that t0 →∗ t. Since S is closed under application,
tA0 also belong to S. Besides, since for each reduction step tn → tn+1, we have tAn 4 ¬¬tAn+1,
if the separator is classical18, we can thus deduce that it contains the interpretation of t :

I Theorem 34 (λ-calculus). If S is classical and t is a closed λ-term, then tA ∈ S.

17Actually we can consider a different relation a `¬ b , ¬(a⊗ b) for which a `¬ b and a ∈ S entails ¬b.
This one turns out to be useful to ease proofs, but from a logical perspective, the significant entailment
is the one given by a `S b.

18Actually, since we always have that if ¬¬¬¬a ∈ S then ¬¬a ∈ S, the same proof shows that in the
intuitionistic case we have at ¬¬tA ∈ S.
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Once more, the entailment relation induces a structure of (pre)-Heyting algebra, whose
conjunction and disjunction are naturally given by a× b , a⊗ b and a+ b , ¬(¬a⊗ ¬b):

I Proposition 35 (Heyting Algebra). For any a, b, c ∈ A For any a, b, c ∈ A, we have:

1. a× b `S a
2. a× b `S b

3. a `S a+ b

4. b `S a+ b

5. a `S b ⊗→ c iff a×b `S c

We can thus quotient the algebra by the equivalence relation ∼=S and extend the previous
operation to equivalence classes in order to obtain a Heyting algebra A/ ∼=S . In particular,
this allows us to obtain a tripos out of a conjunctive algebra by reproducing the construction
of the implicative tripos in our setting:

I Theorem 36 (Conjunctive tripos). Let (A,4,→,S) be a classical19 conjunctive algebra.
The following functor (where f : J → I) defines a tripos:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J ]

[(ai)i∈I ] 7→ [(af(j))j∈J ]

5 The duality of computation, algebraically

In [4], Curien and Herbelin introduce the λµµ̃ in order to emphasize the so-called duality
of computation between terms and evaluation contexts. They define a simple translation
inverting the role of terms and stacks within the calculus, which has the notable consequence
of translating a call-by-value calculus into a call-by-name calculus and vice-versa. The
very same translation can be expressed within L, in particular it corresponds to the trivial
translation from mapping every constructor on terms (resp. destructors) in L⊗ to the
corresponding constructor on stacks (resp. destructors) in L̀ . We shall now see how this
fundamental duality of computation can be retrieved algebraically between disjunctive and
conjunctive algebras.

We first show that we can simply pass from one structure to another by reversing the
order relation. We know that reversing the order in a complete lattice yields a complete
lattice in which meets and joins are exchanged. Therefore, it only remains to verify that the
axioms of disjunctive and conjunctive structures can be deduced through this duality one
from each other, which is the case.

I Proposition 37. Let (A,4,`,¬) be a disjunctive structure. Let us define:
A⊗ , A` a / b , b 4 a a⊗ b , a` b ¬a , ¬a

then (A⊗, /,⊗,¬) is a conjunctive structure.

I Proposition 38. Let (A,4,⊗,¬) be a conjunctive structure. Let us define:
A` , A⊗ a / b , b 4 a a` b , a⊗ b ¬a , ¬a

then (A⊗, /,⊗,¬) is a disjunctive structure.

19For technical reasons, we only give the proof in case where the separator is classical (recall that it allows
to directly use λ-terms), but as explained, by adding double negation everywhere the same reasoning
should work for the general case as well. Yet, this is enough to express our main result in the next
section which only deals with the classical case.
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Intuitively, by considering stacks as realizers, we somehow reverse the algebraic structure,
and we consider as valid formulas the ones whose orthogonals were valid. In terms of
separator, it means that when reversing a structure we should consider the separator defined
as the preimage through the negation of the original separator.

I Theorem 39. Let (A⊗,S⊗) be a conjunctive algebra, the set S` , {a ∈ A : ¬a ∈ S⊗}
defines a valid separator for the dual disjunctive structure A`.

I Theorem 40. Let (A`,S`) be a disjunctive algebra. The set S⊗ , {a ∈ A : ¬a ∈ S`}
defines a classical separator for the dual conjunctive structure A⊗.

It is worth noting that reversing in both cases, the dual separator is classical. This is
to connect with the fact that classical reasoning principles are true on negated formulas.
Moreover, starting from a non-classical conjunctive algebra, one can reverse it twice to get a
classical algebra. This corresponds to a classical completion of the original separator S: by
definition, ¬−2(S) = {a : ¬¬a ∈ S}, and it is easy to see that a ∈ S implies ¬¬a ∈ S, hence
S ⊆ ¬−2(S).

Actually, the duality between disjunctive and (classical) conjunctive algebras is even
stronger, in the sense that through the translation, the induced triposes are isomorphic.
Remember that an isomorphism ϕ between two (Set-based) triposes T , T ′ is defined as
a natural isomorphism T ⇒ T ′ in the category HA, that is as a family of isomorphisms
ϕI : T (I) ∼→ T ′(I) (indexed by all I ∈ Set) that is natural in I.

I Theorem 41 (Main result). Let (A,S) be a disjunctive algebra and (Ā, S̄) its dual con-
junctive algebra. The family of maps :

ϕI :
{
Ā/S̄[I] → A/S[I]

[ai] 7→ [¬ai]

defines a tripos isomorphism.

6 Conclusion

6.1 An algebraic view on the duality of computation
To sum up, in this paper we saw how the two decompositions of the arrow a→ b as ¬a` b

and ¬(a⊗¬b), which respectively induce decompositions of a call-by-name and call–by-value
λ-calculi within Munch-Maccagnoni’s system L [35], yield two different algebraic structures
reflecting the corresponding realizability models. Namely, call-by-name models give rise to
disjunctive algebras, which are particular cases of Miquel’s implicative algebras [31]; while
conjunctive algebras correspond to call-by-value realizability models.

The well-known duality of computation between terms and contexts is reflected here by
simple translations from conjunctive to disjunctive algebras and vice-versa, where the under-
lying lattices are simply reversed. Besides, we showed that (classical) conjunctive algebras
induce triposes that are isomorphic to disjunctive triposes. The situation is summarized in
Figure 1, where ⊗¬¬ denotes classical conjunctive algebras.

6.2 From Kleene to Krivine via negative translation
We could now re-read within our algebraic landscape the result of Oliva and Streicher
stating that Krivine realizability models for PA2 can be obtained as a composition of Kleene
realizability for HA2 and Friedman’s negative translation [36, 30]. Interestingly, in this
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Figure 1 Final picture

setting the fragment of formulas that is interpreted in HA2 correspond exactly to the positive
formulas of L⊗, so that it gives rise to an (intuitionistic) conjunctive algebra. Friedman’s
translation is then used to encode the type of stacks within this fragment via a negation. In the
end, realized formulas are precisely the ones that are realized through Friedman’s translation:
the whole construction exactly matches the passage from a intuitionistic conjunctive structure
defined by Kleene realizability to a classical implicative algebras through the arrow from
⊗-algebras to →-algebras via `-algebras.

6.3 Future work
While Theorem 41 implies that call-by-value and call-by-name models based on the L⊗ and
L̀ calculi are equivalents, it does not provide us with a definitive answer to our original
question. Indeed, just as (by-name) implicative algebras are more general than disjunctive
algebras, it could be the case that there exists a notion of (by-value) implicative algebras
that is strictly more general than conjunctive algebras and which is not isomorphic to a
by-name situation.

Also, if we managed to obtain various results about conjunctive algebras, there is still
a lot to understand about them. Notably, the interpretation we have of the λ-calculus is
a bit disappointing in that it does not provide us with an adequacy result as nice as in
implicative algebras. In particular, the fact that each application implicitly gives rise to a
double negation breaks the compositionality. This is of course to connect with the definition
of truth values in by-value models which requires three layers and a double orthogonal. We
thus feel that many things remain to understand about the underlying structure of by-value
realizability models.

Finally, on a long-term perspective, the next step would be to understand the algebraic
impact of more sophisticated evaluation strategy (e.g., call-by-need) or side effects (e.g., a
monotonic memory). While both have been used in concrete cases to give a computational
content to certain axioms (e.g., the axiom of dependent choice [15]) or model constructions
(e.g., forcing [21]), for the time being we have no idea on how to interpret them in the realm
of implicative algebras.
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A Implicative tripos

I Definition 42 (Hyperdoctrine). Let C be a Cartesian closed category. A first-order hyper-
doctrine over C is a contravariant functor T : Cop → HA with the following properties:
1. For each diagonal morphism δX : X → X ×X in C, the left adjoint to T (δX) at the top

element > ∈ T (X) exists. In other words, there exists an element =X∈ T (X ×X) such
that for all ϕ ∈ T (X ×X):

> 4 T (δX)(ϕ) ⇔ =X 4 ϕ

2. For each projection π1
Γ,X : Γ×X → Γ in C, the monotonic function T (π1

Γ,X) : T (Γ)→
T (Γ×X) has both a left adjoint (∃X)Γ and a right adjoint (∀X)Γ:

ϕ 4 T (π1
Γ,X)(ψ) ⇔ (∃X)Γ(ϕ) 4 ψ

T (π1
Γ,X)(ϕ) 4 ψ ⇔ ϕ 4 (∀X)Γ(ψ)

3. These adjoints are natural in Γ, i.e. given s : Γ → Γ′ in C, the following diagrams
commute:

T (Γ′ ×X) T (Γ×X)

T (Γ′) T (Γ)

T (s× idX)

(∃X)Γ′ (∃X)Γ

T (s)

T (Γ′ ×X) T (Γ×X)

T (Γ′) T (Γ)

T (s× idX)

(∀X)Γ′ (∀X)Γ

T (s)

This condition is also called the Beck-Chevaley conditions.
The elements of T (X), as X ranges over the objects of C, are called the T -predicates.

I Definition 43 (Tripos). A tripos over a Cartesian closed category C is a first-order
hyperdoctrine T : Cop → HA which has a generic predicate, i.e. there exists an object
Prop ∈ C and a predicate tr ∈ T (Prop) such that for any object Γ ∈ C and any predicate
ϕ ∈ T (Γ), there exists a (not necessarily unique) morphism χϕ ∈ C(Γ,Prop) such that:

ϕ = T (χϕ)(tr)

Implicative tripos
Let us fix an implicative algebra (A,4,→,S) for the rest of this section. In order to recover
a Heyting algebra, it suffices to consider the quotient A/∼=S by the relation ∼=S defined as
a ∼=S b , (a `S b ∧ b `S a). We equip this quotient with the canonical order relation:

[a] 4H [b] , a `S b (for all a, b ∈ A)

where we write [a] for the equivalence class of a ∈ A. We define:

[a]→H [b] , [a→ b]
[a] ∧H [b] , [a× b]
[a] ∨H [b] , [a+ b]

>H , [>] = S
⊥H , [⊥] = {a ∈ A : ¬a ∈ S}

The quintuple (H,4H,∧H,∨H,→H) is a Heyting algebra.
We define:

[a]→H [b] , [a→ b]
[a] ∧H [b] , [a× b]
[a] ∨H [b] , [a+ b]

>H , [>] = S
⊥H , [⊥] = {a ∈ A : ¬a ∈ S}

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html
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The quintuple (H,4H,∧H,∨H,→H) is a Heyting algebra.

I Theorem 44 (Implicative tripos [31]). Let (A,4,→,S) be an implicative algebra. The
following functor:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J ]

[(ai)i∈I ] 7→ [(af(j))j∈J ]
(∀f ∈ J → I)

defines20 a tripos.

Proof. We verify that T satisfies all the necessary conditions to be a tripos.
The functoriality of T is clear.
For each I ∈ Set, the image of the corresponding diagonal morphism T (δI) associates to
any element [(aij)(i,j)∈I×I ] ∈ T (I × I) the element [(aii)i∈I ] ∈ T (I). We define21:

(=I) : i, j 7→

{c
a∈A(a→ a) if i = j

⊥ → > if i 6= j

and we need to prove that for all [a] ∈ T (I × I):

[>]I 4S[I] T (δI)(a) ⇔ [=I ] 4S[I×I] [a]

Let then [(aij)i,j∈I ] be an element of T (I × I). From left to right, assume that [>]I 4S[I]
T (δI)(a), that is to say that there exists s ∈ S such that for any i ∈ I, s 4 > → aii.
Then it is easy to check that for all i, j ∈ I, λz.z(s(λx.x)) 4 i =I j → aij . Indeed, using
the adjunction and the β-reduction it suffices to show that for all i, j ∈ I, (i =I j) 4
(s(λx.x))→ aij . If i = j, this follows from the fact that (s(λx.x)) 4 aii. If i 6= j, this is
clear by subtyping.
From right to left, if there exists s ∈ S such that for any i, j ∈ I, s 4 i =I j → aij , then
in particular for all i ∈ I we have s 4 (λx.x) → aii, and then λ_.s(λx.x) 4 > → aii
which concludes the case.
For each projection π1

I×J : I × J → I in C, the monotone function T (π1
I,J) : T (I) →

T (I × J) has both a left adjoint (∃J)I and a right adjoint (∀J)I which are defined by:

(∀J)I
(

[(aij)i,j∈I×J ]
)
,
[
( ∀
j∈J

aij)i∈I
]

(∃J)I
(

[(aij)i,j∈I×J ]
)
,
[
( ∃
j∈J

aij)i∈I
]

The proofs of the adjointness of this definition are again easy manipulation of λ-calculus.
We only give the case of ∃, the case for ∀ is easier. We need to show that for any
[(aij)(i,j)∈I×J ] ∈ T (I × J) and for any [(bi)i∈I ], we have:

[(aij)(i,j)∈I×J ] 4S[I×J] [(bi)(i,j)∈I ] ⇔
[
( ∃
j∈J

aij)i∈I
]
4S[I] [(bi)i∈I ]

Let us fix some [a] and [b] as above. From left to right, assume that there exists s ∈ S
such that for all i ∈ I, j ∈ J , s 4 aij → bi, and thus saij 4 bi. Using the semantic

20Note that the definition of the functor on functions f : J → I assumes implicitly the possibility of
picking a representative in any equivalent class [a] ∈ A/S[I], i.e. the full axiom of choice.

21The reader familiar with classical realizability might recognize the usual interpretation of Leibniz’s
equality.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html
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elimination rule of the existential quantifier, we deduce that for all i ∈ I, if t 4 ∃j∈J aij ,
then t(λx.sx) 4 bi. Therefore, for all i ∈ I we have λy.y(λx.sx) 4 ∃j∈J aij → bi.
From right to left, assume that there exists s ∈ S such that for all i ∈ I, s 4 ∃j∈J aij → bi.
For any j ∈ J , using the semantic introduction rule of the existential quantifier, we deduce
that for all i ∈ I, λx.xaij 4 ∃j∈J aij . Therefore, for all i ∈ I we have λx.s(λz.zx) 4
aij → bi.
These adjoints clearly satisfy the Beck-Chevaley condition. For instance, for the existential
quantifier, we have for all I, I ′, J , for any [(ai′j)(i′,j)∈I′×J ] ∈ T (I ′×J) and any s : I → I ′,

(T (s) ◦ (∃J)I′)([(ai′j)(i′,j)∈I′×J ]) = T (s)(
[
(∃j∈J ai′j)i′∈I′

]
)

=
[
(∃j∈J as(i)j)i∈I

]
= ((∃J)I)([(as(i)j)ij∈I×J ])
= ((∃J)I ◦ T (s× idJ)([(aij)i,j∈I×J ])

Finally, we define Prop , A and verify that tr , [idA] ∈ T (Prop) is a generic predicate.
Let then I be a set, and a = [(ai)i∈I ] ∈ T (I). We let χa : i 7→ ai be the characteristic
function of a (it is in I → Prop), which obviously satisfies that for all i ∈ I:

T (χa)(tr) = [(χa(i))i∈I)] = [(ai)i∈I ]

J
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B Disjunctive algebras

B.1 The L̀ calculus
The L̀ -calculus is the restriction of Munch-Maccagnoni’s system L [35], to the negative
fragment corresponding to the connectives `, ¬− (which we simply write ¬ since there is no
ambiguity here) and ∀. To simplify things (and ease the connection with the λµµ̃-calculus [4]),
we slightly change the notations of the original paper. As Krivine’s λc-calculus, this language
describes commands of abstract machines c that are made of a term t taken within its
evaluation context e. The syntax is given by22:

Terms t ::= x | µ(α1, α2).c | µ[x].c | µα.c
Values V ::= α | (V1, V2) | [t]

Contexts e ::= α | (e1, e2) | [t] | µx.c
Commands c ::= 〈t || e〉

We write T0, V0, E0, C0 for the sets of closed terms, values, contexts and commands. the
corresponding set of closed values. We shall say a few words about it:

(e1, e2) are pairs of contexts, which we will relate to usual stacks;
µ(α1, α2).c, which binds the co-variables α1, α2, is the dual destructor for pairs;
[t] is a constructor for the negation, which allows us to embed a term into a context;
µ[x].c, which binds the variable x, is the dual destructor;
µα.c binds a covariable and allows to capture a context: as such, it implements classical
control.

I Remark 45 (Notations). We shall explain that in (full) L, the same syntax allows us
to define terms t and contexts e (thanks to the duality between them). In particular, no
distinction is made between t and e, which are both written t, and commands are indifferently
of the shape 〈t+ || t− 〉 or 〈t− || t+ 〉. For this reason, in [35] is considered a syntax where
a notation x̄ is used to distinguish between the positive variable x (that can appear in the
left-member 〈x| of a command) and the positive co-variable x̄ (resp. in the right member |x〉
of a command). In particular, the µα binder of the λµµ̃-calculus would have been written
µx̄ and the µ̃x binder would have been denoted by µα (see [35, Appendix A.2]). We thus
switched the x and α of L (and removed the bar), in order to stay coherent with the notations
in the rest of this manuscript.

The reduction rules correspond to what could be expected from the syntax of the calculus:
destructors reduce in front of the corresponding constructors, both µ binders catch values in
front of them and pairs of contexts are expanded if they are not values23.

〈µ[x].c || [t]〉 → c[t/x]
〈t ||µx.c〉 → c[t/x]
〈µα.c ||V 〉 → c[V/α]

〈µ(α1, α2).c || (V1, V2)〉 → c[V1/α1, V2/α2]
〈t || (e, e′)〉 →

〈
µα.
〈
µα′.〈t || (α, α′)〉

∣∣∣∣ e′〉 ∣∣∣∣∣∣ e〉
where in the last rule, (e, e′) /∈ V .

Finally, we shall present the type system of L̀ .

22The reader may observe that in this setting, values are defined as contexts, so that we may have
called them covalues rather than values. We stick to this denomination to stay coherent with Munch-
Maccagnoni’s paper [35].

23The reader might recognize the rule (ζ) of Wadler’s sequent calculus [41].

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html
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Γ ` t : A | ∆ Γ | e : A ` ∆
〈t || e〉 : Γ ` ∆

(Cut)
(α : A) ∈ ∆

Γ | α : A ` ∆
(ax`)

(x : A) ∈ Γ
Γ ` x : A | ∆

(`ax)

c : (Γ, x : A ` ∆)
Γ | µx.c : A ` ∆

(µ`)
Γ | e1 : A ` ∆ Γ | e2 : B ` ∆

Γ | (e1, e2) : A`B ` ∆
(``)

Γ ` t : A | ∆
Γ | [t] : ¬A ` ∆

(¬`)

c : (Γ ` ∆, α : A)
Γ ` µα.c : A | ∆

(`µ)
c : Γ ` ∆, α1 : A,α2 : B

Γ ` µ(α1, α2).c : A`B | ∆
(``)

c : Γ, x : A ` ∆
Γ ` µ[x].c : ¬A | ∆

(`¬)

Γ | e : A[B/X] ` ∆
Γ | e : ∀X.A ` ∆

(∀`)
Γ ` t : A | ∆ X /∈ FV (Γ,∆)

Γ ` t : ∀X.A | ∆
(`∀)

Figure 2 Typing rules for the L`,¬-calculus

In the continuity of the presentation of implicative algebras, we are interested in a
second-order settings. Formulas are then defined by the following grammar:

Formulas A,B := X | A`B | ¬A | ∀X.A

The type system is presented in a sequent calculus fashion. We work with two-sided sequents,
where typing contexts are defined as usual as finite lists of bindings between variable and
formulas:

Γ ::= ε | Γ, x : A ∆ ::= ε | ∆, α : A

Sequents are of three kinds: Γ ` t : A | ∆ for typing terms, Γ | e : A ` ∆ for typing contexts,
c : Γ ` ∆ for typing commands. In the type system, left rules corresponds to constructors
while right rules type destructors. The type system is given in Figure 2.

Embedding of the λ-calculus

Following Munch-Maccagnoni’s paper [35, Appendix E], we can embed the λ-calculus into
the L̀ -calculus. To this end, we are guided by the expected definition of the arrow A →
B , ¬A`B. It is easy to see that with this definition, a stack u · e in A→ B (that is
with u a term of type A and e a context of type B) is naturally defined as a shorthand for
the pair ([u], e), which indeed inhabits the type ¬A`B. Starting from there, the rest of the
definitions are straightforward:

u · e , ([u], e)
µ([x], β).c , µ(α, β).〈µ[x].c ||α〉

λx.t , µ̃([x], β).〈t || β〉
t u , µα.〈t || u · α〉

These definitions are sound with respect to the typing rules expected from the λµµ̃-calculus [4].
In addition, they induce the usual rules of β-reduction for the call-by-name evaluation strategy
in the Krivine abstract machine24:

〈t u || π〉 −→β 〈t || u · π〉 〈λx.t || u · π〉 −→β 〈t[u/x] || π〉 (π ∈ V )

24Note that in the KAM, all stacks are values.
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Realizability models
We briefly go through the definition of the realizability interpretation à la Krivine for L̀ .
As is usual, we begin with the definition of a pole:

I Definition 46 (Pole). A pole is defined as any subset ⊥⊥ ⊆ C s.t. for all c, c′ ∈ C, if
c −→β c

′ and c′ ∈ ⊥⊥ then c ∈ ⊥⊥.

As it is common in Krivine’s call-by-name realizability, falsity values are defined primitively
as sets of contexts. Truth values are then defined by orthogonality to the corresponding
falsity values. We say that a term t is orthogonal (with respect to the pole ⊥⊥) to a context
e and we write t⊥⊥e when 〈t || e〉 ∈ ⊥⊥. A term t (resp. a context e) is said to be orthogonal
to a set S ⊆ E0 (resp. S ⊆ T0), which we write t⊥⊥S, when for all e ∈ S, t is orthogonal to e.
Due to the call-by-name25 (which is induced here by the choice of connectives), a formula
A is primitively interpreted by its ground falsity value, which we write ‖A‖V and which is
a set in P(V0). Its truth value |A| is then defined by orthogonality to ‖A‖V (and is a set
in P(T0)), while its falsity value ‖A‖ ∈ P(E0) is again obtained by orthogonality to |A|. To
ease the definitions we assume that for each subset S of P(V0), there is a constant symbol Ṡ
in the syntax of formula. Given a fixed pole ⊥⊥, the interpretation is given by:

‖Ṡ‖V , S

‖∀X.A‖V ,
⋃
S∈P(V0) ‖A{X := Ṡ}‖V

‖A`B‖V , {(V1, V2) : V1 ∈ ‖A‖V ∧ V2 ∈ ‖B‖V }

‖¬A‖V , {[t] : t ∈ |A|}
|A| , {t : ∀V ∈ ‖A‖V , t⊥⊥V }
‖A‖ , {e : ∀t ∈ |A|, t⊥⊥e}

We shall now verify that the type system of L̀ is indeed adequate with this interpretation.
We first prove the following simple lemma:

I Lemma 47 (Substitution). Let A be a formula whose only free variable is X. For any
closed formula B, if S = ‖B‖V , then ‖A[B/X]‖V = ‖A[Ṡ/X]‖V .

Proof. Easy induction on the structure of formulas, with the observation that the statement
for primitive falsity values implies the same statement for truth values (|A[B/X]| = |A[Ṡ/X]|)
and falsity values (‖A[B/X]‖ = ‖A[Ṡ/X]‖). The key case is for the atomic formula A ≡ X,
where we easily check that:

‖X[B/X]‖V = ‖B‖V = S = ‖Ṡ‖V = ‖X[Ṡ/X]‖V

J

We define Γ ∪∆ as the union of both contexts where we annotate the type of hypothesis
(κ : A) ∈ ∆ with κ : A⊥⊥:

Γ ∪ (∆, κ : A) , (Γ ∪∆), κ : A⊥⊥
Γ ∪ ε , Γ

The last step before proving adequacy consists in defining substitutions and valuations.
We say that a valuation, which we write ρ, is a function mapping each second-order variable
to a primitive falsity value ρ(X) ∈ P(V0). A substitution, which we write σ, is a function
mapping each variable x to a closed term c and each variable α to a closed value V ∈ V0:

σ ::= ε | σ, x 7→ t | σ, α 7→ V +

25 See [32, Chapter 3] for a more detailed explanation on this point.
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We say that a substitution σ realizes a context Γ and note σ  Γ when for each binding
(x : A) ∈ Γ, σ(x) ∈ |A|. Similarly, we say that σ realizes a context ∆ if for each binding
(α : A) ∈ ∆, σ(α) ∈ ‖A‖V .

We can now state the property of adequacy of the realizability interpretation:

I Proposition 48 (Adequacy). Let Γ,∆ be typing contexts, ρ be a valuation and σ be a
substitution such that σ  Γ[ρ] and σ  ∆[ρ]. We have:
1. If V + is a positive value such that Γ | V + : A ` ∆, then V +[σ] ∈ ‖A[ρ]‖V .
2. If t is a term such that Γ ` t : A | ∆, then t[σ] ∈ |A[ρ]|.
3. If e is a context such that Γ | e : A ` ∆, then e[σ] ∈ ‖A[ρ]‖.
4. If c is a command such that c : (Γ ` ∆), then c[σ] ∈ ⊥⊥.

Proof. We only give some key cases, the full proof can be found in [35]. We proceed by
induction over the typing derivations. Let σ be a substitution realizing Γ[ρ] and ∆[ρ].

Case (` ¬).

Assume that we have:
c : Γ, x : A ` ∆
Γ ` µ̃[x].c : ¬A

(`¬)

and let [t] be a term in ‖A[ρ]‖V , that is to say that t ∈ |A[ρ]|. We know by induction
hypothesis that for any valuation σ′  (Γ, x : A)[ρ], c[σ′] ∈ ⊥⊥ and we want to show that
µ[x].c[σ]⊥⊥[t]. We have that:

µ[x].c⊥⊥[t] −→β c[σ][t/x] = c[σ, x 7→ t]

hence it is enough by saturation to show that c[σ][u/x] ∈ ⊥⊥. Since t ∈ |A[ρ]|, σ[x 7→ t] 
(Γ, x : A)[ρ] and we can conclude by induction hypothesis. The cases for (µ `), (` µ) and
(` `) proceed similarly.

Cases (¬ `).

Trivial by induction hypotheses.

Case (` `).

Assume that we have:
Γ | e1 : A ` ∆ Γ | u : B ` ∆

Γ | (e1, e2) : A`B ` ∆
(``)

Let then t be a term in |(A ` B)[ρ]|, to show that 〈 t || (e1, e2) 〉 ∈ ⊥⊥, we proceed by
anti-reduction:

〈t || (e, e′)〉 −→β

〈
µα.
〈
µα′.〈t || (α, α′)〉

∣∣∣∣ e′〉 ∣∣∣∣∣∣ e〉
It now easy to show, using the induction hypotheses for e and e′ that this command is in
the pole: it suffices to show that the term µα.

〈
µα′.〈t || (α, α′)〉

∣∣∣∣ e′〉 ∈ |A|, which amounts to
showing that for any value V1 ∈ ‖A‖V :〈

µα.
〈
µα′.〈t || (α, α′)〉

∣∣∣∣V 〉 ∣∣∣∣∣∣−→β

〉〈
µα′.〈t || (V, α′)〉

∣∣∣∣ e′〉 ∈ ⊥⊥
Again this holds by showing that for any V ′ ∈ |B|,〈

µα′.〈t || (V, α′)〉
∣∣∣∣V ′〉 −→β 〈t || (V, V ′)〉 ∈ ⊥⊥
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Case (` ∀).

Trivial.

Case (∀ `).

Assume that we have:
Γ | e : A[B/X] ` ∆
Γ | e : ∀X.A ` ∆

(∀`)

By induction hypothesis, we obtain that e[σ] ∈ ‖A[B/X][ρ]‖; so that if we denote ‖B[ρ]‖V ∈
P(V0)
by S, we have:

e[σ] ∈ ‖A[Ṡ/X]‖ ⊆ S ∈ P(V0)t‖A[Ṡ/X][ρ]‖⊥⊥⊥⊥V ⊆ (S ∈ P(V0)t‖A[Ṡ/X][ρ]‖V )⊥⊥⊥⊥ = ‖∀X.A[ρ]‖

where we make implicit use of Lemma 47. J

B.2 Disjunctive structures
We should now define the notion of disjunctive structure. Regarding the expected com-
mutations, as we choose negative connectives and in particular a universal quantifier, we
should define commutations with respect to arbitrary meets. The following properties of the
realizability interpretation for L̀ provides us with a safeguard for the definition to come:

I Proposition 49 (Commutations). In any L̀ realizability model (that is to say for any pole
⊥⊥), the following equalities hold:
1. If X /∈ FV (B), then ‖∀X.(A`B)‖V = ‖(∀X.A) `B‖V .
2. If X /∈ FV (A), then ‖∀X.(A`B)‖V = ‖A` (∀X.B)‖V .
3. ‖¬(∀X.A)‖V =

⋂
S∈P(V0) ‖¬A{X := Ṡ}‖V

Proof. 1. Assume the X /∈ FV (B), then we have:

‖∀X.(A`B)‖V = S ∈ P(V0) t ‖A{X := Ṡ}`B‖V
= S ∈ P(V0) t {(V1, V2) : V1 ∈ ‖A{X := Ṡ}‖V ∧ V2 ∈ ‖B‖V }
= {(V1, V2) : V1 ∈ S ∈ P(V0) t ‖A{X := Ṡ}‖V ∧ V2 ∈ ‖B‖V }
= {(V1, V2) : V1 ∈ ‖∀X.A‖V ∧ V2 ∈ ‖B‖} = ‖(∀X.A) `B‖V

2. Identical.
3. The proof is again a simple unfolding of the definitions:

‖¬(∀X.A)‖V = {[t] : t ∈ |∀X.A|} = {[t] : t ∈
⋂

S∈P(V0)

|A{X := Ṡ}|}

=
⋂

S∈P(V0)

{[t] : t ∈ |A{X := Ṡ}]|} =
⋂

S∈P(V0)

‖¬A{X := Ṡ}‖V

J

I Proposition 50. If (A,4,`,¬) is a disjunctive structure, then the following hold for all
a ∈ A:
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1. >` a = > 2. a`> = > 3. ¬> = ⊥

Proof. Using the axioms of disjunctive structures, we prove:
1. for all a ∈ A, >` a = (

c
∅) ` a =

c
x,a∈A{x` a : x ∈ ∅} =

c
∅ = >

2. for all a ∈ A, a`> = a` (
c
∅) =

c
x,a∈A{a` x : x ∈ ∅} =

c
∅ = >

3. ¬> = ¬(
c
∅) =

b
x∈A{¬x : x ∈ ∅} =

b
∅ = ⊥

J

Disjunctive structures from L̀ realizability models

If we abstract the structure of the realizability interpretation of L̀ , it is a structure of the
form (T0, E0,V0, (·, ·), [·],⊥⊥), where (·, ·) is a binary map from E2

0 to E0 (whose restriction to
V0 has values in V0), [·] is an operation from T0 to V0, and ⊥⊥ ⊆ T0 × E0 is a relation. From
this sextuple, we can define:

• A , P(V0) • a` b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}
• a 4 b , a ⊇ b • ¬a , [a⊥⊥] = {[t] : t ∈ a⊥⊥}

I Proposition 51. The quadruple (A,4,`,¬) is a disjunctive structure.

Proof. We show that the axioms of Definition 5 are satisfied.
1. (Contravariance) Let a, a′ ∈ A, such that a 4 a′ ie a′ ⊆ a. Then a⊥⊥ ⊆ a′⊥⊥ and thus

¬a = {[t] : t ∈ a⊥⊥} ⊆ {[t] : t ∈ a′⊥⊥} = ¬a′

i.e. ¬a′ 4 ¬a.
2. (Covariance) Let a, a′, b, b′ ∈ A such that a′ ⊆ a and b′ ⊆ b. Then we have

a` b = {(V1, V2) : V1 ∈ a ∧ V2 ∈ b} ⊆ {(V1, V2) : V1 ∈ a′ ∧ V2 ∈ b′} = a′ ` b′

i.e. a` b 4 a′ ` b′.
3. (Distributivity) Let a ∈ A and B ⊆ A, we have:

k

b∈B

(a`b) =
k

b∈B

{(V1, V2) : V1 ∈ a∧e2 ∈ b} = {(V1, V2) : V1 ∈ a∧V2 ∈
k

b∈B

b} = a`(
k

b∈B

b)

4. (Commutation) Let B ⊆ A, we have (recall that
b
b∈B b =

⋂
b∈B b):

j

b∈B

(¬b) =
j

b∈B

{[t] : t ∈ b⊥⊥} = {[t] : t ∈
j

b∈B

b⊥⊥} = {[t] : t ∈ (
k

b∈B

b)⊥⊥} = ¬(
k

b∈B

b)

J

B.3 Interpreting L̀

Following the interpretation of the λ-calculus in implicative structures, we shall now see how
L̀ commands can be recovered from disjunctive structures. From now on, we assume given
a disjunctive structure (A,4,`,¬).
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B.3.1 Commands
We define the commands of the disjunctive structure A as the pair (a, b) (which we continue
to write 〈a || b〉) with a, b ∈ A, and we define the pole ⊥⊥ as the ordering relation 4. We
write CA = A×A for the set of commands in A and (a, b) ∈ ⊥⊥ for a 4 b. Besides, we define
an ordering on commands which extends the intuition that the order reflect the “definedness”
of objects: given two commands c, c′ in CA, we say that c is lower than c′ and we write cE c′
if c ∈ ⊥⊥ implies that c′ ∈ ⊥⊥. It is straightforward to check that:

I Proposition 52. The relation E is a preorder.

Besides, the relation E verifies the following property of variance with respect to the
order 4:

I Proposition 53 (Commands ordering). For all t, t′, π, π′ ∈ A, if t 4 t′ and π′ 4 π, then
〈t || π〉E 〈t′ || π′〉.

Proof. Trivial by transitivity of 4. J

Finally, it is worth noting that meets are covariant with respect to E and 4, while joins
are contravariant:

I Lemma 54. If c and c′ are two functions associating to each a ∈ A the commands c(a)
and c′(a) such that c(a)E c′(a), then we have:
k

a∈A
{a : c(a) ∈ ⊥⊥} 4

k

a∈A
{a : c′(a) ∈ ⊥⊥}

j

a∈A
{a : c′(a) ∈ ⊥⊥} 4

j

a∈A
{a : c(a) ∈ ⊥⊥}

Proof. Assume c, c′ are such that for all a ∈ A, caE c′a. Then it is clear that by definition
we have the inclusion {a ∈ A : c(a) ∈ ⊥⊥} ⊆ {a ∈ A : c′(a) ∈ ⊥⊥}, whence the expected
results. J

B.3.2 Contexts
We are now ready to define the interpretation of L̀ contexts in the disjunctive structure A.
The interpretation for the contexts corresponding to the connectives is very natural:

I Definition 55 (Pairing). For all a, b ∈ A, we let (a, b) , a` b.

I Definition 56 (Boxing). For all a ∈ A, we let [a] , ¬a.

Note that with these definitions, the encodings of pairs and boxes directly inherit of the
properties of the internal law ` and ¬ in disjunctive structures. As for the binder µx.c,
which we write µ̃+c, it should be defined in such a way that if c is a function mapping each
a ∈ A to a command c(a) ∈ CA, then µ+.c should be “compatible” with any a such that c(a)
is well-formed (i.e. c(a) ∈ ⊥⊥). As it belongs to the side of opponents, the “compatibility”
means that it should be greater than any such a, and we thus define it as a join.

I Definition 57 (µ+). For all c : A → CA, we define:

µ+.c :=
j

a∈A
{a : c(a) ∈ ⊥⊥}

These definitions enjoy the following properties with respect to the β-reduction and the
η-expansion:
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I Proposition 58 (Properties of µ+). For all functions c, c′ : A → CA, the following hold:
1. If for all a ∈ A, c(a)E c′(a), then µ+.c′ 4 µ+.c (Variance)
2. For all t ∈ A, then 〈t ||µ+.c〉E c(t) (β-reduction)
3. For all e ∈ A, then t = µ+.(a 7→ 〈a || e〉) (η-expansion)

Proof. 1. Direct consequence of Proposition 54.
2,3. Trivial by definition of µ+.

J

I Remark 59 (Subject reduction). The β-reduction c −→β c
′ is reflected by the ordering

relation cEc′, which reads “if c is well-formed, then so is c′”. In other words, this corresponds
to the usual property of subject reduction. In the sequel, we will see that β-reduction rules of
L̀ will always been reflected in this way through the embedding in disjunctive structures.

B.3.3 Terms
Dually to the definitions of (positive) contexts µ+ as a join, we define the embedding of
(negative) terms, which are all binders, by arbitrary meets:

I Definition 60 (µ−). For all c : A → CA, we define:

µ−.c :=
k

a∈A
{a : c(a) ∈ ⊥⊥}

I Definition 61 (µ()c). For all c : A2 → CA, we define:

µ().c :=
k

a,b∈A

{a` b : c(a, b) ∈ ⊥⊥}

I Definition 62 (µ[]). For all c : A → CA, we define:

µ[].c :=
k

a∈A
{¬a : c(a) ∈ ⊥⊥}

These definitions also satisfy some variance properties with respect to the preorder E and
the order relation 4, namely, negative binders for variable ranging over positive contexts are
covariant, while negative binders intended to catch negative terms are contravariant.

I Proposition 63 (Variance). For any functions c, c′ with the corresponding arities, the
following hold:
1. If c(a)E c′(a) for all a ∈ A, then µ−.c 4 µ−.c′
2. If c(a, b)E c′(a, b) for all a, b ∈ A, then µ().c 4 µ().c′

3. If c(a)E c′(a) for all a ∈ A, then µ[].c′ 4 µ[].c

Proof. Direct consequences of Proposition 54. J

The η-expansion is also reflected as usual by the ordering relation 4:

I Proposition 64 (η-expansion). For all t ∈ A, the following holds:
1. t = µ−.(a 7→ 〈t || a〉)
2. t 4 µ().(a, b 7→ 〈t || (a, b)〉)
3. t 4 µ[].(a 7→ 〈t || [a]〉)

Proof. Trivial from the definitions. J
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The β-reduction is reflected by the preorder E:

I Proposition 65 (β-reduction). For all e, e1, e2, t ∈ A, the following holds:
1. 〈µ−.c || e〉E c(e)
2. 〈µ().c || (e1, e2)〉E c(e1, e2)
3. 〈µ[].c || [t]〉E c(t)

Proof. Trivial from the definitions. J

Finally, we call a L̀ term with parameters in A (resp. context, command) any L̀ term
(possibly) enriched with constants taken in the set A. Commands with parameters are
equipped with the same rules of reduction as in L̀ , considering parameters as inert constants.
To every closed L̀ term t (resp. context e,command c) we associate an element tA (resp.
eA, cA) of A, defined by induction on the structure of t as follows:

Contexts :
aA , a

(e1, e2)A , (eA1 , eA2 )
[t]A , [tA]

(µx.c)A , µ−(a 7→ (c[x := a])A)

Terms :
aA , a

(µα.c)A , µ−(a 7→ (c[α := a])A)
(µ(α1, α2).c)A , µ()(a, b 7→ (c[α1 := a, α2 := b])A)

(µ[x].c)A , µ[](a 7→ (c[x := a])A)

Commands: 〈t || e〉A , 〈tA || eA〉)

In particular, this definition has the nice property of making the pole ⊥⊥ (i.e. the order
relation 4) closed under anti-reduction, as reflected by the following property of E:

I Proposition 66 (Subject reduction). For any closed commands c1, c2 of L̀ , if c1 −→β c2
then cA1 E cA2 , i.e. if cA1 belongs to ⊥⊥ then so does cA2 .

Proof. Direct consequence of Propositions 58 and 100. J

B.4 Adequacy
We shall now prove that the interpretation of L̀ is adequate with respect to its type system.
Again, we extend the syntax of formulas to define second-order formulas with parameters by:

A,B ::= a | X | ¬A | A`B | ∀X.A (a ∈ A)

This allows us to embed closed formulas with parameters into the disjunctive structure A.
The embedding is trivially defined by:

aA , a

(¬A)A , ¬AA
(A`B)A , AA `BA

(∀X.A)A ,
c
a∈A(A{X := a})A

(if a ∈ A)

As for the adequacy of the interpretation for the second-order λc-calculus, we define
substitutions, which we write σ, as functions mapping variables (of terms, contexts and
types) to element of A:

σ ::= ε | σ[x 7→ a] | σ[α 7→ a] | σ[X 7→ a] (a ∈ A, x,X variables)

In the spirit of the proof of adequacy in classical realizability, we say that a substitution
σ realizes a typing context Γ, which write σ  Γ, if for all bindings (x : A) ∈ Γ we have
σ(x) 4 (A[σ])A. Dually, we say that σ realizes ∆ if for all bindings (α : A) ∈ ∆ , we have
σ(α) < (A[σ])A. We can now prove
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I Theorem 67 (Adequacy). The typing rules of L̀ (Figure 2) are adequate with respect to
the interpretation of terms, contexts, commands and formulas. Indeed, for all contexts Γ,∆,
for all formulas with parameters A then for all substitutions σ such that σ  Γ and σ  ∆,
we have:
1. for any term t, if Γ ` t : A | ∆, then (t[σ])A 4 A[σ]A;
2. for any context e, if Γ | e : A ` ∆, then (e[σ])A < A[σ]A;
3. for any command c, if c : (Γ ` ∆), then (c[σ])A ∈ ⊥⊥.

Proof. By induction over the typing derivations.

Case (Cut).

Assume that we have:
Γ ` t : A | ∆ Γ | e : A ` ∆

〈t || e〉 : Γ ` ∆
(Cut)

By induction hypotheses, we have (t[σ])A 4 A[σ]A and (e[σ])A < A[σ]A. By transitivity of
the relation 4, we deduce that (t[σ])A 4 (e[σ])A, so that (〈t || e〉[σ])A ∈ ⊥⊥.

Case (` ax).

Straightforward, since if (x : A) ∈ Γ, then (x[σ])A 4 (A[σ])A. The case (ax `) is identical.

Case (` µ).

Assume that we have:
c : Γ ` ∆, α : A
Γ ` µα.c : A | ∆

(`µ)

By induction hypothesis, we have that (c[σ, α 7→ (A[σ])A])A ∈ ⊥⊥. Then, by definition we
have:

((µα.c)[σ])A = (µα.(c[σ]))A =
k

b∈A

{b : (c[σ, α 7→ b])A ∈ ⊥⊥} 4 (A[σ])A

Case (µ `).

Similarly, assume that we have:

c : Γ, x : A ` ∆
Γ | µx.c : A ` ∆

(µ`)

By induction hypothesis, we have that (c[σ, x 7→ (A[σ])A])A ∈ ⊥⊥. Therefore, we have:

((µx.c)[σ])A = (µx.(c[σ]))A =
j

b∈A

{b : (c[σ, x 7→ b])A ∈ ⊥⊥} < (A[σ])A .

Case (` `).
Assume that we have:

Γ | e1 : A1 ` ∆ Γ | e2 : A2 ` ∆
Γ | (e1, e2) : A1 `A2 ` ∆

(``)

By induction hypotheses, we have that (e1[σ])A < (A1[σ])A and (e2[σ])A < (A2[σ])A.
Therefore, by monotonicity of the ` operator, we have:

((e1, e2)[σ])A = (e1[σ], e2[σ])A = (e1[σ])A ` (e2[σ])A < (A1[σ])A ` (A2[σ])A .
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Case (` `).

Assume that we have:
c : Γ ` ∆, α1 : A1, α2 : A2

Γ ` µ(α1, α2).c : A1 `A2 | ∆
(``)

By induction hypothesis, we get that (c[σ, α1 7→ (A1[σ])A, α2 7→ (A2[σ])A])A ∈ ⊥⊥. Then by
definition we have

((µ(α1, α2).c)[σ])A =
k

a,b∈A

{a` b : (c[σ, α1 7→ a, α2 7→ b])A ∈ ⊥⊥} 4 (A1[σ])A ` (A2[σ])A .

Case (¬ `).

Assume that we have:
Γ ` t : A | ∆

Γ | [t] : ¬A ` ∆
(¬`)

By induction hypothesis, we have that (t[σ])A 4 (A[σ])A. Then by definition of [ ]A and
covariance of the ¬ operator, we have:

([t[σ]])A = ¬(t[σ])A < ¬(A[σ])A.

Case (` ¬).

Assume that we have:
c : Γ, x : A ` ∆

Γ ` µ[x].c : ¬A | ∆
(`¬)

By induction hypothesis, we have that (c[σ, x 7→ (A[σ])A])A ∈ ⊥⊥. Therefore, we have:

((µ[x].c)[σ])A = (µ[x].(c[σ]))A =
k

b∈A

{¬b : (c[σ, x 7→ b])A ∈ ⊥⊥} 4 ¬(A[σ])A.

Case (∀ `) .

Assume that we have:
Γ ` e : A{X := B} | ∆

Γ | e : ∀X.A ` ∆
(∀`)

By induction hypothesis, we have that (e[σ])A < ((A{X := B})[σ])A = (A[σ,X 7→
(B[σ])A])A. Therefore, we have that (e[σ])A < (A[σ,X 7→ (B[σ])A])A <

c
b∈A{A{X :=

b}[σ]A}.

Case (` ∀) .

Similarly, assume that we have:

Γ ` t : A | ∆ X /∈ FV (Γ,∆)
Γ ` t : ∀X.A

(`∀)

By induction hypothesis, we have that (t[σ])A 4 (A[σ,X 7→ b])A for any b ∈ A. Therefore,
we have that (t[σ])A 4

c
b∈A(A{X := b}[σ]A). J
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B.5 The induced implicative structure
As expected, any disjunctive structures directly induces an implicative structure:

I Proposition 68. If (A,4,`,¬) is a disjunctive structure, then (A,4,→) is an implicative
structure.

Proof. We need to show that the definition of the arrow fulfills the expected axioms:
1. (Variance) Let a, b, a′, b′ ∈ A be such that a′ 4 a and b 4 b′, then we have:

a→ b = ¬a` b 4 ¬a′ ` b′ = a′ → b′

since ¬a 4 ¬a′ by contra-variance of the negation and b 4 b′.
2. (Distributivity) Let a ∈ A and B ⊆ A, then we have:

k

b∈B

(a→ b) =
k

b∈B

(¬a` b) = ¬a` (
k

b∈B

b) = a→ (
k

b∈B

b)

by distributivity of the infimum over the disjunction.

J

I Lemma 69. The shorthand µ([x], α).c is interpreted in A by:

(µ([x], α).c)A =
k

a,b∈A

{(¬a) ` b : c[x := a, α := b] ∈4}

Proof.

µ([x], α).c)A = (µ(x0, α).〈µ[x].c || x0〉)A

=
k

a′,b∈A

{a′ ` b : (〈µ[x].c[α := b] || a′〉)A ∈4}

=
k

a′,b∈A

{a′ ` b : (
k

a∈A
{¬a : cA[x := a, α := b] ∈4} 4 a′}

=
k

a,b∈A

{(¬a) ` b : cA[x := a, α := b] ∈4}

J

I Proposition 70 (λ-calculus). Let A` = (A,4,`,¬) be a disjunctive structure, and A→ =
(A,4,→) the implicative structure it canonically defines, we write ι for the corresponding
inclusion. Let t be a closed λ-term (with parameter in A), and JtK his embedding in L̀ . Then
we have

ι(tA
→

) = JtKA
`

where tA→ (resp. tA`) is the interpretation of t within A→ (resp. A`).
In other words, this proposition expresses the fact that the following diagram commutes:

λ-calculus L̀

(A→,4,→) (A`,4,`,¬)

J K

[ ]A
→

[ ]A
`

ι

Proof. By induction over the structure of terms.
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Case a for some a ∈ A`.

This case is trivial as both terms are equal to a.

Case λx.u.

We have Jλx.uK = µ([x], α).〈JtK ||α〉 and

(µ([x], α).〈JtK ||α〉)A
`

=
k

a,b∈A

{¬a` b : (Jt[x := a]KA
`
, b) ∈ ⊥⊥}

=
k

a,b∈A

{¬a` b : Jt[x := a]KA
`
4 b}

=
k

a∈A
(¬a` Jt[x := a]KA

`
)

On the other hand,

ι([λx.t]A
→

) = ι(
k

a∈A
(a→ (t[x := a])A

→
)) =

k

a∈A
(¬a` ι(t[x := a]A

→
))

Both terms are equal since Jt[x := a]KA` = ι(t[x := a])A→) by induction hypothesis.

Case u v.

On the one hand, we have Ju vK = µ(α).〈JuK || ([JvK], α)〉 and

(µ(α).〈JuK || ([JvK], α)〉)A
`

=
k

a∈A
{a : (JuKA

`
, (¬JvKA

` ` a)) ∈ ⊥⊥}

=
k

a∈A
{a : JuKA

`
4 (¬JvKA

` ` a)}

On the other hand,

ι([u v]A
→

) = ι(
k

a∈A
{a : (uA

→
) 4 (vA

→
)→ a}) =

k

a∈A
{a : ι(uA

→
) 4 ¬(ι(vA

→
) ` a}))

Both terms are equal since JuKA
` = ι(uA→) and JvKA

` = ι(vA→) by induction hypotheses. J

B.6 Disjunctive algebras

Separation in disjunctive structures
We recall the definition of separators for disjunctive structures:

I Definition 71. 11[Separator][ParAlgebra] We call separator for the disjunctive structure
A any subset S ⊆ A that fulfills the following conditions for all a, b ∈ A:
1. If a ∈ S and a 4 b then b ∈ S. (upward closure)
2. s1, s2, s3, s4 and s5 are in S. (combinators)
3. If a→ b ∈ S and a ∈ S then b ∈ S. (modus ponens)
A separator S is said to be consistent if ⊥ /∈ S.
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I Remark 72 (Generalized Modus Ponens). The modus ponens, that is the unique rule of
deduction we have, is actually compatible with meets. Consider a set I and two families
(ai)i∈I , (bi)i∈I ∈ AI , we have:

a `I b `I a
`I b

where we write a `I b for (
c
i∈I ai → bi) ∈ S and `I a for (

c
i∈I ai) ∈ S. The proof is

straightforward using that the separator is closed upwards and by application, and that:

(
c
i∈I ai → bi)(

c
i∈I ai) 4 (

c
i∈I bi)

⇐ (
c
i∈I ai → bi) 4 (

c
i∈I ai)→ (

c
i∈I bi) (by adj.)

which is clearly true.

I Example 73 (Realizability model). Recall from Example 8 that any model of classical
realizability based on the L̀ -calculus induces a disjunctive structure. As in the implicative
case, the set of formulas realized by a closed term26:

S⊥⊥ , {a ∈ P(V0) : a⊥⊥ ∩ T0 6= ∅}

defines a valid separator. The conditions (1) and (3) are clearly verified (for the same
reasons as in the implicative case), but we should verify that the formulas corresponding to
the combinators are indeed realized.

Let us then consider the following closed terms:

PS1 , µ([x], α).〈x || (α, α)〉
PS2 , µ([x], α).

〈
µ(α1, α2).〈x ||α1〉

∣∣∣∣α〉
PS3 , µ([x], α).

〈
µ(α1, α2).〈x || (α2, α1)〉

∣∣∣∣α〉
PS4 , µ([x], α).

〈
µ([y], β).

〈
µ(γ, δ).

〈
y
∣∣∣∣ (γ, µz.〈x || ([z], δ)〉〉 ∣∣∣∣∣∣β〉 ∣∣∣∣∣∣∣∣α〉

PS5 , µ([x], α).
〈
µ(β, α3).

〈
µ(α1, α2).〈x || (α1, (α2, α3))〉

∣∣∣∣β〉 ∣∣∣∣∣∣α〉
I Proposition 74. The previous terms have the following types in L̀ :
1. ` PS1 : ∀A.(A`A)→ A |
2. ` PS2 : ∀AB.A→ A`B |
3. ` PS3 : ∀AB.A`B → B `A |
4. ` PS4 : ∀ABC.(A→ B)→ (C `A→ C `B) |
5. ` PS5 : ∀ABC.(A` (B ` C))→ ((A`B) ` C) |

Proof. Straightforward typing derivations in L̀ . J

We deduce that S⊥⊥ is a valid separator:

I Proposition 75. The quintuple (P(V0),4,`,¬,S⊥⊥) as defined above is a disjunctive
algebra.

Proof. Conditions (1) and (3) are trivial. Condition (2) follows from the previous proposition
and the adequacy lemma for the realizability interpretation of L̀ (Proposition 48). J

B.7 Internal logic
From the combinators, we directly get that:

I Proposition 76 (Combinators). For all a, b, c ∈ A, the following holds:

26Proof-like terms in L̀ simply correspond to closed terms.
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1. (a` a) `S a
2. a `S (a` b)
3. (a` b) `S (b` a)

4. (a→ b) `S (c` a)→ (c` b)
5. a` (b` c) `S (a` b) ` c

I Proposition 77 (Preorder). For any a, b, c ∈ A, we have:
1. a `S a (Reflexivity)
2. if a `S b and b `S c then a `S c (Transitivity)

Proof. We first that (2) holds by applying twice the closure by modus ponens, then we use
it with the relation a `S a` a and a` a `S that can be deduced from the combinators s̀1, s̀2
to get 1. J

Negation
We can relate the primitive negation to the one induced by the underlying implicative
structure:

I Proposition 78 (Implicative negation). For all a ∈ A, the following holds:

1. ¬a `S a→ ⊥ 2. a→ ⊥ `S ¬a

Proof. The first item follows directly from s̀2 belongs to the separator, since a→ ⊥ = ¬a`⊥
and that ¬a `S ¬a`⊥.

For the second item, we use the transitivity with the following hypotheses:

(a→ ⊥) `S a→ ¬a (a→ ¬a) `S ¬a

The statement on the left hand-side is proved by subtyping from the identity (
c
a∈A(a→ a),

which is in S as the generalized version of a `S a above). On the right hand-side, we use
twice the modus ponens to prove that

(a→ a) `S (¬a→ ¬a)→ (a→ ¬a)→ ¬a

The two extra hypotheses are trivially subtypes of the identity again. This statement follows
from this more general property (recall that a→ a = ¬a` a):

k

a,b∈A

((a` b)→ a+ b) ∈ S

that we shall prove thereafter (see Proposition 80). J

Additionally, we can show that the principle of double negation elimination is valid with
respect to any separator:

I Proposition 79 (Double negation). For all a ∈ A, the following holds:

1. a `S ¬¬a 2. ¬¬a `S a

Proof. The first item is easy since for all a ∈ A, we have a → ¬¬a = (¬a) ` ¬¬a ∼=S
¬¬a` ¬a = ¬a→ ¬a. As for the second item, we use Lemma 102 and Proposition 78 to it
reduce to the statement: k

a∈A
((¬a)→ ⊥)→ a ∈ S
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We use again Lemma 102 to prove it, by showing that:
k

a∈A
((¬a)→ ⊥)→ (¬a)→ a ∈ S

k

a∈A
((¬a)→ a)→ (¬a)→ a ∈ S

where the statement on the left hand-side from by subtyping from the identity. For the one
on the right hand-side, we use the same trick as in the last proof in order to reduce it to:

k

a∈A
(a→ ¬a)→ (a→ a)→ (¬a→ a)→ a) ∈ S

J

Sum type
As in implicative structures, we can define the sum type by:

a+ b ,
k

c∈A
((a→ c)→ (b→ c)→ c) (∀a, b ∈ A)

We can prove that the disjunction and this sum type are equivalent from the point of view of
the separator:

I Proposition 80 (Implicative sum type). For all a, b ∈ A, the following holds:

1. a` b `S a+ b 2. a+ b `S a` b

Proof. We prove in both cases a slightly more general statement, namely that the meet over
all a, b or the corresponding implication belongs to the separator. For the first item, we have:

k

a,b∈A

(a` b)→ a+ b =
k

a,b,c∈A

(a` b)→ (a→ c)→ (b→ c)→ c

Swapping the order of the arguments, we prove that
c
a,b,c∈A(b → c) → (a ` b) → (a →

c)→ c ∈ S. For this, we use Lemma 102 and the fact that:
k

a,b,c∈A

(b→ c)→ (a` b)→ (a` c) ∈ S
k

a,c∈A
(a` c)→ (a→ c)→ c ∈ S

The left hand-side statement is proved using s̀4, while on the right hand-side we prove it
from the fact that: k

a,c∈A
(a→ c)→ (a` c)→ c` c ∈ S

which is a subtype of s̀4, by using Lemma 102 again with s̀1 and by manipulation on the
order of the argument.

The second item is easier to prove, using Lemma 102 again and the fact that:
k

a,b∈A

a+ b→ (a→ (a` b))→ (b→ (a` b))→ (a` b) ∈ S

which is a subtype of IA (which belongs to S). The other part, which is to prove that:
k

a,b∈A

((a→ (a` b))→ (b→ (a` b))→ (a` b))→ (a` b) ∈ S

follows from Lemma 72 and the fact that
c
a,b∈A(a→ (a` b)) and

c
a,b∈A(b→ (a` b)) are

both in the separator.
J
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B.8 Induced implicative algebras
I Proposition 81 (Combinator kA). We have kA ∈ S.

Proof. This directly follows by upwards closure from the fact that
c
a,b∈A(a→ (b` a)) ∈

S. J

I Proposition 82 (Combinator sA). For any disjunctive algebra (A,4,`,¬,S), we have
sA ∈ S.

Proof. See Appendix B. We make several applications of Lemmas 102 and 72 consecutively.
We prove that: k

a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c) ∈ S

is implied by Lemma 102 and the following facts:
1.

c
a,b,c∈A((a→ b→ c)→ (b→ a→ c)) ∈ S

2.
c
a,b,c∈A((b→ a→ c)→ (a→ b)→ a→ c) ∈ S

The first statement is an ad-hoc lemma, while the second is proved by generalized transitivity
(Lemma 72), using a subtype of s̀4 as hypothesis, from:

k

a,b,c∈A

((a→ b)→ (a→ a→ c))→ (a→ b)→ a→ c ∈ S

The latter is proved, using again generalized transitivity with a subtype of s̀4 as premise,
from: k

a,b,c∈A

(a→ a→ c)→ (a→ c) ∈ S

This is proved using again Lemmas 102 and 72 with s̀5 and a variant of s̀4. J

I Proposition 83 (Combinator ccA). We have ccA ∈ S.

Proof. We make several applications of Lemmas 102 and 72 consecutively. We prove that:
k

a,b∈A

((a→ b)→ a)→ a ∈ S

is implied by generalized modus ponens (Lemma 102) and:

and

c
a,b∈A((a→ b)→ a)→ (¬a→ a→ b)→ ¬a→ a ∈ S

c
a,b∈A((¬a→ a→ b)→ ¬a→ a)→ a ∈ S

The statement above is a subtype of s̀4, while the other is proved, by Lemma 102, from:

and

c
a,b∈A((¬a→ a→ b)→ ¬a→ a)→ ¬a→ a ∈ S

c
a∈A((¬a)→ a)→ a ∈ S

The statement below is proved as in Proposition 16, while the statement above is proved by
a variant of the modus ponens and:

k

a,b∈A

(¬a→ a→ b) ∈ S

We conclude by proving this statement using the connections between ¬a and a → ⊥,
reducing the latter to: k

a,b∈A

(a→ ⊥)→ a→ b ∈ S

which is a subtype of the identity. J
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As a consequence, we get the expected theorem:

I Theorem 84. Any disjunctive algebra is a classical implicative algebra.

Proof. The conditions of upward closure and closure under modus ponens coincide for
implicative and disjunctive separators, and the previous propositions show that k, s and cc
belong to the separator of any disjunctive algebra. J

I Corollary 85. If t is a closed λ-term and (A,4,`,¬,S) a disjunctive algebra, then tA ∈ S.
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C Conjunctive algebras

The L⊗calculus corresponds exactly to the restriction of L to the positive fragment induced
by the connectives ⊗,¬ and the existential quantifier ∃ [35]. Its syntax is given by:

Terms t ::= x | (t, t) | [e] | µα.c
Values V ::= x | (V, V ) | [e]

Contexts e ::= α | µ(x, y).c | µ[α].c | µx.c
Commands c ::= 〈t || e〉

We denote by V0, T0, E0, C0 for the sets of closed values, terms, contexts and commands.
The syntax is really close to the one of L̀ : it has the same constructors but on terms, while
destructors are now evaluation contexts. We recall the meanings of the different constructions:

(t, t) are pairs of positive terms;
µ(x1, x2).c, which binds the variables x1, x2, is the dual destructor;
[e] is a constructor for the negation, which allows us to embed a negative context intro a
positive term;
µ[x].c, which binds the variable x, is the dual destructor;
µα.c and µx.c are unchanged.

The reduction rules correspond again to the intuition one could have from the syntax of the
calculus: all destructors and binders reduce in front of the corresponding values, while pairs
of terms are expanded if needed:

〈µα.c || e〉 → c[e/α]
〈[e] ||µ[α].c〉 → c[e/α]
〈V ||µx.c〉 → c[V/x]

〈(V, V ′) ||µ(x, x′).c〉 → c[V/x, V ′/x′]
〈(t, u) || e〉 →

〈
t
∣∣∣∣∣∣µx.〈u ∣∣∣∣µy.〈(x, y) || e〉

〉〉
where (t, u) /∈ V in the last β-reduction rule.

Finally, we shall present the type system of L⊗. Once more, we are interested in the
second-order formulas defined from the positive connectives:

Formulas A,B := X | A⊗B | ¬A | ∃X.A

We still work with threetwo-sided sequents, where typing contexts are defined as finite
lists of bindings between variable and formulas:

Γ ::= ε | Γ, x : A ∆ ::= ε | ∆, α : A

Sequents are again of three kinds, as in the λµµ̃-calculus and L̀ :
Γ ` t : A | ∆ for typing terms,
Γ | e : A ` ∆ for typing contexts,
c : Γ ` ∆ for typing commands.

The type system, which uses the same three kinds of sequents for terms, contexts,
commands than in L̀ type system, is given in Figure 3.

C.1 Embedding of the λ-calculus
Guided by the expected definition of the arrow A → B , ¬(A ⊗ ¬B), we can follow
Munch-Maccagnoni’s paper [35, Appendix E], to embed the λ-calculus into L⊗.

With such a definition, a stack u · e in A→ B (that is with u a term of type A and e a
context of type B) is naturally embedded as a term (u, [e]), which is turn into the context
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Γ ` t : A | ∆ Γ | e : A ` ∆
〈t || e〉 : Γ ` ∆

(Cut)
(α : A) ∈ ∆

Γ | α : A ` ∆
(ax`)

(x : A) ∈ Γ
Γ ` x : A | ∆

(`ax)

c : Γ ` ∆, x : A
Γ | µx.c : A ` ∆

(µ`)
c : (Γ, x : A, x′ : B ` ∆)

Γ | µ(x, x′).c : A⊗B ` ∆
(⊗`)

c : Γ ` ∆, α : A
Γ | µ[α].c : ¬A

(¬`)

c : Γ ` ∆, α : A
Γ ` µα.c : A | ∆

(`µ)
Γ ` t : A | ∆ Γ ` u : B | ∆

Γ ` (t, u) : A⊗B | ∆
(`⊗)

Γ | e : A ` ∆
Γ ` [e] : ¬A ` ∆

(`¬)

Γ | e : A ` ∆ X /∈ FV (Γ,∆)
Γ | e : ∃X.A ` ∆ ∃ `

Γ ` V : A[B/X] | ∆
Γ ` V : ∃X.A | ∆ ` ∃

Figure 3 Typing rules for the L⊗-calculus

µ[α]. 〈 (u, [e]) || α 〉 which indeed inhabits the “arrow” type ¬(A ⊗ ¬B). The rest of the
definitions are then direct:

µ(x, [α]).c , µ(x, x′).〈x′ ||µ[α].c〉
λx.t , [µ(x, [α]).〈t ||α〉]

These shorthands allow for the expected typing rules:

I Proposition 86. The following typing rules are admissible:

Γ, x : A ` t : B
Γ ` λx.t : A→ B

Γ ` u : A | ∆ Γ | e : B ` ∆
Γ | u · e : A→ B ` ∆

Γ ` t : A→ B | ∆ Γ ` u : A | ∆
Γ ` t u : B | ∆

Proof. Each case is directly derivable from L⊗ type system. We abuse the notations to
denote by (def) a rule which simply consists in unfolding the shorthands defining the λ-terms.

• Case µ(x, [α]).c:

Γ, x : A, x′ : ¬B ` x′ : ¬B | ∆
(`ax)

c : (Γ, x : A ` ∆, α : B)
Γ | µ[α].c : ¬B ` ∆

(µ`)

〈x′ ||µ[α].c〉 : (Γ, x : A, x′ : ¬B ` ∆)
(Cut)

Γ | µ(x, x′).〈x′ ||µ[α].c〉 : A⊗ ¬B ` ∆
(⊗`)

Γ | µ(x, [α]).c : A⊗ ¬B ` ∆
(def)

• Case λx.t:

Γ, x : A ` t : B | ∆ Γ | β : B ` ∆, β : B
(ax`)

〈t || β〉 : (Γ, x : A ` β : B,∆)
(Cut)

Γ | µ(x, [β]).〈t || β〉 : A⊗ ¬B ` ∆
Γ ` [µ(x, [β]).〈t || β〉] : ¬(A⊗ ¬B) | ∆

(`¬)

Γ ` λx.t : A→ B | ∆
(def)

• Case u · e:

Γ ` u : A ` ∆
Γ | e : B ` ∆

Γ ` [e] : ¬B | ∆
(`¬)

Γ ` (u, [e]) : A⊗ ¬B | ∆
(`⊗)

Γ | α : (A⊗ ¬B) ` ∆, α : (A⊗ ¬B)
(ax`)

〈(u, [e]) ||α〉 : (Γ ` ∆, α : A⊗ ¬B)
(Cut)

Γ | µ[α].〈(u, [e]) ||α〉 : ¬(A⊗ ¬B) ` ∆
(¬`)

Γ | u · e : A→ B ` ∆
(def)
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• Case t u:

Γ ` t : A→ B | ∆
Γ ` u : A | ∆ Γ | α : B ` ∆, α : B

Γ | u · α : A→ B ` ∆, α : B
〈t || u · α〉 : (Γ ` ∆, α : B)

(Cut)

Γ ` µα.〈t || u · α〉 : B | ∆
(`µ)

Γ ` t u : B | ∆
(def)

J

Besides, the usual rules of β-reduction for the call-by-value evaluation strategy are
simulated through the reduction of L⊗:

I Proposition 87 (β-reduction). We have the following reduction rules:

〈t u || e〉 −→β 〈t || u · e〉
〈λx.t || u · e〉 −→β

〈
u
∣∣∣∣µx.〈t || e〉〉

〈V ||µx.c〉 −→β c[V/x]

Proof. The third rule is included in L⊗ reduction system, the first follows from:

〈tu || e〉 =
〈
µα.〈t || u · α〉

∣∣∣∣ e〉 −→β 〈t || u · e〉

For the second rule, we first check that we have:

〈(V, [e])||µ(x, [α]).c〉 =
〈
(V, [e])

∣∣∣∣µ(x, x′).〈x′ ||µ[α].c〉
〉
−→β 〈[e]||µ[α].c[V/X]〉 −→β c[V/x][e/α]

from which we deduce:

〈λx.t || u · e〉 =
〈
[µ(x, [α]).〈t ||α〉]

∣∣∣∣µ[α].〈(u, [e]) ||α〉
〉

−→β

〈
(u, [e])

∣∣∣∣µ(x, [α]).〈t ||α〉
〉

−→β

〈
u
∣∣∣∣∣∣µy.〈(y, [e]) ∣∣∣∣µ(x, [α]).〈t ||α〉

〉〉
−→β

〈
u
∣∣∣∣µx.〈t || e〉〉

J

C.2 A realizability model based on the L⊗-calculus
We briefly recall the definitions necessary to the realizability interpretation à la Krivine of
L⊗. Most of the properties being the same as for L̀ , we spare the reader from a useless
copy-paste and go straight to the point. A pole is again defined as any subset of C0 closed by
anti-reduction. As usual in call-by-value realizability models [27], formulas are primitively
interpreted as sets of values, which we call ground truth values, while falsity values and
truth values are then defined by orthogonality. Therefore, an existential formula ∃X.A is
interpreted by the union over all the possible instantiations for the primitive truth value of
the variable X by a set S ∈ P(V0). We still assume that for each subset S of P(V0), there is
a constant symbol Ṡ in the syntax. The interpretation is given by:

|Ṡ|V , S (∀S ∈ P(V0))
|A⊗B|V , {(t, u) : t ∈ |A|V ∧ u ∈ |B|V }
|¬A|V , {[e] : e ∈ ‖A‖}

|∃X.A|V ,
⋃
S∈P(V0) |A{X := Ṡ}|V

‖A‖ , {e : ∀V ∈ |A|V , V⊥⊥e}
|A| , {t : ∀e ∈ ‖A‖, t⊥⊥e}
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We define again a valuation ρ as a function mapping each second-order variable to a primitive
falsity value ρ(X) ∈ P(V0). In this framework, we say that a substitution σ is a function
mapping each variable x to a closed value V ∈ V0 and each variable α to a closed context
e ∈ E0. We write σ  Γ and we say that a substitution σ realizes a context Γ, when for each
binding (x : A) ∈ Γ, we have σ(x) ∈ |A|V . Similarly, we say that σ realizes a context ∆ if for
each binding (α : A) ∈ ∆, we have σ(α) ∈ ‖A‖.

I Proposition 88 (Adequacy [35]). Let Γ,∆ be typing contexts, ρ be a valuation and σ be a
substitution which verifies that σ  Γ[ρ] and σ  ∆[ρ]. We have:
1. If ` V : A |, then V ∈ |A|V .
2. If | e : A `, then e ∈ ‖A‖.

3. If ` t : A |, then t ∈ |A|.
4. If c : (`), then c ∈ ⊥⊥.

C.3 Conjunctive structures
I Proposition 89 (Commutations). In any L⊗ realizability model, if X /∈ FV (B) the following
equalities hold:
1. |∃X.(A⊗B)|V = |(∃X.A)⊗B|V .
2. |∃X.(B ⊗A)|V = |B ⊗ (∃X.A)|V .
3. |¬(∃X.A)|V =

⋂
S∈P(V0) |¬A{X := Ṡ}|V

Proof. 1. Assume the X /∈ FV (B), then we have:

|∃X.(A⊗B)|V = S ∈ P(V0) t |A{X := Ṡ} ⊗B|V
= S ∈ P(V0) t {(V1, V2) : V1 ∈ |A{X := Ṡ}|V ∧ V2 ∈ |B|V }
= {(e1, e2) : e1 ∈ S ∈ P(V0) t |A{X := Ṡ}|V ∧ e2 ∈ |B|V }
= {(e1, e2) : e1 ∈ |∃X.A|V ∧ e2 ∈ ‖B‖} = |(∃X.A)⊗B|V

2. Identical.
3. The proof is again a simple unfolding of the definitions:

|¬(∃X.A)|V = {[t] : t ∈ |∃X.A|} = {[t] : t ∈
⋂

S∈P(V0)

|A{X := Ṡ}|}

=
⋂

S∈P(V0)

{[t] : t ∈ |A{X := Ṡ}]|} =
⋂

S∈P(V0)

|¬A{X := Ṡ}|V

J

I Example 22 (Realizability models). As for the disjunctive case, we can abstract the structure
of the realizability interpretation of L⊗ into a structure of the form (T0, E0,V0, (·, ·), [·],⊥⊥),
where (·, ·) is a map from T 2

0 to T0 (whose restriction to V0 has values in V0), [·] is an
operation from E0 to V0, and ⊥⊥ ⊆ T0 × E0 is a relation. From this sextuple we can define:

• A , P(V0) • a⊗ b , (a, b) = {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}
• a 4 b , a ⊆ b • ¬a , [a⊥⊥] = {[e] : e ∈ a⊥⊥}

(∀a, b ∈ A)

I Proposition 90. The quadruple (A,4,⊗,¬) is a conjunctive structure.

Proof. We show that the axioms of Definition 19 are satisfied.
1. Anti-monotonicity. Let a, a′ ∈ A, such that a 4 a′ ie a ⊆ a′. Then a′⊥⊥ ⊆ a⊥⊥ and thus

¬a′ = {[t] : t ∈ a′⊥⊥} ⊆ {[t] : t ∈ a⊥⊥} = ¬a

i.e. ¬a′ 4 ¬a.
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2. Covariance of the conjunction. Let a, a′, b, b′ ∈ A such that a′ ⊆ a and b′ ⊆ b. Then we
have

a⊗ b = {(t, u) : t ∈ a ∧ u ∈ b} ⊆ {(t, u) : t ∈ a′ ∧ u ∈ b′} = a′ ⊗ b′

i.e. a⊗ b 4 a′ ⊗ b′
3. Distributivity. Let a ∈ A and B ⊆ A, we have:

j

b∈B

(a⊗ b) =
j

b∈B

{(v, u) : t ∈ a ∧ u ∈ b} = {(t, u) : t ∈ a ∧ u ∈
j

b∈B

b} = a⊗ (
j

b∈B

b)

4. Commutation. Let B ⊆ A, we have (recall that
c
b∈B b =

⋂
b∈B b):

k

b∈B

{¬b} =
k

b∈B

{[t] : t ∈ b⊥⊥} = {[t] : t ∈
k

b∈B

b⊥⊥} = {[t] : t ∈ (
j

b∈B

b)⊥⊥} = ¬(
j

b∈B

b)

J

C.4 Interpreting L⊗ terms
We shall now see how to embed L⊗ commands, contexts and terms into any conjunctive
structure. For the rest of the section, we assume given a conjunctive structure (A,4,⊗,¬).

C.4.1 Commands
Following the same intuition as for the embedding of L̀ into disjunctive structures, we define
the commands 〈a || b〉 of the conjunctive structure A as the pairs (a, b), and we define the
pole ⊥⊥ as the ordering relation 4. We write CA = A×A for the set of commands in A and
(a, b) ∈ ⊥⊥ for a 4 b.

We consider the same relation E over CA, which was defined by:

cE c′ , if c ∈ ⊥⊥ then c′ ∈ ⊥⊥ (∀c, c′ ∈ CA)

Since the definition of commands only relies on the underlying lattice of A, the relation E
has the same properties as in disjunctive structures and in particular it defines a preorder
(see Appendix B.3.1).

C.4.2 Terms
The definitions of terms are very similar to the corresponding definitions for the dual contexts
in disjunctive structures.
I Definition 91 (Pairing). For all a, b ∈ A, we let (a, b) , a⊗ b.
I Definition 92 (Boxing). For all a ∈ A, we let [a] , ¬a.
I Definition 93 (µ+).

µ+.c ,
k

a∈A
{a : c(a) ∈ ⊥⊥}

We have the following properties for µ+:, whose proofs are trivial:
I Proposition 94 (Properties of µ+). For any functions c, c′ : A → CA, the following hold:
1. If for all a ∈ A, c(a)E c′(a), then µ+.c′ 4 µ+.c (Variance)
2. For all t ∈ A, then t = µ+.(a 7→ 〈t || a〉) (η-expansion)
3. For all e ∈ A, then 〈µ+.c || e〉E c(e) (β-reduction)
Proof. 1. Direct consequence of Proposition 54.

2,3. Trivial by definition of µ+.
J
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C.4.3 Contexts

Dually to the definitions of the (positive) contexts µ+ as a meet, we define the embedding of
(negative) terms, which are all binders, by arbitrary joins:

I Definition 95 (µ−). For all c : A → CA, we define:

µ−.c ,
j

a∈A
{a : c(a) ∈ ⊥⊥}

I Definition 96 (µ()). For all c : A2 → CA, we define:

µ().c ,
j

a,b∈A

{a⊗ b : c(a, b) ∈ ⊥⊥}

I Definition 97 (µ[]). For all c : A → CA, we define:

µ[].c ,
j

a∈A
{¬a : c(a) ∈ ⊥⊥}

Again, these definitions satisfy variance properties with respect to the preorder E and the
order relation 4. Observe that the µ() and µ− binders, which are negative binders catching
positive terms, are contravariant with respect to these relations while the µ[] binder, which
catches a negative context, is covariant.

I Proposition 98 (Variance). For any functions c, c′ with the corresponding arities, the
following hold:
1. If c(a)E c′(a) for all a ∈ A, then µ−.c′ 4 µ−.c
2. If c(a, b)E c′(a, b) for all a, b ∈ A, then µ().c′ 4 µ().c

3. If c(a)E c′(a) for all a ∈ A, then µ[].c 4 µ[].c′

Proof. Direct consequences of Proposition 54. J

The η-expansion is also reflected by the ordering relation 4:

I Proposition 99 (η-expansion). For all t ∈ A, the following holds:
1. µ−.(a 7→ 〈t || a〉) = t

2. µ().(a, b 7→ 〈t || (a, b)〉) 4 t
3. µ[].(a 7→ 〈t || [a]〉) 4 t

Proof. Trivial from the definitions. J

The β-reduction is again reflected by the preorder E as the property of subject reduction:

I Proposition 100 (β-reduction). For all e, e1, e2, t ∈ A, the following holds:
1. 〈µ−.c || e〉E c(e)
2. 〈µ().c || (e1, e2)〉E c(e1, e2)
3. 〈µ[].c || [t]〉E c(t)

Proof. Trivial from the definitions. J
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C.5 Adequacy
We shall now prove that the interpretation of L⊗ is adequate with respect to its type system.
Again, we extend the syntax of formulas to define second-order formulas with parameters by:

A,B ::= a | X | ¬A | A⊗B | ∃X.A (a ∈ A)

This allows us to define an embedding of closed formulas with parameters into the conjunctive
structure A;

aA , a

(¬A)A , ¬AA
(A⊗B)A , AA ⊗BA
(∃X.A)A ,

b
a∈A(A{X := a})A

(if a ∈ A)

As in the previous chapter, we define substitutions, which we write σ, as functions
mapping variables (of terms, contexts and types) to element of A:

σ ::= ε | σ[x 7→ a] | σ[α 7→ a] | σ[X 7→ a] (a ∈ A, x,X variables)

We say that a substitution σ realizes a typing context Γ, which write σ  Γ, if for all bindings
(x : A) ∈ Γ we have σ(x) 4 (A[σ])A. Dually, we say that σ realizes ∆ if for all bindings
(α : A) ∈ ∆ , we have σ(α) < (A[σ])A.

I Theorem 101 (Adequacy). The typing rules of L⊗ (Figure 3) are adequate with respect to
the interpretation of terms (contexts,commands) and formulas: for all contexts Γ,∆, for all
formulas with parameters A and for all substitutions σ such that σ  Γ and σ  ∆, we have:
1. For any term t, if Γ ` t : A | ∆, then (t[σ])A 4 A[σ]A;
2. For any context e, if Γ | e : A ` ∆, then (e[σ])A < A[σ]A;
3. For any command c, if c : (Γ ` ∆), then (c[σ])A ∈ ⊥⊥.

Proof. By induction on the typing derivations. Since most of the cases are similar to the
corresponding cases for the adequacy of the embedding of L̀ into disjunctive structures, we
only give some key cases.

Case (` ⊗).

Assume that we have:
Γ ` t1 : A1 | ∆ Γ ` t2 : A2 | ∆

Γ ` (t1, t2) : A1 ⊗A2 | ∆
(`⊗)

By induction hypotheses, we have that (t1[σ])A 4 (A1[σ])A and (t2[σ])A 4 (A2[σ])A.
Therefore, by monotonicity of the ⊗ operator, we have:

((t1, t2)[σ])A = (t1[σ], t2[σ])A = (t1[σ])A ⊗ (t2[σ])A 4 (A1[σ])A ` (A2[σ])A .

Case (⊗ `).

Assume that we have:
c : Γ, x1 : A1, x2 : A2 ` ∆

Γ | µ(x1, x2).c : A1 ⊗A2 ` ∆
(⊗`)

By induction hypothesis, we get that (c[σ, x1 7→ (A1[σ])A, x2 7→ (A2[σ])A])A ∈ ⊥⊥. Then by
definition we have

((µ(x1, x2).c)[σ])A =
j

a,b∈A

{a` b : (c[σ, x1 7→ a, x2 7→ b])A ∈ ⊥⊥} < (A1[σ])A ⊗ (A2[σ])A.
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Case (∃ `).

Assume that we have:
Γ | e : A ` ∆ X /∈ FV (Γ,∆)

Γ | e : ∃X.A ` ∆
(∃`)

By induction hypothesis, we have that for all a ∈ A, (e[σ])A < ((A)[σ, x 7→ a])A. Therefore,
we have that (e[σ])A <

b
a∈A(A{X := a}[σ])A.

Case (` ∃).

Similarly, assume that we have:

Γ ` t : A{X := B} | ∆
Γ ` t : ∃X.A | ∆

(`∃)

By induction hypothesis, we have that (t[σ])A 4 (A[σ,X 7→ (B[σ])A])A. Therefore, we have
that (t[σ])A 4 gb∈A{A{X := b}[σ]A}. J

C.6 Conjunctive algebras
If we analyse the tensorial calculus underlying L⊗ type system and try to inline all the typing
rules involving commands and contexts within the one for terms, we are is left with the
following four rules:

Γ, A ` A
Γ ` A Γ ` B

Γ ` A⊗B
Γ, A,B ` C Γ, A,B ` ¬C

Γ ` ¬(A⊗B)
Γ, A ` C Γ, A ` ¬C

Γ ` ¬A

This emphasizes that this positive fragment is a calculus of contradiction: both deduction
rules have a negated formula as a conclusion. This justifies considering the following deduction
rule in the separator:

¬(a⊗ b) ∈ S a ∈ S
¬b ∈ S

rather than the modus ponens. The latter can be retrieved when assuming that the separator
also satisfies that if ¬¬a ∈ S then a ∈ S. Computationally, this corresponds to the intuition
that when composing values, one essentially gets a computation (¬¬a) rather than a value.
Extracting the value from a computation requires some extra computational power that is
provided by classical control.

C.6.1 Internal logic
I Proposition 102 (Preorder). For any a, b, c ∈ A, we have:
1. a `S a (Reflexivity)
2. if a `S b and b `S c then a `S c (Transitivity)

Proof. We deduce (2) from its variant defined in terms of a `¬ b , ¬(a⊗ b) ∈ S: if a `¬ b
and ¬b `¬ c then a `¬ c. As for disjunctive algebras, this is proven by applying twice the
deduction rule (3) of separators to prove instead that:

¬(¬(¬b⊗ c)⊗ ¬(a⊗ b)⊗ a⊗ c) ∈ S

This follows directly from the fact that s⊗4 ∈ S. J

I Proposition 103 (Implicative negation). For all a ∈ A, the following holds:
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1. a `S ¬¬a 2. ¬¬a `S a 3. ¬a `S a ⊗→ ⊥ 4. a ⊗→ ⊥ `S ¬a

Proof. Easy manipulations of the algebras, see Coq proofs. We sketch the two last to give
an idea:
3. Observe that s⊗4 implies that if a `S b and (¬(c⊗ b)) ∈ S then (¬(c⊗ a)) ∈ S. Then the

claim follows from the fact that ¬¬(a⊗¬⊥) `S a⊗¬⊥ (by 2) and that (¬a)⊗a⊗¬⊥ ∈ S
(using s⊗2 ).

4. We first prove that ¬a `S ¬b implies b `S a and that ¬⊥ = >. Then a `S a⊗> follows
by upward closure from s⊗1 . J

For technical reasons, we define:

a♦b ,
j
{c : a 4 ¬(b⊗ c)}

We first show that:

I Lemma 104 (Adjunction). For any a, b, c ∈ A, c 4 a♦b iff a 4 ¬(b⊗ c).

Proof. (⇒) Assume c 4 a♦b. We use the transitivity to prove that:

a 4 ¬(b⊗ (a♦b)) ¬(b⊗ (a♦b)) 4 ¬(b⊗ c)

The right hand side follows directly from the assumption, while the left hand side is a
consequences of distribution laws:

¬(b⊗ (a♦b)) = ¬(b⊗
j
{c : a 4 ¬(b⊗ c)}) =

k
{¬(b⊗ c) : a 4 ¬(b⊗ c)} < a

(⇐) Trivial by definition of a♦b.
J

I Proposition 105. If a ∈ S and b ∈ S then ab ∈ S.

Proof. First, observe that we have:

ab =
k
{¬¬c : a 4 b ⊗→ c} = ¬

j
{¬c : a 4 b ⊗→ c}

Then one can easily show that:
¬(a♦b) 4 ab

and therefore it suffices to show that ¬(a♦b) ∈ S. To that end, we use the deduction rule of
the separator and show that

¬(b⊗ (a♦b)) ∈ S

This is now easy using the previous lemma and that a ∈ S, since we have:

a 4 ¬(b⊗ (a♦b)) iff a♦b 4 a♦b J

The beta reduction rule now involves a double-negation on the reduced term:

I Proposition 106. (λf)a 4 ¬¬f(a)

We show that Hilbert’s combinators k and s belong to any conjunctive separator:

I Proposition 107 (k and s). We have:

1. (λxy.x)A ∈ S 2. (λxyz.x z (y z))A ∈ S
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Proof. We only sketch these proofs are quite involved and require several auxiliary results
(see the Coq files).
1. We first show (λxy.x)A =

c
a,b(¬(a ⊗ b ⊗ ¬b)). Then we conclude by transitivity by

showing that
c
a,b(¬(a ⊗ ¬b ⊗ b)) ∈ S and

c
a,b ¬((¬b ⊗ b) ⊗ (b ⊗ ¬b)) ∈ S. The latter

follows from s⊗3 , while the former follows from s⊗2 modulo the facts that the tensor is
associative and commutative with respect to the separator.

2. We first show that the interpretation of the type of s belongs to S:
k

a,b,c

]((a ⊗→ b ⊗→ c) ⊗→ (a ⊗→ b) ⊗→ a ⊗→ c) ∈ S (S1)

We then mimic the proof that s and its type are the same in implicative structure, replacing
the ordering relation by the entailment. We begin by showing (using distribution laws)
that s ∈ S can be deduced from:

k
{¬(((a⊗ b)⊗ c)⊗ ¬d) : ac 4 bc ⊗→ d} ∈ S (S2)

Then, after showing that: k

a,b

(a ⊗→ (b ⊗→ ab)) ∈ S (S3)

we prove that the (S3) can be deduced from:
k

b,c,d

((c ⊗→ bc ⊗→ d) ⊗→ (c ⊗→ bc) ⊗→ c ⊗→ d) ∈ S (S4)

which follows from (S1).

J

In the case where the separator is classical27, we can prove that it contains the interpre-
tation of all closed λ-terms:

I Theorem 108 (λ-calculus). If S is classical and t is a closed λ-term, then tA ∈ S.

Proof. By combinatorial completeness, we have the existence of a combinatorial term t0
(i.e. a composition of k and s) such that t0 →∗ t. Since k ∈ S, s ∈ S and S is closed under
application, tA0 ∈ S. For each step tn → tn+1, we have tAn 4 ¬¬tAn+1, and thus tAn ∈ S implies
tAn+1 ∈ S. We conclude by induction on the length of the reduction t0 →∗ t. J

Induced Heyting algebra
As in the implicative case, the entailment relation induces a structure of (pre)-Heyting
algebra, whose conjunction and disjunction are naturally given a + b , ¬(¬a ⊗ ¬b) and
a× b , a⊗ b.

I Proposition 109 (Heyting Algebra). For any a, b, c ∈ A For any a, b, c ∈ A, we have:
1. a× b `S a
2. a× b `S b

3. a `S a+ b

4. b `S a+ b

5. a `S b ⊗→ c iff a×b `S c

27Actually, since we always have that if ¬¬¬¬a ∈ S then ¬¬a ∈ S, the same proof shows that in the
intuitionistic case we have at ¬¬tA ∈ S.
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Proof. Easy manipulation of conjunctive algebras, see the Coq proofs. J

Conjunctive tripos
We will need the following lemma:

I Lemma 110 (Adjunction). If a 4 b ⊗→ c then ab 4 ¬¬c.

In order to obtain a conjunctive tripos, we define:

∃
i∈I

ai ,
j

i∈I
ai ∀

i∈I
ai , ¬(

j

i∈I
¬ai)

I Theorem 111 (Conjunctive tripos). Let (A,4,→,S) be a classical conjunctive algebra.
The following functor (where f : J → I):

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J ]

[(ai)i∈I ] 7→ [(af(j))j∈J ]

defines a tripos.

Proof. The proof mimics the proof in the case of implicative algebras, see Theorem 111.
We verify that T satisfies all the necessary conditions to be a tripos.
The functoriality of T is clear.
For each I ∈ Set, the image of the corresponding diagonal morphism T (δI) associates to
any element [(aij)(i,j)∈I×I ] ∈ T (I × I) the element [(aii)i∈I ] ∈ T (I). We define

(=I) : i, j 7→

{c
a∈A(a→ a) if i = j

⊥ → > if i 6= j

and we need to prove that for all [a] ∈ T (I × I):

[>]I 4S[I] T (δI)(a) ⇔ [=I ] 4S[I×I] [a]

Let then [(aij)i,j∈I ] be an element of T (I × I).
From left to right, assume that [>]I 4S[I] T (δI)(a), that is to say that there exists s ∈ S
such that for any i ∈ I, s 4 > → aii. We would like to reproduce the proof in the
implicative case, which uses λz.z(s(λx.x)). Here, due to the double-negation induced by
the application (see Section 4.4), we can only show that:

λz.z(s(λx.x)) 4 i =I j → ¬¬¬¬aij (∀i, j)

. Indeed, if i 6= j, we have that:

λz.z(s(λx.x)) 4 (> → ⊥)→ ¬¬¬¬aij
⇐ (> → ⊥)→ (> → ⊥)(s(λx.x)) 4 (> → ⊥)→ ¬¬¬¬aij
⇐ (> → ⊥)(s(λx.x)) 4 ¬¬¬¬aij
⇐ >→ ⊥ 4 (s(λx.x))→ ¬¬aij

(λ− def)
(variance)

(adjunction)

the last one being true by subtyping. If i = j, we have that:

λz.z(s(λx.x)) 4 (
c
a→ a)→ ¬¬¬¬aii

⇐ (
c
a→ a)→ (

c
a→ a)(s(λx.x)) 4 (

c
a→ a)→ ¬¬¬¬aij

⇐ (
c
a→ a)(s(λx.x)) 4 ¬¬¬¬aij

⇐ (
c
a→ a) 4 (s(λx.x))→ ¬¬aij

⇐ (s(λx.x))→ (s(λx.x)) 4 (s(λx.x))→ ¬¬aij
⇐ s(λx.x) 4 ¬¬aij
⇐ s 4 λx.x→ aij

(λ− def)
(variance)

(adjunction)
(variance)

(adjunction)
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the last one being true by assumption. We conclude using the fact that any λ-terms with
parameters in S belongs to S using a slight variant of Theorem 108.
From right to left, if there exists s ∈ S such that for any i, j ∈ I, s 4 i =I j → aij , then
in particular for all i

c
a(a

⊗→ a) ` aii. We use the transitivy of ` to show that > ` aii
follows from

c
a(a ⊗→ a) ` aii and > `

c
a(a ⊗→ a). Writing Id for

c
a(a ⊗→ a), the latter

is obtained by using the deduction rule:

` ¬(Id⊗ (>⊗ ¬Id)) ` Id
` ¬(>⊗ Id

Using s⊗5 to get ¬(Id⊗ (>⊗ ¬Id)) from ¬(¬(Id⊗>)⊗ ¬Id) which follows from s⊗2 .
For each projection π1

I×J : I × J → I in C, the monotone function T (π1
I,J) : T (I) →

T (I × J) has both a left adjoint (∃J)I and a right adjoint (∀J)I which are defined by:

(∀J)I
(

[(aij)i,j∈I×J ]
)
,
[
( ∀
j∈J

aij)i∈I
]

(∃J)I
(

[(aij)i,j∈I×J ]
)
,
[
( ∃
j∈J

aij)i∈I
]

We only give the case of ∀, the case for ∃ is easier (it corresponds to this and this Coq
lemmas). We need to show that for any [(bij)(i,j)∈I×J ] ∈ T (I × J) and for any [(ai)i∈I ],
we have:

[(ai)(i,j)∈I×J ] 4S[I×J] [(bij)(i,j)∈I ] ⇔ [(ai)i∈I ] 4S[I]
[
( ∀
j∈J

bij)i∈I
]

=
[
(¬

j

j∈J
¬bij)i∈I

]
Let us fix some [a] and [b] as above.
From left to right, assume that for all i ∈ I, j ∈ J , aij ` bi, we want to prove that ∀i ∈ I,
we have ai ` ¬

b
j∈J ¬bij . We first show that for any a, b, c, the following rule is valid (it

mainly amount to s⊗4 ):
a ` b ¬(c⊗ b) ∈ S
¬(c⊗ a) ∈ S

and prove instead that ¬¬
b
j∈J ¬bij `

b
j∈J ¬bij and ¬(ai⊗

b
j∈J ¬bij) ∈ S. The former

amount to ¬¬a ` a while we can use commutation rule on the latter to rewrite it as:c
j∈J ¬(ai ⊗ ¬bij) ∈ S which follows from the assumption.

From right to left, the processus is almost the same and relies on the fact we have for all
i ∈ I, j ∈ J , (ai ⊗→ bij) ∈ S if and only if for all i ∈ I,

c
j(ai

⊗→ bij) ∈ S if and only if for
all i ∈ I, (ai ⊗

b
j ¬bij) ∈ S. We then use the same lemma with the reverse law a ` ¬¬a.

These adjoints clearly satisfy the Beck-Chevaley condition as in the implicative cases.
Finally, we define Prop , A and verify that tr , [idA] ∈ T (Prop) is a generic predicate,
as in the implicative case.

J
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D The duality of computation

I Proposition 112. Let (A,4,`,¬) be a disjunctive structure. Let us define:

• A⊗ , A` •
c⊗ ,

b` • a⊗ b , a` b

• a / b , b 4 a •
b⊗ ,

c̀
• ¬a , ¬a

then (A⊗, /,⊗,¬) is a conjunctive structure.

Proof. We check that for all a, a′, b, b′ ∈ A and for all subsets A ⊆ A, we have:
1. If a / a′ then ¬a′ / ¬a (Variance)
2. If a / a′ and b / b′ then a⊗ b / a′ ⊗ b′. (Variance)
3. (

c⊗
a∈A a)⊗ b =

c⊗
a∈A(a⊗ b) and b⊗ (

c⊗
a∈A a) =

c⊗
a∈A(b⊗ a) (Distributivity)

4. ¬(
b⊗
a∈A a) =

c⊗
a∈A(¬a) (Commutation)

All the proof are trivial from the corresponding properties of disjunctive structures. J

I Proposition 113. Let (A,4,⊗,¬) be a conjunctive structure. Let us define:

• A` , A⊗ •
c̀
,

b⊗ • a` b , a⊗ b
• a / b , b 4 a •

b` , c⊗ • ¬a , ¬a

then (A⊗, /,⊗,¬) is a conjunctive structure.

Proof. We check that for all a, a′, b, b′ ∈ A and for all subsets A ⊆ A, we have:
1. If a / a′ then ¬a′ / ¬a. (Variance)
2. If a / a′ and b / b′ then a` b / a′ ` b′. (Variance)
3. (

c̀
a∈A a) ` b =

c̀
a∈A(a` b) and a` (

c̀
b∈B b) =

c̀
b∈B(a` b) (Distributivity)

4. ¬(
c̀

A) =
b`
a∈A(¬a) (Commutation)

All the proof are trivial from the corresponding properties of conjunctive structures. J

I Theorem 114. Let (A⊗,S⊗) be a conjunctive algebra, the set:

S` , ¬−1(S⊗) = {a ∈ A : ¬a ∈ S⊗}

is a valid separator for the dual disjunctive structure A`.

I Theorem 115. Let (A`,S`) be a disjunctive algebra. The set:

S⊗ , ¬−1(S`) = {a ∈ A : ¬a ∈ S`}

is a classical separator for the dual conjunctive structure A⊗.

Proof. Both proofs rely on the fact that:

a `S⊗ b⇔ ¬a `S` ¬b and a `S` b⇔ ¬a `S⊗ ¬b

In particular, to prove that the modus ponens is valid when passing from A⊗ to A`, we
need to show that if a, a → b ∈ ¬−1(S⊗), then b ∈ ¬−1(S⊗) i.e. ¬b ∈ S⊗. By hypothesis,
we thus have that ¬a→ ¬b ∈ S⊗, from which we deduce that ¬(b⊗ ¬a) ∈ S⊗ (by internal
contraposition). Using the deduction axiom (since ¬a ∈ S⊗), we finally get ¬b ∈ S⊗. J
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