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Abstract

We propose an e�cient algorithm that removes unimpor-
tant regions from a hierarchical partition tree, while pre-
serving the hierarchical partition structure. Various exper-
iments demonstrate that applying this algorithm on var-
ious classi�cation or segmentation problems does indeed
improve the results by a large margin. Code is available
online at https://github.com/higra/Higra.

1 Introduction

Many algorithms for image segmentation or data cluster-
ing contain a step that removes unimportant regions or
clusters. In this paper, we are dealing with the more
general problem of removing unimportant regions from
a hierarchy of partitions, while still preserving the hier-
archical partition structure. This is a common problem
that appears in many di�erent situations. For example,
constrained connectivity [24] solves the chaining problem
well-known as one of the issues with minimum spanning
tree based approaches, but it may creates a series of small
undesirable regions in situation where there is a ramp dis-
continuity (see [25] for an analysis of this particular case).

One way to achieve such a hierarchical simpli�cation
would be to extract all the possible segmentations from
the hierarchy, and for each one of them, remove the non-
important regions by merging these regions with one of
their neighbours. One of the issues is that those merging
steps have to be performed in a consistent way, so that the
set of simpli�ed segmentations is still a hierarchy. Another
important issue is that such a process would be slow.

In the literature on transformations of hierarchical seg-
mentations [11, 24, 5, 4, 26], there is not guarantee that
unimportant regions are removed from the hierarchy. For
example, small regions (with small area) can appear at
very high level in the hierarchical tree, and the methods do
not remove them. Thus, there is a need for post-processing

the hierarchy. To the best of our knowledge, no algorithm
has ever been presented for performing such a task.
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Figure 1: A �owchart of the proposed method for remov-
ing non-signi�cant regions from a given hierarchy H and
obtaining a new hierarchy H′.

In order to provide such an e�cient algorithm for remov-
ing unimportant regions from a hierarchy of partitions, we
rely on the framework proposed in [7], where the equiv-
alence between various hierarchical representations (den-
drograms, saliency maps or minimum spanning trees) is
demonstrated (see Section 2). As shown in Fig. 1, our
algorithm makes use of these di�erent representations to
e�ciently achieve its goal. This algorithm has been brie�y
introduced in the appendix of [12], but a detailed analysis
and clear explanations were missing; they are provided in
Section 3. Furthermore, an empirical evaluation demon-
strating its practical e�ectiveness is performed in Section
4.

2 Basic notions for graph-based hi-

erarchy processing

Any hierarchy can be equivalently represented by sets as
series of nested partitions or with a characteristic function
de�ned on the edges of a graph and called a saliency map.
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Figure 2: (a) An example of hierarchy of partitions, H =
(P0,P1,P2,P3) where P0 = {{a}, {b}, {c}, {d}, {e}, {f}},
P1 = {{a, b}, {c, f}, {d}, {e}}, P2 = {{a, b, d}, {c, e, f}},
P3 = {{a, b, c, d, e, f}}; (b) the saliency map of H on a
graph G, ΦG(H); (c) the dendrogram of the hierarchy H.

The core of the hierarchy simpli�cation method which we
propose in this article and which is precisely described
in Section 3 considers the saliency map representations
of the hierarchies. In this section, we provide the formal
de�nitions of the set representation of hierarchies and of
the saliency maps. We also highlight how one can switch
between the set and the functional representations of a
hierarchy.

2.1 Hierarchies of partitions

In this article, the symbol V denotes a �nite set which
stands for the working space. In applications to image
analysis, it can be for instance the set of all image pixels
or superpixels. A partition of V is a set P of nonempty
disjoint subsets of V whose union is V . Each element of
P is called a region of P.
A hierarchy on V is a sequence H = (P0, . . . ,P`) of

partitions of V such that, for any i ∈ {1, . . . , `}, any region
of the partition Pi−1 is included in a region of Pi .
Figure 2 (a) and (c) illustrate an example of a hier-

archy and of its dendrogram, respectively. Dendrograms
are commonly used in applications. Intuitively, the den-
drogram of a hierarchy embeds the inclusion relationship
between the regions of this hierarchy. More precisely, it
is a tree where the nodes correspond to the regions of the
hierarchy and where each region R is linked to the largest
(non-empty) regions of the hierarchy which are proper sub-
sets of R, called the children of R.

2.2 Saliency map

Any hierarchy can be represented by an edge-weighted
graph [7] spanning the elements of the space V . We pro-
vide in this section the de�nition of such a representation
called a saliency map. A graph (spanning V ) is a pair
G = (V,E) such that E is a subset of the set of all un-
orderd pairs of distinct elements of V , i.e., the set E is
a subset of {{x, y} ⊆ V | x 6= y}. If G = (V,E) is a
graph, each element of V is called a vertex of G, and each
element of E is called an edge of G. A subgraph of a
graph G = (V,E) is a graph (V ′, E′) such that V ′ and E′

are subsets of V and of E, respectively. If X is a graph,

its vertex and edge sets are denoted by V (X) and E(X),
respectively.

A sequence (x0, . . . , x`) of vertices of a graph G is called
a path from x0 to x` in G if any two successive vertices in
the sequence form an edge of G, i.e., for any i in {1, . . . , `},
the unordered pair {xi−1, xi} is an edge of G. A graph is
connected whenever there is a path from any of its ver-
tices to every other one. Let G be a graph, by extension,
we say that a subset R of V is connected (for G) if the
subgraph of G induced by R is connected, i.e., the sub-
graph (R, {{x, y} ∈ E(G) | x ∈ R, y ∈ R}) is connected.
A connected component of G is a subset R of V which
is connected and maximal for this property: any proper
superset of R is not connected.

In the sequel of this article, we assume that the space V
is structured by a graph G = (V,E). For instance, in ap-
plications to image analysis, if the set V contains the set
of all pixels or superpixels of an image, the edge set E
can be obtained by any pixel or superpixel adjacency re-
lation such as the one induced by the classical 4-, 6- or
8-adjacency relations. Furthermore, we will also assume
that any hierarchy on V is connected for G meaning that
any region of any considered hierarchy is connected for the
graph G. These assumptions correspond to the situations
which are the most often encountered in hierarchical im-
age analysis. However, they can be dropped by considering
that the graph G is the complete graph on V so that any
subset of V is always connected. In such case the notion
of a saliency map, whose de�nition is recalled hereafter,
corresponds exactly to the notion of ultrametric distance
which is well known in classi�cation [14].

A map w from E into the set R of real numbers is called
a weight map on G. For any edge u of E, the value w(u) is
called the weight of u, and the pair (G,w) is called an edge-
weighted graph. Given a graph G = (V,E) and a hierarchy
H on V , we show below how to de�ne the saliency map
ΦG(H) of H from E to R, which is an equivalent represen-
tation of the hierarchy H; knowing H one can infer ΦG(H)
and, conversely, knowing ΦG(H) one can recover H.
Let us consider a hierarchy H = (P0, . . . ,P`) on V .

The saliency map of H is the map ΦG(H) from E to L =
{0, . . . , `} ⊂ R, such that the weight of any edge u = {x, y}
of G for ΦG(H) is the largest value λ in L such that x
and y belong to two distinct regions of Pλ. Figure 2 (b)
shows the saliency map ΦG(H) of the hierarchy H given
in Figure 2 (a).

There is a bijection between the set of all hierarchies on
V and the set containing every map which is the saliency
map of a hierarchy (see Theorem 1 of [7]). In the next
section, we present the quasi-�at-zone transform, denoted
by QFZ which is the inverse of ΦG and allows to recover
the hierarchy H knowing only its saliency map ΦG(H).
These two transforms, namely ΦG and QFZ, make it pos-
sible to treat a hierachy either in a �set-oriented domain�
(left part of Figure 1) or in the �saliency map domain�
(right part of Figure 1).

2



An algorithm for computing the saliency map of any hi-
erarchy H in linear time with respect to the size of the
graph G, i.e., O(|V |+ |E|), is described in [7]. This algo-
rithm can be sketched as follows:

1. preprocess H for least common ancestors searches;

2. for each edge u = {x, y} of G taken in any order,

(a) �nd the least common ancestor R of x and of y
in the dendrogram of H;

(b) set the weight of u to the level of R in the hier-
archy.

2.3 Quasi-�at zone hierarchy

Quasi-�at zone transform [19, 17, 7] maps any edge-
weighted graph into a hierarchy. In particular, if the de-
parting map is the saliency map of a hierarchy, this trans-
form allows to recover the initial hierarchy. As the hi-
erarchy simpli�cation method which we propose in Sec-
tion 3 treats the hierarchies from their saliency maps, the
quasi-�at zone transform allows us to recover the hierar-
chy associated with the saliency maps produced by our
simpli�cation method (see the overview diagram of Fig-
ure 1). Intuitively, this transform considers the series of
the connected component partitions induced by the suc-
cessive level sets of the edge-weight map.

Given an edge-weighted graph (G,w) and a value λ ∈ R,
the λ-level set of E for w is de�ned by wλ(E) = {u ∈
E | w(u) < λ} and its associated subgraph (V,wλ(E)),
denoted by wλ(G), is called the λ-level graph of G for w.
The set of all connected components of wλ(G), denoted by
C(wλ(G)), is a partition of V called the λ-level partition
of G for w. Given an edge-weighted graph (G,w), the
quasi-�at zone hierarchy QFZ(G,w) of (G,w) is then the
�nite sequence of all λ-level partitions of G for w, ordered
by increasing values of λ, namely,

QFZ(G,w) = (C(wλ(G)) | λ ∈ R).

3 Hierarchy simpli�cation with an

attribute criterion

The proposed simpli�cation method is based on a regional
attribute, such as region area (size) and contrast, which
measures the signi�cance of any region. It aims at trans-
forming an initial hierarchy into a new one such that:

• the new hierarchy does not contain any region with
an attribute value below a given threshold;

• the regions of the new hierarchy are either regions of
the initial hierarchies or regions obtained by merging
adjacent regions of the initial hierarchy.

As mentioned in the introduction, in order to e�ciently
perform such simpli�cation, the hierarchies are repre-
sented by weight maps. More precisely, we consider the
(spatially and functionally) minimal representation of a hi-
erarchy introduced in [7]: it consists of a minimal weighted
subgraph (in terms of inclusion relation on graphs) whose
quasi-�at zone hierarchy is precisely the hierarchy that we
aim to represent. Such minimal representation of a hier-
archy can be obtained by considering �rst the graph G
weighted by the saliency map of the given hierarchy and
then restricting it to one of its minimum spanning trees
(Theorem 12 in [7]), leading to a weighted tree (T,w).
The core of the method is then to produce a new weight
map w′ for this graph T , standing for the saliency map
representing the resulting simpli�ed hierarchy. In order to
produce such map, the edges of the tree are considered in
any order. For each edge {x, y}, the largest region of the
hierarchy which contains x but not y and the largest region
of the hierarchy which contains y but not x are analyzed.
If the attribute value of one of these two regions is below
the given threshold, then the two regions must be merged.
This is done by setting to 0 the weight of {x, y} for w′. On
the contrary, if the attributes of both regions are above
the given threshold, then the two regions must be kept
and we replicate the weight of {x, y} for w into w′. In
order to e�ciently implement this method, a fundamental
operation consists of �nding the largest region of a hierar-
chy which contains one extremity of an edge but not the
other. This can be done with the help of a data structure
called a binary partition tree by altitude ordering. Hence,
before giving a precise presentation of the simpli�cation
algorithm in Section 3.2, we �rst present, in Section 3.1,
binary partition trees by altitude ordering together with a
simple algorithm to compute them.

3.1 Binary partition tree by altitude or-

dering

Binary partition trees by altitude ordering (BPTAOs) are
deeply related to Kruskal's minimum spanning tree algo-
rithm [13].

More precisely, the BPTAO data structure can be seen
as the (tree-based representation of a) hierarchy of parti-
tions of V obtained during Kruskal's minimum-spanning-
tree algorithm. A formal de�nition of this structure can
be found in [8] and algorithms to construct them are pre-
sented in [20]. In this article, for the sake of completeness,
we present a simple algorithm to construct it. However,
the reader interested into a more e�cient construction is
refered to [20].

This simple construction of a BPTAO from an edge
weighted graph (G,w) is given in Algorithm 1. It cor-
responds to a particular implementation of Kruskal's al-
gorithm. The auxiliary functions called in Algorithm 1,
namely AddNode, FindRoot and CreateParent, are also
described below Algorithm 1. In Algorithm 1, we initially
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Algorithm 1: Playing with Kruskal

Data: An edge-weighted graph ((V,E), w)
Result: An array LMST to store the edges of an

MST of G in non-decreasing order of
weight with respect to w

Result: Its associated BPTAO B

1 e := 0 ; /* Initialize the index for LMST */

2 foreach x ∈ V do B.AddNode(x) ;
/* Assuming that V = {0, . . . , n− 1} */

3 foreach {x, y} ∈ E in non-decreasing order of w
do

4 rx := B.FindRoot(x);
5 ry := B.FindRoot(y);
6 if rx 6= ry then
7 B.CreateParent(rx, ry);
8 LMST [e] := {x, y};
9 e += 1;

Function B.AddNode(x)

1 B.Parent[x] = −1;
2 B.Size += 1;

Function B.FindRoot(x)

1 while B.Parent[x] ≥ 0 do x := B.Parent[x];
2 return x

Function B.CreateParent(x,y)

1 i := B.Size; /* index for the new node */

2 B.AddNode(i);
3 B.Parent[x] := i;
4 B.Parent[y] := i;
5 B.LeftChild[i] := x;
6 B.RightChild[i] := y;

consider a partition into singletons (Line 2) which is the
�rst level of the BPTAO. Then, when an edge is selected
by Kruskal's algorithm, we build the next level by merging
the largest regions containing the vertices of the selected
edge {x, y} (Lines 3-9). In terms of tree, the newly created
region R is a new node of the BPTAO B, which becomes
the parent of the two nodes associated with the merged
regions (Line 7). There is a direct relation between the
newly created region R and the edge {x, y} that is con-
sidered for the merging which creates the region R. In
Algorithm 1, we observe that the edge {x, y} is stored at
an index e (see Line 8) of the array LMST and that the
index of the region R corresponding to the node in the
tree data structure B is n+ e = |V |+ e (Line 7), allowing
to keep track of the relation between the edge {x, y} and
the region R for further processing. When the algorithm

terminates, we then obtain:

• a minimum spanning tree of (G,w) whose edges are
stored, following a non-decreasing order of weight
(called an altitude ordering), in the array LMST ;

• a tree B, called the BPTAO of (G,w) associated
with LMST , whose non-leaf nodes correspond to
the edges the minimum spanning tree produced by
Kruskal's algorithm (Line 8) and whose leaves corre-
spond to the vertices of G (Line 2);

• an implicit mapping between the nodes of the BP-
TAO B and the vertices and edges of the minimum
spanning tree. Any node of B stored at an index be-
tween 0 and n − 1 is mapped to the vertex of the
graph G at the same index, whereas any node of B
with an index i between n and 2n − 1 is mapped
to the edge of the minimum spanning tree stored
in LMST [i−n], where i ∈ {0, . . . , n− 1} is the vertex
set of G.

Figure 3 illustrates the relationship between a minimum
spanning tree of G and its associated BPTAO B.
It should be also noticed that, if the quasi-�at zone hier-

archy QFZ(G,w) is a binary hierarchy (i.e., each region is
either a singleton or the result from the merging of exactly
two regions), then it is equal to the BPTAO produced by
Algorithm 1 [8]. Otherwise, the hierarchy QFZ(G,w) can
be straightforwardly recovered from B as shown in [8, 20].
For a more e�cient implementation of Algorithm 1,

readers are referred to [20]. Provided that the edges of
the graph G are either already sorted or can be sorted
in linear time, the e�cient algorithm of [20] has a quasi-
linear time complexity, O(|E(G)|×α(|V (G)|)), where α is
the extremely slowly growing inverse of the single-valued
Ackermann function.

3.2 Hierarchy simpli�cation algorithm

The hierarchy simpli�cation method is precisely described,
with the help of Playing with Kruskal algorithm (namely
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Figure 3: Given a weighted graph, its minimum spanning
tree T (whose edges are thick and gray) is represented by
the binary partition tree by altitude ordering B (in blue).
Each leaf node corresponds to a vertex of T while each
non-leaf node ni of B corresponds to an edge of T ; the
correspondences are depicted in green arrows.
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Algorithm 2: Hierarchy simpli�cation by at-
tribute
Data: A graph G = (V,E) that is the working

space
Data: The saliency map w of a hierarchy H
Data: An attribute threshold value m
Result: A (saliency) saliency map w′ de�ned on

the edges of an MST T of (G,w)

1 Calculate the ordered edge array LMST and its
associated BPTAO B (Algorithm 1);

2 Calculate the region attribute of each node n of B
and store it in A[n];

3 foreach non-leaf node n of B /* n iterates

over the set {|V |, . . . , 2|V | − 1} */

4 do

5 a1 := A[B.LeftChild[n]];
6 a2 := A[B.RightChild[n]];
7 u := LMST [n− |V |];
8 if a1 ≥ m and a2 ≥ m then w′(u) := w(u);
9 else w′(u) := 0;

Algorithm 1), in Algorithm 2. In the �rst line of the algo-
rithm, an MST of the saliency map w of a given hierarchy
H and its associated BPTAO B are obtained from Algo-
rithm 1. After calculating the attribute for every region
R in B (Line 2), we can e�ciently carry out the two main
steps of the method for each edge u ∈ E(G), thanks to the
two structures LMST and B: (1) get the attribute values
of the associated connected components in Lines 5 and 6,
and (2) set the new edge weight w′(u) depending on the
veri�cation of the attribute criterion for the two regions
merged by the edge u (Lines 8 and 9). It can be observed
that Line 7 uses the mapping between the nodes of B and
the edges of the considered MST, which was presented at
the end of Section 3.1 and which is illustrated with the
green arrows in Fig. 3.

It can be observed that, as presented in Figure 1, the
hierarchy given to Algorithm 2 and the one resulting from
its execution are in the form of saliency maps denoted
by w and w′ respectively. The tree-based representation
of the simpli�ed hierarchy resulting from Algorithm 2 can
be obtained by computing the quasi-�at zone hierarchy
of w′ for the MST stored in LMST . Such computation can
be done, for instance, with the algorithm presented in [20].

4 Illustrations and assessments

This section presents qualitative and quantitative assess-
ments of the proposed method. Our tests focus on two
di�erent hierarchical segmentation methods: the quasi-�at
zone hierarchy (QFZ, see Section 2.3) and the watershed
hierarchy by area (WS-Area). Watershed hierarchies were
�rst proposed in [3, 21, 16] and have since been formal-

ized in the context of minimum spanning forests [6]. Intu-
itively, the WS-Area hierarchy of an edge-weighted graph
is obtained by sequentially �ltering the edge weights of the
graph with area closings of increasing sizes and then com-
puting the sequence of watershed segmentations of these
�ltered edge weights.
Then, we consider two regional attributes to simplify

those hierarchies:

1. the area of a region, de�ned as the number of vertices
in the region; and

2. the frontier strength of a region, de�ned as the mean
weight of the edges linking the region with its sibling,
i.e., the edges on the frontier between the two children
of the parent region.

The area attribute of each region can be computed in lin-
ear time from the BPTAO by traversing the tree from the
leaves to the root, the area of the leaves being 1 and the
area of a non-leaf node being the sum of the area of its two
children. The frontier strength can also be computed in
linear time, by traversing the edges of the graph G, �nd-
ing the lowest common ancestor of the two vertices of the
edge in the BPTAO (this query can be done in constant
time thanks to a linear time pre-processing of the tree [2])
and accumulating the edge weights in this region. The
area attribute is used to identify non signi�cant nodes in
the QFZ hierarchy, while the frontier strength attribute is
used in conjunction with the WS-Area hierarchy.
We �rst present illustrations of non-signi�cant node re-

moval on hierarchies built on point clouds and images.
Then, we present extensive quantitative assessments of the
bene�ts of our procedure for natural image analysis.

4.1 Illustrations

We �rst demonstrate the e�ectiveness of the proposed
method on the hierarchical analysis of two simulated 2D
point clouds (see Figure 4)1. Each point cloud is gen-
erated from three random distributions corresponding to
three classes. We then consider the graph induced by the
Delaunay triangulation of the points and we weight the
edges by the Euclidean distance between the points. We
observe that very small regions are branching at very high
levels in the dendrogram of the QFZ hierarchy. Hence, the
partition containing three regions in the hierarchy fails to
correctly recovers the three clusters. By removing non-
signi�cant nodes from the QFZ hierarchy based on an area
attribute (nodes containing less than 7 points are consid-
ered non-signi�cant), we ensure that the hierarchy does
not contain any small region anymore (neither at high nor
at low levels). We observe that the partitions containing

1All the illustrations presented in this section can
be reproduced using the Python Notebooks available at
https://perso.esiee.fr/~perretb/notebooks/non_significant_

regions_removal_notebooks.zip.
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Graph QFZ QFZ clustering simpli�ed QFZ simpli�ed QFZ clustering

Figure 4: Removal of non-signi�cant nodes on the QFZ hierarchical clustering of two point clouds (�rst and second
lines). For each graph, we show from left to right: the graph with the three ground-truth clusterings of the graph
vertices (red, green, and blue), the dendrogram of the QFZ hierarchy, the clustering into 3 classes for this dendrogram,
the dendrogram of the simpli�cation of the QFZ hierarchy, and the clustering into 3 classes for this simpli�ed dendro-
gram. Note that the colors used to represent clusterings are arbitrary and do not represent an explicit correspondence
between two di�erent clusterings.

three regions in the simpli�ed hierarchy correctly recovers
the three clusters.

Another illustration of the e�ectiveness of the proposed
method on hierarchical natural image analysis is demon-
strated in Figure 5. In this Figure, the saliency map of a
hierarchy (Section 2.2) is represented in the 2D Khalim-
sky grid [1, 21]: in this representation, the brightness of a
contour is inversely proportional to the number of parti-
tions of the hierarchy it belongs to, i.e., dark contours are
the strongest ones. We can observe that in the QFZ hier-
archy, most strong contours represent very small regions
located on thick transitions between di�erent regions of
the images. When the saliency map is plotted in the 2D
Khalimsky grid, this suppression of small regions looks like
a sharpening, in other words, thick and blurred transitions
become sharp. On the contrary, we can see that WS-Area
hierarchy already produces thin contours. However, it also
produces a lot of non-signi�cant contours in large homo-
geneous regions. After a region removal procedure with a
small contour strength from the WS-Area hierarchy, most
spurious contours disappear.

4.2 Quantitative assessment

This section presents a quantitative assessment of the pro-
posed method on natural image analysis. We �rst explain
the assessment methodology, the evaluation measures, and
the image datasets. Then, we give the results comparing
the QFZ and WS-Area hierarchies to their simpli�ed coun-
terparts. Finally, we also compare our results with the one
obtained by the transformation of a hierarchy into its op-
timal cut hierarchy for the piecewise constant Mumford-
Shah energy [11].

Methodology We mainly follow the supervised assess-
ment framework proposed in [22]. We give an overview of

the quality measures and readers can refer to the provided
references to get detailed descriptions. The assessment
framework relies on three types of measures to encompass
various aspects of hierarchical representations:

1. precision-recall and F-measure on boundaries
(FB) [1]. This measure evaluates the quality of the
boundaries of each partition of a hierarchy with
respect to a ground-truth segmentation. To evaluate
a hierarchical method on a whole dataset, two
aggregated measures are then de�ned: 1) the optimal
image scale (OIS) measuring the best achievable
score when taking the optimal partition in each
hierarchy, and 2) the optimal data-set scale (ODS)
measuring the best achievable score when taking
partitions at the same level (the optimal scale) in
every hierarchy;

2. fragmentation curves on the bidirectional-consistency
error (BCE) [22]. The fragmentation of a partition is
de�ned as the number of regions in the partition di-
vided by the number of regions in the ground-truth.
The fragmentation curve on BCE evaluates the qual-
ity of the regions of partitions of the hierarchy as
the fragmentation increases, also with respect to a
ground-truth segmentation. We consider two cate-
gories of partitions that can be extracted from a hi-
erarchy: the partitions of the hierarchy (horizontal
cuts), and the optimal partitions constructable from
regions taken from any partition of the hierarchy (the
optimal non-horizontal cuts). Two aggregated mea-
sures are de�ned: the area under the curve for op-
timal cuts (FOC) and the area under the curve for
horizontal cuts (FHC);

3. object detection measure [22, 23]. This last mea-
sure is based on supervised object detection with
markers (one marker for the object and one for the
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Input image QFZ hierarchy simpli�ed QFZ hierarchy WS-Area hierarchy simpli�ed WS-Area hierarchy

Figure 5: Removal of non-signi�cant nodes of the QFZ hierarchy and of the WS-Area hierarchy on 4 images of the
BSDS 500 dataset [1]. For each image, we show from left to right: the input image, the saliency map of the QFZ
hiearchy, the saliency map of the simpli�ed QFZ hierarchy, the saliency map of the WS-Area hierarchy, and the saliency
map of the simpli�ed WS-Area hierarchy.

Table 1: Comparison between the QFZ hierarchy, the simpli�ed QFZ hierarchy at a given threshold, and the hierarchy
of optimal Mumford-Shah (MS) cuts of QFZ.

FB BCE OD
Mean score

ODS OIS FOC FHC Mean Median
QFZ 0.479 0.477 0.358 0.358 0.500 0.550 0.454

QFZ + simpli�cation 0.4%� 0.525 0.580 0.510 0.464 0.552 0.613 0.541
QFZ + simpli�cation 0.8%� 0.537 0.589 0.533 0.475 0.533 0.579 0.541
QFZ + simpli�cation 1.6%� 0.517 0.602 0.550 0.483 0.505 0.524 0.530
QFZ + simpli�cation 3.2%� 0.515 0.543 0.541 0.479 0.467 0.448 0.499

QFZ + MS cuts [11] 0.525 0.523 0.368 0.368 0.503 0.551 0.473
QFZ + Simpli�cation 0.8%�+ MS cuts 0.595 0.637 0.548 0.505 0.528 0.569 0.564

background) and tries to describe an object as a
set of regions taken from any partition of the hi-
erarchy. It quanti�es how well a speci�c object of
a scene can be retrieved with di�erent levels of in-
formation given on its position. Markers are au-
tomatically generated from the ground-truth and
corresponds to: erosions of the ground-truth ob-
ject/background masks (Er), skeletons of the ground-
truth object/background masks (Sk), and the frame
of the image (Fr). Three combination of background-
foreground markers are considered: Er-Er, Fr-Sk, and
Sk-Sk. The quality of a detection is measure with its
Jaccard index.

The precision-recall curves and fragmentation curves are
evaluated on the test set of the Pascal Context dataset [18]
which consists of a pixel-wise segmentation of the last 2 498
images of the Pascal VOC'10 [10] validation set. The ob-
ject detection measure is evaluated on the MS-COCO [15]

dataset. Each object of the dataset is processed indepen-
dently leading to a total of 291 875 objects from the 40 504
images of the MS-COCO 2014 validation set.

Results Each image of the test datasets presented in the
previous section was �rst transformed into a 4-adjacency
graph. The edge weights of the graph of an image are then
de�ned as the mean gradient value of its two extremities,
the gradient being obtained with the structured edge de-
tector [9]. In order to evaluate the bene�ts of the proposed
method we propose two comparisons:

1. QFZ hierarchy versus a simpli�ed QFZ hierarchy
where small regions have been removed. The area
threshold is expressed as a fraction of the total num-
ber of pixels in the image.

2. WS-Area hierarchy versus a simpli�ed WS-Area hi-
erarchy where regions with a common weak frontier

7



Table 2: Comparison between the WS-Area hierarchy, the simpli�ed WS-Area hierarchy at a given threshold , and the
hierarchy of optimal Mumford-Shah (MS) cuts of WS-Area.

FB BCE OD
Mean score

ODS OIS FOC FHC Mean Median
WS-Area 0.512 0.591 0.588 0.440 0.518 0.552 0.534

WS-Area + simpli�cation 0.05 0.522 0.592 0.589 0.445 0.519 0.554 0.536
WS-Area + simpli�cation 0.08 0.527 0.596 0.591 0.452 0.519 0.554 0.540
WS-Area + simpli�cation 0.10 0.530 0.599 0.591 0.457 0.518 0.553 0.541
WS-Area + simpli�cation 0.15 0.541 0.604 0.593 0.470 0.511 0.539 0.543
WS-Area + simpli�cation 0.20 0.541 0.605 0.592 0.482 0.490 0.503 0.536

WS-Area + MS cuts [11] 0.535 0.585 0.615 0.514 0.531 0.576 0.559

have been merged. The strength threshold assumes
that gradient values are normalized between 0 and 1.

Table 1 shows the results obtained with QFZ hierar-
chies. We can see that the removing of small regions pro-
vides signi�cant improvements for the three measures. A
threshold level of 0.4%� or 0.8%� (between 150 and 400
pixels on the tested images) o�ers a good compromise on
the di�erent measures.
Table 2 shows the results obtained with WS-Area hi-

erarchies. In this case, the results are more contrasted.
While a suppression of weak contours can provide signi�-
cant improvement on precision-recall curves and fragmen-
tation curves, the e�ect can be rapidly detrimental to the
object detection measure. This issue can be due to the
fact that the MS-COCO dataset contains a lot of poorly
resolved objects with weak contours that can be deleted
by the proposed method. However, we still see that a hier-
archy simpli�cation with moderate threshold values (be-
tween 0.05 and 0.1) improves all the considered quality
measures.
Finally, the last lines of Tables 1 and 2 show the results

obtained by the transformation of a hierarchy into its opti-
mal cut hierarchy [11]. We recall that this transformation
modify the level of the nodes of a hierarchy such that each
partition of the transformed hierarchy is optimal for the
piecewise constant Mumford-Shah energy whose regular-
ization parameter is equal to the level of the partition. We
can see that this transformation provides very good results
on the WS-Area hierarchy where it can identify incorrect
contours, thanks to the rich information provided by the
Mumford-Shah energy, and then push them down to the
bottom of the hierarchy. It is however unable to deal with
the small regions present close to the top of the QFZ hier-
archy as pushing them down to the bottom would require
to completely collapse the hierarchy. Nevertheless, we can
see that the combination of the two transformation meth-
ods, the proposed simpli�cation strategy followed by the
transformation into optimal cut hierarchy, on QFZ (last
line of Table 1) gives the best result. This further support
the idea that the proposed method can be used as a pre- or
post-processing step to enhance the quality of hierarchical
segmentation algorithms.

5 Conclusion and perspectives

In this paper, relying on the framework developed in [7],
we have provided a generic solution to the common prob-
lem of removing non-signi�cant regions from a hierarchy
of partitions. The experiments demonstrate that apply-
ing this algorithm does indeed improve the results in a
number of situations. Future work will combine our ap-
proach with probability functions (e.g., attention saliency)
or some other criterion relying on deep learning techniques
to achieve state-of-the-art results.
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